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Introduction

Nevanlinna theory is a branch of complex analysis that deals with the study of meromor-
phic functions. It was introduced by a Finnish mathematician Rolf Nevanlinna in the early
20th century [21].

This theory has applications in many areas of mathematics, including algebraic geom-
etry, number theory, and differential equations.
The main focus of Nevanlinna theory is on the distribution of values of meromorphic
functions.

It provides a way to measure their growth, using the Nevanlinna characteristic function.
And that’s the reason why, this theory has became an important tool in the study of differ-
ential equations.

Wittich was the first one who made a systematic study in the application of Nevanlinna
theory into complex differential equations in [26]. Since that, many problems has been
studied and solved by several mathematicians.

Several researchers have studied the properties of solutions of linear differential equa-
tions of the second order or of higher order with entire or meromorphic functions by giv-
ing information on the hyper order, iterated order and the [p, q]-order of the solutions of
these equations (see [2], [15], [16], [18], [22]....etc).

In recent years, some scientists have been interested in determining the properties of the
solution of equations whose coefficients are entire or meromorphic functions in the com-
plex plane (see [5], [20], [24]...etc )

As far as we know, in [6] Chyzhykov, Heittokangas and Rättyä introduced the concept of
order ϕ-order in order to study the growth of solutions of linear differential equations in
the complex plane.

Inspired by these works, in this thesis, we have studied some properties of solutions to
certain differential equations of complex variable function coefficients.

This work is composed of an introduction, and three chapters.

In the first chapter, we introduce the elementary definitions of the Nevanlinna theory,
and some other notations that we will need in the next chapters.

In order to demonstrate the results mentioned in the third chapter, besides some proved
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Introduction

lemmas, we needed to demonstrate some auxiliary lemmas, that are mentioned in the
second chapter.

The last chapter is devoted to the results obtained in the article [23], where we have stud-
ied the growth and oscillation of solutions to the homogeneous differential equation

Ak (z) f (k) +Ak−1 (z) f (k−1) +·· ·+A1 (z) f ′+A0 (z) f = 0, (1)

where A j (z) ( j = 0,1, · · · ,k) with Ak (z) 6≡ 0 are meromorphic functions with finite [p, q]−ϕ
order.

Under some conditions, we have proved that every non-transcendental meromorphic
solution f 6≡ 0 of (1) is a polynomial with deg f ≤ s − 1 and every transcendental mero-

morphic solution f of (1) with λ[p,q]

(
1
f ,ϕ

)
< min

{
σ,µ[p,q]( f ,ϕ)

}
satisfies

ρ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = +∞,σ≤ ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

As a result, under the same hypothesis we have obtained that if ψ is a transcendental
meromorphic function that satisfies a certain condition then, every transcendental mero-

morphic solution f of equation (1) with λ[p,q]

(
1
f ,ϕ

)
<µ[p,q]( f ,ϕ) satisfies

σ≤ λ[p+1,q]( f −ψ,ϕ) = λ[p+1,q]( f −ψ,ϕ)

= ρ[p+1,q]( f −ψ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

In the second part of this chapter, we have studied the growth of solutions to the non-
homogeneous differential equation

Ak (z) f (k) +Ak−1 (z) f (k−1) +·· ·+A1 (z) f ′+A0 (z) f = F(z) , (2)

where A j (z) ( j = 0,1, · · · ,k) with F(z) 6≡ 0 are meromorphic functions with finite [p, q]−ϕ
order.

Under some conditions, we have obtained that every non-transcendental meromor-
phic solution f 6≡ 0 of (2) is a polynomial with deg f ≤ s − 1 and every transcendental

meromorphic solution f of (2) with λ[p,q]

(
1
f ,ϕ

)
< min

{
σ,µ[p,q]( f ,ϕ)

}
satisfies

λ[p,q]( f ,ϕ) = λ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = +∞

and
σ≤ λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

As a result, under the same hypothesis we have obtained that if ψ is a transcendental
meromorphic function that satisfies a certain condition then, every transcendental mero-

morphic solution f of equation (2) with λ[p,q]

(
1
f ,ϕ

)
<µ[p,q]( f ,ϕ) satisfies

σ≤ λ[p+1,q]( f −ψ,ϕ) = λ[p+1,q]( f −ψ,ϕ)

= ρ[p+1,q]( f −ψ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

These results can be considered as a generalization of some previous results.
We conclude this work with a conclusion and some perspectives.
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Chapter 1

Nevanlinna theory

In this chapter we introduce some necessary and elementary definitions, notations and
results that we will need later in the next two chapters.

1 Poisson-Jensen and Jensen formula

Theorem 1.1 (Poisson-Jensen formula [7], [9]) Let f be a meromorphic function such that
f (0) 6= 0,∞ and let a1, a2, . . . (r esp. b1,b2, . . .) denote its zeros (resp. poles), each taken into
account according to its multiplicity. If z = r e iθ and 06 r < R <∞, then

log | f (z)| =
1

2π

∫ 2π

0
log | f (Re iϕ)| R2 − r 2

R2 −2r cos(θ−ϕ)+ r 2
dϕ

+ ∑
|a j |<R

log

∣∣∣∣R(z −a j )

R2 −a j z

∣∣∣∣− ∑
|bk |<R

log

∣∣∣∣∣R(z −bk )

R2 −bk z

∣∣∣∣∣ . (1.1)

Theorem 1.2 (Jensen formula [17]) Let f be a meromorphic function such that f (0) 6= 0,∞
and let a1, a2, . . . (r esp. b1,b2, . . .) denote its zeros (resp. poles), each taken into account
acording to its multiplicity. Then, we have

log | f (0)| =
1

2π

∫ 2π

0
log

∣∣∣ f (r e iϕ)
∣∣∣dϕ+ ∑

|b j |<r

log

(
r∣∣b j

∣∣
)
− ∑
|a j |<r

log

(
r∣∣a j

∣∣
)

(1.2)

Proof. Proving formula (1.2) when f has no zeros or poles on |z| = r. Let

g (z) := f (z)
∏

|a j |<r

(
r 2 −a j z

r (z −a j )

) ∏
|bk |<r

(
r 2 −bk z

r (z −bk )

)−1

, (1.3)

then g 6= 0,∞ in |z| < r and log |g (z)| is a harmonic function. By the mean property of
classical harmonic functions, we have

log |g (0)| =
1

2π

∫ 2π

0
log

∣∣∣g (r e iϕ)
∣∣∣dϕ. (1.4)

Since

|g (0)| = | f (0)| ∏
|a j |<r

(
r∣∣a j

∣∣
) ∏
|bk |<r

(
r

|bk |
)−1

, (1.5)
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2. NEVANLINNA CHARACTERISTIC FUNCTION

we obtain

log |g (0)| = log | f (0)|+ ∑
|a j |<r

log

(
r∣∣a j

∣∣
)
− ∑

|bk |<r
log

(
r

|bk |
)

. (1.6)

For z = r e iϕ, we have ∣∣∣∣∣ r 2 −a j z

r (z −a j )

∣∣∣∣∣ =

∣∣∣∣∣ r 2 −bk z

r (z −bk )

∣∣∣∣∣ = 1

for all a j , bk . Then

log
∣∣∣g (r e iϕ)

∣∣∣ = log
∣∣∣ f (r e iϕ)

∣∣∣ . (1.7)

Substituting (1.6) and (1.7) in (1.4), we obtain

log | f (0)|+ ∑
|a j |<r

log

(
r∣∣a j

∣∣
)
− ∑

|bk |<r
log

(
r

|bk |
)

=
1

2π

∫ 2π

0
log

∣∣∣ f (r e iϕ)
∣∣∣dϕ,

hence, the formula of Jensen.

2 Nevanlinna characteristic function

Definition 1.1 (Integrated counting function [17]) a ∈ C is given. Let f be a meromorphic
function such that f 6≡ a.
Then n(r, a, f ) denotes the number of roots of the equation f (z)−a = 0 in the disc {z : |z|6
r }, each root according to its multiplicity.
Similarly n(r, a, f ) counts the number of distinct roots of f (z)−a = 0 in the disc {z : |z|6 r }.
And n(r,∞, f ) denotes the number of poles of f in the disc {z : |z|6 r }, each pole according
to its multiplicity.
Similarly n(r,∞, f ) counts the number of distinct poles of f in the disc {z : |z|6 r },.

Example 1.1 Let f (z) = sin2(z), we have

n(r,0, f ) = 2+4
[ r

π

]
and n(r,0, f ) = 1+2

[ r

π

]
.

Example 1.2 Let f (z) = tan(z)
z4 , we have

n(r,∞, f ) = 4 and n(r,∞, f ) = 1.

Definition 1.2 (Counting function [9]) Let f be a meromorphic function. For a ∈ C, we
define the a-point function of f by

N(r, a, f ) = N

(
r,

1

f −a

)
:=

∫ r

0

n(t , a, f )−n(0, a, f )

t
d t +n(0, a, f ) logr, f 6≡ a,

and

N(r,∞, f ) = N
(
r, f

)
:=

∫ r

0

n(t ,∞, f )−n(0,∞, f )

t
d t +n(0,∞, f ) logr.

Similarly, we define the a-point distinct function of f by

N(r, a, f ) = N

(
r,

1

f −a

)
:=

∫ r

0

n(t , a, f )−n(0, a, f )

t
d t +n(0, a, f ) logr, f 6≡ a,

and

N(r,∞, f ) = N
(
r, f

)
:=

∫ r

0

n(t ,∞, f )−n(0,∞, f )

t
d t +n(0,∞, f ) logr.
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2. NEVANLINNA CHARACTERISTIC FUNCTION

Example 1.3 Let f (z) = exp(z)
z3 , we have

n(t ,∞, f ) = n(0,∞, f ) = 3 and n(t ,∞, f ) = n(0,∞, f ) = 1,

hence

N(r, f ) =
∫ r

0

n(t ,∞, f )−n(0,∞, f )

t
d t +n(0,∞, f ) log = 3logr

and

N
(
r, f

)
=

∫ r

0

n(t ,∞, f )−n(0,∞, f )

t
d t +n(0,∞, f ) logr = logr.

Lemma 1.1 ([9], [17]) Let f be a meromorphic function with a-points α1,α2, . . . ,αn in {z :
|z| ≤ r } such that 0 < |α1| ≤ |α2| ≤ . . . ≤ |αn | ≤ r, and f (0) 6= 0, each counted according to its
multiplicity. Then ∫ r

0

n(t , a, f )

t
d t =

∫ r

0

n(t , a, f )−n(0, a, f )

t
d t

=
∑

0<|α j |≤r

log

(
r∣∣α j

∣∣
)

. (1.8)

Proof. ([9], [17]) Denoting
∣∣α j

∣∣ = r j for j = 1, . . . ,n, we obtain

∑
0<|α j |≤r

log

(
r∣∣α j

∣∣
)

=
n∑

j =1
log

(
r

r j

)
= n logr −

n∑
j =1

logr j

=
n∑

j =1
j
(
logr j+1 − logr j

)+n
(
logr − logrn

)
=

n∑
j =1

∫ r j+1

r j

j

t
d t +

∫ r

rn

n

t
d t

=
∫ r

0

n(t , a, f )

t
d t .

Proposition 1.1 ([9], [17]) Let f be a meromorphic function represented by its Laurent ex-
pansion in original point

f (z) =
+∞∑
j =m

c j z j , cm 6= 0, m ∈Z.

Then

log |cm | =
1

2π

∫ 2π

0
log

∣∣∣ f (r e iϕ)
∣∣∣dϕ+N(r, f )−N

(
r,

1

f

)
.

Definition 1.3 [17] For any real number x ≥ 0, we define

log+ x := max(0, log x).

The following lemma contains some properties of log+ x.

Lemma 1.2 [17] Let x, y, x j , j = 1, . . . ,n strictly positive real numbers. Then we have

1. log x ≤ log+ x,

5



2. NEVANLINNA CHARACTERISTIC FUNCTION

2. log+ x ≤ log+ y (0 ≤ x ≤ y),

3. log x = log+ x − log+ 1
x (x > 0),

4.
∣∣log x

∣∣ = log+ x + log+ 1
x (x > 0).

5. log x ≤ log+ x (x ≥ 0),

6. log+
(

n∏
j =1

x j

)
≤

n∑
j =1

log+ x j ,

7. log+
(

n∑
j =1

x j

)
≤ logn +

n∑
j =1

log+ x j .

Proof. The properties 1, 2 are immediate consequences of the Definition 1.3 and the
monotonicity of the logarithmic function.

Proving 3, 4, 5 et 6. For 3, we have ([1])

log x+− log+
1

x
= max

(
log x,0

)−max

(
log

1

x
,0

)
= max

(
log x,0

)−max
(− log x,0

)
= log x.

The property 4. is obtained as follows ([1])

log x++ log+
1

x
= max

(
log x,0

)+max

(
log

1

x
,0

)
= max

(
log x,0

)+max
(− log x,0

)
=

∣∣log x
∣∣ .

For the property 5., if
n∏

j =1
x j 6 1, then the inequality is obvious. Suppose that

n∏
j =1

x j > 1.

Hence,

log+
(

n∏
j =1

x j

)
= log

(
n∏

j =1
x j

)

=
n∑

j =1
log x j

≤
n∑

j =1
log+ x j , according to 1.

Finally, we get the property 6. using properties 2 et 5. In fact

log+
(

n∑
j =1

x j

)
6 log+(n max

1≤ j≤n
x j )

6 logn + log+( max
1≤ j≤n

x j )

6 logn +
n∑

j =1
log+ x j .

