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Résumé:

Dans ce mémoire de master, on s’intéresse a la croissance des solutions de
1'équation différentielle linéaire complexe suivante

Y44, (2) Y 4 4,(2) £ =0, o0 4,(z),....,4,,(z) sont des fonctions
analytiques dans C\{z,}, z, C. Certaines estimations de la borne inférieure de

croissance des solutions de 1'équation différentielle sont obtenues en utilisant le
concept du [ p,q]-ordre inférieur.

Abstract :

In this master thesis, we are interested about the growth of the solutions of the
following complex linear differential equation f* + 4, (2)f*™" +..+ 4, (2) f =0,
where 4, (z),.... 4,,(z) are analytic functions in C\{z,}, z, C. Some estimates of

the lower bound of the growth of the solutions of the differential equation are
obtained using the concept of [ p,q]-lower order.
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INTRODUCTION

The study of solutions to linear differential equations is very important in the field of complex
analysis, by using Nevanlinna’s theory.

We concentrate specifically on the study of the growth of solutions to higher-order homoge-
neous linear differential equations near a singular point.

The Nevanlinna’s value distribution theory of meromorphic functions key tool for meromor-
phic functions was created in 1929 by the Finnish mathematician Rolf Nevanlinna [13]. The
Nevanlinna characteristic function T'(r; f) is a measure of a function’s growth and its associated
counting function estimate how often certain values are taken. Nevanlinna theory has many ap-
plications in complex analysis and in the theory of functions; in particular, it plays an important
role in the theory of complex differential equations. Using this tool, as well as other forms of
modern complex analysis. Several researchers have used this theory to study the properties of
solutions of linear differential equations in the complex plane, including growth, oscillation, fixed
point, and behavior of meromorphic functions.

Beginning in 1942, H. Wittich [14] was the first to do systematic research on Nevanlinna
theory applications to complex differential equations. The previous topic is very important in
complex analysis.

Recently, many authors have studied the properties of solutions near a singular point. In 2016,
Fettouch and Hamouda investigated the growth of solutions around an isolated essential singularity
point [5]. After Long and Zeng improved the result of Fettouch-Hamouda, they obtained some
estimations on the [p, g]-order of growth of solutions [11]. Dahmani and Belaidi generalized Long-
Zeng’s results and found a number of results on the [p, ¢]-order and on the lower [p, ¢]-order [4]. In
2020, Liu, Long, and Zeng investigated the growth of solutions of second-order linear differential

equations of the following type [10];
"+AQR) f"+B()f=0, (0.0.1)

where the A (z) and B (z) are analytic functions in C — {20} .
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This thesis focuses at the higher-order homogeneous linear differential equation of the following
form

F® £ Ay () FF D ot Ag(2) f =0, (k> 2), (0.0.2)

where A4;(2)(j =0, ...,k — 1), are analytic functions in C — {29}, C = CU {00}, 2 € C.

In this work, we study the growth of solutions of the equation (0.0.2) around a singular point by
using the concept of [p, g]-order of growth, which is an improvement and a generalization of the
paper of Liu, Long, and Zeng [10].

However, the structure of the work is as follows: an introduction, two chapters, and a conclusion.
The first chapter of this master’s thesis introduces the essential ideas and results of the Nevanlinna
value distribution theory of meromorphic functions on the complex plane C and in C—{zy}, which
are applicable to the second chapter.

In Chapter 2, we study the growth of nontrivial solutions of complex linear differential equations
under various hypotheses about coefficients. We first recall some existence results for Liu, Long,
and Zeng. After we generalize what we mentioned earlier, where we applied the concepts of
[p, ¢]-order and lower [p, ¢]-type, we give some auxilliary lemmas that we need to demonstrate our

results.




Chapter 1

Some elements of the theory of
Nevanlinna for meromorphic
functions

Some background is included in this chapter, primarily from the Nevanlinna theory [1, 6, 8,9, 15].
The Jensen’s formula, counting function, proximity function, characteristic function with its prop-

erties, and more will be presented.

1.1 Jensen formula

Theorem 1.1.1 ([9]) Let f be a meromorphic function such that f (0) # 0,00 and ay, as, ...(resp.
b1,ba,...), its zeros (resp. its poles), each taken into account according to its multiplicity. Then

1 2
log\f(0)|:27r/0 log{f re'? ‘dcp+210g| ZlogL.

Ibyl<r bil el

Proof. We give the proof for the case that f has no zeros and no poles on the circle |z| = r.

Consider the function

H r? — @z

a-<7‘r(z )
96 = ()

by jer T (2 = b))

Then, g # 0, 00 in the disc |z| < r, hence log |g (z)| is a harmonic function. By the mean formula

of harmonic functions, we have

e ‘
log |g (0)| = 277/0 log‘g (re“")‘dgp. (1.1.1)
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On the other hand,

-
laj|<r |aj|
g (0)] = 1f (O0)] ———,
[bj|<r ’b]’
from which
r r
log | (0)] =log|f (0)| + Z logm— Z logm. (1.1.2)
laj|<r 7 [bj|<r J
For z = re?, we have for all a; and b;
-z | | zz—az _ z(z — ay) - r? —bjz .
r(z —ay) r(z —ay) r(z—aj) r(z —bj)
Hence
|g (rei‘p)‘ =|s (rei‘p){ . (1.1.3)
Applying (1.1.2) and (1.1.3) to (1.1.1), we obtain the Jensen formula. O

1.2 Characteristic function of Nevanlinna

Definition 1.2.1 ([9],[15]) Let = be a positive real number. The truncated logarithm log™ is

defined by
logz if x>1.

log"z = max{logz ,0} = {0 if 0<z<1.

Notice that the truncated logarithm defined above is a continuous function and nonnegative on

(0,00).

