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:Résumé 

Dans ce mémoire de master,  on s’intéresse à la croissance des solutions de 
 l'équation différentielle linéaire complexe suivante

sont des fonctions  ( ) ( )0 1,..., kA z A z− où ( ) ( ) ( ) ( )1
1 0... 0,k k

kf A z f A z f−
−+ + + =

Certaines estimations de la borne inférieure de .   { }0 0\ ,z z ∈C C analytiques dans
croissance des solutions de l'équation différentielle sont obtenues en utilisant le 

.ordre inférieur-[ ],p q concept du 

 

   

 : Abstract 

In this master thesis, we are interested about the growth of the solutions of the 
 ( ) ( ) ( ) ( )1

1 0... 0,k k
kf A z f A z f−
−+ + + = following complex linear differential equation

Some estimates of . { }0 0\ ,z z ∈C C are analytic functions in  ( ) ( )0 1,..., kA z A z−where
the lower bound of the growth of the solutions of the differential equation are 

.lower order-[ ],p q obtained using the concept of 

     

     

 : الملخص

، نحن مھتمون بنمو حلول المعادلة التفاضلیة الخطیة المعقدة التالیة الماسترفي ھذه الأطروحة 
( ) ( ) ( ) ( )1

1 0... 0k k
kf A z f A z f−
−+ + + )حیث ، = ) ( )0 1,..., kA z A z−   دوال تحلیلیة في

{ }0 0\ ,z z ∈C C یتم الحصول على تقدیرات معینة للحد الأدنى لنمو حلول المعادلة التفاضلیة .
]باستخدام مفھوم  ],p q- قل.أ ترتیب 
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INTRODUCTION

The study of solutions to linear di¤erential equations is very important in the �eld of complex

analysis, by using Nevanlinna�s theory.

We concentrate speci�cally on the study of the growth of solutions to higher-order homoge-

neous linear di¤erential equations near a singular point.

The Nevanlinna�s value distribution theory of meromorphic functions key tool for meromor-

phic functions was created in 1929 by the Finnish mathematician Rolf Nevanlinna [13]. The

Nevanlinna characteristic function T (r; f) is a measure of a function�s growth and its associated

counting function estimate how often certain values are taken. Nevanlinna theory has many ap-

plications in complex analysis and in the theory of functions; in particular, it plays an important

role in the theory of complex di¤erential equations. Using this tool, as well as other forms of

modern complex analysis. Several researchers have used this theory to study the properties of

solutions of linear di¤erential equations in the complex plane, including growth, oscillation, �xed

point, and behavior of meromorphic functions.

Beginning in 1942, H. Wittich [14] was the �rst to do systematic research on Nevanlinna

theory applications to complex di¤erential equations. The previous topic is very important in

complex analysis.

Recently, many authors have studied the properties of solutions near a singular point. In 2016,

Fettouch and Hamouda investigated the growth of solutions around an isolated essential singularity

point [5]. After Long and Zeng improved the result of Fettouch-Hamouda, they obtained some

estimations on the [p; q]-order of growth of solutions [11]. Dahmani and Belaïdi generalized Long-

Zeng�s results and found a number of results on the [p; q]-order and on the lower [p; q]-order [4]. In

2020, Liu, Long, and Zeng investigated the growth of solutions of second-order linear di¤erential

equations of the following type [10];

f 00 +A (z) f 0 +B (z) f = 0; (0.0.1)

where the A (z) and B (z) are analytic functions in C� fz0g :
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This thesis focuses at the higher-order homogeneous linear di¤erential equation of the following

form

f (k) +Ak�1(z)f
(k�1) + � � �+A0(z)f = 0, (k � 2); (0.0.2)

where Aj(z)(j = 0; :::; k � 1); are analytic functions in C� fz0g, C = C [ f1g ; z0 2 C.

In this work, we study the growth of solutions of the equation (0.0.2) around a singular point by

using the concept of [p; q]-order of growth, which is an improvement and a generalization of the

paper of Liu, Long, and Zeng [10].

However, the structure of the work is as follows: an introduction, two chapters, and a conclusion.

The �rst chapter of this master�s thesis introduces the essential ideas and results of the Nevanlinna

value distribution theory of meromorphic functions on the complex plane C and in C�fz0g, which

are applicable to the second chapter.

In Chapter 2, we study the growth of nontrivial solutions of complex linear di¤erential equations

under various hypotheses about coe¢ cients. We �rst recall some existence results for Liu, Long,

and Zeng. After we generalize what we mentioned earlier, where we applied the concepts of

[p; q]-order and lower [p; q]-type, we give some auxilliary lemmas that we need to demonstrate our

results.



Chapter 1

Some elements of the theory of
Nevanlinna for meromorphic
functions

Some background is included in this chapter, primarily from the Nevanlinna theory [1; 6; 8; 9; 15].

The Jensen�s formula, counting function, proximity function, characteristic function with its prop-

erties, and more will be presented.

1.1 Jensen formula

Theorem 1.1.1 ([9]) Let f be a meromorphic function such that f (0) 6= 0;1 and a1; a2; :::(resp:

b1; b2; :::); its zeros (resp. its poles), each taken into account according to its multiplicity. Then

log jf (0)j = 1

2�

Z 2�

0
log
��f �rei'��� d'+ X

jbj j<r
log

r

jbj j
�
X
jaj j<r

log
r

jaj j
:

Proof. We give the proof for the case that f has no zeros and no poles on the circle jzj = r:

Consider the function

g (z) = f (z)

Q
jaj j<r

r2 � ajz
r (z � aj)Q

jbj j<r

r2 � bjz
r (z � bj)

:

Then, g 6= 0;1 in the disc jzj 6 r; hence log jg (z)j is a harmonic function. By the mean formula

of harmonic functions, we have

log jg (0)j = 1

2�

Z 2�

0
log
��g �rei'��� d': (1.1.1)
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On the other hand,

jg (0)j = jf (0)j

Q
jaj j<r

r

jaj jQ
jbj j<r

r

jbj j
;

from which

log jg (0)j = log jf (0)j+
X
jaj j<r

log
r

jaj j
�
X
jbj j<r

log
r

jbj j
: (1.1.2)

For z = rei'; we have for all aj and bj���� r2 � ajzr (z � aj)

���� = ���� z�z � ajzr (z � aj)

���� = ����z (z � aj)r (z � aj)

���� = 1 = ���� r2 � bjzr (z � bj)

���� :
Hence ��g �rei'��� = ��f �rei'��� : (1.1.3)

Applying (1:1:2) and (1:1:3) to (1:1:1), we obtain the Jensen formula. �

1.2 Characteristic function of Nevanlinna

De�nition 1.2.1 ([9] ; [15]) Let x be a positive real number. The truncated logarithm log+ is

de�ned by

log+ x = max flog x ; 0g =

�
log x if x > 1:
0 if 0 6 x 6 1:

Notice that the truncated logarithm de�ned above is a continuous function and nonnegative on

(0;1).