6



2. NEVANLINNA CHARACTERISTIC FUNCTION

Lemma 1.3 [9] For all a ∈C, we have

log+ |a| =
1

2π

∫ 2π

0
log

∣∣∣a −e iθ
∣∣∣dθ. (1.9)

Definition 1.4 (Proximity function)([9], [17]) Let f be a meromorphic function. For a ∈ C,
we define the proximity function of f by

m(r, a, f ) = m

(
r,

1

f −a

)
:=

1

2π

∫ 2π

0
log+

1∣∣ f
(
r e iϕ

)−a
∣∣dϕ, f 6≡ a,

and

m(r,∞, f ) = m(r, f ) :=
1

2π

∫ 2π

0
log+

∣∣∣ f
(
r e iϕ

)∣∣∣dϕ.

Example 1.4 Let f (z) = exp(az)
zm , a ∈C∗, m ∈N∗. We have

m(r, f ) =
1

2π

∫ 2π

0
log+

∣∣∣ f
(
r e iϕ

)∣∣∣dϕ

=
1

2π

∫ 2π

0
log+

∣∣∣∣∣exp(|a|e i arg ar e iϕ)(
r e iϕ

)m

∣∣∣∣∣dϕ

=
ar

π
− m logr

2
.

Definition 1.5 (Characteristic function)([17]) For a meromorphic function f , we define its
characteristic function as

T(r, f ) := m(r, f )+N(r, f ).

Example 1.5 Let f (z) = exp(azn), a ∈C∗, m ∈N. We have

m(r, f ) =
1

2π

∫ 2π

0
log+

∣∣∣ f
(
r e iϕ

)∣∣∣dϕ

=
1

2π

∫ 2π

0
log+

∣∣∣exp
(
|a|e i arg a

(
r e iϕ

)n)∣∣∣dϕ (a = |a|e i arg a , −π< arg a ≤π)

=
|a|r n

π
.

Since f is an entire function, then

T(r, f ) = m(r, f ) =
|a|r n

π
.

Example 1.6 Let f (z) = exp(πz)
zm , m ∈N∗. We have

n(t ,∞, f ) = n(0,∞, f ) = m,

then
N(r, f ) = m logr.

According to Example 1.4 we have

m(r, f ) = r − m logr

2
.

Hence

T(r, f ) =
m logr

2
.
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3. THE FIRST MAIN THEOREM

3 The first main theorem

Theorem 1.3 (First main theorem of Nevanlinna)([9], [17]) Let f be a meromorphic func-
tion with the Laurent expansion

f (z) =
+∞∑
j =m

c j z j , cm 6= 0, m ∈Z, z ∈C.

Then, for all complex number a, we have

T

(
r,

1

f −a

)
= T(r, f )− log |cm |+ϕ(r, a) (1.10)

where
|ϕ(r, a)| ≤ log+ |a|+ log2.

Proof. Assume first that a = 0. By Proposition 1.1 and Lemma 1.2(3), we obtain

log |cm | =
1

2π

∫ 2π

0
log+

∣∣∣ f (r e iϕ)
∣∣∣dϕ− 1

2π

∫ 2π

0
log+

1∣∣ f (r e iϕ)
∣∣dϕ+N(r, f )−N

(
r,

1

f

)
= m(r, f )−m

(
r,

1

f

)
+N(r, f )−N

(
r,

1

f

)
= T(r, f )−T

(
r,

1

f

)
hence

T

(
r,

1

f −a

)
= T(r, f )− log |cm | (1.11)

with ϕ(r,0) ≡ 0. Suppose now, that a 6= 0. We define h(z) = f (z)−a, then

N

(
r,

1

h

)
= N

(
r,

1

f −a

)
,

m

(
r,

1

h

)
= m

(
r,

1

f −a

)
,

N(r,h) = N(r, f ).

Moreover,

log+ |h| = log+ | f −a| ≤ log+ |a|+ log2,

log+ | f | = log+ | f −a +a| = log+ |h +a| ≤ log+ |h|+ log+ |a|+ log2,

Integrating these inequalities we see that

m(r,h) ≤ m(r, f )+ log+ |a|+ log2,

m(r, f ) ≤ m(r,h)+ log+ |a|+ log2.

we put
ϕ(r, a) := m(r,h)−m(r, f )

satisfies |ϕ(r, a)| ≤ log+ |a|+ log2. By applying the formula (1.11) for h, we obtain

T

(
r,

1

f −a

)
= T

(
r,

1

h

)
= T(r,h)− log |cm |

= m(r,h)+N(r,h)− log |cm |
= ϕ(r, a)+m(r, f )+N(r, f )− log |cm |

hence, the result.
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3. THE FIRST MAIN THEOREM

Theorem 1.4 ( Nevanlinna)([17]) Let f be a meromorphic function not being identically
equal to a constant. Then, for all a ∈C, we have

T

(
r,

1

f −a

)
= T(r, f )+O(1) r →+∞.

The following diagram summarises the properties of the Novanlinna characteristic func-
tion

Proposition 1.2 ([7], [9], [17]) Let f , f1, f2, . . . , fn (n ≥ 1) be meromorphic functions and
a,b,c and d be complex constants such that ad −bc 6= 0. Then

1. T

(
r,

n∑
k=1

fk

)
≤

n∑
k=1

T(r, fk )+ logn,

2. T

(
r,

n∏
k=1

fk

)
≤

n∑
k=1

T(r, fk ),

3. T
(
r, f m

)
= mT(r, f ) ∀ m ∈N∗,

4. T
(

a f +b
c f +d

)
= T(r, f )+O(1) as r →+∞ f 6≡ −d

c .

Proof.
1. We have

T

(
r,

n∑
j =1

f j

)
= m

(
r,

n∑
j =1

f j

)
+N

(
r,

n∑
j =1

f j

)
and

m

(
r,

n∑
j =1

f j

)
=

1

2π

∫ 2π

0
log+

∣∣∣∣∣ n∑
j =1

f j (r e iθ)

∣∣∣∣∣dθ

6
1

2π

∫ 2π

0

(
n∑

j =1
log+

∣∣∣ f j (r e iθ)
∣∣∣+ logn

)
dθ

=
n∑

j =1
m(r, f j )+ logn.

On the other hand, since the the multiplicity of the pole of
n∑

j =1
f j in z0 does not exceed the

sum of the multiplicities of the poles of f j ( j = 1, ...,n) in z0, then

N

(
r,

n∑
j =1

f j

)
6

n∑
j =1

N(r, f j ).

Hence,

T

(
r

n

,
∑

j =1
f j

)
= m

(
r,

n∑
j =1

f j

)
+N

(
r,

n∑
j =1

f j

)

6
n∑

j =1
T(r, f j )+ logn .

9



3. THE FIRST MAIN THEOREM

2. We have

T

(
r,

n∏
j =1

f j

)
= m

(
r,

n∏
j =1

f j

)
+N

(
r,

n∏
j =1

f j

)
.

Since

m

(
r,

n∏
j =1

f j

)
=

1

2π

∫ 2π

0
log+

∣∣∣∣∣ n∏
j =1

f j (r e iθ)

∣∣∣∣∣dθ

6
1

2π

∫ 2π

0

n∑
j =1

log+
∣∣∣ f j (r e iθ)

∣∣∣dθ

=
n∑

j =1
m(r, f j ),

and the fact that the multiplicity of the pole of
n∏

j =1
f j in z0 does not exceed the sum of the

multiplicities of the poles of f j ( j = 1, ...,n) in z0, gives

N

(
r,

n∑
j =1

f j

)
6

n∑
j =1

N(r, f j ).

As a consequence

T

(
r,

n∏
j =1

f j

)
6

n∑
j =1

T(r, f j ).

3. We have
∣∣ f

∣∣6 1 is equivalent to
∣∣ f

∣∣n 6 1.
a) If

∣∣ f
∣∣6 1, then

m(r, f n) =
1

2π

∫ 2π

0
log+

∣∣∣ f n(r e iθ)
∣∣∣dθ = 0

and
N(r, f n) = nN(r, f ).

Hence
T(r, f n) = nT(r, f ).

b) If
∣∣ f

∣∣> 1, then

m(r, f n) =
1

2π

∫ 2π

0
log+

∣∣∣ f n(r e iθ)
∣∣∣dθ

= nm(r, f ),

and
N(r, f n) = nN(r, f ).

Therefore,
T(r, f n) = nT(r, f ).

4. Let g = a f +b
c f +d , with ad − cb 6= 0 then we have

g c f + g d = a f +b ⇔ f =
b − g d

g c −a
.

10



4. THE GROWTH OF AN ENTIRE OR MEROMORPHIC FUNCTION

Therefore, it is sufficient to show prove that T(r, g ) 6 T(r, f )+O(1) . We distinguish two
cases. Case 1. If c = 0, then

T(r, g ) = T

(
r,

a f +b

d

)
6 T

(
r,

a

d

)
+T(r, f )+T

(
r,

b

d

)
+ log2

= T(r, f )+O(1).

Case 2. If c 6= 0, then

T(r, g ) = T

(
r,

a f +b

c f +d

)
= T

(
r,

a
c (c f +d)− ad

c +b

c f +d

)

= T

(
r,

a

c
+ cb −ad

c2
.

1

f + d
c

)

6 T

(
r,

cb −ad

c2
.

1

f + d
c

)
+O(1)

6 T

(
r,

1

f + d
c

)
+O(1)

6 T

(
r, f + d

c

)
+O(1)

6 T(r, f )+O(1).

Theorem 1.5 ([17]) A meromorphic function f is rational if and only if T(r, f ) = O(logr ).

4 The growth of an entire or meromorphic function

4.1 Order of growth

Definition 1.6 ([9], [17]) Let f be a meromorphic function. The order of growth of f is de-
fined by

ρ( f ) := limsup
r→+∞

logT(r, f )

logr

and if f is an entire function, then

ρ( f ) = limsup
r→+∞

logT(r, f )

logr
= limsup

r→+∞
loglogM(r, f )

logr
.

Proposition 1.3 ([7], [9], [17]) Let f , g be non-constant meromorphic functions. Then

1. ρ( f + g ) ≤ max
{
ρ( f ),ρ(g )

}
.

2. ρ( f g ) ≤ max
{
ρ( f ),ρ(g )

}
.

3. If ρ(g ) ≤ ρ( f ) then ρ( f + g ) = ρ( f g ) = ρ( f ).

11



4. THE GROWTH OF AN ENTIRE OR MEROMORPHIC FUNCTION

Example 1.7 Let f (z) = cosh(z), we have

M(r, f ) = coshr ∼ er

2
, r →∞.

Hence

ρ( f ) = limsup
r→+∞

loglogM(r, f )

logr
= 1.

4.2 Hyper-order of function

Definition 1.7 ([16], [17]) Let f be a meromorphic function. The hyper-order of f is defined
by

ρ2( f ) := limsup
r→+∞

loglogT(r, f )

logr
,

and if f is entire, then

ρ2( f ) = limsup
r→+∞

loglogT(r, f )

logr
= limsup

r→+∞
logloglogM(r, f )

logr
.

Remark 1.1 If ρ( f ) <+∞, then ρ2( f ) = 0.

4.3 p-Iterated-order of function

In order to generalize some results on the properties of solutions of certain differential
equations, we need to define the p-iterated order of a meromorphic or entire function,
but first we need to define the following expressions on the exponential and its reciprocal
function.
For all r ∈ R, we define exp1 r := er and expp+1 r := exp(expp r ), p ∈ N. And for all r ∈
(0,+∞) sufficiently large log1 r := logr and logp+1 r := log(logp r ), p ∈N.

Proposition 1.4 ([4]) Let xi ∈R such that xi > 1 and i = 1, . . . ,n, we have

1. logp

(
n∑

i =1
xi

)
≤

n∑
i =1

logp xi +O(1),

2. logp

(
n∏

i =1
xi

)
≤

n∑
i =1

logp xi +O(1),

Proof. In order to prove the proposition, we use the mathematical induction.

1. For p = 1, we have log

(
n∑

i =1
xi

)
≤

n∑
i =1

log xi +O(1).

Suppose that logp

(
n∑

i =1
xi

)
≤

n∑
i =1

logp xi +O(1) is verified, and proving it For the p +1 order.

We have

logp+1

(
n∑

i =1
xi

)
= log

(
logp

(
n∑

i =1
xi

))

≤ log

(
n∑

i =1
logp xi +O(1)

)

≤
n∑

i =1
logp+1 xi +O(1).

12



5. THE [P,Q]-ORDER, LOWER [P,Q]-ORDER AND [P,Q]-CONVERGENCE EXPONENT OF
AN ENTIRE OR MEROMORPHIC FUNCTION

2. For p = 1, we have log

(
n∏

i =1
xi

)
≤

n∑
i =1

log xi +O(1).

Suppose that logp

(
n∏

i =1
xi

)
≤

n∑
i =1

logp xi +O(1) is verified, and proving it For the p +1 order.

We have

logp+1

(
n∏

i =1
xi

)
= log

(
logp

(
n∏

i =1
xi

))

≤ log

(
n∑

i =1
logp xi +O(1)

)

≤
n∑

i =1
logp+1 xi +O(1).

Definition 1.8 ([15],[17]) Let f be a meromorphic function. The p-iterated-order of f is
defined by

ρp ( f ) := limsup
r→+∞

logp T(r, f )

logr
,

and if f is entire, then

ρp ( f ) = limsup
r→+∞

logp T(r, f )

logr
= limsup

r→+∞

logp+1 M(r, f )

logr
.