Lemma 1.2.1 ([6],[9]) Let o,B,a; positive real numbers. So we have the following properties:
(1)loga < log™ a,

(2)log™ a < log™ B for a < B,

1
(3)loga = log™ o — log*(—),

a

1
(4) |log a| = logt a +log™(—),

(5)log™ <Ho¢i> < Zlong(ai), (1<i<n),

=1

Q
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6)log™ (Zal) <Zlog a;) + logn.
Proof. (3) We have ([1])

1 1
log" a —log" = = max{loga,0} — max {log -, 0}
« a
. 1
= max{loga,0}+m1n{—log,0}
a
= max {loga,0} + min {log o, 0}

= loga.
(4) We have ([1])

log™ o + log™ é = max {loga, 0} + max {log é, 0}
= max {log,0} + max {—loga, 0}
= max {loga,0} — min {log o, 0}
= |loga].

n
(5) o If [] a; <1, then the inequality holds trivially.
i=1

n
o If [T a; > 1, then
i=1

log™ (ﬁ oz,;) log (H > Zlog Q; Zlog Q;.
i=1 i=1 (by 1))

(6) By (2) and (5) above

n n
log™ <Z ozi> < log™ (n max al-) <log™ n+log™ <ma<x 042-> <logn+ 3 logt oy

i=1 1<i< 1<i< =
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Definition 1.2.2 ([9]) (Unintegrated counting function) Let f be a meromorphic function, not
being identically equal to a € C. We denote by n(r,a, f) the number of the roots of f(z) = a in
the disc |z| < r, each root according to its multiplicity. Similarly n(r,a, f) counts the number of
the distinct roots of f(z) = a in the disc |z| < r. And we denote by n(r, o0, f) the number of the
poles of f in the disc |z| < r, each pole according to its multiplicity. Similarly n(r, 00, f) counts

the number of the distinct poles of f in the disc |z| <.

Example 1.2.1 f(z) = =L, n(r, f) = n(r, o0, f) = 2 [Z].

cos z’

Example 1.2.2 h(z) = exp(z), n(r, f) = 0, because it is an entire function.

Example 1.2.3 f(z) = =5, we have n(r, f) = 2+4 [L], n(r, f) = 1+ 2 [£] because f has double

sm- z

poles at z, = km (k € Z).

Definition 1.2.3 ([9]) Let f be a meromorphic function, we define the a-point function of f by

/T n(t,a, f);n(()’%f)dt_t'_n((]’a’ f)logr
0

N(rya,f)=N (T’fl—a> =
If f #a € C and

dt + n(0, 00, f)logr.

N(r,00,f) = N (r, f) := /Or ”(t7007f);n(0,oo,f)

Similary, we define the a-point distinct function of f by

N(r,a,f) =N <r, fia) = /0 nita f) - ﬁ(o’a’f)dt+ﬁ(0,a, f)logr

t
If f#£a€C and

Tﬁ(taoO,f)_ﬁ(ovoO,f)

; dt +n(0, 00, f)logr.

N(r,00, f) =N (r, f) ::/0

Example 1.2.4 f(z) = —1—, we have n(r, f) =2+ 4 [ﬂ, n(0, f) = 2, then,

s~ z

T

Ne g = [

t
0

dt + 2logr

4
= —r+2logr.
7r

Remark 1.2.1 If f is an entire function, then N (v, f) = N (r, f) = 0.
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Example 1.2.5 f(z) = exp(z), we have N(r, f) = 0.

Lemma 1.2.2 ([9]) Let f be a meromorphic function with a-points o, @, ..., Gy, in the disc |z| <
r such that 0 < |aq| < |ag] < ... < |aum| < 7, each counted according to its multiplicity. Then

"n(t,a, f) , ["n(ta, f)—n0,a,f), r
/Otdt—/o - dt= Y log|

aj|’

0<|aj|<r
Proof. Denoting r; = |o;| (j = 1,2,...,m). Then, we have
r w r
> log o] T > log—
0<]a|<r i Jj=1 "
rm
= log
1 X Ty X oo X Ty
2 m—1 m
= log(’r—2 X T—;’ X ... X T:rnlq X T—)
1 r o] rm
m—1
= Zj(log rj+1 — logr;) + m(logr — logry,)
j=1

ml_/’“aﬂdt /dt / taf
i=1 77
O

Proposition 1.2.1 ([9]) Let f be a meromorphic function with the Laurent expansion at the
origin
® .
= Zcizl, cm € C*,m € Z.

Then

2T
log |em| = 2177/0 log|f (rei“")‘ dp+ N (r,f)— N (r,jc) )

Proof. Consider the meromorphic function h

It is evident that m = n(0,0, f) — n(0, 00, f) and h(0) # 0,c0. If m > 0, then n(0, 00, f) =
and m = n(0,0, f). If m < 0, then n(0,0, f) = 0 and n(0, 00, f) = —m. Finally, if m = 0, then
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n(0,0, f) = n(0, 00, f) = 0. So the functions h and f have the same poles and zeros in 0 < |z| < r.

By applying Jensen’s formula and Lemma 1.2.2, we have

loglem| = log|h (0

27r
= / log‘f re? m|dtp+ Z log%— Z log’aL

0<|bj|<r b3l 0<la;|<r il

= / log‘f Tew”dgp n (0,0, f) —n (0,00, f)]logr
(t7oo’f) (O7oo7f) _ Tn(t70’f)_n(07o7f)
+/0 7 dt /0 dt

t

2
— 217r/0 log‘f(rewﬂdw—i-]\f(r,f)—N<r,}>.

0

Definition 1.2.4 ([9]) Let f be a meromorphic function, we define the proximity function of f

by

1 I 1 ,
m(r,a,f)zm(r,f_a> ::277/0 log+md<p if f # a€C,

and

1 2 )
m (00, f) = m(r,f) = 5o [ logt|f (1) de.

Example 1.2.6 Let f(z) = expz. Then, we have

2

mir ) = o [log" frespip)| dp
0

1
= /log+ lexp (rexpip)| dy
2

0
2
1

= /logexp (rcosy)de
27
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Definition 1.2.5 ([9]) Let f be a meromorphic function, the characteristic function of Nevan-

linna of f will be defined as
T(r, f) =m(r, )+ N(r, f).