Lemma 1.2.1 ([6] ; [9]) Let �,�,�i positive real numbers. So we have the following properties:

(1) log� � log+ �;

(2) log+ � � log+ � for � � �;

(3) log� = log+ �� log+( 1
�
);

(4) jlog�j = log+ �+ log+( 1
�
);

(5) log+

 
nY
i=1

�i

!
�

nX
i=1

log+(�i); (1 � i � n);
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(6) log+

 
nX
i=1

�i

!
�

nX
i=1

log+(�i) + log n:

Proof. (3) We have ([1])

log+ �� log+ 1
�

= max flog�; 0g �max
�
log

1

�
; 0

�

= max flog�; 0g+min
�
� log 1

�
; 0

�

= max flog�; 0g+min flog�; 0g

= log�:

(4) We have ([1])

log+ �+ log+
1

�
= max flog�; 0g+max

�
log

1

�
; 0

�

= max flog�; 0g+max f� log�; 0g

= max flog�; 0g �min flog�; 0g

= jlog�j :

(5) � If
nQ
i=1
�i 6 1; then the inequality holds trivially.

� If
nQ
i=1
�i > 1; then

log+

 
nY
i=1

�i

!
= log

 
nY
i=1

�i

!
=

nX
i=1

log�i 6
(by 1))

nX
i=1

log+ �i:

(6) By (2) and (5) above

log+
�

nP
i=1
�i

�
6 log+

�
n max

16i6n
�i

�
6 log+ n+ log+

�
max
16i6n

�i

�
6 log+ n+

nP
i=1
log+ �i:

�
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De�nition 1.2.2 ([9]) (Unintegrated counting function) Let f be a meromorphic function, not

being identically equal to a 2 C. We denote by n(r; a; f) the number of the roots of f(z) = a in

the disc jzj < r, each root according to its multiplicity. Similarly �n(r; a; f) counts the number of

the distinct roots of f(z) = a in the disc jzj < r. And we denote by n(r;1; f) the number of the

poles of f in the disc jzj < r, each pole according to its multiplicity. Similarly �n(r;1; f) counts

the number of the distinct poles of f in the disc jzj < r.

Example 1.2.1 f(z) = �1
cos z , n(r; f) = n(r;1; f) = 2

�
2r
�

�
.

Example 1.2.2 h(z) = exp(z); n(r; f) = 0; because it is an entire function.

Example 1.2.3 f(z) = 1
sin2 z

, we have n(r; f) = 2+4
�
r
�

�
, n(r; f) = 1+2

�
r
�

�
because f has double

poles at zk = k� (k 2 Z).

De�nition 1.2.3 ([9]) Let f be a meromorphic function, we de�ne the a-point function of f by

N(r; a; f) = N

�
r;

1

f � a

�
:=

Z r

0

n(t; a; f)� n(0; a; f)
t

dt+ n(0; a; f) log r

If f 6� a 2 C and

N(r;1; f) = N (r; f) :=
Z r

0

n(t;1; f)� n(0;1; f)
t

dt+ n(0;1; f) log r:

Similary, we de�ne the a-point distinct function of f by

�N(r; a; f) = �N

�
r;

1

f � a

�
:=

Z r

0

�n(t; a; f)� �n(0; a; f)
t

dt+ �n(0; a; f) log r

If f 6� a 2 C and

�N(r;1; f) = �N (r; f) :=

Z r

0

�n(t;1; f)� �n(0;1; f)
t

dt+ �n(0;1; f) log r:

Example 1.2.4 f(z) = 1
sin2 z

, we have n(r; f) = 2 + 4
�
r
�

�
, n(0; f) = 2, then,

N(r; f) : =

rZ
0

4
�
t
�

�
t
dt+ 2 log r

=
4

�
r + 2 log r:

Remark 1.2.1 If f is an entire function, then N (r; f) = �N (r; f) = 0:
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Example 1.2.5 f(z) = exp(z), we have N(r; f) = 0:

Lemma 1.2.2 ([9]) Let f be a meromorphic function with a-points �1; �2; :::; �m in the disc jzj 6

r such that 0 < j�1j 6 j�2j 6 ::: 6 j�mj 6 r; each counted according to its multiplicity. ThenZ r

0

n(t; a; f)

t
dt =

Z r

0

n(t; a; f)� n(0; a; f)
t

dt =
X

0<j�j j6r
log

r

j�j j
:

Proof. Denoting rj = j�j j (j = 1; 2; :::;m). Then, we have

X
0<j�j j�r

log
r

j�j j
=

mX
j=1

log
r

rj

= log
rm

r1 � r2 � :::� rm

= log(
r2
r1
� r

2
3

r2
� :::� r

m�1
m

rm�1m�1
� r

m

rmm
)

=
m�1X
j=1

j(log rj+1 � log rj) +m(log r � log rm)

=
m�1X
j=1

j

Z rj+1

rj

dt

t
+m

Z r

rm

dt

t
=

Z r

0

n(t; a; f)

t
dt.

�

Proposition 1.2.1 ([9]) Let f be a meromorphic function with the Laurent expansion at the

origin

f (z) =
+1X
i=m

ciz
i; cm 2 C�;m 2 Z:

Then

log jcmj =
1

2�

Z 2�

0
log
��f �rei'��� d'+N (r; f)�N �r; 1

f

�
:

Proof. Consider the meromorphic function h

h(z) = f(z)z�m; z 2 C

It is evident that m = n(0; 0; f) � n(0;1; f) and h(0) 6= 0;1. If m > 0, then n(0;1; f) = 0

and m = n(0; 0; f). If m < 0, then n(0; 0; f) = 0 and n(0;1; f) = �m. Finally, if m = 0, then
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n(0; 0; f) = n(0;1; f) = 0. So the functions h and f have the same poles and zeros in 0 < jzj � r.

By applying Jensen�s formula and Lemma 1.2.2, we have

log jcmj = log jh (0)j

=
1

2�

Z 2�

0
log
��f �rei'� r�m�� d'+ X

0<jbj j6r
log

r

jbj j
�

X
0<jaj j6r

log
r

jaj j

=
1

2�

Z 2�

0
log
��f �rei'��� d'� [n (0; 0; f)� n (0;1; f)] log r

+

Z r

0

n (t;1; f)� n (0;1; f)
t

dt�
Z r

0

n (t; 0; f)� n (0; 0; f)
t

dt

=
1

2�

Z 2�

0
log
��f �rei'��� d'+N (r; f)�N �r; 1

f

�
:

�

De�nition 1.2.4 ([9]) Let f be a meromorphic function, we de�ne the proximity function of f

by

m (r; a; f) = m

�
r;

1

f � a

�
:=

1

2�

Z 2�

0
log+

1

jf (rei')� ajd' if f 6� a 2 C;

and

m (r;1; f) = m (r; f) := 1

2�

Z 2�

0
log+

��f �rei'��� d':
Example 1.2.6 Let f(z) = exp z. Then, we have

m(r; f) =
1

2�

2�Z
0

log+ jf(r exp i')j d'