5 The [p,q]-order, Lower [p,q]-order and [p,q]-convergence
exponent of an entire or meromorphic function

5.1 The [p,q]-order

Definition 1.9 ([14], [18]) Let f be a meromorphic function. The [p,q]-order of f is defined
by

ρ[p,q]( f ) := limsup
r→+∞

logp T(r, f )

logq r
,

and if f is entire, then

ρ[p,q]( f ) = limsup
r→+∞

logp T(r, f )

logq r
= limsup

r→+∞

logp+1 M(r, f )

logq r
.

Example 1.8 Let f (z) = ee2z3

, we have ρ[2,1]
(

f
)

= 3.

5.2 The Lower [p,q]-order

Definition 1.10 [27] Let f be a meromorphic function. The lower [p,q]-order of f is defined
by

µ[p,q]( f ) := liminf
r→+∞

logp T(r, f )

logq r
,

and if f is entire, then

µ[p,q]( f ) = liminf
r→+∞

logp T(r, f )

logq r
= liminf

r→+∞
logp+1 M(r, f )

logq r
.

13



5. THE [P,Q]-ORDER, LOWER [P,Q]-ORDER AND [P,Q]-CONVERGENCE EXPONENT OF
AN ENTIRE OR MEROMORPHIC FUNCTION

Remark 1.2 For p = q = 1 in Definition 1.10, we obtain the definition of lower order of f .
For p = 2, q = 1 in Definition 1.10, we obtain the definition of lower hyper order of f .

5.3 The [p,q]-convergence exponent

Definition 1.11 ([18], [19]) Let f be a meromorphic function. The [p,q]-convergence expo-
nent of the sequence of a-points of f is defined by

λ[p,q]( f −a) = λ[p,q]( f , a) := limsup
r→+∞

logp N
(
r, 1

f −a

)
logq r

.

If a = 0, then the [p,q]-convergence exponent of the zero-sequence of f is defined by

λ[p,q]( f ) := limsup
r→+∞

logp N
(
r, 1

f

)
logq r

.

If a = ∞, then the [p,q]-convergence exponent of the pole-sequence of f is defined by

λ[p,q]

(
1

f

)
= limsup

r→+∞

logp N(r, f )

logq r
.

Similarly, the [p,q]-convergence exponent of the distinct zero-sequence of f is defined by

λ[p,q]( f ) := limsup
r→+∞

logp N
(
r, 1

f

)
logq r

,

and the [p,q]-convergence exponent of the distinct pole-sequence of f is defined by

λ[p,q]

(
1

f

)
= limsup

r→+∞

logp N(r, f )

logq r
.

Remark 1.3 For p = q = 1 in Definition 1.11, we obtain the definition of convergence expo-
nent of f .
For p = 2, q = 1 in Definition 1.11, we obtain the definition of hyper convergence exponent
of f .
For q = 1 in Definition 1.11, we obtain the definition of p-iterative convergence exponent of
f .

5.4 [p, q]−ϕ order and [p, q]−ϕ lower order of meromorphic functions
and entire functions

Definition 1.12 ([24])Let ϕ : [0,+∞) → (0,+∞) be a non-decreasing unbounded function,
and p, q be positive integers satisfying p > q > 1. Then, the [p, q]−ϕ order and [p, q]−ϕ
lower order of meromorphic function f are respectively defined by

ρ[p,q]
(

f ,ϕ
)

= limsup
r→+∞

logp T(r, f )

logq ϕ(r )
,

µ[p,q]
(

f ,ϕ
)

= liminf
r→+∞

logp T(r, f )

logq ϕ(r )
.

14



5. THE [P,Q]-ORDER, LOWER [P,Q]-ORDER AND [P,Q]-CONVERGENCE EXPONENT OF
AN ENTIRE OR MEROMORPHIC FUNCTION

Definition 1.13 ([24]) Let f be a meromorphic function. Then, the [p, q]−ϕ exponent of
convergence of zero-sequence (distinct zero-sequence) of f is defined by

λ[p,q]
(

f ,ϕ
)

= limsup
r→+∞

logp n
(
r, 1

f

)
logq ϕ(r )

,

λ[p,q]
(

f ,ϕ
)

= limsup
r→+∞

logp n
(
r, 1

f

)
logq ϕ(r )

.

Remark 1.4 ([24]) If ϕ(r ) = r in the Definitions 1.12 and 1.13 then we will get the standard
definitions of the [p, q]− order and [p, q]− exponent of convergence.

Remark 1.5 ([24]) Throughout this manuscript, we assume that ϕ : [0,+∞) → (0,+∞) is
non-decreasing unbounded function and always satisfies the following two conditions:

1. lim
r→+∞

logp+1 r

logq ϕ(r )
= 0.

2. lim
r→+∞

logq ϕ(α1r )

logq ϕ(r )
= 1 for some α1 > 1.

By using Remark 1.5, we are able to obtain the following proposition.

Proposition 1.5 ([5]) Assume that ϕ satisfies conditions 1−2 of Remark 1.5.
1. If f is a meromorphic function, then

λ[p,q]
(

f ,ϕ
)

= limsup
r→+∞

logp n
(
r, 1

f

)
logq ϕ(r )

= limsup
r→+∞

logp N
(
r, 1

f

)
logq ϕ(r )

,

λ[p,q]
(

f ,ϕ
)

= limsup
r→+∞

logp n
(
r, 1

f

)
logq ϕ(r )

= limsup
r→+∞

logp N
(
r, 1

f

)
logq ϕ(r )

.

2. 1. If f is an entire function, then

ρ[p,q]
(

f ,ϕ
)

= limsup
r→+∞

logp T
(
r, f

)
logq ϕ(r )

= limsup
r→+∞

logp+1 M
(
r, f

)
logq ϕ(r )

,

µ[p,q]
(

f ,ϕ
)

= liminf
r→+∞

logp T(r, f )

logq ϕ(r )
= liminf

r→+∞
logp+1 M(r, f )

logq ϕ(r )
.

Example 1.9 Let ϕ(r ) = log2 r, and f (z) = eez
. For p = 4, and q = 1 we have

ρ[4,1]( f ,ϕ) = limsup
r→+∞

log4+1 M(r, f )

logϕ(r )

= limsup
r→+∞

log5 eer

loglog2 r
= 1.
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6. RESULTS FROM FUNCTION THEORY

6 Results from function theory

6.1 Hadamard factorization theorem

Definition 1.14 (Canonical product)([7], [17]) Let f be a transcendental meromorphic func-
tion such that z1, z2, . . . denotes its zeros with 0 < |z1| ≤ |z2| ≤ . . .. Let p be the smallest integer

such that the series
+∞∑
n=1

1

|zn |p+1 converges. We call

E(u,0) = (1−u),

E(u, p) = (1−u)exp

(
u + u2

2
+ . . .+ up

p

)
p = 1,2, . . .

principal factors. the infinite product

P(z) =
+∞∏
n=1

E

(
z

zn
, p

)
converges uniformly in each bounded domain inC and P(z) is called the canonical product
of f formed by the zeros of f . The integer p is called the genus of the canonical product.

Theorem 1.6 ([7], [17]) Let f be a meromorphic function of a finite order ρ( f ) and let a1, a2, . . .
and b1,b2, . . . the zeros and the poles of f in C\ 0, respectively. Suppose that f can be repre-
sented as

f (z) = ck zk + ck+1zk+1 + . . . , (ck 6= 0),

in the neighborhood of z = 0. Then

f (z) = zk eQ(z) P1(z)

P2(z)
,

such that Q(z) is a polynomial with degree less or equal to ρ( f ) and P1(z) and P2(z) are the
canonical products of f formed by its zeros and poles of f .

7 Some elements of Wiman-Valiron theory

Definition 1.15 ([10], [25], [26]) Let f (z) =
∑

n≥0
an zn be an entire function. We define the

maximal term of f by
µ(r, f ) = max

n≥0
|an |r n

and we define the central index of f by

νr ( f ) = max{m :µ(r, f ) = |am |r m}.

Example 1.10 Let P(z) = an zn +an−1zn−1 + . . .+a0. For sufficiently large r , we have

µ(r, f ) = max
n≥0

|an |r n = |an |r n

Hence
νr ( f ) = n.
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8. MEASURE AND DENSITY OF SETS

8 Measure and density of sets

Definition 1.16 (Linear measure) ([15], [16]) The linear measure of a set G ⊂ [0,+∞) is
given by

m(G) =
∫

G
d t .

Example 1.11 Let G = [0,π]∪ [5,9], we have

m(G) =
∫

G
d t =

∫
[0,π]∪[5,9]

d t = 4+π.

Definition 1.17 (Logarithmic measure) ([15], [16]) The logarithmic measure of a set G ⊂
[1,+∞) is given by

ml (G) =
∫

G

d t

t
.

Example 1.12 Let G = [1,e5], we have

ml (G) =
∫

G

d t

t
=

∫
[1,e5]

d t

t
= 5.

Definition 1.18 (Upper density)([15], [16]) The upper density of a set G ⊂ [0,+∞) is given
by

dens(G) = limsup
r→+∞

m (G∩ [0,r ])

r
.

Example 1.13 Let G = [0,+∞), we have

dens(G) = limsup
r→+∞

m (G∩ [0,r ])

r

= limsup
r→+∞

m([0,r ])

r
= 1.

Definition 1.19 (Upper logarithmic density) ([15], [16]) The upper logarithmic density of
a set G ⊂ [1,+∞) is given by

logdens(G) = limsup
r→+∞

ml (G∩ [1,r ])

logr
.

Example 1.14 Let G = [1,+∞), we have

logdens(G) = limsup
r→+∞

ml (G∩ [1,r ])

logr

= limsup
r→+∞

ml ([1,r ])

logr
= 1.
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Chapter 2

Auxiliary lemmas

Introduction In this chapter, we will demonstrate some auxiliary lemmas that we will
need in the proof of our results.

Proposition 2.1 ([2]) For all G ⊂ [1,+∞) the following statements hold:

1. If ml (G) = +∞, then m(G) = +∞,

2. If dens(G) > 0, then m(G) = +∞,

3. If logdens(G) > 0, then ml (G) = +∞.

Lemma 2.1 ([8]) Let f be a transcendental meromorphic function in the plane, and let
α > 1 be a given constant. Then there exist a set E1 ⊂ (1,+∞) that has a finite logarithmic
measure, and a constant B > 0 depending only on α and (i,j) ((i,j) positive integers with
i > j ) such that for all z with |z| = r ∉ [0,1]∪E1, we have∣∣∣∣ f (i )(z)

f ( j )(z)

∣∣∣∣≤ B

(
T(αr, f )

r
(logα r ) logT(αr, f )

)i− j

.

Lemma 2.2 (Wiman-Valiron, [10],[25] ) Let f be a transcendental entire function, and let z
be a point with |z| = r at which | f (z)| = M(r, f ).Then the estimation

f ( j )(z)

f (z)
=

(
ν f (r )

z

) j

(1+o(1))( j ≥ 1is an integer)

holds for all |z| outside a set E2 of r of finite logarithmic measure, where ν f (r ) is the central
index of f .

Let p, q be positive integers and satisfy p ≥ q ≥ 1.

Lemma 2.3 ([27]) Let f be an entire function of [p, q]−ϕ order and let ν f (r ) be the central
index of f . Then

limsup
r→+∞

logp ν f (r )

logq ϕ(r )
= ρ[p,q]( f ,ϕ), liminf

r→+∞
logp ν f (r )

logq ϕ(r )
=µ[p,q]( f ,ϕ).

Lemma 2.4 ([24]) Let f and g be non-constant meromorphic functions of [p, q]−ϕ order.
Then we have

ρ[p,q]( f + g ,ϕ) ≤ max
{
ρ[p,q]( f ,ϕ),ρ[p,q](g ,ϕ)

}
18



and
ρ[p,q]( f g ,ϕ) ≤ max

{
ρ[p,q]( f ,ϕ),ρ[p,q](g ,ϕ)

}
.

Furthermore, if ρ[p,q]( f ,ϕ) > ρ[p,q](g ,ϕ), then we obtain

ρ[p,q]( f + g ,ϕ) = ρ[p,q]( f g ,ϕ) = ρ[p,q]( f ,ϕ).

Lemma 2.5 ([5]) Let p ≥ q ≥ 1 be integers, and let f and g be non-constant meromorphic
functions ρ[p,q]( f ,ϕ) as [p, q]−ϕ order and µ[p,q](g ,ϕ) as lower [p, q]−ϕ order.Then we
have

µ[p,q]( f + g ,ϕ) ≤ max
{
ρ[p,q]( f ,ϕ),µ[p,q](g ,ϕ)

}
and

µ[p,q]( f g ,ϕ) ≤ max
{
ρ[p,q]( f ,ϕ),µ[p,q](g ,ϕ)

}
.

Furthermore, if µ[p,q](g ,ϕ) > ρ[p,q]( f ,ϕ), then we obtain

µ[p,q]( f + g ,ϕ) =µ[p,q]( f g ,ϕ) =µ[p,q](g ,ϕ).

Lemma 2.6 ([18]) Let f be a meromorphic function of [p, q]−ϕ order. Then
ρ[p,q]( f ,ϕ) = ρ[p,q]( f ′,ϕ).

Lemma 2.7 ([17]) Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone non-decreasing
functions such that ϕ(r ) ≤ψ(r ) for all r ∉ (E3∪ [0,1]), where E3 is a set of finite logarithmic
measure. Let α2 > 1 be a given constant. Then, there exists an r1 = r1(α2) > 0 such that
ϕ(r ) ≤ψ(α2r ) for all r > r1.