Proposition 1.2.2 ([6],[9]) Let f1,..., fn, f be a meromorphic functions and a € C*, then

1) m (r, l_n[ fz> < i m(r, fi), (n € N¥),
=1 =1

(2) m (r, i fl> < zn: m(r, fi) + logn, (n € N¥),
=1 =1

® 7(n15) < Er00. (ne ),
1=1 =1

4 T (r, ) fi> < ST, fi) +logn, (n € N¥),
=1 =1

(8) T(r,f")=nT(rf), (n € NY),

(6) m(ra+f)=m(r,f)+001) and m(r,af)=m(r,f)+0(1),

(1) T(ria+f)=T(r f)+0Q) and T(r,af)=T(r,f)+0(1).

Proof. (1),(3) We have

n B 1 27 N
m(ﬁgﬁ) = 27r/O log
i /27r i log™ ‘fz (Tew) } dp
27'(' 0 =1

1 n 27 ;
= %;/0 log™ |fZ (rew)}dg@

= Zm (r, fi).
i=1

n

H fi (T‘ei‘p) de
i=1

N
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n
If f; has a pole of order \; > 0 at zp, then it is a pole of order equal at most to »_ A; for the
i=1

n
function [] fi. Hence
i=1

i=1 i=1
Therefore
T <T’Hf1> = m (r,HfZ) + N (r,Hf,)
i=1 i=1 i=1

N\
™
=
\j
E’:
_|_

) M
=
\j
E’;

I
]

~
=
?_,':

(2),(4) We have
n B 1 271-1 . n .
m T,Zfi = 277/0 og ;fi(re )
27 n
% ; (; log™* ’fi (rei‘pﬂ + log n) dp

n 1 21 n )
R (2
= ;:1 o /0 log ‘fl (re “")! dy + logn

dp

N

= Zm(r, fi) + logn.
i=1

i

-

If f; has a pole of order A; > 0 at zg, then it is a pole of order equal at most to max A\; <

RN )

1

n
for the function [] f;. Hence
i=1

Therefore

T(T,zn:fi> = m (’I“, Y fl> —I—N(r,zn:ﬁ)
=1 =1 =1

< Y om(r fi)+logn+ > N(r fi) =Y T(r fi)+logn.

i=1 i=1 i=1
(5) We have : |f"| =|f|" <1< |f] <1
o If | f| <1, then

T(r,f")=N(r, f") =nN(r f)=nT(r,f).
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13

o If |f| > 1, then

2

mr ™) = [ logh | (re'®)| dy

Hence

27T 0
1 2T )
_ n ip
= 27?/0 log‘f (re )‘dgp
1 27 )
_ . ip
= 5 n/o log‘f(re )’dgp
= [Tt e
27T 0

= nm(r, f).

T f") = m(r, f")+N(r ")

(6) We have

im (r,a+ f) =m(r, f)]

And

im (r,af) —m(r, f)]

Hence,

m(r,a+ f)=m

= nm(r, f)+nN (r, f)

= nT(r,f).

_ ‘2177 /OQW (log™ [f (re'?) +a| —log™ | f (re™?)|) de

1 [ ‘ ,
< o [ o (15 (e )]+ 1) — 1o | ()
2
< 1/ log™ |a] + log 2| de < log™ |a| 4 log 2,
2m Jo
1 27 A A
- ‘2/ (log™ |af (re'?)| —log™ | f (re'?)|) de
T Jo
1 2 ) ‘
< 27T/0 ‘log"' (\aHf(reW)‘) —10g+|f (Tew)HdSO
1 2 1
< 5o [ g™ fal dp = log* lo] = flog all ~log*
2w 0 ‘a‘
< loglall.

(r,f/)+0(1) and m(r,af)=m(r,f)+0O(1).
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(7) From (6), we get

T(r,a+f) = N(ria+f)+m(r,a+f)
= N(r,f)+m(r,f)+0(1)
= T(rf)+0(1),

And
T(r,af) = N(r,af)+m(r,af)

= N, f)+m(r, f)+0(1)
= T(r,f)+0(1).

1.3 Characteristic function near singular point

In order to determine the characteristic functions near a singular point, we must first establish

the proximity function and the counting function near a singular point.

Definition 1.3.1 ([3],[5]) (Counting function). The counting function of f near zq is defined by

T

N ) = = [MELZE D g oc, p10ger,

where n(t, f) denote the number of poles of f(z) in the region{z € C : t < |z — zp|} U{o0} counting

1ts multiplicities.

1 T

Example 1.3.1 Let f(z) = exp <n> (n e N*), n(t, f) =0 so Nyy(r, f) = — [E2dt — 0-logr =
< oo

0.

Definition 1.3.2 ([3],[5]) (Proximity function). For a meromorphic function f, the proximity

function of f near zy is defined by

2w

map(r ) = 5 [ log" | o = re')| d.

0
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1
Example 1.3.2 Let f(z) = exp () , 20 = 0 be an essential singular point, so we have
z

1
o (k)

2
sz(r,f):/log+}f 20 —re’ }dap— /log
0

2 .
1 —ig
:/log+ exp(e )‘dcp
27 T
0
1 2
= /10g+ (exp (—COS¢>) de
27 T
0

3 3T
1 [= cos ¢ 1 sinp|2 11

2T T 2T r

Definition 1.3.3 ([3],[5]) (Characteristic function). The characteristic function of f(z) near zg
is defined by

1
Example 1.3.3 f(z) = exp () s Nao(r, f) =0, so
z
T

(s f) = 1y (7, ) 4 Nog (s ) = 22

T
Theorem 1.3.1 ([9]) (First Fundamental Theorem of Nevanlinna). Let f be a meromorphic

function, a € C and let

+o00 .