=
1

2�

2�Z
0

log+ jexp (r exp i')j d'

=
1

2�

�
2Z
��
2

log exp (r cos') d'

=
1

2�

�
2Z
��
2

(r cos') d'

=
r

2�
[sin']

�
2
��
2

=
r

�
:
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De�nition 1.2.5 ([9]) Let f be a meromorphic function, the characteristic function of Nevan-

linna of f will be de�ned as

T (r; f) := m(r; f) +N(r; f):

Proposition 1.2.2 ([6] ; [9]) Let f1; :::; fn; f be a meromorphic functions and a 2 C�, then

(1) m

�
r;

nQ
i=1
fi

�
6

nP
i=1
m (r; fi) ; (n 2 N�);

(2) m

�
r;

nP
i=1
fi

�
6

nP
i=1
m (r; fi) + log n; (n 2 N�);

(3) T

�
r;

nQ
i=1
fi

�
6

nP
i=1
T (r; fi) ; (n 2 N�);

(4) T

�
r;

nP
i=1
fi

�
6

nP
i=1
T (r; fi) + log n; (n 2 N�);

(5) T (r; fn) = nT (r; f) ; (n 2 N�);

(6) m (r; a+ f) = m (r; f) +O (1) and m (r; af) = m (r; f) +O (1) ;

(7) T (r; a+ f) = T (r; f) +O (1) and T (r; af) = T (r; f) +O (1) :

Proof. (1); (3) We have

m

 
r;

nY
i=1

fi

!
=

1

2�

Z 2�

0
log+

�����
nY
i=1

fi
�
rei'

������ d'
6 1

2�

Z 2�

0

nX
i=1

log+
��fi �rei'��� d'

=
1

2�

nX
i=1

Z 2�

0
log+

��fi �rei'��� d'
=

nX
i=1

m (r; fi) :
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If fi has a pole of order �i > 0 at z0; then it is a pole of order equal at most to
nP
i=1
�i for the

function
nQ
i=1
fi: Hence

N

 
r;

nY
i=1

fi

!
6

nX
i=1

N (r; fi) ;

Therefore

T

 
r;

nY
i=1

fi

!
= m

 
r;

nY
i=1

fi

!
+N

 
r;

nY
i=1

fi

!

6
nX
i=1

m (r; fi) +

nX
i=1

N (r; fi) =

nX
i=1

T (r; fi) :

(2); (4) We have

m

 
r;

nX
i=1

fi

!
=

1

2�

Z 2�

0
log+

�����
nX
i=1

fi
�
rei'

������ d'
6 1

2�

Z 2�

0

 
nX
i=1

log+
��fi �rei'���+ log n! d'

=
nX
i=1

1

2�

Z 2�

0
log+

��fi �rei'��� d'+ log n
=

nX
i=1

m (r; fi) + log n:

If fi has a pole of order �i > 0 at z0; then it is a pole of order equal at most to max
16i6n

�i 6
nP
i=1
�i

for the function
nQ
i=1
fi: Hence

N

 
r;

nX
i=1

fi

!
6

nX
i=1

N (r; fi) ;

Therefore

T

 
r;

nX
i=1

fi

!
= m

 
r;

nX
i=1

fi

!
+N

 
r;

nX
i=1

fi

!

6
nX
i=1

m (r; fi) + log n+
nX
i=1

N (r; fi) =
nX
i=1

T (r; fi) + log n:

(5) We have : jfnj = jf jn 6 1() jf j 6 1:

� If jf j 6 1; then

T (r; fn) = N (r; fn) = nN (r; f) = nT (r; f) :
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� If jf j > 1; then

m (r; fn) =
1

2�

Z 2�

0
log+

��fn �rei'��� d'
=

1

2�

Z 2�

0
log
��fn �rei'��� d'

=
1

2�
� n
Z 2�

0
log
��f �rei'��� d'

= n � 1
2�

Z 2�

0
log+

��f �rei'��� d'
= nm (r; f) :

Hence

T (r; fn) = m (r; fn) +N (r; fn)

= nm (r; f) + nN (r; f)

= nT (r; f) :

(6) We have

jm (r; a+ f)�m (r; f)j =

���� 12�
Z 2�

0

�
log+

��f �rei'�+ a��� log+ ��f �rei'���� d'����
6 1

2�

Z 2�

0

��log+ ���f �rei'���+ jaj�� log+ ��f �rei'����� d'
6 1

2�

Z 2�

0

��log+ jaj+ log 2�� d' 6 log+ jaj+ log 2;
And

jm (r; af)�m (r; f)j =

���� 12�
Z 2�

0

�
log+

��af �rei'���� log+ ��f �rei'���� d'����
6 1

2�

Z 2�

0

��log+ �jaj ��f �rei'����� log+ ��f �rei'����� d'
6 1

2�

Z 2�

0

��log+ jaj�� d' = log+ jaj = jlog jajj � log+ 1

jaj
6 jlog jajj :

Hence,

m (r; a+ f) = m (r; f) +O (1) and m (r; af) = m (r; f) +O (1) :
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(7) From (6); we get

T (r; a+ f) = N (r; a+ f) +m (r; a+ f)

= N (r; f) +m (r; f) +O (1)

= T (r; f) +O (1) ;

And

T (r; af) = N (r; af) +m (r; af)

= N (r; f) +m (r; f) +O (1)

= T (r; f) +O (1) :

�

1.3 Characteristic function near singular point

In order to determine the characteristic functions near a singular point, we must �rst establish

the proximity function and the counting function near a singular point.

De�nition 1.3.1 ([3]; [5]) (Counting function). The counting function of f near z0 is de�ned by

Nz0(r; f) = �
rZ
1

n(t; f)� n(1; f)
t

dt� n(1; f) log r,

where n(t; f) denote the number of poles of f(z) in the regionfz 2 C : t � jz � z0jg[f1g counting

its multiplicities.