Lemma 2.8 ([9]) Let f be a meromorphic function and let k ∈N. Then,

m

(
r,

f (k)

f

)
= O

(
log

(
r T

(
r, f

)))
outside a set E4 ⊂ (0,+∞) with a finite linear measure, and if f is of finite order of growth,
then

m

(
r,

f (k)

f

)
= O

(
logr

)
.

Lemma 2.9 ([5]) Let f1, f2 be a meromorphic functions of [p, q]−ϕ order satisfying ρ[p,q]( f1,ϕ) >
ρ[p,q]( f2,ϕ), whereϕ only satisfies lim

r→+∞
logq ϕ(α1r )

logq ϕ(r )
= 1 for some α1 > 1. Then there exists a

set E5 ⊂ [1,+∞)having infinite logarithmic measure such that for all r ∈ E5 we have

lim
r→+∞

T(r, f2)

T(r, f1)
= 0.

Lemma 2.10 [23] Let f (z) = g (z)
d(z) be a meromorphic function , where g (z), d(z) are entire

functions satisfying µ[p,q](g ,ϕ) = µ[p,q]( f ,ϕ) = µ ≤ ρ[p,q]( f ,ϕ) = ρ[p,q](g ,ϕ) ≤ +∞ and

λ[p,q](d ,ϕ) = ρ[p,q](d ,ϕ) = λ[p,q]

(
1
f ,ϕ

)
< µ. Then there exists a set E6 ⊂ (1,+∞) of finite

logarithmic measure such that for all |z| = r ∉ ([0,1]∪E6) and |g (z)| = M(r, g ), we have

f (n)(z)

f (z)
=

(
νg (r )

z

)n

(1+o(1)),n ∈N,

where νg (r ) denote the central index of g .
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Proof. We use the mathematical induction in order to obtain the following expression

f (n) =
g (n)

d
+

n−1∑
j =0

g ( j )

d

∑
( j1... jn )

C j j1... jn

(
d ′

d

) j1

× . . .×
(

d (n)

d

) jn

, (2.1)

where C j j1... jn are constants and j + j1 +2 j2 + . . .+n jn = n. Then

f (n)

f
=

g (n)

g
+

n−1∑
j =0

g ( j )

g

∑
( j1... jn )

C j j1... jn

(
d ′

d

) j1

× . . .×
(

d (n)

d

) jn

. (2.2)

By Lemma 2.2, we can find a set E2 ⊂ (1,+∞) with finite logarithmic measure such that
for all z satisfying |z| = r ∉ E2 and |g (z)| = M(r, g ), we get

g ( j )(z)

g (z)
=

(
νg (r )

z

) j

(1+o(1))( j = 1,2, . . . ,n), (2.3)

where νg (r ) is the central index of g . By replacing (2.3) into (2.2) we have

f (n)(z)

f (z)
=

(
νg (r )

z

)n
[

(1+o(1))+
n−1∑
j =0

(
νg (r )

z

) j−n

(1+o(1))
∑

( j1... jn )
C j j1... jn

(
d ′

d

) j1

× . . .×
(

d (n)

d

) jn
]

(2.4)
From the fact that ρ[p,q](d ,ϕ) = β < µ, we obtain for all ε(0 < 2ε < µ−β) and sufficiently
large r

T(r,d) ≤ expp

{(
β+ ε

2

)
logq ϕ(r )

}
.

From Lemma 2.1, for some α1(0 < α1 < α) with α be a given constant, there exist a set E1 ⊂
(1,+∞) with ml (E1) <+∞ and a constant B > 0 so that for all z verifying |z| = r ∉ [0,1]∪E1,
we have ∣∣∣∣d (m)(z)

d(z)

∣∣∣∣ ≤ B[T(α1r,d)]m+1

≤ B
[

expp

{(
β+ ε

2

)
logq ϕ(α1r )

}]m+1

= B

[
expp

{(
β+ ε

2

) logq ϕ(α1r )

logq ϕ(r )
logq ϕ(r )

}]m+1

. (2.5)

By remark 1.5, we obtain∣∣∣∣d (m)(z)

d(z)

∣∣∣∣≤ expp

{(
β+ε) logq ϕ(r )

}m
,m = 1,2, . . . ,n. (2.6)

By using Lemma 2.3 and µ[p,q](g ,ϕ) =µ[p,q]( f ,ϕ) =µ, as a result we have

νg (r ) > expp

{
(µ−ε) logq ϕ(r )

}
for sufficiently large r. Since j1 +2 j2 + . . .+n jn = n − j , we get∣∣∣∣∣

(
νg (r )

z

) j−n (
d ′

d

) j1

× . . .×
(

d (n)

d

) jn
∣∣∣∣∣ ≤

expp

{
(µ−ε) logq ϕ(r )

}
r

 j−n

×
[

expp

{
(β+ε) logq ϕ(r )

}]n− j

≤
[

r expp {(β+ε) logq ϕ(r )}

r expp {(µ−ε) logq ϕ(r )}

]n− j

→ 0, (2.7)
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as r →+∞, where |z| = r ∉ [0,1]∪E6, E6 = E1∪E2 and |g (z)| = M(r, g ). Using (2.4) and (2.7),
we obtain our assertion.

Lemma 2.11 [23] Let f (z) = g (z)
d(z) be a meromorphic function, where g (z), d(z) are en-

tire functions satisfying µ[p,q](g ,ϕ) = µ[p,q]( f ,ϕ) = µ ≤ ρ[p,q]( f ,ϕ) = ρ[p,q](g ,ϕ) ≤ +∞ and

λ[p,q](d ,ϕ) = ρ[p,q](d ,ϕ) = λ[p,q]

(
1
f ,ϕ

)
< µ. Then there exists a set E7 ⊂ (1,+∞) of finite

logarithmic measure such that for all |z| = r ∉ ([0,1]∪E7) and |g (z)| = M(r, g ), we have∣∣∣∣ f (z)

f (s)(z)

∣∣∣∣≤ r 2s , (s ∈N).

Proof. From Lemma 2.10 we can find a set E6 of finite logarithmic measure such that the
estimation

f (s)(z)

f (z)
=

(
νg (r )

z

)s

(1+o(1)) (s ≥ 1is an integer) (2.8)

is verified for all |z| = r ∉ ([0,1]∪E6) and |g (z)| = M(r, g ), where νg (r ) is the central index
of g . Then again, from Lemma 2.3, for any given ε(0 < ε< 1), we can find R > 1 such that
for all r > R, we have

νg (r ) > expp {(µ−ε) logq ϕ(r )}. (2.9)

If µ = +∞, then we can replace µ−ε by a large enough real number M. Let E7 = [1,R]∪E6,
then ml (E7) <+∞. Finally, by (2.8) and (2.9) we get∣∣∣∣ f (z)

f (s)(z)

∣∣∣∣ =

∣∣∣∣ z

νg (r )

∣∣∣∣s 1

|1+o(1)| ≤
r s(

expp {(µ−ε) logϕ(r )}
)s ≤ r 2s (2.10)

where |z| = r ∉ [0,1]∪E7, r →+∞ and |g (z)| = M(r, g ).

Lemma 2.12 [23] Let f be an entire function such that ρ[p,q]( f ,ϕ) <+∞. Then there exists
entire functions β2(z) and D(z) such that

f (z) = β2(z)eD(z)

ρ[p,q]
(

f ,ϕ
)

= max
{
ρ[p,q]

(
β2,ϕ

)
,ρ[p,q]

(
eD(z),ϕ

)}
and

ρ[p,q]
(
β2,ϕ

)
= limsup

r→+∞

logp N
(
r, 1

f

)
logq ϕ(r )

.

Moreover, for any given ε> 0, we have∣∣β2(z)
∣∣≥ exp

{
−expp

{(
ρ[p,q]

(
β2,ϕ

)+ε)
)

logq ϕ(r )
}}

(r ∉ E8),

where E8 ⊂ (1,+∞) is a set of r finite linear measure.

Proof. Using Theorem 12.4 in [13] and Theorem 2.2 in [11], we obtain that f (z) can be
written as

f (z) = β2(z)eD(z),

such that
ρ[p,q]( f ,ϕ) = max

{
ρ[p,q](β2,ϕ),ρ[p,q]

(
eD(z),ϕ

)}
.

On the other hand, by a similar proof in Proposition 6.1 in [12], for any given ε > 0, we
obtain

|β2(z)| ≥ exp
{
−expp

{(
ρ[p,q](β2,ϕ)+ε) logq ϕ(r )

}}
(r ∉ E8),

where E8 ⊂ (1,+∞) is a set of r of finite linear measure.
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Lemma 2.13 [23] Suppose that f is a meromorphic function such that ρ[p,q]( f ,ϕ) < +∞.
then, there exists entire functions h1(z), h2(z) and L(z) such that

f (z) =
h1(z)eL(z)

h2(z)
(2.11)

ρ[p,q]( f ,ϕ) = max
{
ρ[p,q](h1,ϕ),ρ[p,q](h2,ϕ),ρ[p,q](eL(z),ϕ)

}
. (2.12)

Moreover, for any given ε> 0, we have

exp
{
−expp

{
(ρ[p,q]( f ,ϕ)+ε) logϕ(r )

}}≤ | f (z)|
≤ expp+1

{
(ρ[p,q]( f ,ϕ)+ε) logϕ(r )

}
(r ∉ E9) (2.13)

Where E9 ⊂ (1,+∞) is a set of r of finite linear measure.

Proof. By Hadamard factorization theorem, f can be written as f (z) = g (z)
d(z) , where g (z)

and d(z) are entire functions satisfying

µ[p,q](g ,ϕ) =µ[p,q]( f ,ϕ) =µ≤ ρ[p,q]( f ,ϕ) = ρ[p,q](g ,ϕ) <+∞

and

λ[p,q](d ,ϕ) = ρ[p,q](d ,ϕ) = λ[p,q]

(
1

f
,ϕ

)
<µ.

Using Lemma 2.12, we can find entire functions h(z) and L(z) such that

g (z) = h(z)eL(z), ρ[p,q](g ,ϕ) = max
{
ρ[p,q](h,ϕ),ρ[p,q]

(
eL(z),ϕ

)}
.

Then there exists functions h(z), L(z) and d(z) such that

f (z) =
h(z)eL(z)

d(z)

and
ρ[p,q]( f ,ϕ) = max

{
ρ[p,q](h,ϕ),ρ[p,q](d ,ϕ),ρ[p,q]

(
eL(z),ϕ

)}
.

Therefore (2.11) and (2.12) hold. By setting f (z) = h1(z)eL(z)

h2(z) , where h1(z),h2(z) are the
canonical products formed with the zeros and poles of f respectively. By using the defi-
nition of [p, q]−ϕ order, for sufficiently large r and any given ε> 0 , we have

|h1(z)| ≤ expp+1

{(
ρ[p,q](h1,ϕ)+ ε

3

)
logq ϕ(r )

}
|h2(z)| ≤ expp+1

{(
ρ[p,q](h2,ϕ)+ ε

3

)
logq ϕ(r )

}
. (2.14)

From max
{
ρ[p,q](h1,ϕ),ρ[p,q](h2,ϕ),ρ[p,q]

(
eL(z),ϕ

)}
= ρ[p,q]( f ,ϕ) we get

|h1(z)| ≤ expp+1

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}
(2.15)

|h2(z)| ≤ expp+1

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}
, (2.16)∣∣eL(z)

∣∣≤ expp+1

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}
. (2.17)
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Through the use of Lemma 2.12, we can find a set E9 ⊂ (1,+∞) of r with a finite linear
measure such that for any given ε> 0 we have that

|h1(z)| ≥ exp
{
−expp

{(
ρ[p,q](h1,ϕ)+ ε

3

)
logq ϕ(r )

}}
≥ exp

{
−expp

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}}
, (r ∉ E9), (2.18)

|h2(z)| ≥ exp
{
−expp

{(
ρ[p,q](h2,ϕ)+ ε

3

)
logq ϕ(r )

}}
≥ exp

{
−expp

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}}
, (r ∉ E9). (2.19)

By (2.15), (2.17) and (2.19), for sufficiently large r ∉ E9 and any given ε> 0, we have

| f (z)| =
|h1(z)||eL(z)|

|h2(z)|

≤
expp+1

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}
expp+1

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}
exp

{
−expp

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}}
≤ expp+1

{(
ρ[p,q]( f ,ϕ)+ε) logq ϕ(r )

}
.

On the other side, we know that ρ[p−1,q](L,ϕ) = ρ[p,q](eL,ϕ) ≤ ρ[p,q]( f ,ϕ), and
e |L(z)| ≥ e−|L(z)|. From the definition of [p, q]−ϕ order, we get

|L(z)| ≤ M(r,L)

≤ expp

{(
ρ[p−1,q](L,ϕ)+ ε

3

)
logq ϕ(r )

}
≤ expp

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}
.

Then, for any given ε> 0 and sufficiently large r , we have

|eL(z)| ≥ e−|L(z)| ≥ exp
{
−expp

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}}
. (2.20)

By making use of (2.16), (2.18) and (2.20), we can get

| f (z)| =
|h1(z)||eL(z)|

|h2(z)|

≥
exp

{
−expp

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}}
exp

{
−expp

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}}
expp+1

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}
= exp

{
−3expp

{(
ρ[p,q]( f ,ϕ)+ ε

3

)
logq ϕ(r )

}}
≥ exp

{
−expp

{(
ρ[p,q]( f ,ϕ)+ε) logq ϕ(r )

}}
.