f(z)—a= > ¢z, cm €C*,meZ,

i=m

be the Laurent expansion of f — a at the origin. Then
1
T(Taaaf) =T <T’f—a> :T(’I”,f) _log‘cm| —i—go(?",(l),

where | (r,a)| < log2 + log™ |al .
Proof.  Assume first a = 0, then by the Proposition 1.2.1 and Lemma 1.2.1 (3), we have

2T
loglem| = / log‘f(re )‘d(p—i—N(r f)— (r,]lc)

21 2
= / 10g+‘f re'? ‘dgp—/ log™ )’dgo—i—N(rf) (r,1>

R e

_ T(r,f)—T(r,}),
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Hence
1
T (r, f) =T (r,f) —log|eml, where ¢ (r,0) = 0. (1.3.1)

Proceeding now to the general case a # 0, we pose h := f — a. Then
1 1 1 1
N(r,h> :N<r,f_a>, N(r,f)=N(r,h) et m(r,h) :m<r,f_a>.
Moreover
log* |h| = log™|f —a| <log™[f| +log" |a| + log?2,
log™ |f| = log™ |h+a| <log™ |h| +log™ |a] + log2.
By integrating these two inequalities, we find that
m(r,h) = 1 /ZW log™ |h (rewﬂ dp
’ 2 0
1 2 )
< 2/ (log™ ‘f (rew)} + log™ |a| + log 2) de
T Jo
= m(r,f) +1log" |a| + log2,

And
1 2m N )
m(r,f) = 277/0 log ‘f(rew)|d<p

2w
< 2177/ (log™ ‘h (re"“")} +log™ |a| +log 2) de
0

= m(r,h) +log" |a|] + log2.
We pose ¢ (r,a) :=m (r,h) —m(r, f). Then
— [log™ |a| 4+ log 2] < m (r,h) —m(r, f) < log" |a| +log 2 <= |¢ (r,a)| < log™ |a| + log 2.
Applying (1,2,1) for h, we obtain

T <7“, ]11) - T

h) — log |cpm|
(ryh) + N (r,h) — log |cm|
(

= m
)+ ¢(r,a) + N (r, f) —log|cm|

m
= T(?",f)—log|cm]—|—<p(7",a).
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Remark 1.3.1 We can rewrite the first fundamental theorem of Nevanlinna as follows: for all

a € C, we have

T <7~, fl_a> —T(r, )+ O(1), 7 — o0.

1.4 Growth of meromorphic functions near singular point

1.4.1 The order and the lower order of growth

We suppose that f(z) is an analytic function in C except a finite singular point zp.
Similarly to the case of complex plane, we define p(f,z0), pu(f,z0), and 7(f, zp) for analytic or

meromorphic function in C — {2} .

Definition 1.4.1 ([10]) The order and the lower order of growth of a meromorphic function f(z)
in C — {20} near zo are defined respectively by

log™ T (
1
T

pr(f, 70) = limsup nf)
r—0 log

and

logt T
pr(f, 20) = lim infw‘
r—0 log +

For an analytic function f(z) in C — {20}, the order and the lower order of growth are defined

respectively by
log™ log™ M, (r, f)

1
T

par(f 7o) = lim sup
r—0 log

and
log™ log™ M., (r, f)
log %

)

tar(fyz0) = lim i(I)lf

where M, (r, f) = max {|f(2)| : |z — 20| = 7}.
1.4.2 The hyper order of growth

Definition 1.4.2 ([10]) The hyper-order of a meromorphic function f(z) in C — {2} near zy is
defined by

P2,T(f, zp) = limsup
r—0 log =

and for an analytic function f in C — {20}, the hyper-order is defined by

: log™ log™ log™ M., (r,
pa.n(f,20) = limsup & 08 gl 20 (7 f)
r—0 log

)
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Where M, (r, f) = max{|f(z)| : |z — 20| = r}.
1.4.3 The lower-type near zj

Likewise, we define the lower type with a procedure equivalent to the complex plane:

Definition 1.4.3 ([10]) If f(2) is an analytic function in C — {20}, with 0 < u(f,z0) = p < oo,

then its lower-type is defined by

i logt My (r f)
I(fv ZO) - hgl_)%lfT7

where M, (r, f) = max {|f(2)| : |z — 20| = 7}.

Here, we introduce the concepts of [p, g]-order and [p, g]-type of growth, we add similarly the
definition of the lower [p, ¢]-order and lower [p, ¢]-type of growth. Before that we must give some
notations :

e For 7 € R, we have : exp; r = ¢" and exp,,, 7 = exp (expp 7“) , p € N. We also define

e For all 7 sufficiently large in (0, +00), log, r = logr and log,,; r = log (logp 'r’) ,p€eN.

o Moreover, we denote expyr = r =logy 7, exp_; r = log; r and log_; r = exp; .

Proposition 1.4.1 ([2]) Let z; € R such that x; > 1 and i =1,...,n. Then

(i) log, <i :c> < anlogpxi Lo,

i=1 =

s

i=1

(i7) log, ( :pl> < Y log,z +0O(1).
i=1

Proof. For the proof, we use the principle of mathematical induction.
n n
(¢2) e For p =1, we have log <Z 1‘1> < Y logx; +0O(1).
i=1 i=1

n n

eWe suppose that log z; | < log, x; + O (1) is true and we prove that it holds at order

p p
i=1 i=1
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p+ 1. We have

n
log,, 4 (Z wl>
i=1

g (logp (z))

log (Z log, z; + O (1))