Example 1.3.1 Let f(z) = exp
�
1

zn

�
(n 2 N�) ; n(t; f) = 0 so Nz0(r; f) = �

rR
1

0�0
t dt� 0 � log r =

0:

De�nition 1.3.2 ([3]; [5]) (Proximity function). For a meromorphic function f , the proximity

function of f near z0 is de�ned by

mz0(r; f) =
1

2�

2�Z
0

log+
��f(z0 � rei')�� d':
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Example 1.3.2 Let f(z) = exp
�
1

z

�
; z0 = 0 be an essential singular point, so we have

mz0(r; f) =
1

2�

2�Z
0

log+
��f(z0 � rei')�� d' = 1

2�

2�Z
0

log+
����exp� 1

�rei'

����� d'
=
1

2�

2�Z
0

log+
����exp��e�i'r

����� d'
=
1

2�

2�Z
0

log+
�
exp

�
�cos'

r

��
d'

=
1

2�

Z 3�
2

�
2

�
�cos'

r

�
)d' =

1

2�

�
�sin'

r

� 3�
2

�
2

=
1

�

1

r
:

De�nition 1.3.3 ([3]; [5]) (Characteristic function). The characteristic function of f(z) near z0

is de�ned by

Tz0(r; f) = mz0(r; f) +Nz0(r; f):

Example 1.3.3 f(z) = exp
�
1

z

�
; Nz0(r; f) = 0; so

Tz0(r; f) = mz0(r; f) +Nz0(r; f) =
1

�

1

r
:

Theorem 1.3.1 ([9]) (First Fundamental Theorem of Nevanlinna). Let f be a meromorphic

function, a 2 C and let

f(z)� a =
+1P
i=m

ciz
i; cm 2 C� ; m 2 Z;

be the Laurent expansion of f � a at the origin. Then

T (r; a; f) = T

�
r;

1

f � a

�
= T (r; f)� log jcmj+ ' (r; a) ;

where j' (r; a)j 6 log 2 + log+ jaj :

Proof. Assume �rst a = 0, then by the Proposition 1.2.1 and Lemma 1.2.1 (3), we have

log jcmj =
1

2�

Z 2�

0
log
��f �rei'��� d'+N (r; f)�N �r; 1

f

�
=

1

2�

Z 2�

0
log+

��f �rei'��� d'� 1

2�

Z 2�

0
log+

1

jf (rei')jd'+N (r; f)�N
�
r;
1

f

�
= m (r; f)�m

�
r;
1

f

�
+N (r; f)�N

�
r;
1

f

�
= T (r; f)� T

�
r;
1

f

�
;
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Hence

T

�
r;
1

f

�
= T (r; f)� log jcmj ; where ' (r; 0) � 0: (1.3.1)

Proceeding now to the general case a 6= 0, we pose h := f � a: Then

N

�
r;
1

h

�
= N

�
r;

1

f � a

�
; N (r; f) = N (r; h) et m

�
r;
1

h

�
= m

�
r;

1

f � a

�
:

Moreover

log+ jhj = log+ jf � aj 6 log+ jf j+ log+ jaj+ log 2;

log+ jf j = log+ jh+ aj 6 log+ jhj+ log+ jaj+ log 2:

By integrating these two inequalities, we �nd that

m (r; h) =
1

2�

Z 2�

0
log+

��h �rei'��� d'
6 1

2�

Z 2�

0

�
log+

��f �rei'���+ log+ jaj+ log 2� d'
= m (r; f) + log+ jaj+ log 2;

And

m (r; f) =
1

2�

Z 2�

0
log+

��f �rei'��� d'
6 1

2�

Z 2�

0

�
log+

��h �rei'���+ log+ jaj+ log 2� d'
= m (r; h) + log+ jaj+ log 2:

We pose ' (r; a) := m (r; h)�m (r; f) : Then

�
�
log+ jaj+ log 2

�
6 m (r; h)�m (r; f) 6 log+ jaj+ log 2() j' (r; a)j 6 log+ jaj+ log 2:

Applying (1; 2; 1) for h; we obtain

T

�
r;
1

h

�
= T (r; h)� log jcmj

= m (r; h) +N (r; h)� log jcmj

= m (r; f) + ' (r; a) +N (r; f)� log jcmj

= T (r; f)� log jcmj+ ' (r; a) :

�
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Remark 1.3.1 We can rewrite the �rst fundamental theorem of Nevanlinna as follows: for all

a 2 C, we have

T

�
r;

1

f � a

�
= T (r; f) +O(1), r !1.

1.4 Growth of meromorphic functions near singular point

1.4.1 The order and the lower order of growth

We suppose that f(z) is an analytic function in C except a �nite singular point z0.

Similarly to the case of complex plane, we de�ne �(f; z0), �(f; z0), and �(f; z0) for analytic or

meromorphic function in C� fz0g :

De�nition 1.4.1 ([10]) The order and the lower order of growth of a meromorphic function f(z)

in C� fz0g near z0 are de�ned respectively by

�T (f; z0) = lim sup
r!0

log+ Tz0(r; f)

log 1r
.

and

�T (f; z0) = lim inf
r!0

log+ Tz0(r; f)

log 1r
:

For an analytic function f(z) in C � fz0g, the order and the lower order of growth are de�ned

respectively by

�M (f; z0) = lim sup
r!0

log+ log+Mz0(r; f)

log 1r
and

�M (f; z0) = lim inf
r!0

log+ log+Mz0(r; f)

log 1r
;

where Mz0(r; f) = max fjf(z)j : jz � z0j = rg.

1.4.2 The hyper order of growth

De�nition 1.4.2 ([10]) The hyper-order of a meromorphic function f(z) in C� fz0g near z0 is

de�ned by

�2;T (f; z0) = lim sup
r!0

log+ log+ Tz0(r; f)

log 1r

and for an analytic function f in C� fz0g, the hyper-order is de�ned by

�2;M (f; z0) = lim sup
r!0

log+ log+ log+Mz0(r; f)

log 1r
,



1.4 Growth of meromorphic functions near singular point 18

Where Mz0(r; f) = max fjf(z)j : jz � z0j = rg.

1.4.3 The lower-type near z0

Likewise, we de�ne the lower type with a procedure equivalent to the complex plane:

De�nition 1.4.3 ([10]) If f(z) is an analytic function in C� fz0g, with 0 < �(f; z0) = � < 1,

then its lower-type is de�ned by

�(f; z0) = lim inf
r!0

log+Mz0(r; f)

(1r )
�

,

where Mz0(r; f) = max fjf(z)j : jz � z0j = rg.

Here, we introduce the concepts of [p; q]-order and [p; q]-type of growth, we add similarly the

de�nition of the lower [p; q]-order and lower [p; q]-type of growth. Before that we must give some

notations :

� For r 2 R, we have : exp1 r = er and expp+1 r = exp
�
expp r

�
; p 2 N: We also de�ne

� For all r su¢ ciently large in (0;+1) ; log1 r = log r and logp+1 r = log
�
logp r

�
; p 2 N:

� Moreover, we denote exp0 r = r = log0 r; exp�1 r = log1 r and log�1 r = exp1 r:

Proposition 1.4.1 ([2]) Let xi 2 R such that xi > 1 and i = 1; :::; n: Then

(i) logp

�
nP
i=1
xi

�
6

nP
i=1
logp xi +O (1) ;

(ii) logp

�
nQ
i=1
xi

�
6

nP
i=1
logp xi +O (1) :

Proof. For the proof, we use the principle of mathematical induction.

(i) � For p = 1, we have log
�

nP
i=1
xi

�
6

nP
i=1
log xi +O (1) :

�We suppose that logp
�

nP
i=1
xi

�
6

nP
i=1
logp xi + O (1) is true and we prove that it holds at order
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p+ 1: We have

logp+1

 
nX
i=1

xi

!
= log

 
logp

 
nX
i=1

xi

!!