Finally Lemma 2.13 is proved.

Lemma 2.14 [23] Let G ⊂ (1,+∞) be a set with a positive upper logarithmic density, and
let A j (z)( j = 0,1, ...,k) with Ak (z) 6= 0 and F(z) (F(z) = 0 or F(z) 6= 0) be meromorphic
functions with finite [p, q]−ϕ order and f is a solution of equation

Ak (z) f (k) +Ak−1(z) f (k−1) + ...+A1(z) f ′+A0(z) f = F(z). (2.21)
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If there exist a positive constant σ > 0 and an integer s, 0 ≤ s ≤ k, such that for sufficiently
small ε> 0, we have

|As(z)| ≥ expp+1

{
(σ−ε) logq ϕ(r )

}
as |z| = r ∈ G,r →∞ and max{ρ[p,q](A j ,ϕ)( j 6= s),ρ[p,q](F,ϕ)} <σ, then we have

ρ[p,q](As ,ϕ) = δ≥σ.

Proof. By using the proof by contradiction, we assume that ρ[p,q](As ,ϕ) = δ<σ. From the
hypotheses of Lemma 2.14, we can find a positive constant σ> 0 such that for sufficiently
small ε> 0, we have

|As(z)| ≥ expp+1

{
(σ−ε) logq ϕ(r )

}
(2.22)

for |z| = r ∈ G,r → +∞, where G ⊂ (1,+∞) is a set that has a positive upper logarithmic
density (by Proposition 2.1, we have ml (G) = +∞). By Lemma 2.13, there exists a set E9 ⊂
(1,+∞) with finite linear measure such that for |z| = r ∉ E9, we have for any given ε(0 <
2ε<σ−δ)

|As(z)| ≤ expp+1

{
(δ+ε) logq ϕ(r )

}
. (2.23)

Using (2.22) and (2.24), we get as |z| = r ∈ G \ E9,r →+∞

expp+1

{
(σ−ε) logq ϕ(r )

}
≤ |As(z)| ≤ expp+1

{
(δ+ε) logq ϕ(r )

}
.

Hence
σ−ε≤ δ+ε

which is a contradiction with the fact that 0 < 2ε<σ−δ. Then ρ[p,q](As ,ϕ) = δ≥σ.

Lemma 2.15 [23] Let f (z) = g (z)
d(z) be a meromorphic function, where g (z), d(z) are entire

functions. If 0 ≤ ρ[p,q](d ,ϕ) <µ[p,q]( f ,ϕ), thenµ[p,q](g ,ϕ) =µ[p,q]( f ,ϕ) and ρ[p,q](g ,ϕ) =
ρ[p,q]( f ,ϕ). Moreover, if ρ[p,q]( f ,ϕ) = +∞, then ρ[p+1,q](g ,ϕ) = ρ[p+1,q]( f ,ϕ).

Proof. Case 1. ρ[p,q]( f ,ϕ) <+∞. Using the definition of the [p, q]−ϕ order, we can find an
increasing sequence {rn}, (rn →+∞) and a positive integer n0 such that for all n > n0 and

for any given ε ∈
(
0,

ρ[p,q]( f ,ϕ)−ρ[p,q](d ,ϕ)
2

) (
because 0 ≤ ρ[p,q](d ,ϕ) <µ[p,q]( f ,ϕ) ≤ ρ[p,q]( f ,ϕ)

)
,

we obtain
T(rn , f ) ≥ expp

{
(ρ[p,q]( f ,ϕ)−ε) logq ϕ(rn)

}
, (2.24)

and
T(rn ,d) ≤ expp

{
(ρ[p,q](d ,ϕ)+ε) logq ϕ(rn)

}
. (2.25)

Using the properties of the characteristic function we get

T(r, f ) ≤ T(r, g )+T(r,d)+O(1). (2.26)

By substituting (2.24), (2.25) in (2.26), for all sufficiently large n, we obtain

expp

{
(ρ[p,q]( f ,ϕ)−ε) logq ϕ(rn)

}
≤ T(rn , g )

+expp

{
(ρ[p,q](d ,ϕ)+ε) logq ϕ(rn)

}
+ O(1). (2.27)

Using the fact that ε ∈
(
0,

ρ[p,q]( f ,ϕ)−ρ[p,q](d ,ϕ)
2

)
, then (2.27) will be

(1−o(1))expp

{
(ρ[p,q]( f ,ϕ)−ε) logq ϕ(rn)

}
≤ T(rn , g )+O(1),
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for all sufficiently large n. Then

ρ[p,q]( f ,ϕ) ≤ ρ[p,q](g ,ϕ). (2.28)

From the other side, we have

T(r, g ) ≤ T(r, f )+T(r,d),

and from
ρ[p,q](d ,ϕ) < ρ[p,q]( f ,ϕ)

we get
ρ[p,q](g ,ϕ) ≤ ρ[p,q]( f ,ϕ). (2.29)

By (2.28) and (2.29), it results then that

ρ[p,q](g ,ϕ) = ρ[p,q]( f ,ϕ).

Similarly, we will prove that µ[p,q](g ,ϕ) =µ[p,q]( f ,ϕ).

Using the definition of the lower [p, q]−ϕ order, we can find an increasing sequence
{rn}, (rn → +∞) and a positive integer n1 such that for all n > n1 and for any given ε ∈(
0,

µ[p,q]( f ,ϕ)−µ[p,q](d ,ϕ)
2

)
(because 0 ≤µ[p,q](d ,ϕ) < ρ[p,q](d ,ϕ) <µ[p,q]( f ,ϕ)), we obtain

T(rn , f ) ≥ expp

{
(µ[p,q]( f ,ϕ)−ε) logq ϕ(rn)

}
, (2.30)

and
T(rn ,d) ≤ expp

{
(µ[p,q](d ,ϕ)+ε) logq ϕ(rn)

}
. (2.31)

Using the properties of the characteristic function we get

T(r, f ) ≤ T(r, g )+T(r,d)+O(1), (2.32)

by substituting (2.30), (2.31) in (2.32) we obtain

expp

{
(µ[p,q]( f ,ϕ)−ε) logq ϕ(rn)

}
≤ T(rn , g )

+expp

{
(µ[p,q](d ,ϕ)+ε) logq ϕ(rn)

}
+ O(1). (2.33)

Using the fact that ε ∈
(
0,

µ[p,q]( f ,ϕ)−µ[p,q](d ,ϕ)
2

)
, (2.33) becomes

(1−o(1))expp

{
(µ[p,q]( f ,ϕ)−ε) logq ϕ(rn)

}
≤ T(rn , g )+O(1),

for all sufficiently large n. Hence

µ[p,q]( f ,ϕ) ≤µ[p,q](g ,ϕ). (2.34)

From the other side, we have

T(r, g ) ≤ T(r, f )+T(r,d),

and from µ[p,q](d ,ϕ) <µ[p,q]( f ,ϕ), we get

µ[p,q](g ,ϕ) ≤µ[p,q]( f ,ϕ). (2.35)
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From (2.34) and (2.35), it results then that

µ[p,q](g ,ϕ) =µ[p,q]( f ,ϕ).

Case 2. ρ[p,q]( f ,ϕ) = +∞. Through the absurd. We suppose that ρ[p,q](g ,ϕ) 6= ρ[p,q]( f ,ϕ).
Note first that by Lemma 2.4, the inequality ρ[p,q](g ,ϕ) > ρ[p,q]( f ,ϕ) is impossible. Assum-
ing that ρ[p,q](g ,ϕ) < ρ[p,q]( f ,ϕ). Using the definition of the [p, q]−ϕ order, there exist an
increasing sequence rn , (rn →+∞) and a positive integer n0 such that for all n > n0 and
for any given ε> 0

T(rn , g ) ≤ expp

{(
ρ[p,q](g ,ϕ)+ε) logq ϕ(rn)

}
,

T(rn ,d) ≤ expp

{(
ρ[p,q](d ,ϕ)+ε) logq ϕ(rn)

}
.

From the fact that
T(rn , f ) ≤ T(rn , g )+T(rn ,d)+O(1)

we obtain, for all sufficiently large n,

ρ[p,q]( f ,ϕ) ≤ max
{
ρ[p,q](g ,ϕ),ρ[p,q](d ,ϕ)

}
,

and this contradicts what we had assumed.

Similarly, we prove µ[p,q](g ,ϕ) = µ[p,q]( f ,ϕ). Note first that the inequality µ[p,q](g ,ϕ) >
µ[p,q]( f ,ϕ) is impossible because by Lemma 2.5 we have

µ[p,q](g ,ϕ) =µ[p,q]( f d ,ϕ) ≤ max
{
ρ[p,q]( f ,ϕ),µ[p,q](d ,ϕ)

}
,

and the fact that µ[p,q](d ,ϕ) ≤ ρ[p,q](d ,ϕ) < µ[p,q]( f ,ϕ) gives µ[p,q](g ,ϕ) ≤ µ[p,q]( f ,ϕ). As-
suming that µ[p,q](g ,ϕ) < µ[p,q]( f ,ϕ). Using the definition of the lower [p, q]−ϕ order
there exists an increasing sequence rn , (rn →+∞) and a positive integer n′

0 such that for
all n > n′

0 and for any given ε> 0

T(rn , g ) ≤ expp

{(
µ[p,q](g ,ϕ)+ε) logq ϕ(rn)

}
T(rn ,d) ≤ expp

{(
µ[p,q](d ,ϕ)+ε) logq ϕ(rn)

}
.

From the fact that T(rn , f ) ≤ T(rn , g )+T(rn ,d)+O(1) we obtain, for all sufficiently large n,

T(rn , f ) ≤ expp

{(
µ[p,q](g ,ϕ)+ε) logq ϕ(rn)

}
+expp

{(
µ[p,q](d ,ϕ)+ε) logq ϕ(rn)

}
+O(1),

then µ[p,q]( f ,ϕ) ≤ max
{
µ[p,q](g ,ϕ),µ[p,q](d ,ϕ)

}
. This is a contradiction with our assump-

tion.
Case 3. µ[p,q]( f ,ϕ) <+∞ and ρ[p,q]( f ,ϕ) = +∞. We can prove case 3 by using the similar

method we used to prove Cases 1 and 2.
At last, we will prove ρ[p+1,q](g ,ϕ) = ρ[p+1,q]( f ,ϕ). We assume that ρ[p,q]( f ,ϕ) = +∞. There
exists an increasing sequence {rn}, (rn →+∞), such that we have

ρ[p+1,q]( f ,ϕ) = lim
n→+∞

logp+1 T(rn , f )

logq ϕ(rn)
.
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Using ρ[p,q](d ,ϕ) <µ[p,q]( f ,ϕ) and the definitions of the [p, q]−ϕ order and the lower
[p, q]−ϕ order, we obtain

lim
n→+∞

T(rn ,d)

T(rn , f )
= 0,

hence

T(rn ,d) ≤ 1

2
T(rn , f ).

Therefore, there exists a positive integer N, such that n > N

T(rn , f ) ≤ 2T(rn , g )+O(1).

It results then that ρ[p+1,q]( f ,ϕ) ≤ ρ[p+1,q](g ,ϕ). By using the same arguments as in the
proof of Case 1, from T(r, g ) ≤ T(r, f )+T(r,d), we can find a positive integer N, such that
for all n > N

T(rn , g ) ≤ 2T(rn , f ).

Then, ρ[p+1,q](g ,ϕ) ≤ ρ[p+1,q]( f ,ϕ). Thus ρ[p+1,q]( f ,ϕ) = ρ[p+1,q](g ,ϕ).

Lemma 2.16 [23] Let A j (z)( j = 0,1, · · · ,k), Ak (z)(6≡ 0), F(z)(6≡ 0) be meromorphic functions
and let f be a meromorphic solution of (2.21) of infinite [p, q]−ϕ order satisfying the fol-
lowing condition

b = max
{
ρ[p+1,q](F,ϕ),ρ[p+1,q](A j ,ϕ)( j = 0,1, · · · ,k)

}< ρ[p+1,q]( f ,ϕ),

then
λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]( f ,ϕ).

Proof. Assuming that f is a meromorphic solution of (2.21) that has infinite [p, q]−ϕ
order. The first thing to notice is that by definition we have

λ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ) ≤ ρ[p+1,q]( f ,ϕ),

we need then to demonstrate that

λ[p+1,q]( f ,ϕ) ≥ λ[p+1,q]( f ,ϕ) ≥ ρ[p+1,q]( f ,ϕ).