=1

N

< Zlogpﬂxi +0(1).
i=1

n

n
Hence, log,, <Z :cz) < ) log,z + O (1).
i=1 i=1

s

(#¢) e For p =1, we have log ( :c2> = Y log z;, then log (H a:z> < D logx; +0(1).
i=1 i=1 i=1 i=1

n n
eWe suppose that log, <H :m) < ) log,z; + O (1) is true and we prove that it holds at order
i=1 i=1

n n
log,,14 ( :1:1) = log <logp (H :m))
i=1 =1

< log <Zlogp x; + O (1))

i=1

p+ 1. We have

< Zlongrlxi—i-O(l).
i=1

n

n
Hence, log,, (]_[ a:l) < ) log,z + O (1).
i=1

=1

1.4.4 The [p, q]-order and the lower [p, q]-order of growth

Definition 1.4.4 ([11]) Let f(z) be a meromorphic function in C — {2} and p,q two integers
p > q > 1. Then the [p,q] —order of growth and the lower [p,q] —order are defined respectively by

log, T (r, f)
Pinal(fs 20) = lim sup—2
[p,g] r—0 Iqu(%)

and

long TZO (T7 f)
tip.o (F, 20) = lim inf —F——-~
[p.a] 0 logq(%)



1.4 Growth of meromorphic functions near singular point 20

Definition 1.4.5 ([11]) Let f(z) be an analytic function in C — {20} and p,q two integers p >
q > 1. Then the [p,q] —order and the the lower |p, q] —order of growth are defined respectively by

10g++1 MZ() (Tv f)
Pt fp,g) (f5 20) = lim sup—="
[p,q] 0 logq(%)

and

)

10g+—0—1 MZO (’I“, f)
Barp.q (f> 20) = liminf P
[p,q] —50 logq(%)

where M, (r, f) = max {|f(2)| : |z — 20| = 7}.

Remark 1.4.1 If we put p = ¢ = 1 we obtain the order of growth py 11(f,20) = p(f,z0), for
p=2 and g =1 is just the hyper order of growth P[u}(fa 20) = pa(f,20), for ¢ =1 is the iterated

p-order.

Example 1.4.1 Let f (z) = exps (cosh Z%) be an analytic function in C — {20} such that

M (r, f) = max|f (2)] = exps {cosh <:2> } .

|z|=r
Then

. logs M (r, f)
= lim Sll[)i3 ’
PM,[2,1] (f) 0 log (%)

logs (exps {cosh (;5) })

=l tog, (1]
cosh (i)
= limsup = +00

Proposition 1.4.2 Let p > q > 1 be integers, and let f be an analytic function in C — {2} of

[p, q]-order. Then
Pipg (F) = Parjp.q (f)-

Proof. By the fundamental inequality (see [8,p. 18]), for R = 2r we obtain
T(r, f) < log* M (r, f) < 3T (2r, ).
It follows that

log, T (r, ) <log, 1 M (r, f) < log,(3T (2r, f)) <log, T (2r, f) + C,
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C > 0 is a constant. Then

log! T (r, f) ] logh , M (r, f)
- I = Plp,q] (fs20) < limsup e

lim sup
v) r—0 log, (1)

r—0 lqu ( = pM,[p,q] (f7 ZO)

log, T' (2r, log, T (2r, og (L
< limsup og, T'( 17’ /) + ¢ —~ | = limsup O8&p (1T f) ) llgp(er) L C '
r—0 logq (F) logq (;) r—0 1qu(§) qu(F) 1qu (;)
log, T (2r, f)
= limsup—F——— = pp, . (f).
r—0  log, (i) [p-d]
Hence

P g (f) = Ppg (f) -

Example 1.4.2 For the function f(z) = expa(%), a€C*, a>1, we have

log,t; M (r, )
: — 5 p+1
Ptz = P e @)

- log ] exp,(7)
= limsup———7——
r—o log(3)

Then
+o ifp<a,
Ppa(fiz0) =9 1 ifp=aq,
0 ifp>a.

1.4.5 The [p, q]-type and the lower [p, q]-type of growth

Definition 1.4.6 ([11]) Let f be a meromorphic function in C — {2z} with p = Pip.g (f>20) €
(0,00). Then the [p,q]—type of f is defined by
Tip.q ([ 20) = limsup———7-——
o =0 log, (1)

and the lower [p, ql—type of f(z) with p = pp, 4(f, 20) € (0,00) is defined by

log, Ty (r, f)
Trpa(f 20) = liminf —2———"-~
[p.a] r—50 1qu_1(%)u
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Definition 1.4.7 ([11]) Let f be an analytic function in C — {20} with p = py, 4(f, 20) € (0, 00).
Then the [p, q)—type of f(z) is defined by

10g++1 Mzo (T’ f)
™ ,20) = lim sup—2
pq](f 0) 0 logq_l(%>p

and the lower [p, q|—type of f with p = py, o(f,20) € (0,00) is defined by

log, 1 M, (r, f)
Iqu_l(%)p

a1 pq)(f20) = lim inf ,

where M, (r, f) = max {|f(2)| : |z — 20| =7}

Example 1.4.3 We calculate the [p, q]-type of the following function f(z) = exp(exp(%)). We
have pp 1y (f) =1, then

Tar2,1)(f,20) = limsup

=0.

logéF exp exp(%)
up 1
-

1.5 Linear and logarithmic measure

Definition 1.5.1 The linear measure of a set E C [0,400) is defined by

+0o0
m(E) = /0 yi (),

where xp(t) is the characteristic function of the set E and the logarithmic measure of a set

F C [1,400) is defined by
+o00 t
my(F) :/ th( at.
1

Example 1.5.1 The linear measure of the set E = [2,6] U [7,8] C [0, +00) is

m(E):/O £yt = /dt+/ at =5,

2) The logarithmic measure of the set F = [1;e%] C (1,+00) is

my(F) = /1+°° Xet) gy /1 a_y

t t



Chapter 2

The [p,q]-Order of Growth of
Solutions of Linear Differential
Equations Near a Singular Point

2.1 Introduction and Some Results
Consider for k£ > 2 the linear differential equation
F® A () D 4 A (2) f + A (2) f =0, (2.1.1)

where Ay, ..., Aj_1 are analytic functions in C — {zo}.

In [10] Liu, Long, and Zeng treated the growth of solutions of the second-order linear differ-
ential equation (0.0.1) when the coefficients A (z) and B (z) are analytic functions of lower order
in C — {2}, firstly when B (2) is a dominant coefficient with lower order, nextly with the lower
type. Finally, they asked the question: what happen when the coefficient A (z) dominates in the

concept of lower order? for these reasons they obtained the following results.