6 log

 
nX
i=1

logp xi +O (1)

!

6
nX
i=1

logp+1 xi +O (1) :

Hence, logp

�
nP
i=1
xi

�
6

nP
i=1
logp xi +O (1).

(ii) � For p = 1, we have log
�

nQ
i=1
xi

�
=

nP
i=1
log xi; then log

�
nQ
i=1
xi

�
6

nP
i=1
log xi +O (1) :

�We suppose that logp
�

nQ
i=1
xi

�
6

nP
i=1
logp xi + O (1) is true and we prove that it holds at order

p+ 1: We have

logp+1

 
nY
i=1

xi

!
= log

 
logp

 
nY
i=1

xi

!!

6 log

 
nX
i=1

logp xi +O (1)

!

6
nX
i=1

logp+1 xi +O (1) :

Hence, logp

�
nQ
i=1
xi

�
6

nP
i=1
logp xi +O (1).

�

1.4.4 The [p; q]-order and the lower [p; q]-order of growth

De�nition 1.4.4 ([11]) Let f(z) be a meromorphic function in C � fz0g and p,q two integers

p � q � 1. Then the [p; q]�order of growth and the lower [p; q]�order are de�ned respectively by

�[p;q](f; z0) = lim sup
r�!0

log+p Tz0(r; f)

logq(
1
r )

and

�[p;q](f; z0) = lim inf
r�!0

log+p Tz0(r; f)

logq(
1
r )

:
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De�nition 1.4.5 ([11]) Let f(z) be an analytic function in C � fz0g and p,q two integers p �

q � 1. Then the [p; q]�order and the the lower [p; q]�order of growth are de�ned respectively by

�M;[p;q](f; z0) = lim sup
r�!0

log+p+1Mz0(r; f)

logq(
1
r )

and

�M;[p;q](f; z0) = lim inf
r�!0

log+p+1Mz0(r; f)

logq(
1
r )

,

where Mz0(r; f) = max fjf(z)j : jz � z0j = rg.

Remark 1.4.1 If we put p = q = 1 we obtain the order of growth �[1;1](f; z0) = �(f; z0), for

p = 2 and q = 1 is just the hyper order of growth �[2;1](f; z0) = �2(f; z0), for q = 1 is the iterated

p-order.

Example 1.4.1 Let f (z) = exp3
�
cosh 1

z2

�
be an analytic function in C� fz0g such that

M (r; f) = max
jzj=r

jf (z)j = exp3
�
cosh

�
1

r2

��
:

Then

�M;[2;1] (f) = lim sup
r!0

log+3 M (r; f)

log
�
1
r

�
= lim sup

r!0

log3
�
exp3

�
cosh

�
1
r2

�	�
log
�
1
r

�
= lim sup

r!0

cosh
�
1
r2

�
log
�
1
r

� = +1:

Proposition 1.4.2 Let p > q > 1 be integers, and let f be an analytic function in C � fz0g of

[p; q]-order. Then

�[p;q] (f) = �M;[p;q] (f) :

Proof. By the fundamental inequality (see [8; p: 18]) ; for R = 2r we obtain

T (r; f) 6 log+M (r; f) 6 3T (2r; f) :

It follows that

logp T (r; f) 6 log+p+1M (r; f) 6 logp(3T (2r; f)) 6 logp T (2r; f) + C;
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C > 0 is a constant. Then

lim sup
r!0

log+p T (r; f)

logq
�
1
r

� = �[p;q] (f; z0) 6 lim sup
r!0

log+p+1M (r; f)

logq
�
1
r

� = �M;[p;q] (f; z0)

6 lim sup
r!0

 
logp T (2r; f)

logq
�
1
r

� +
C

logq
�
1
r

�! = lim sup
r!0

 
logp T (2r; f)

logq(
1
2r )

� logp(
1
2r
)

logq( 1r )
+

C

logq
�
1
r

�!

= lim sup
r!0

logp T (2r; f)

logq
�
1
2r

� = �[p;q] (f) :

Hence

�M;[p;q] (f) = �[p;q] (f) :

�

Example 1.4.2 For the function f(z) = exp�(
1
z ), a 2 C

�, � � 1, we have

�[p;1](f; z0) = lim sup
r!0

log+p+1M (r; f)

log
�
1
r

�
= lim sup

r!0

log+p+1 exp�(
1
r )

log
�
1
r

� :

Then

�[p;1](f; z0) =

8<:
+1 if p < �,
1 if p = �,
0 if p > �.

1.4.5 The [p; q]-type and the lower [p; q]-type of growth

De�nition 1.4.6 ([11]) Let f be a meromorphic function in C � fz0g with � = �[p;q](f; z0) 2

(0;1). Then the [p; q]�type of f is de�ned by

� [p;q](f; z0) = lim sup
r!0

log+p Tz0(r; f)

logq�1(
1
r )
�

and the lower [p; q]�type of f(z) with � = �[p;q](f; z0) 2 (0;1) is de�ned by

� [p;q](f; z0) = lim inf
r�!0

log+p Tz0(r; f)

logq�1(
1
r )
�
:
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De�nition 1.4.7 ([11]) Let f be an analytic function in C� fz0g with � = �[p;q](f; z0) 2 (0;1).

Then the [p; q]�type of f(z) is de�ned by

�M;[p;q](f; z0) = lim sup
r!0

log+p+1Mz0(r; f)

logq�1(
1
r )
�

and the lower [p; q]�type of f with � = �[p;q](f; z0) 2 (0;1) is de�ned by

�M;[p;q](f; z0) = lim inf
r�!0

log+p+1Mz0(r; f)

logq�1(
1
r )
�

;

where Mz0(r; f) = max fjf(z)j : jz � z0j = rg

Example 1.4.3 We calculate the [p; q]-type of the following function f(z) = exp(exp(1z )). We

have �[2;1] (f) = 1, then

�M;[2;1](f; z0) = lim sup
r!0

log+p+1Mz0(r; f)

logq�1(
1
r )
�

= lim sup
r!0

log+3 exp exp(
1
r )

1
r

= 0:

1.5 Linear and logarithmic measure

De�nition 1.5.1 The linear measure of a set E � [0;+1) is de�ned by

m(E) =

Z +1

0
�E(t)dt;

where �E(t) is the characteristic function of the set E and the logarithmic measure of a set

F � [1;+1) is de�ned by

ml(F ) =

Z +1

1

�F (t)

t
dt:

Example 1.5.1 The linear measure of the set E = [2; 6] [ [7; 8] � [0;+1) is

m(E) =

Z +1

0
�E(t)dt =

Z 6

2
dt+

Z 8

7
dt = 5:

2) The logarithmic measure of the set F = [1; e2] � (1;+1) is

ml(F ) =

Z +1

1

�F (t)

t
dt =

Z e2

1

dt

t
= 2:



Chapter 2

The [p,q]-Order of Growth of
Solutions of Linear Di¤erential
Equations Near a Singular Point

2.1 Introduction and Some Results

Consider for k � 2 the linear di¤erential equation

f (k) +Ak�1 (z) f
(k�1) + � � �+A1 (z) f 0 +A0 (z) f = 0; (2.1.1)

where A0; :::; Ak�1 are analytic functions in C� fz0g.

