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  :Résumé 

-  sur le BelaïdiSemochko et -En s’inspirant des récents travaux de Chyzhykov

ordre, on étudie  dans ce mémoire la croissance des solutions de l'équation 

 où        1

1 0... 0,
k k

kf A z f A z f


    différentielle linéaire complexe suivante

Sous .   0 0\ ,z z C C sont des fonctions analytiques dans    0 1,..., kA z A z

ordre - conditions sur les coefficients, on établit des estimations sur lecertaines 

.des solutions de ces équations 

 

   

 : Abstract 

- Semochko and Belaïdi on the-Inspired by the recent works of Chyzhykov

order, we study in this thesis the growth of the solutions of the following 

where        1

1 0... 0,
k k

kf A z f A z f


    complex linear differential equation

Under certain .  0 0\ ,z z C C are analytic functions in     0 1,..., kA z A z

order of the - estimates on theestablish some  weconditions on the coefficients, 

solutions of these equations. 

     

     

 : الملخص

و بلعيدي على الترتيب ، ندرس في هذه الأطروحة  سيميشكو-شيزيكوفمستوحاة من الأعمال الأخيرة لـ 

نمو حلول المعادلة التفاضلية الخطية المعقدة        1

1 0... 0,
k k

kf A z f A z f


    حيث

   0 1,..., kA z A zتحليلية في لدوا   0 0\ ,z z C C معينة على المعاملات ، نقوم  شروط. في ظل

 ترتيب حلول هذه المعادلات.-بعمل تقديرات حول 
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INTRODUCTION

"The shortest path between two truths is the real

domain passes through the complex domain "

Jacques Hadamand

Complex analysis is all about the unite number i satisfying the quadratic x2 + 1 = 0 which

was the biggest concept ever in the mathematical analysis history. It is helpful in many areas of

mathematics, including specially the analytic branches, for instance, algebraic geometry, analytic

number theory and analytic combinatorics.

As years passed, a lot of new concepts and theories has been built in order to develop the �eld

of complex analysis. In 1925, a new theory was devised by Rolf Nevanlinna [21] and Hermann

Weyl [24]. It�s the so called Nevanlinna Theory which deals with meromorphic functions

as the main object in an analytical way, it describes the asymptotic behavior of such functions

around some point z0 on the extended complex plane, i. e., the analysis of the given equation

f(z) = a; where a 2 �C and f is any meromorphic function, for more one can checks ([17] and [25]).

Nowadays many contexts of science can be expressed by the language of applied mathematics

as equations, models or some other problems and specially in the form of a di¤erential system.

Throughout this work we will study the equation

f (k) +Ak�1(z) f
(k�1) + � � �+A0(z)f = 0; (0.0.1)

where the Aj (0 6 j 6 k � 1) are all analytic in a complex domain and f is a meromorphic func-

tion in the punctured plane �C� z0 (here z0 represent a singular point). As in [20] Long and Zeng

gave a generalization for the work of Hamouda and Fettouch, see [8] by introducing the [p; q]-

order of growth of the solutions for the complex linear di¤erential equation near a singular point.
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Over the days many e¤orts has been done by a numerous searchers and collaborators to study the

solutions of equation (0:0:1) under some additional conditions, such works have been done using

the out breaking discovery of Nevanlinna by introducing the fundamental properties and theorems.

In order to study the behavior of the solutions for the equation (0:0:1) we�ll represent new

concept for the usual order of growth and type of growth namely the '-order and the '-type of

a holomorphic function, here the ' is function of a special class, the idea was found on [6; 23]. A

well known result can be stated as the following theorem: The equation

g(k) +Ak�1(z) g
(k�1) + � � �+A0(z)g = 0; k > 2 (0.0.2)

with analytic coe¢ cients (Aj)06j6k�1 and a leading coe¢ cients A0 with in�nite order has all its

nontrivial solutions of in�nite order.

Proof outlines comes by using the two main Nevanlinna theorems and their re�ections. For

the rest denote by an Aj any holomorphic function on C� fz0g � z0; z0 is a singular point.

By �rst Chapter 2 there will be listed some de�nitions. Concerning '- order and ' - type,

related background with a tricky lemmas and main results obtained. Sketches of the proofs will

be found on the second chapter.



Chapter 1

Nevanlinna Theory Near an Essential
Singular Point

"I tell you, with complex numbres

you can do anything "

John Derbyshire

1.1 Motivation

Taking a look at a given meromorphic function as a mathematical object inspires minds to

ask how it actually behaves at each point? The interesting topic to study here is the growth of

such objects : some of which may fastly grow up while the other ones act lazy. The creation of

the tools for the success of the study comes intuitively and step by step. The �rst move were

done by Rolf Nevanlinna (see [17] and [25]), then numerous researches have been done, some of

such arrived to a fascinating, outbreaking results. A �rst motivational observation is the obvious

question : how can we compare two holomorphic functions, which one leads in the sense of the

growth ? Yes, they came up to compare each function with a model of the form za
zb
z:
::

; where

constants a and b refers to the order and the type of the growth respectively. As in [4] Belaïdi

came to �nd a comparison is another sense (see the de�nition the '- order and '- type) , while

the magnitudes jaj and jbj on the tower zaz
bz
::
:

can be found by applying successive logarithms of

the form log log ::: log| {z }
p�times

. Instead of taking logarithms some authors replaced it by special class of
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function having common properties with logp.