Theorem 2.1.1 ([10]) Let A (z) and B (2) be analytic functions in C — {20} satisfying (A, z0) <
w(B,2) < oco. Then, every non trivial solution f(z) of (0.0.1), that is analytic in C — {z},
satisfies py(f. 20) = pu(B, 20).

Theorem 2.1.2 ([10]) Let A(z) and B (z) be analytic functions in C — {29} satisfying the fol-
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lowing conditions:
(1) u(A, 20) = p(B, 20);
(73) Tpr(A, 20) < Tp7(B, 20)-
Then, every non trivial solution f(z) of (0.0.1), that is analytic in C — {20}, satisfies py(f, z0) >
M(B7 ZO)'

Theorem 2.1.3 ([10]) Let A (z) and B (z) be analytic functions in C—{z} satisfying u(B, zp) <
(A, z9) < oo. Then, every non trivial solution f(z) of (0.0.1), that is analytic in C — {z},
satisfies p(f, 20) > u(A, 2).

In this work, we improve the results of Liu, Long, and Zeng for higher-order linear differential
equations of the form (2.1.1) where most of the coefficients are of [p, g]-order. Firstly, we investigate
the growth of solutions of (2.1.1) when Ag(z) is a dominant coefficient with the concept of lower

order.

Theorem 2.1.4 ([12]) Let p > q > 1 be integers, and let Ag(z), ..., Ax_1(2) be analytic functions
in C — {20}. Assume that

max{pp, (A, 20) 1 (J =2,k — 1), ppp g1 (A1, 20) } < g g1 (Aos 20)-

Then every non trivial solution that is analytic in C — {z} of (2.1.1) satisfies Plp,q ([ 20) = +00

and ppi1,q(f,20) = pip,q (Ao, 20)-
To prove the Theorem 2.1.4 we need the following lemmas.

Lemma 2.1.1 ([12]) Let f(z) be a nonconstant analytic function in C—{z} with ip,q (fs20) = p.
Then for o > p, there exist a set E C (0,1) with my(E) = +00 such that for all |z — 29| =7 € E,

My (r, f) < exp, {logq_l (1) } .

Proof. By the definition of i, ;) (f, 20), there exists a sequence {rn}>° tending to zero satisfying

we have

_n_

LY and

Tn+1 <
lim inf long Mz, (rn, f)

n—too  log,(;h)

=pu<a.
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Then, for any given € > 0, there exists an ng € N* such that for all n > nq,

log Mey (1 f) < exp, {bgq (1)} (212)

For ¢ given above, there exists an n; € NT such that for all n > nq and r € [n+1rn, ’I“n}

< — (2.1.3)

By [2.1.2{and [2.1.3} for all n > ny = max {ng,n1} and for any r € [ +1rn,rn]

a—e
n 1
log Mo (r, f) <log My | ——rn, f ] < 1 —_
oo sven () oo ()
1 1\“
< exp, logq s ( S exp, {logq <) }
GO '

Mzo(rv f) < €XPp {logq—l (i) } :
+oo

Set E= | [Hrn,rn} we get

n=naz

This is implies

/dt Z Zlogl—i—

n=—ng n+1 n=ny

O

Lemma 2.1.2 ([6]) Let f be a nonconstant meromorphic function in C — {2z}, let v > 1, e >0
be given real constants and k € N. Then there exist a set E3 C (0,r], (ro € (0,1)) having finite
logarithmic measure and a constant A > 0 that depends on vy and k such that for all |z — zg| =17 €

(0,70] \ E3, we have
k

1 1
<) [ﬂTZO(Vr, Hlog Ty (r. f)

9 (2)
f(z)
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2.2 Proof of Theorem 2.1.4

Proof.  Set p = max{pp, ;(4;,20) : (j = 2,...,k — 1), (A1, 20)} < ppp g (Ao, 20). For any

given e (2 < pp, (Ao, 20) — p), there exists r1 € (0,1), such that for all |z — 29| =7 € (0,71)

AN
|4;(2)] < exp, { <logq_1 r> } ,j=2,.,k—1 (2.2.1)

and
1\ Hlp.q) (Ao.20)—
|Ao(2)] > exp, <10gq_1 r> . (2.2.2)

By Lemma 2.1.1, there exists a set £ C (0,1) with infinite logarithmic measure such that for all

|z — 20| =7 € E,

1 Hip,q) (A1,20)+e 1\Pte
|A1(2)| < exp, <logq_1 7') < exp, <logq_1 7’) . (2.2.3)

We rewrite (2.1.1) as

fPE)| L AIE) f'(2)
f(2) f(2) f(2)

By Lemma 2.1.2, there exist a set Eo C (0,70], (ro € (0,1)) that has a finite logarithmic measure

[Ao(2)] < [ A1 ()| + -+

1A1(2)]. (2.2.4)

+

and a constant A > 0 that depends on o > 1 and j = 1,2,...,k such that for all r = |z — 2

satisfying r € (0,79] \ E2, we obtain

¥ (z)
f(z)

Substituing [2.2.1] 2.2.2] 2.2.3] and 2.2.5] in 2.2.4] we have

1\ H1p.a)(Aoz0)—¢ 1 1 1 g
exp,, <10gq1 7"> <A [ﬂTzo (@rv f) log 7, <a7‘> f)]
1 1 1 kel 1\**e
+A [TQTZO <ar, f> log 7%, <ar, f)] exp, { (logql r> }
1 1 1 1\*+e
+- 4 A ﬁTzo e f|logTy, o f)|exp,q (log, 1 - . (2.2.6)

By 226} we get

1) M) (Aorz0) =< 1.1 1 k 1\~
exp,, <10gq_1 T> < Ak [TQTZO(O/‘» f)log TZO(5T7 f)] €XPp <1qu_1 T)