In [10] Liu, Long, and Zeng treated the growth of solutions of the second-order linear di¤er-

ential equation (0.0.1) when the coe¢ cients A (z) and B (z) are analytic functions of lower order

in C � fz0g ; �rstly when B (z) is a dominant coe¢ cient with lower order, nextly with the lower

type. Finally, they asked the question: what happen when the coe¢ cient A (z) dominates in the

concept of lower order? for these reasons they obtained the following results.

Theorem 2.1.1 ([10]) Let A (z) and B (z) be analytic functions in C�fz0g satisfying �(A; z0) <

�(B; z0) < 1. Then, every non trivial solution f(z) of (0.0.1), that is analytic in C � fz0g,

satis�es �2(f; z0) � �(B; z0).

Theorem 2.1.2 ([10]) Let A (z) and B (z) be analytic functions in C � fz0g satisfying the fol-
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lowing conditions:

(i) �(A; z0) = �(B; z0);

(ii) �M (A; z0) < �M (B; z0):

Then, every non trivial solution f(z) of (0.0.1), that is analytic in C� fz0g, satis�es �2(f; z0) �

�(B; z0).

Theorem 2.1.3 ([10]) Let A (z) and B (z) be analytic functions in C�fz0g satisfying �(B; z0) <

�(A; z0) < 1. Then, every non trivial solution f(z) of (0.0.1), that is analytic in C � fz0g,

satis�es �(f; z0) � �(A; z0).

In this work, we improve the results of Liu, Long, and Zeng for higher-order linear di¤erential

equations of the form (2:1:1) where most of the coe¢ cients are of [p; q]-order. Firstly, we investigate

the growth of solutions of (2:1:1) when A0(z) is a dominant coe¢ cient with the concept of lower

order.

Theorem 2.1.4 ([12]) Let p � q � 1 be integers, and let A0(z); :::; Ak�1(z) be analytic functions

in C� fz0g. Assume that

maxf�[p;q](Aj ; z0) : (j = 2; :::; k � 1); �[p;q](A1; z0)g < �[p;q](A0; z0):

Then every non trivial solution that is analytic in C� fz0g of (2:1:1) satis�es �[p;q](f; z0) = +1

and �[p+1;q](f; z0) � �[p;q](A0; z0).

To prove the Theorem 2.1.4 we need the following lemmas.

Lemma 2.1.1 ([12]) Let f(z) be a nonconstant analytic function in C�fz0g with �[p;q](f; z0) = �.

Then for � > �; there exist a set E � (0; 1) with ml(E) = +1 such that for all jz � z0j = r 2 E,

we have

Mz0(r; f) � expp
�
logq�1

�
1

r

���
:

Proof. By the de�nition of �[p;q] (f; z0), there exists a sequence frng1n tending to zero satisfying

rn+1 <
n
n+1rn and

lim inf
n!+1

logp+1Mz0(rn; f)

logq(
1
rn
)

= � < �:
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Then, for any given " > 0, there exists an n0 2 N+ such that for all n � n0;

logMz0(rn; f) � expp

(
logq

�
1

rn

���")
(2.1.2)

For " given above, there exists an n1 2 N+ such that for all n � n1 and r 2
h
n
n+1rn; rn

i
,

1

( n
n+1)

��" �
1

r"
(2.1.3)

By 2.1.2 and 2.1.3, for all n � n2 = max fn0; n1g and for any r 2
h
n
n+1rn; rn

i
,

logMz0(r; f) � logMz0

�
n

n+ 1
rn; f

�
� expp

(
logq

 
1
n
n+1rn

!��")

� expp

8><>:logq 1�
n
n+1

���"
r��"n

9>=>; � expp
�
logq

�
1

r

���
.

This is implies

Mz0(r; f) � expp
�
logq�1

�
1

r

���
:

Set E =
+1S
n=n2

h
n
n+1rn; rn

i
, we get

ml(E) =

Z
E

dt

t
=

+1X
n=n2

Z rn

n
n+1

rn

dt

t
=

+1X
n=n2

log(1 +
1

n
) =1:

�

Lemma 2.1.2 ([6]) Let f be a nonconstant meromorphic function in C � fz0g, let 
 > 1, " > 0

be given real constants and k 2 N. Then there exist a set E3 � (0; r0]; (r0 2 (0; 1)) having �nite

logarithmic measure and a constant � > 0 that depends on 
 and k such that for all jz� z0j = r 2

(0; r0] n E3, we have �����f (k) (z)f (z)

����� � �
�
1

r2
Tz0(

1



r; f) log Tz0 (r; f)

�k
:
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2.2 Proof of Theorem 2.1.4

Proof. Set � = maxf�[p;q](Aj ; z0) : (j = 2; :::; k � 1); �[p;q](A1; z0)g < �[p;q](A0; z0). For any

given " (2" < �[p;q](A0; z0)� �), there exists r1 2 (0; 1), such that for all jz � z0j = r 2 (0; r1)

jAj(z)j � expp

(�
logq�1

1

r

��+")
; j = 2; ::; k � 1 (2.2.1)

and

jA0(z)j � expp

(�
logq�1

1

r

��[p;q](A0;z0)�")
: (2.2.2)

By Lemma 2.1.1, there exists a set E � (0; 1) with in�nite logarithmic measure such that for all

jz � z0j = r 2 E,

jA1(z)j � expp

(�
logq�1

1

r

��[p;q](A1;z0)+")
� expp

(�
logq�1

1

r

��+")
: (2.2.3)

We rewrite (2.1.1) as

jA0(z)j �
�����f (k)(z)f(z)

�����+
�����f (k�1)(z)f(z)

����� jAk�1(z)j+ � � �+
����f 0(z)f(z)

���� jA1(z)j : (2.2.4)

By Lemma 2.1.2, there exist a set E2 � (0; r0]; (r0 2 (0; 1)) that has a �nite logarithmic measure

and a constant � > 0 that depends on � > 1 and j = 1; 2; :::; k such that for all r = jz � z0j

satisfying r 2 (0; r0] n E2, we obtain�����f (k)(z)f(z)

����� � �
�
1

r2
Tz0

�
1

�
r; f

�
log Tz0

�
1

�
r; f

��j
; (j = 1; 2; :::; k): (2.2.5)

Substituing 2.2.1, 2.2.2, 2.2.3 and 2.2.5 in 2.2.4, we have

expp

(�
logq�1

1

r

��[p;q](A0;z0)�")
� �

�
1

r2
Tz0

�
1

�
r; f

�
log Tz0

�
1

�
r; f

��k

+�

�
1

r2
Tz0

�
1

�
r; f

�
log Tz0

�
1

�
r; f

��k�1
expp

(�
logq�1

1

r

��+")