We can rewrite (2.21) as

1

f
=

1

F

(
Ak (z)

f (k)

f
+·· ·+A1(z)

f ′

f
+A0(z)

)
. (2.36)

From Lemma 2.8 and (2.36) we get for |z| = r outside a set E4 ⊂ (0,+∞[ of finite linear
measure

m

(
r,

1

f

)
≤ m

(
r,

1

F

)
+

k∑
j =1

m

(
r,

f ( j )

f

)
+

k∑
j =0

m
(
r, A j

)+O(1)

≤ m

(
r,

1

F

)
+

k∑
j =0

m(r, A j )+O(logr T(r, f )). (2.37)

By noticing from (2.21) that if f has a zero at z0 of order α(α> k), and A0, A1, · · · , Ak are all
analytic at z0, then F must have a zero at z0 of order at least α−k, we obtain

n

(
r,

1

f

)
≤ kn

(
r,

1

f

)
+n

(
r,

1

F

)
+

k∑
j =0

n
(
r, A j

)
,
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and

N

(
r,

1

f

)
≤ kN

(
r,

1

f

)
+N

(
r,

1

F

)
+

k∑
j =0

N
(
r, A j

)
. (2.38)

Combining (2.37) and (2.38) we get for sufficiently large r ∉ E4

T(r, f ) = T

(
r,

1

f

)
+O(1)

≤ T(r,F)+
k∑

j =0
T

(
r, A j

)+kN

(
r,

1

f

)
+O(logr T(r, f )), (2.39)

For sufficiently large r , we have

O(logr T(r, f )) ≤ 1

2
T(r, f ). (2.40)

From the definition of the [p, q]−ϕ order, for sufficiently large r and for any given
ε(0 < 2ε< ρ[p+1,q]( f ,ϕ)−b), we have

T(r,F) ≤ expp+1

{
(b +ε) logq ϕ(r )

}
, (2.41)

T(r, A j ) ≤ expp+1

{
(b +ε) logq ϕ(r )

}
, j = 0,1, · · · ,k. (2.42)

By substituting (2.40), (2.41) and (2.42) in (2.39), for all sufficiently large r ∉ E4, we obtain

T(r, f ) ≤ 2kN

(
r,

1

f

)
+ (k +2)expp+1

{
(b +ε) logq ϕ(r )

}
. (2.43)

Using Lemma 2.7, from (2.43), for any given ν> 1 there exists a r1 = r1(ν) and sufficiently
large r > r1, we get

T(r, f ) ≤ 2kN

(
νr,

1

f

)
+ (k +2)expp+1

{
(b +ε) logq ϕ(νr )

}
which gives

ρ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ),

therefore
ρ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ).

And from λ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ) ≤ ρ[p+1,q]( f ,ϕ), it results that

λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]( f ,ϕ).

Lemma 2.17 [23] Let G ⊂ (1,+∞) be a set with a positive upper logarithmic density (or
infinite logarithmic measure), and let A j (z)( j = 0,1, · · · ,k) with Ak (z)(6≡ 0) and F(z)(6≡ 0)
be meromorphic functions with finite [p, q] −ϕ order. If there exist a positive constant
σ > 0 and an integer s, 0 ≤ s ≤ k, such that for sufficiently large ε > 0, we have |As(z)| ≥
expp+1

{
(σ−ε) logq ϕ(r )

}
as |z| = r ∈ G, r →+∞ and

max
{
ρ[p,q](A j ,ϕ)( j 6= s),ρ[p,q](F,ϕ)

}<σ,

then every transcendental meromorphic solution f of equation (2.21) satisfies ρ[p,q]( f ,ϕ) ≥
σ.
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Proof. Through the absurd, suppose that f is a transcendental meromorphic solution of
equation (2.21) such that ρ[p,q]( f ,ϕ) <σ. By (2.21), we get

As =
F

f (s)
−

k∑
j =0
j 6=s

A j
f ( j )

f (s)
. (2.44)

From the hypothesis of Lemma 2.17, we have max
{
ρ[p,q](A j ,ϕ)( j 6= s),ρ[p,q](F,ϕ)

}<σ and
our assumption ρ[p,q]( f ,ϕ) <σ, then we get from (2.44) by using Lemma 2.6

ρ2 = ρ[p,q](As ,ϕ)

≤ max
{
ρ[p,q](A j ,ϕ)( j 6= s),ρ[p,q](F,ϕ),ρ[p,q]( f ,ϕ)

}<σ.

Using Lemma 2.13 for any given ε(0 < 2ε<σ−ρ2), we can find a set E9 ⊂ (1,+∞) that has
a finite linear measure such that

|As(z)| ≤ expp+1

{
(ρ[p,q](As ,ϕ)+ε) logq ϕ(r )

}
= expp+1

{
(ρ2 +ε) logq ϕ(r )

}
, (2.45)

holds for all z satisfying |z| = r ∉ E9. By the hypotheses of Lemma 2.17, there exists a set G
satisfying logdensG > 0 (or ml (G) = +∞) such that

|As(z)| ≥ expp+1

{
(σ−ε) logq ϕ(r )

}
(2.46)

holds for all z satisfying |z| = r ∈ G, r →+∞. Combining (2.45) and (2.46) it results that for
all z verifying |z| = r ∈ G \ E9, r →+∞

expp+1

{
(σ−ε) logq ϕ(r )

}
≤ |As(z)| ≤ expp+1

{
(ρ2 +ε) logq ϕ(r )

}
,

hence
σ−ε≤ ρ2 +ε.

This contradicts the fact that 0 < 2ε<σ−ρ2. Consequently, any transcendental meromor-
phic solution f of equation (2.21) satisfies ρ[p,q]( f ,ϕ) ≥σ.

Lemma 2.18 [23] Let A0, A1, · · · , Ak 6≡ 0, F 6≡ 0 be finite [p, q]−ϕ order meromorphic
functions. If f is a meromorphic solution of the equation (2.21) with ρ[p,q]( f ,ϕ) = +∞ and
ρ[p+1,q]( f ,ϕ) = ρ<+∞, then

λ[p,q]( f ,ϕ) = λ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ) = +∞
and

λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]( f ,ϕ) = ρ.

Proof. Assuming that f is a meromorphic solution of (2.21) that has infinite [p, q]−ϕ
order and ρ[p+1,q]( f ,ϕ) = ρ<+∞. The equation (2.21) can be rewritten as

1

f
=

1

F

(
Ak (z)

f (k)

f
+·· ·+A1(z)

f ′

f
+A0(z)

)
. (2.47)

From Lemma 2.8 and (2.47) we get for |z| = r outside a set E4 of finite linear measure and
any ε> 0

m

(
r,

1

f

)
≤ m

(
r,

1

F

)
+

k∑
j =1

m

(
r,

f ( j )

f

)
+

k∑
j =0

m
(
r, A j

)+O(1)

≤ m

(
r,

1

F

)
+

k∑
j =0

m(r, A j )+O(logr T(r, f )). (2.48)
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On the other, from (2.21), if f has a zero at z0 of order α(α > k), and A0, A1, · · · , Ak are all
analytic at z0, then F must have a zero at z0 of order at least α−k. Then

n

(
r,

1

f

)
≤ kn

(
r,

1

f

)
+n

(
r,

1

F

)
+

k∑
j =0

n
(
r, A j

)
and

N

(
r,

1

f

)
≤ kN

(
r,

1

f

)
+N

(
r,

1

F

)
+

k∑
j =0

N
(
r, A j

)
. (2.49)

By (2.48) and (2.49) we get for sufficiently large r ∉ E4 and any given ε> 0

T(r, f ) = T

(
r,

1

f

)
+O(1)

≤ T(r,F)+
k∑

j =0
T

(
r, A j

)+kN

(
r,

1

f

)
+O(logr T(r, f )). (2.50)

From the hypothesis of Lemma 2.18, we have

ρ[p,q]( f ,ϕ) > ρ[p,q](F,ϕ) and ρ[p,q]( f ,ϕ) > ρ[p,q](A j ,ϕ), j = 0,1, . . . ,k.

Using Lemma 2.9, we can find a set E5 ⊂ [1,+∞) having infinite logarithmic measure such
that for all r ∈ E5 we have

max

{
T(r,F)

T(r, f )
,

T(r, A j )

T(r, f )
, j = 0,1, . . . ,k

}
→ 0,r →+∞

hence
T(r,F) = o(T(r, f )), T(r, A j ) = o(T(r, f )) j = 0,1, . . . ,k. (2.51)

Since
logT(r, f )

T(r, f )
→ 0 for r →+∞,

we have for sufficiently large r

log(T(r, f )) = o(T(r, f )). (2.52)

Substituting (2.51), (2.52) in (2.50) we get for r ∈ E5 \ E4

T(r, f ) ≤ kN

(
r,

1

f

)
+o(T(r, f ))+O

(
logr

)
.

Hence

(1−o(1))T(r, f ) ≤ kN

(
r,

1

f

)
+O

(
logr

)
(2.53)

Therefore, by making use of Proposition 1.5, Lemma 2.7, Definition 1.12, Remark 1.5 and
(2.53) we get for any f with ρ[p,q]( f ,ϕ) = +∞ and ρ[p+1,q]( f ,ϕ) = ρ

+∞ = ρ[p,q]( f ,ϕ) ≤ λ[p,q]( f ,ϕ), ρ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ)

Hence
ρ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ).

On the other hand, we know that by definition we have

λ[p+1,q]( f ,ϕ) ≤ λ[p+1,q]( f ,ϕ) ≤ ρ[p+1,q]( f ,ϕ),

it results then
λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]( f ,ϕ) = ρ.
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Lemma 2.19 [23] Assume that k ≥ 2 and A0, A1, · · · , Ak ( 6≡ 0),F are meromorphic functions.
Let ρ1 = max

{
ρ[p,q](A j ,ϕ)( j = 0,1, · · · ,k),ρ[p,q](F,ϕ)

} < ∞ and let f be a meromorphic so-

lution of infinite [p, q]−ϕ order of equation (2.21) with λ[p,q]

(
1
f ,ϕ

)
< µ[p,q]

(
f ,ϕ

)
. Then,

ρ[p+1,q]( f ,ϕ) ≤ ρ1.

Proof. We suppose that f is a meromorphic solution of (2.21) with infinite [p, q]−ϕ order

and λ[p,q]

(
1
f ,ϕ

)
< µ[p,q]

(
f ,ϕ

)
. By using the Hadamard factorization theorem, f can be

written as f (z) = g (z)
d(z) , where g (z) and d(z) are entire functions such that

µ[p,q]
(
g ,ϕ

)
=µ[p,q]

(
f ,ϕ

)
=µ≤ ρ[p,q]( f ,ϕ) = ρ[p,q](g ,ϕ) ≤+∞,

and

λ[p,q](d ,ϕ) = ρ[p,q](d ,ϕ) = λ[p,q]

(
1

f
,ϕ

)
<µ.

By making use of Lemma 2.13, we can find a set E9 ⊂ (1,+∞) of r of finite linear measure
such that for any ε(0 < 2ε<µ[p,q]

(
f ,ϕ

)−ρ[p,q](d ,ϕ)) and all |z| = r ∉ E9 , and by using the
hypothesis, we get

|A j (z)| ≤ expp+1

{(
ρ[p,q](A j ,ϕ)+ε) logq ϕ(r )

}
≤ expp+1

{(
ρ1 +ε

)
logq ϕ(r )

}
, j = 0,1, · · · ,k −1, (2.54)

|Ak (z)| ≥ exp
{
−expp

{(
ρ[p,q](Ak ,ϕ)+ε) logq ϕ(r )

}}
≥ exp

{
−expp

{(
ρ1 +ε

)
logq ϕ(r )

}}
, (2.55)

and

|F(z)| ≤ expp+1

{(
ρ[p,q](F,ϕ)+ε) logq ϕ(r )

}
≤ expp+1

{(
ρ1 +ε

)
logq ϕ(r )

}
. (2.56)

From the definition of the [p, q]−ϕ order, the lower [p, q]−ϕ order and (2.56) for all z
satisfying |z| = r ∉ E9 with |g (z)| = M(r, g ) and any ε(0 < 2ε< µ[p,q]

(
f ,ϕ

)−ρ[p,q](d ,ϕ)), we
obtain ∣∣∣∣ F(z)

f (z)

∣∣∣∣ =
|F(z)|
|g (z)| |d(z)|

≤
expp+1

{(
ρ[p,q](d ,ϕ)+ε) logq ϕ(r )

}
expp+1

{(
ρ1 +ε

)
logq ϕ(r )

}
expp+1

{(
µ[p,q]( f ,ϕ)−ε) logq ϕ(r )

} (2.57)

≤ expp+1

{(
ρ1 +ε

)
logq ϕ(r )

}
. (2.58)

From Lemma 2.10, we can find a set E6 ⊂ (1,+∞) of finite logarithmic measure such that
for all |z| = r ∉ ([0,1]∪E6) and |g (z)| = M(r, g ), we have

f ( j )(z)

f (z)
=

(
νg (r )

z

) j

(1+o(1)), j = 0,1, · · · ,k. (2.59)

By (2.21) we get ∣∣∣∣ f (k)(z)

f (z)

∣∣∣∣≤ 1

|Ak (z)|

(
|A0(z)|+

∣∣∣∣ F(z)

f (z)

∣∣∣∣+ k−1∑
j =1

|A j (z)|
∣∣∣∣ f ( j )(z)

f (z)

∣∣∣∣
)

. (2.60)
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Replacing (2.54), (2.55), (2.57) and (2.59) in (2.60) we obtain∣∣∣∣νg (r )

z

∣∣∣∣k

|1+o(1)| ≤ 1

exp
{
−expp

{(
ρ1 +ε

)
logq ϕ(r )

}}×
(

expp+1

{(
ρ1 +ε

)
logq ϕ(r )

}
+expp+1

{(
ρ1 +ε

)
logq ϕ(r )

}{
1+

k−1∑
j =1

∣∣∣∣νg (r )

z

∣∣∣∣ j

|1+o(1)|
})

≤ (k +1)

∣∣νg (r )
∣∣k−1

r k−1
|1+o(1)|exp

{
2expp

{(
ρ1 +ε

)
logq ϕ(r )

}}
.

Therefore ∣∣νg (r )
∣∣ |1+o(1)| ≤ (k +1)r |1+o(1)|exp

{
2expp

{(
ρ1 +ε

)
logq ϕ(r )

}}
(2.61)

holds for all z verifying |z| = r ∉ ([0,1]∪E6 ∪E9) and |g (z)| = M(r, g ), r →+∞. From (2.61)
we obtain

limsup
r→+∞

logp+1νg (r )

logq ϕ(r )
≤ ρ1 +ε. (2.62)

Using the fact that ε> 0 is arbitrary, by Lemma 2.3 and Lemma 2.7 we obtain from (2.62)

ρ[p+1,q](g ,ϕ) ≤ ρ1.