[ (Y Noer (L A =12 (2.2.5)
— T220a) gzoav 7]_77"‘7 . ]
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which implies

1 Fip,q)(Ao,20)—€ 1 1 2k 1\7"¢
exp, <logq_1 r> < kA [TTZO(QT’ f)] €XPp <Iqu—1 r> .

Since € (2 < py, 41(Aos 20) — p), We obtain

1\ Hlp.d] (Ao,z0)—¢ 1 1 2k
exp,, {(1 —o0(1)) <logq_1 7’) } < kA [TTzO(ar, )] :
It follow that
1 Hip,q)(A0,20)—€ 1 1 2k
(1 - 0(1)> <10gq—1 T’) < logp (k/\ [TTZ()(aT’ f):| )

1 1
< log, (k) +log,,(~) +log, (T (-7, £))) + O(1)
which implies that

(1) (Ao, 0) — )08, () +1og (1 — o (1)

< 108, 11(k) + Tog 1 (1) + 1081 (Tog (7, 1)) + O(1).
Hence pup, (Ao, 20)—€ < ppi1,9(f; 20), since € > 0 is arbitrary, we conclude that i, (f, 20) = 400
and pupp, 41(Ao, 20) < plpr1,g(f, 20)- O
Theorem 2.2.1 ([12]) Let p > q > 1 be integers, and let Ag(z), ..., Ax—1(z) be analytic functions

in C —{z0}. Assume that
max{p[p,q](Ajv ZO) : (] =2,..,k— 1)} < :u’[p,q](Ab ZO) = Hip,q] (A07 ZO)

and

maX{T[p7q]7M(Aj, Zo) : (j = 2, ceey k — 1)7I[p,q],M(A17 Z())} < I[p,qLM(AO; ZO).
Then every non trivial solution that is analytic in C — {29} of (2.1.1) satisfies Pip.q(f120) = +00
and pyi1,9(f,20) > pip.q (Ao, 20)-
To prove the Theorem 2.2.1, we need the following lemma.
Lemma 2.2.1 ([12]) Let f(z) be a nonconstant analytic function in C — {29} with Lp,q) (f>20) =

p € (0,00) and 1y, 1 pr(f,20) = 7. Then for any 8> 1, there exits a set E € (0,1) with my (E) =

+oo such that for all |z — z0| =7 € E,

1\*
M, (Ta f) < CXPp {Blogq <7”) } .
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Proof. We will use the definition of lower [p, q] —type, there exists a sequence {ry,},° tending

to zero satisfying r,4+1 < rn and

n+1

log,, Mo (7n, f)
()

Then, for any given ¢ > 0, there exists an ng € N* such that for all n > nq,

lim inf < B.

My (rn, ) < exp, {(5 —&)log, (é)u} . (2.2.7)

For ¢ given above, there exists an n; € NT such that for all n > nq and r € [n+1rn, rn}

(B —¢)log, (711 ) < Blog, (i)u (2.2.8)

n+1 Tn

Combinig [2.2.7| and [2.2.8} for all n > ny = max {ng,n;} and for any r € [ +1rn,rn}

Mzo (Ta f) < MZO(TLL—I—le f)

1 "
exp,, {(B —¢)log, (”r ) }
n+1'"7
1 I
exp,, {ﬁlogq <r> } .

IN

IN

+o00
Set = | [nﬂrn,rn} we get

n=nsg

/ dt Z Z log(1 +
n=no n+1 n>no
2.3 Proof of Theorem 2.2.1

Proof. Setting max{p[pq](Aj,zo) (1=2,.k— 1)} = p,max {7y g m(4j,20) : (j =2,...,k=1)} =
T,T = Tjpg,m (Ao, 20). For any given (e < %57), by the definition of 7y, 1(Ao, 20), there exists
ro € (0,1) such that for all |z — zg| =7 € (O,To) and |Ao(z)| = M, (r, Ap), we have

1\ Hlp.al (A0,20)
40(2)] > expy{(z ) (1ogq1 ) } (231)
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and

4562) < expy{(r+2) (1ot 17 ) )

1\ Hlp.a) (A0,20)
) hG=2,..,k=1). (2.3.2)

<o+ (o

By Lemma 2.2.1 to Ai(z), there exists a set Fy C (0,1) having infinite logarithmic measure such

that for all |z — 29| = r € E2, we have

1 ) Hip,q (A1,20)

A1) < ey {2+ 2) (Iog 1 )

1 H(p,q)(A0,20)
) ' (2.3.3)

< exp{(zpg + 2) (Tt 1 3

By Lemma 2.1.2 there exist a set Fy C (0,79], (ro € (0,1)) that has a finite logarithmic measure
and a constant A > 0 that depends on o > 1 and j = 1,2,...,k such that for all r = |z — 2

satisfying r € (0,79] \ E2, we obtain 2.2.5 From 2.1.1 we can write

fPE)| S50 R) f'(2)
Ag(2)| < + Ap_1(2)| +---+ A(2)]. 2.34
[Ao(2)]| e & [ A-1(2)] ) |A1(z)]| (2.3.4)
Set Ey = E3 \ E1, obviously, m;(Ep) = co. Combining [2.3.1} [2.3.2} [2.3.3| and [2.2.5| into [2.3.4] we
obtain
1)\ Hlp.q(A0:20)
exp{(r — ¢) <logq_1 r> }
1 1 1 k 1)\ ip.a) (Ao:20)
<IN | ST ()08 T (2 )| expy(7+2) (108,11 ) h (2.3.5)
From [2.3.5] we get
1\ Hlp.a (A0:20) 1 1 2k 1)\ Hip.a) (Ao:20)
expl(z ) (1og, 1 b i 1] eyl +) (tog, 1 ) )
(2.3.6)

It follow that for all |z —zo| = 7 € (0,70]\ E1, and |Ag(2)| = M, (r, Ao), where A > 0 is a constant.
We deduce that i, 1(Ao, 20) < ppi1,9(f; 20)- O

Theorem 2.3.1 ([12]) Let p > q > 1 be integers, and let Ag(z), ..., Ax—1(z) be analytic functions
in C — {20}. Assume that

max{pp, q(Aj,20) 1 ( =2,k — 1), i, (Ao, 20) } < ppp g (A1, 20)-
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Then every non trivial solution that is analytic in C — {z} of (2.1.1) satisfies Bip.g (A1, 20) <

Pip.g (s 20)-

To prove the Theorem 2.3.1 we need the following lemmas.