+ � � �+ �
�
1

r2
Tz0

�
1

�
r; f

�
log Tz0

�
1

�
r; f

��
expp

(�
logq�1

1

r

��+")
: (2.2.6)

By 2.2.6, we get

expp

(�
logq�1

1

r

��[p;q](A0;z0)�")
� �k

�
1

r2
Tz0(

1

�
r; f) log Tz0(

1

�
r; f)

�k
expp

(�
logq�1

1

r

��+")
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which implies

expp

(�
logq�1

1

r

��[p;q](A0;z0)�")
� k�

�
1

r
Tz0(

1

�
r; f)

�2k
expp

(�
logq�1

1

r

��+")
:

Since " (2" < �[p;q](A0; z0)� �); we obtain

expp

(
(1� o (1))

�
logq�1

1

r

��[p;q](A0;z0)�")
� k�

�
1

r
Tz0(

1

�
r; f)

�2k
:

It follow that

(1� o (1))
�
logq�1

1

r

��[p;q](A0;z0)�"
� logp

 
k�

�
1

r
Tz0(

1

�
r; f)

�2k!

� logp(k�) + logp(
1

r
) + logp(Tz0(

1

�
r; f))) +O(1)

which implies that

(�[p;q](A0; z0)� ") logq(
1

r
) + log (1� o (1))

� logp+1(k�) + logp+1(
1

r
) + logp+1(Tz0(

1

�
r; f)) +O(1):

Hence �[p;q](A0; z0)�" � �[p+1;q](f; z0), since " > 0 is arbitrary, we conclude that �[p;q](f; z0) = +1

and �[p;q](A0; z0) � �[p+1;q](f; z0). �

Theorem 2.2.1 ([12]) Let p � q � 1 be integers, and let A0(z); :::; Ak�1(z) be analytic functions

in C� fz0g. Assume that

maxf�[p;q](Aj ; z0) : (j = 2; :::; k � 1)g � �[p;q](A1; z0) = �[p;q](A0; z0)

and

maxf� [p;q];M (Aj ; z0) : (j = 2; :::; k � 1); � [p;q];M (A1; z0)g < � [p;q];M (A0; z0):

Then every non trivial solution that is analytic in C� fz0g of (2:1:1) satis�es �[p;q](f; z0) = +1

and �[p+1;q](f; z0) � �[p;q](A0; z0).

To prove the Theorem 2.2.1, we need the following lemma.

Lemma 2.2.1 ([12]) Let f(z) be a nonconstant analytic function in C� fz0g with �[p;q](f; z0) =

� 2 (0;1) and � [p;q];M (f; z0) = � : Then for any � > � , there exits a set E 2 (0; 1) with ml (E) =

+1 such that for all jz � z0j = r 2 E,

Mz0(r; f) � expp
�
� logq

�
1

r

���
.
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Proof. We will use the de�nition of lower [p; q]�type, there exists a sequence frng1n tending

to zero satisfying rn+1 < n
n+1rn and

lim inf
logpMz0(rn; f)

logq

�
1
rn

�� < �:

Then, for any given " > 0, there exists an n0 2 N+ such that for all n > n0;

Mz0(rn; f) � expp
�
(� � ") logq

�
1

rn

���
. (2.2.7)

For " given above, there exists an n1 2 N+ such that for all n � n1 and r 2
h
n
n+1rn; rn

i
,

(� � ") logq

 
1
n
n+1rn

!�
< � logq

�
1

r

��
: (2.2.8)

Combinig 2.2.7 and 2.2.8, for all n � n2 = max fn0; n1g and for any r 2
h
n
n+1rn; rn

i
,

Mz0(r; f) � Mz0(
n

n+ 1
rn; f)

� expp

(
(� � ") logq

 
1
n
n+1rn

!�)

� expp

�
� logq

�
1

r

���
:

Set E =
+1S
n=n2

h
n
n+1rn; rn

i
, we get

ml(E) =

Z
E

dt

t
=

1X
n=n2

Z rn

n
n+1

rn

dt

t
=

1X
n>n2

log(1 +
1

n
) =1:

�

2.3 Proof of Theorem 2.2.1

Proof. Settingmax
n
�[p;q](Aj ; z0) : (j = 2; :::; k � 1)

o
= �;max

�
� [p;q];M (Aj ; z0) : (j = 2; :::; k � 1)

	
=

� ; � = � [p;q];M (A0; z0). For any given "(" <
���
2 ), by the de�nition of � [p;q](A0; z0), there exists

r0 2 (0; 1) such that for all jz � z0j = r 2 (0; r0) and jA0(z)j =Mz0(r;A0), we have

jA0(z)j � exppf(� � ")
�
logq�1

1

r

��[p;q](A0;z0)
g (2.3.1)
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and

jAj(z)j � exppf(� + ")
�
logq�1

1

r

��
g

� exppf(� + ")
�
logq�1

1

r

��[p;q](A0;z0)
g; (j = 2; :::; k � 1): (2.3.2)

By Lemma 2.2.1 to A1(z), there exists a set E2 � (0; 1) having in�nite logarithmic measure such

that for all jz � z0j = r 2 E2, we have

jA1(z)j � exppf(� [p;q] + ")
�
logq�1

1

r

��[p;q](A1;z0)
g

� exppf(� [p;q] + ")
�
logq�1

1

r

��[p;q](A0;z0)
g: (2.3.3)

By Lemma 2.1.2 there exist a set E1 � (0; r0]; (r0 2 (0; 1)) that has a �nite logarithmic measure

and a constant � > 0 that depends on � > 1 and j = 1; 2; :::; k such that for all r = jz � z0j

satisfying r 2 (0; r0] n E2, we obtain 2.2.5 From 2.1.1 we can write

jA0(z)j �
�����f (k)(z)f(z)

�����+
�����f (k�1)(z)f(z)

����� jAk�1(z)j+ � � �+
����f 0(z)f(z)

���� jA1(z)j : (2.3.4)

Set E0 = E2 n E1, obviously, ml(E0) = 1. Combining 2.3.1, 2.3.2, 2.3.3 and 2.2.5 into 2.3.4, we

obtain

expf(� � ")
�
logq�1

1

r

��[p;q](A0;z0)
g

� k�
�
1

r2
Tz0(

1

�
r; f) log Tz0(

1

�
r; f)

�k
exppf(� + ")

�
logq�1

1

r

��[p;q](A0;z0)
g: (2.3.5)

From 2.3.5, we get

expf(� � ")
�
logq�1

1

r

��[p;q](A0;z0)
g � k�

�
1

r
Tz0(

1

�
r; f)

�2k
exppf(� + ")

�
logq�1

1

r

��[p;q](A0;z0)
g:

(2.3.6)

It follow that for all jz�z0j = r 2 (0; r0]nE1; and jA0(z)j =Mz0(r;A0), where � > 0 is a constant.