Since ρ[p,q](d ,ϕ) ≤µ[p,q]( f ,ϕ), then by using Lemma 2.15 we get

ρ[p+1,q](g ,ϕ) = ρ[p+1,q]( f ,ϕ).

Hence
ρ[p+1,q]( f ,ϕ) ≤ ρ1.
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Chapter 3

On the growth of solutions of LDE with
meromorphic coefficients with finite
[p, q]−ϕ order

1 Introduction

In this chapter, we investigate the growth of meromorphic solutions to higher order ho-
mogeneous and non-homogeneous linear differential equations with meromorphic co-
efficients of finite [p, q]−ϕ order. We obtain some results about [p, q]−ϕ order and the
[p, q]−ϕ convergence exponent of solutions for such equations. In [20], Liu, Tu and Zhang
studied the growth and zeros of solutions of equations

f (k) +Ak−1 f (k−1) + ...+A1 f ′+A0 f = 0 (3.1)

et
f (k) +Ak−1 f (k−1) + ...+A1 f ′+A0 f = F(z), (3.2)

where A0(z)(6≡ 0), A0(z), ..., Ak−1(z) and F(z)(6≡ 0) are entire functions of [p, q]−ϕ order and
they obtained the following results.

Theorem 3.1 [20] Let A j (z)( j = 0,1, ...,k −1) be entire functions satisfying

max{ρ[p,q](A j ,ϕ), j = 1, ...,k −1} < ρ[p,q](A0,ϕ) <∞.

Then every solution f 6≡ 0 of equation (3.1) satisfies ρ[p,q]( f ,ϕ) = ρ[p,q](A0,ϕ).

And they obtained the following results in the case of non-homogeneous equations.

Theorem 3.2 [20] Let A j (z)( j = 0,1, ...,k −1) and F(z)(6≡ 0) be entire functions and let f be
a solution of equation (3.2) satisfying

max{ρ[p,q](A j ,ϕ),ρ[p,q](F,ϕ) j = 1, ...,k −1} < ρ[p,q](A0,ϕ) <∞.

Then λ[p,q]( f ,ϕ) = λ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ).

Theorem 3.3 [20] Let A j (z)( j = 0,1, ...,k −1) and F(z)(6≡ 0) be entire functions satisfying

max{ρ[p,q](A j ,ϕ),ρ[p+1,q](F,ϕ) j = 1, ...,k −1} < ρ[p,q](A0,ϕ) <∞.

Then every solution f 6≡ 0 of equation (3.2) satisfies λ[p,q]( f ,ϕ) = λ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ) =
ρ[p,q](A0,ϕ).

33



2. MAIN RESULTS

After this, Saidani and Belaïdi studied some of the properties of the solution of the higher
order linear differential equation

Ak f (k) +Ak−1 f (k−1) + ...+A1 f ′+A0 f = 0 (3.3)

et
Ak f (k) +Ak−1 f (k−1) + ...+A1 f ′+A0 f = F(z), (3.4)

and they obtained the following results.

Theorem 3.4 [22] Let H ⊂ (1,+∞) be a set with a positive upper logarithmic density (or
ml (H) = +∞) and let A j (z)

(
j = 0,1, · · · ,k

)
with Ak (z)(6≡ 0) be meromorphic functions with

finite[p, q]-order. If there exist a positive constant σ > 0 and an integer s, 0 ≤ s ≤ k, such

that for all sufficiently small ε > 0, we have |As (z) | ≥ expp+1

{
(σ−ε) logq r

}
as |z| = r ∈ H,

r →+∞ and ρ = max
{
ρ[p,q]

(
A j

)
( j 6= s)

}< σ, then every non-transcendental meromorphic
solution f 6≡ 0 of (3.3) is a polynomial with deg f ≤ s −1 and every transcendental mero-

morphic solutionf of (3.3) with λ[p,q]

(
1
f

)
<µ[p,q]

(
f
)

satisfies

ρ[p,q]
(

f
)

=µ[p,q]
(

f
)

= +∞,

σ≤ ρ[p+1,q]
(

f
)≤ ρ[p,q] (As) .

Theorem 3.5 [22] Let H ⊂ (1,+∞) be a set with a positive upper logarithmic density (or
ml (H) = +∞) and let A j (z)

(
j = 0,1, · · · ,k

)
with Ak (z)( 6≡ 0) and F(z)(6≡ 0) be meromorphic

functions with finite[p, q]-order. If there exist a positive constantσ> 0 and an integer s, 0 ≤
s ≤ k, such that for all sufficiently small ε > 0, we have |As (z) | ≥ expp+1

{
(σ−ε) logq r

}
as

|z| = r ∈ H, r →+∞ and ρ = max
{
ρ[p,q]

(
A j

)
,ρ[p,q] (F) ( j 6= s)

}<σ, then every non-transcendental
meromorphic solution f 6≡ 0 of (3.4) is a polynomial with deg f ≤ s−1 and every transcen-

dental meromorphic solutionf of (3.4) with λ[p,q]

(
1
f

)
< min

{
σ,µ[p,q]

(
f
)}

satisfies

λ[p,q]( f ,ϕ) = λ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = +∞

and
σ≤ λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]

(
f
)≤ ρ[p,q] (As) .

So we ask: What about the growth of meromorphic solutions of equations (3.3) and (3.4)
with meromorphic coefficients of finite [p, q]−ϕ order when the dominant fixed coeffi-
cient is the arbitrary coefficient As?

2 Main results

The main purpose of this work is examine the above question. We now present our main
results, so for the homogeneous differential equation (3.3), we obtain the following result.

Theorem 3.6 [23] Let G ⊂ (1,+∞) be a set with a positive upper logarithmic density (or
ml (G) = +∞) and let A j (z) ( j = 0,1, · · · ,k) with Ak (z) 6≡ 0 be meromorphic functions with
finite [p, q]−ϕ order. If there exists a positive constantσ> 0 and an integer s, 0 ≤ s ≤ k such

that for sufficiently small ε > 0, we have |As(z)| ≥ expp+1

{
(σ−ε) logq ϕ(r )

}
as |z| = r ∈ G,
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3. PROOFS OF THE MAIN RESULTS

r → +∞ and ρ = max
{
ρ[p,q](A j ,ϕ)( j 6= s)

} < σ, then every non-transcendental meromor-
phic solution f 6≡ 0 of (3.3) is a polynomial with deg f ≤ s − 1 and every transcendental

meromorphic solution f of (3.3) with λ[p,q]

(
1
f ,ϕ

)
<µ[p,q]( f ,ϕ) satisfies

ρ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = +∞,σ≤ ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

Remark 3.1 Putting ϕ(r ) = r in Theorem 3.6, we obtain Theorem 3.4.

Corollary 3.1 [23] Under the hypothesis of Theorem 3.6, suppose further that ψ is a tran-
scendental meromorphic function satisfying ρ[p+1,q](ψ,ϕ) <σ. Then, every transcendental

meromorphic solution f of equation (3.3) with λ[p,q]

(
1
f ,ϕ

)
<µ[p,q]( f ,ϕ) satisfies

σ≤ λ[p+1,q]( f −ψ,ϕ) = λ[p+1,q]( f −ψ,ϕ)

= ρ[p+1,q]( f −ψ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

Considering non-homogeneous linear differential equation (3.4), we obtain the following
results.

Theorem 3.7 [23] Let G ⊂ (1,+∞) be a set with a positive upper logarithmic density (or
ml (G) = +∞) and let A j (z) ( j = 0,1, · · · ,k) with Ak (z) 6≡ 0 and F(z) 6≡ 0 be meromorphic
functions with finite [p, q]−ϕ order. If there exists a positive constant σ> 0 and an integer

s, 0 ≤ s ≤ k such that for sufficiently small ε> 0, we have |As(z)| ≥ expp+1

{
(σ−ε) logq ϕ(r )

}
as |z| = r ∈ G, r →+∞ and ρ1 = max

{
ρ[p,q](A j ,ϕ) ( j 6= s),ρ[p,q](F,ϕ)

}< σ, then every non-
transcendental meromorphic solution f 6≡ 0 of (3.4) is a polynomial with deg f ≤ s −1 and

every transcendental meromorphic solution f of (3.4) withλ[p,q]

(
1
f ,ϕ

)
< min

{
σ,µ[p,q]( f ,ϕ)

}
satisfies

λ[p,q]( f ,ϕ) = λ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = +∞
and

σ≤ λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

Remark 3.2 Putting ϕ(r ) = r in Theorem 3.7, we obtain Theorem 3.5.

Corollary 3.2 [23] Let A j (z) ( j = 0,1, . . . ,k), F(z), G satisfy all the hypothesis of Theorem 3.7,
and let ψ be a transcendental meromorphic function satisfying ρ[p+1,q](ψ,ϕ) < σ. Then,

every transcendental meromorphic solution f with λ[p,q]

(
1
f ,ϕ

)
< µ[p,q]( f ,ϕ) of equation

(3.4) satisfies

σ≤ λ[p+1,q]( f −ψ,ϕ) = λ[p+1,q]( f −ψ,ϕ)

= ρ[p+1,q]( f −ψ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

3 Proofs of the main results

3.1 Proof of Theorem 3.6

Let f 6≡ 0 be a rational solution of equation (3.3). At the beginning, we will prove that f
must be a polynomial with deg f ≤ s−1. If either f is a rational function, which has a pole
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at z0 of degree m ≥ 1 or f is a polynomial with deg f ≥ s, then f (s)(z) 6≡ 0. From equation
(3.3) we have

As(z) f (s) = −
k∑

j =0
j 6=s

A j (z) f ( j ).

By Lemma 2.4, and Lemma 2.14 we obtain

σ≤ ρ[p,q](As ,ϕ) = ρ[p,q](As f (s),ϕ)

= ρ[p,q]

−
 k∑

j =0
j 6=s

A j (z) f ( j )

 ,ϕ


≤ max

j =0,1,··· ,k, j 6=s

{
ρ[p,q](A j ,ϕ)

}
,

and this contradicts the fact that ρ = max
{
ρ[p,q](A j ,ϕ)( j 6= s)

} < σ. Hence, f must be a
polynomial with deg f ≤ s −1.
Assuming now that f is a transcendental meromorphic solution of (3.3) that satisfies

λ[p,q]

(
1
f ,ϕ

)
<µ[p,q]( f ,ϕ). Using Lemma 2.13, we can find a set E9 ⊂ (1,+∞) of finite linear

measure (and so of finite logarithmic measure) such that for any ε (0 < 2ε<σ−ρ) we have

|A j (z)| ≤ expp+1{ρ+ε) logq ϕ(r )} j = 0,1, · · · ,k, j 6= s (3.5)

holds for all z verifying |z| = r ∉ E9. By making use of Lemma 2.11, we can find a set
E7 ⊂ (1,+∞) of finite logarithmic measure such that for all |z| = r ∉ ([0,1]∪E7) and |g (z)| =
M(r, g ) and for sufficiently large r we have∣∣∣∣ f (z)

f (s)(z)

∣∣∣∣≤ r 2s , (s ≥ 1 is an integer). (3.6)

From Lemma 2.1, we can find a set E1 ⊂ (1,+∞) that has a finite logarithmic measure, and
a constant B > 0 such that for all z verifying |z| = r ∉ [0,1]∪E1, we have∣∣∣∣ f ( j )(z)

f (z)

∣∣∣∣≤ B
[
T(2r, f )

]k+1 , j = 1,2, · · · ,k, j 6= s. (3.7)

According to the hypothesis of Theorem 3.6, we can find a set G ⊂ (1,+∞) with a positive
upper logarithmic density (or ml (G) = +∞) , such that for all z verifying |z| = r ∈ G, r →+∞
and sufficiently small ε> 0, we have

|As(z)| ≥ expp+1

{
(σ−ε) logq ϕ(r )

}
. (3.8)

By (3.3) we have

|As | ≤
∣∣∣∣ f

f (s)

∣∣∣∣
|A0|+

k∑
j =1
j 6=s

|A j |
∣∣∣∣ f ( j )

f

∣∣∣∣
 . (3.9)

Replacing (3.5), (3.6), (3.7) and (3.8) in (3.9) we get for all z verifying |z| = r ∈ G \ ([0,1]∪
E1 ∪E7 ∪E9), r →+∞

expp+1

{
(σ−ε) logq ϕ(r )

}
≤ Bkr 2s expp+1

{
(ρ+ε) logq ϕ(r )

}[
T(2r, f )

]k+1 .
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From 0 < 2ε<σ−ρ, we obtain

exp
{

(1−o(1))expp

{
(σ−ε) logq ϕ(r )

}}
≤ Bkr 2s [

T(2r, f )
]k+1 . (3.10)

Using Lemma 2.7 and (3.10) for any given ν > 1 there exists an r1 = r1(ν) and sufficiently
large r > r1, we get

exp
{

(1−o(1))expp

{
(σ−ε) logq ϕ(r )

}}
≤ Bk(νr )2s [

T(2νr, f )
]k+1 .

By making use of Definition 1.12 and Remark 1.5, we get

ρ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = +∞,

and
σ≤ ρ[p+1,q]( f ,ϕ).