Lemma 2.3.1 ([3]) Let f(z) be a nonconstant meromorphic function in C — {z}. Then the

following statements hold:

() T ( }) —Too(r, ) + O(1),

(i) Toy(r, f) < O(Tu(r, f) + log %), r e (0,70] \ B,

where E C (0,79] with m;(E) < oo.

Lemma 2.3.2 ([12]) Let f1(z) be an analytic function in C—{zy} satisfying Bip,q) (f1:2) = pq >0,
and f2(z) be an analytic function in C—{z} satisfying Plp,g (f252) = pg < 00, py < py < 00. Then

there exists a set E C (0,1) having infinite logarithmic measure such that for all |z — zp| =1 € E,

. TZO (T,fg) o
lim 7 oy =0

logp TZO (Tzf)
log, (1)
exists rg € (0, 1), such that for all |z — zg| = r € (0,70),

Proof. By the definition of yp, ;(f, 20) = ligl_)iglf , for any given € € (0, #522), there

H1—¢€
T, (r, f1) > expp{logq (i) } (2.3.7)

we also apply the definition of pp, 4 (f2, 20) = p, we have,

1\ P2te
T, (7, f2) < expy{log, (r) }. (2.3.8)

It follow from [2.3.7hnd 2:3.§ that for all r € E, we obtain the result
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2.4 Proof of Theorem 2.3.1

Proof. By (2.1.1) we have

; k—1
My (1, A1) < Z Mz, ( T, 71 ) + Z My (1, Aj(2)) + log k. (2.4.1)
j

J=0, j#1

By Lemma 2.3.1, for a constant ro € (0, 1), there is a set E3 C (0,72] with m;(Fs3) < +oo such

that for all |z — zg| = r € (0,r2] \ E3, we have

k ) (2
> omy, (7«, ffj, é;) <0 <TZO (r, f) + log i) : (2.4.2)

J=0, j#1

By applying Lemma 2.3.2, for any ¢ € (0, ﬁ) there exists a set Fyq C (0,7r2) with m;(E4) = oo

such that for sufficiently small |z — zg| = r € Ey,

My (1, Aj(2)) < emyy(r, Ar1(2)), j # 1. (2.4.3)

Combining [2.4.1] [2.4.2) and [2.4.3 for |z — 29| =7 € E4 \ E3,

My, (1, A1(2)) < O(T% (1, f) + log %) +e(k—1)my(r, A1(z)) + log k. (2.4.4)

This implies that
1
My (1, A1(2)) < CTyy(r, f) + Clog - +Cy (2.4.5)

with C' > 0 and C; > 0 two positive constants, which we can write
Ty (r, A1(2)) < CTy(r, f) + Clog% +Ch.
Hence py;, 4/(A1,20) < ppp g ([ 20)- O
2.5 Examples
Example 2.5.1 f(z) = exp; {i} s a solution of the following equation

"+ A1(z)f 4+ Ao(2) f =0,

Ap(z) = —(1_12)4 exp{2exp (1_12+ 13,2«)}

where
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and

1 1 1 2
Al(z)_(1_Z)26Xp{z_1}+(1—z)2+1—2’.

We have
Pi2,1)(A1,1) = 0 < pup 17(Ag, 1) = 1.
Obviously, the conditions of Theorem 2.1.4 are satisfied and we see that
P2y (f,1) = +o0

and

Pz (f,1) = p1y(Ao, 1) = 1.
Example 2.5.2 Let f(z) = %exp2 {Z%} is a solution of the following linear differential equation

"+ As(2) "+ AL(2) f' + Ao(2) f =0,

where
4 3 20 30 2
wie) = —gen{Gf- (e f)er{s)
8 48 48 1 6
AR R Il =
4 1
Ai(z) = — 5 OXP {22} (2.5.1)
and
1 1
AQ(Z) = —273 exXp {Z2}
We have
max { piy 1y (42(2), 20, 1, (A1 (2), 20) | = max{2, 2} = pp gy (Ao(2), 20) = 2
and

max {771 3 ar(A2(2), 20), 71,000 (A1 (), 20) | = 1 < 701700 (Ao(2), 20) = 3.
We see that the conditions of Theorem 2.2.1 are satisfied, then
pp(f(2),20) = +o0

and

P21 (f(2), 20) = pp,1)(Ao(2), 20) = 2.



CONCLUSION

Throughout this work, we investigated the growth of solution of the following linear differential
equation

F® 4 A () 5D 4 Ag(2)f =0, (k> 2)

For this reason, we have been discussed the possibility of generalizing certain results related to
second-order complex differential equations to the higher-order in analogous or different ways; at
the same time, we studied the growth of the solutions of equation (1.1) in the neighborhood of a

singular point using the concept of [p, g]-order of growth and extension for other results.
For example, we generalize the results of Lui, Long and Zeng: Theorem 2.1.1, Theorem 2.1.2 and
Theorem 2.1.3 to Theorems 2.1.4, 2.2.1 and 2.3.1.
From there, we hope to solve the following problem:
What can be said about the growth of the solutions of the above equation?
if we assume that the coefficients are all or most of lower [p, g]-order.
Other questions are raised about what happens to the growth of solutions for nonhomogeneous
equations:
When the coefficients are meromorphic functions, are the results generalizable?
And under what conditions is this generalization valid?
Or, for non-homogeneous linear differential equations, what are the assumptions that ensure

that every non-trivial solution is of infinite [p, q] order?
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