We deduce that �[p;q](A0; z0) � �[p+1;q](f; z0). �

Theorem 2.3.1 ([12]) Let p � q � 1 be integers, and let A0(z); :::; Ak�1(z) be analytic functions

in C� fz0g. Assume that

maxf�[p;q](Aj ; z0) : (j = 2; :::; k � 1); �[p;q](A0; z0)g < �[p;q](A1; z0):
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Then every non trivial solution that is analytic in C � fz0g of (2:1:1) satis�es �[p;q](A1; z0) �

�[p;q](f; z0):

To prove the Theorem 2.3.1 we need the following lemmas.

Lemma 2.3.1 ([3]) Let f(z) be a nonconstant meromorphic function in C � fz0g. Then the

following statements hold:

(i) Tz0

�
r;
1

f

�
= Tz0(r; f) +O(1);

(ii) Tz0(r; f
0) < O(Tz0(r; f) + log

1

r
); r 2 (0; r0] n E;

where E � (0; r0] with ml(E) <1.

Lemma 2.3.2 ([12]) Let f1(z) be an analytic function in C�fz0g satisfying �[p;q](f1; z) = �1 > 0,

and f2(z) be an analytic function in C�fz0g satisfying �[p;q](f2; z) = �2 <1; �2 < �1 <1. Then

there exists a set E � (0; 1) having in�nite logarithmic measure such that for all jz � z0j = r 2 E,

lim
r!0

TZ0 (r;f2)

Tz0 (r;f1)
= 0.

Proof. By the de�nition of �[p;q](f; z0) = lim inf
r!0

logp Tz0 (r;f)

logq(
1
r
)
, for any given " 2 (0; �1��22 ), there

exists r0 2 (0; 1), such that for all jz � z0j = r 2 (0; r0),

Tz0(r; f1) > exppflogq
�
1

r

��1�"
g (2.3.7)

we also apply the de�nition of �[p;q](f2; z0) = �2 we have,

Tz0(r; f2) < exppflogq
�
1

r

��2+"
g: (2.3.8)

It follow from 2.3.7and 2.3.8 that for all r 2 E, we obtain the result

0 <
Tz0(r; f2)

Tz0(r; f1)
�
exppflogq

�
1
r

��2+"g
exppflogq

�
1
r

��1�"g ! 0; r ! 0.

�
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2.4 Proof of Theorem 2.3.1

Proof. By (2.1.1) we have

mz0(r;A1) �
kX

j=0; j 6=1
mz0

 
r;
f (j)(z)

f 0(z)

!
+

k�1X
j=0; j 6=1

mz0(r;Aj(z)) + log k: (2.4.1)

By Lemma 2.3.1, for a constant r2 2 (0; 1), there is a set E3 � (0; r2] with ml(E3) < +1 such

that for all jz � z0j = r 2 (0; r2] n E3, we have

kX
j=0; j 6=1

mz0

 
r;
f (j)(z)

f 0(z)

!
� O

�
Tz0(r; f) + log

1

r

�
: (2.4.2)

By applying Lemma 2.3.2, for any " 2 (0; 1
2(k�1)) there exists a set E4 � (0; r2) with ml(E4) =1

such that for su¢ ciently small jz � z0j = r 2 E4,

mz0(r;Aj(z)) � "mz0(r;A1(z)); j 6= 1: (2.4.3)

Combining 2.4.1, 2.4.2 and 2.4.3, for jz � z0j = r 2 E4 n E3,

mz0(r;A1(z)) � O(Tz0(r; f) + log
1

r
) + " (k � 1)mz0(r;A1(z)) + log k: (2.4.4)

This implies that

mz0(r;A1(z)) � CTz0(r; f) + C log
1

r
+ C1 (2.4.5)

with C > 0 and C1 > 0 two positive constants, which we can write

Tz0(r;A1(z)) � CTz0(r; f) + C log
1

r
+ C1:

Hence �[p;q](A1; z0) � �[p;q](f; z0). �

2.5 Examples

Example 2.5.1 f(z) = exp3
n

1
1�z

o
is a solution of the following equation

f 00 +A1(z)f
0 +A0(z)f = 0;

where

A0(z) = �
1

(1� z)4 exp
�
2 exp

�
1

1� z +
2

1� z

��
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and

A1(z) =
1

(1� z)2 exp
�

1

z � 1

�
+

1

(1� z)2 +
2

1� z :

We have

�[2;1](A1; 1) = 0 < �[2;1](A0; 1) = 1:

Obviously, the conditions of Theorem 2:1:4 are satis�ed and we see that

�[2;1](f; 1) = +1

and

�[3;1](f; 1) = �[2;1](A0; 1) = 1:

Example 2.5.2 Let f(z) = 1
z exp2

�
1
z2

	
is a solution of the following linear di¤erential equation

f 000 +A2(z)f
00 +A1(z)f

0 +A0(z)f = 0;

where

A0(z) = � 4
z9
exp

�
3

z2

�
�
�
20

z9
+
30

z7

�
exp

�
2

z2

�
�
�
8

z9
+
48

z7
+
48

z5

�
exp

�
1

z2

�
� 6

z3

A1(z) = �
4

z4
exp

�
1

z2

�
(2.5.1)

and

A2(z) = �
1

z3
exp

�
1

z2

�
:

We have

max
n
�[1;1](A2(z); z0); �[1;1](A1(z); z0)

o
= maxf2; 2g = �[1;1](A0(z); z0) = 2

and

max
n
� [1;1];M (A2(z); z0); � [1;1];M (A1(z); z0)

o
= 1 < � [1;1];M (A0(z); z0) = 3:

We see that the conditions of Theorem 2:2:1 are satis�ed, then

�[1;1](f(z); z0) = +1

and

�[2;1](f(z); z0) = �[1;1](A0(z); z0) = 2:



CONCLUSION

Throughout this work, we investigated the growth of solution of the following linear di¤erential

equation

f (k) +Ak�1(z)f
(k�1) + � � �+A0(z)f = 0, (k � 2)

For this reason, we have been discussed the possibility of generalizing certain results related to

second-order complex di¤erential equations to the higher-order in analogous or di¤erent ways; at

the same time, we studied the growth of the solutions of equation (1.1) in the neighborhood of a

singular point using the concept of [p; q]-order of growth and extension for other results.

For example, we generalize the results of Lui, Long and Zeng: Theorem 2.1.1, Theorem 2.1.2 and

Theorem 2.1.3 to Theorems 2.1.4, 2.2.1 and 2.3.1.

From there, we hope to solve the following problem:

What can be said about the growth of the solutions of the above equation?

if we assume that the coe¢ cients are all or most of lower [p; q]-order.

Other questions are raised about what happens to the growth of solutions for nonhomogeneous

equations:

When the coe¢ cients are meromorphic functions, are the results generalizable?

And under what conditions is this generalization valid?

Or, for non-homogeneous linear di¤erential equations, what are the assumptions that ensure

that every non-trivial solution is of in�nite [p; q] order?
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