Therefore
ρ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = +∞, σ≤ ρ[p+1,q]( f ,ϕ). (3.11)

From Lemma 2.14, we have

max
{
ρ[p,q](A j ,ϕ) : j = 0,1, · · · ,k

}
= ρ[p,q](As ,ϕ) = β<+∞.

Making use of Lemma 2.19, and the fact that f is a meromorphic solution of equation

(3.3) of infinite [p, q]−ϕ order such that λ[p,q]

(
1
f ,ϕ

)
<µ[p,q]( f ,ϕ) leads to

ρ[p+1,q]( f ,ϕ) ≤ max
{
ρ[p,q](A j ,ϕ) : j = 0,1, · · · ,k

}
= ρ[p,q](As ,ϕ). (3.12)

Thus (3.11) and (3.12) yieldµ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ) = +∞ andσ≤ ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

3.2 Proof of Corollary 3.1

Letψbe a transcendental meromorphic function with ρ[p+1,q](ψ,ϕ) <σ. Putting η = f −ψ.
By Lemma 2.4, we obtain ρ[p+1,q](η,ϕ) = ρ[p+1,q]( f −ψ,ϕ) = ρ[p+1,q]( f ,ϕ). By making use
of Theorem 3.6, we obtain σ ≤ ρ[p+1,q](η,ϕ) ≤ ρ[p,q](As ,ϕ). Replacing f = η+ψ into (1.3)
gives

Ak (z)η(k) +Ak−1(z)η(k−1) + . . .+A1(z)η′+A0(z)η

= −
(
Ak (z)ψ(k) +Ak−1(z)ψ(k−1) + . . .+A1(z)ψ′+A0(z)ψ

)
= U(z). (3.13)

Since ρ[p+1,q](ψ,ϕ) <σ, then according to Theorem 3.6, we can see thatψ is not a solution
of equation (3.3), hence the right side U of equation (3.13) is non-zero. Furthermore, by
Lemma 2.4, and Lemma 2.6 we get

ρ[p+1,q](U,ϕ) ≤ max
{
ρ[p+1,q](ψ,ϕ),ρ[p+1,q](A j ,ϕ) ( j = 0,1, · · · ,k)

}<σ.

As a consequence

max
{
ρ[p+1,q](U,ϕ),ρ[p+1,q](A j ,ϕ) ( j = 0,1, · · · ,k)

}<σ≤ ρ[p+1,q](η,ϕ).

From Lemma 2.16 we get

σ≤ λ[p+1,q](η,ϕ) = λ[p+1,q](η,ϕ)

= ρ[p+1,q](η,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ),

which gives

σ≤ λ[p+1,q]( f −ψ,ϕ) = λ[p+1,q]( f −ψ,ϕ)

= ρ[p+1,q]( f −ψ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).
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3.3 Proof of Theorem 3.7

Let f 6≡ 0 be a rational solution of (3.4). To begin with, we will prove that f must be a
polynomial with deg f ≤ s −1. If either f is a rational function, which has a pole at z0 of
degree m ≥ 1, or f is a polynomial with deg f ≥ s, then f (s)(z) 6≡ 0. From (3.4), we have

As(z) f (s) = F−
k∑

j =0
j 6=s

A j (z) f ( j ).

By Lemma 2.4, and Lemma 2.14, and the fact that ρ[p,q]( f ,ϕ) = 0 (because f is a non-
transcendental so T(r, f ) = O(logr )) we obtain

σ≤ ρ[p,q](As ,ϕ) = ρ[p,q](As f (s),ϕ)

= ρ[p,q]


F−

k∑
j =0
j 6=s

A j (z) f ( j )

 ,ϕ


≤ max

j =0,1,··· ,k, j 6=s

{
ρ[p,q](A j ,ϕ),ρ[p,q](F,ϕ)

}
,

and this contradicts the fact that ρ1 = max
{
ρ[p,q](A j ,ϕ) ( j 6= s),ρ[p,q](F,ϕ)

}<σ. Hence, f
must be a polynomial with deg f ≤ s −1.
Assuming now that f is a transcendental meromorphic solution of (3.4) that satisfies

λ[p,q]

(
1
f ,ϕ

)
< µ[p,q]( f ,ϕ). By Lemma 2.17 we have ρ[p,q]( f ,ϕ) ≥ σ. Since λ[p,q]

(
1
f ,ϕ

)
<

µ[p,q]( f ,ϕ), then by Hadamard factorization theorem, there exists entire functions g (z)

and d(z) such that f can be written as f (z) = g (z)
d(z) , and

µ[p,q](g ,ϕ) =µ[p,q]( f ,ϕ) =µ≤ ρ[p,q](g ,ϕ) = ρ[p,q]( f ,ϕ),

ρ[p,q](d ,ϕ) = λ[p,q]

(
1

f
,ϕ

)
= β< min

{
σ,µ[p,q]( f ,ϕ)

}
.

From the definition of the [p, q]−ϕ-order and the lower [p, q]−ϕ-order, we obtain

|g (z)| = M(r, g ) ≥ expp+1

{(
µ[p,q](g ,ϕ)−ε) logq ϕ(r )

}
,

|d(z)| ≤ M(r,d) ≤ expp+1

{(
ρ[p,q](d ,ϕ)+ε) logq ϕ(r )

}
. (3.14)

Let
ρ1 = max

{
ρ[p,q](A j ,ϕ) ( j 6= s),ρ[p,q](F,ϕ)

}<σ.

From (3.14) and Lemma 2.13, for any ε verifying

0 < 2ε< min
{
σ−ρ1,µ[p,q](g ,ϕ)−ρ[p,q](d ,ϕ)

}
,

there exists a set E9 ⊂ (1,+∞) of finite logarithmic measure such that for any given z veri-
fying |z| = r ∉ E9 at which |g (z)| = M(r, g ), we have∣∣∣∣ F(z)

f (z)

∣∣∣∣ =
|F(z)|
|g (z)| |d(z)|

≤
expp+1

{(
ρ[p,q](d ,ϕ)+ε) logq ϕ(r )

}
expp+1

{(
ρ1 +ε

)
logq ϕ(r )

}
expp+1

{(
µ[p,q](g ,ϕ)−ε) logq ϕ(r )

}
≤ expp+1

{(
ρ1 +ε

)
logq ϕ(r )

}
. (3.15)
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Using the similar way in proving Theorem 3.6, for all z satisfying |z| = r ∈ G\([0,1]∪E1∪E7∪
E9), r →+∞ at which |g (z)| = M(r, g ), and for all ε

(
0 < 2ε< min

{
σ−ρ1,µ[p,q](g ,ϕ)−ρ[p,q](d ,ϕ)

})
we obtain (3.6), (3.7), (3.8) and

|A j (z)| ≤ expp+1{ρ1 +ε) logq ϕ(r )}, j = 0,1, · · · , k, j 6= s. (3.16)

The equation (3.4) gives

|As | ≤
∣∣∣∣ f

f (s)

∣∣∣∣
|A0|+

k∑
j =1
j 6=s

|A j |
∣∣∣∣ f ( j )

f

∣∣∣∣+ ∣∣∣∣ F

f

∣∣∣∣
 . (3.17)

Replacing (3.6), (3.7), (3.8), (3.15) and (3.16) in (3.17), for all z such that |z| = r ∈ G\([0,1]∪
E1 ∪E7 ∪E9), r →+∞, at which |g (z)| = M(r, g ), and for all ε satisfying

0 < 2ε< min
{
σ−ρ1,µ[p,q](g ,ϕ)−ρ[p,q](d ,ϕ)

}
,

we get

expp+1

{
(σ−ε) logq ϕ(r )

}
≤ r 2s(expp+1

{
(ρ1 +ε) logq ϕ(r )

}
+

k∑
j =1
j 6=s

expp+1

{
(ρ1 +ε) logq ϕ(r )

}
B

[
T(2r, f )

]k+1)

+ expp+1

{
(ρ1 +ε) logq ϕ(r )

}
≤ B(k +1)r 2s expp+1

{
(ρ1 +ε) logq ϕ(r )

}[
T(2r, f )

]k+1 .

(3.18)

The fact that 0 < 2ε<σ−ρ1 gives

exp
{

(1−o(1))expp

{
(σ−ε) logq ϕ(r )

}}
≤ B(k +1)r 2s [

T(2r, f )
]k+1 . (3.19)

Using Lemma 2.7 with equation (3.19) for any given ν > 1 there exists an r2 = r2(ν) and
sufficiently large r > r2, we get

exp
{

(1−o(1))expp

{
(σ−ε) logq ϕ(r )

}}
≤ B(k +1)(νr )2s [

T(2νr, f )
]k+1 . (3.20)

By making use of Definition 1.12 and Remark 1.5, we get

ρ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = +∞, ρ[p+1,q]( f ,ϕ) ≥σ. (3.21)

According to Lemma 2.14, and the hypothesis of Theorem 3.7 we get

max
{
ρ[p,q](A j ,ϕ) ( j = 0,1, . . . ,k),ρ[p,q](F,ϕ)

}
= ρ[p,q](As ,ϕ) = β<+∞.

Using Lemma 2.19, and the fact that f is a meromorphic solution of (1.4) of [p, q]−ϕ-order

with λ[p,q]

(
1
f ,ϕ

)
<µ[p,q]

(
f ,ϕ

)
, we obtain

ρ[p+1,q]( f ,ϕ) ≤ max
{
ρ[p,q](A j ,ϕ) ( j = 0,1, . . . ,k),ρ[p,q](F,ϕ)

}
= ρ[p,q](As ,ϕ). (3.22)

From Lemma 2.18, and since F 6≡ 0, we obtain

λ[p,q]( f ,ϕ) = λ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ) = +∞ (3.23)
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and
σ≤ λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]( f ,ϕ). (3.24)

It results from (3.22), (3.23), and (3.24) that

λ[p,q]( f ,ϕ) = λ[p,q]( f ,ϕ) =µ[p,q]( f ,ϕ) = ρ[p,q]( f ,ϕ) = +∞

and
σ≤ λ[p+1,q]( f ,ϕ) = λ[p+1,q]( f ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

3.4 Proof of Corollary 3.2

Let ψ be a transcendental meromorphic function with ρ[p+1,q](ψ,ϕ) <σ. Putting
ϑ = f −ψ. Since ρ[p+1,q]( f ,ϕ) ≥σ and ρ[p+1,q](ψ,ϕ) <σ then, ρ[p+1,q](ψ,ϕ) < ρ[p+1,q]( f ,ϕ).
Hence, by Lemma 2.4 we obtain ρ[p+1,q](ϑ,ϕ) = ρ[p+1,q]( f −ψ,ϕ) = ρ[p+1,q]( f ,ϕ). By making
use of Theorem 3.7 we obtainσ≤ ρ[p+1,q](ϑ,ϕ) ≤ ρ[p,q](As ,ϕ). Replacing f = ϑ+ψ into (3.4)
gives

Ak (z)ϑ(k) +Ak−1(z)ϑ(k−1) + . . .+A1(z)ϑ′+A0(z)ϑ

= F(z)−
(
Ak (z)ψ(k) +Ak−1(z)ψ(k−1) + . . .+A1(z)ψ′+A0(z)ψ

)
= V(z). (3.25)

Since ρ[p+1,q](ψ,ϕ) < σ, then according to Theorem 3.7, ψ is not a solution of equation
(3.4), hence the right side V(z) of equation (3.25) is non-zero. Furthermore, by Lemma
2.4, and Lemma 2.6 we have

ρ[p+1,q](V,ϕ) ≤ max
{
ρ[p+1,q](ψ,ϕ),ρ[p+1,q](A j ,ϕ) ( j = 0,1, · · · ,k),ρ[p+1,q](F,ϕ)

}
= ρ[p+1,q](ψ,ϕ) <σ.

As a consequence

max
{
ρ[p+1,q](V,ϕ),ρ[p+1,q](A j ,ϕ) ( j = 0,1, · · · ,k)

}<σ≤ ρ[p+1,q](ϑ,ϕ).

From Lemma 2.16, we get

σ≤ λ[p+1,q](ϑ,ϕ) = λ[p+1,q](ϑ,ϕ)

= ρ[p+1,q](ϑ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ),

which gives

σ≤ λ[p+1,q]( f −ψ,ϕ) = λ[p+1,q]( f −ψ,ϕ)

= ρ[p+1,q]( f −ψ,ϕ) = ρ[p+1,q]( f ,ϕ) ≤ ρ[p,q](As ,ϕ).

The proof of the Corollary is finished.
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Conclusion and Perspectives

Throughout this work, by using a generalized concept of order called ϕ-order, we have
discussed the possibility of extending some results about the growth of meromorphic so-
lutions to linear differential equations of the form:

Ak (z) f (k) +Ak−1 (z) f (k−1) +·· ·+A1 (z) f ′+A0 (z) f = 0 (3.26)

Ak (z) f (k) +Ak−1 (z) f (k−1) +·· ·+A1 (z) f ′+A0 (z) f = F(z) , (3.27)

where A j and F are meromorphic functions of finite [p, q]−ϕ order.
We have obtained the relationship between the solutions and the meromorphic coeffi-
cients in terms of ϕ-order, estimations about the [p, q]−ϕ order and the [p, q]−ϕ con-
vergence exponent of the solutions to such equations.

Now, some open questions and problems are proposed.
Problem 1. Can we get the similar result using the (α,β,ν) -order defined in [3]? In other
words what can be said about the growth of solutions of the differential equations (3.26)
and (3.27) if the coefficients are meromorphic functions of (α,β,ν) -order?

Problem 2. What are the hypothesis on the dominant coefficient that guarantee that the
solutions of the above equations have a finite (α,β,ν) -order?
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