We aim to study the growth of solution of (0:0:1) providing comparison for the coe¢ cients Aj

(0 6 j 6 k � 1), by each others, this comparison may show which coe¢ cient leads the di¤erential

equation and how this will change thing about the behavior of f . By the following, we will

emphasize the results obtained by Long and Zeng on [20] through the '-order, '-type concepts.

1.2 Concepts near a singular point

Let f be a meromorphic function de�ned in the punctured plane �C� fz0g for some complex

singular points.

The Nevanlinna�s fundamentals are the most important tool for our study. For that reason, we

dedicate the entire chapter to fully developing the theory for a function with singular point z0.

In order to develop our study, we �rstly recall some related notations. Let f be a meromorphic

function in C � fz0g, where C = C [ f1g is the whole extended complex plane, z0 2 C is some

essential singularity.

De�ne the counting function of f near z0 by the following formula

Nz0(r; f) = �
Z r

1

n(t; f)� n(1; f)
t

dt� n(1; f) log r;

where n (t; f) denote the number of poles of f in the region fz 2 C : t 6 jz� z0jg [ f1g counting

its multiplicities, we also de�ne the proximity function near z0 by

mz0(r; f) =
1

2�

Z 2�

0
log+ jf(z0 � rei�)jd�:

Summing up together, the characteristic function of f near z0 will be

Tz0(r; ; f) = mz0(r; f) +Nz0(r; f):

For k > 2 a positive integer, consider the following complex linear di¤erential equation

f (k) +Ak�1(z) f
(k�1) + � � �+A1(z)f 0 +A0(z)f = 0; (1.2.1)

where the coe¢ cients are analytic in some complex domain. Since it�s hard to �nd some general

forms for the solutions of (1:2:1), many searchers are interested on the study of the behavior of
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such solutions and specially the notion of the growth. The strongest tool they used for establishing

their results is the Nevanlinna theory which can be found in [1] ; [9] ; [11] ; [17] and [25].

In [13; 14], Juneja, Kapoor and Bajpai have investigated some properties of entire functions of

[p; q]-order and obtained some results about their growth. In [18], in order to maintain accordance

with general de�nitions of the entire function f of iterated p-order [16], Liu-Tu-Shi gave a minor

modi�cation of the original de�nition of the [p; q]-order given in [13; 14]. With this new concept

of [p; q]-order, Liu, Tu and Shi [19] have considered equation (1:2:1) with entire coe¢ cients and

obtained di¤erent results concerning the growth of their solutions. After that, several authors

used this new concept to investigate the growth of solutions in the complex plane and in the unit

disc [2; 3; 18].

In [6], Chyzhykov and Semochko showed that both de�nitions of iterated order and of [p; q]-

order have the disadvantage that they do not cover arbitrary growth, i.e., there exist entire or

meromorphic functions of in�nite [p; q]-order and p�th iterated order for arbitrary p 2 N, i.e.,

of in�nite degree, see Example 1.4 in [6]. They used more general scale, called the '-order (see

[6; 23]). In recent times, the concept of '-order is used to study the growth of solutions of complex

di¤erential equations which extend and improve many previous results (see [4; 6; 22]).

As in [20] Long and Zeng gave a generalisation for the work of Hamouda and Fettouch (see

[8]) by introducing the [p; q]- order near a essential singular point. So, we �nd it very interesting

to generalize the work done on [20] by introducing the concept of the '- order near an essential

singular point, that is the coe¢ cients of (1:2:1) are all analytic in C� fz0g.

Recently, Chyzhykov and Semochko [6] have given general de�nition of growth for an entire func-

tion in the complex plane by introducing a new class of functions. So, as in [6], let � be the class

of positive and bounded increasing functions ' on [1;1) such that '(et) is slowly growing, i.e ,

8c > 0 : lim
t!+1

'(ect)

'(et)
= 1:

Here some useful properties of a function ' 2 �.

Proposition 1.2.1 ([6]) If ' 2 �, then the following holds

i) 8� > 0 : lim
x!+1

log'�1((1 + �)x)

log'�1(x)
= +1;

ii) 8m > 0; k > 0 : lim
x!+1

'�1(log xm)

xk
= +1:
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iii) 8c > 0; '(ct) 6 '(tc) 6 (1 + o(1))'(t); t �! +1:

De�nition 1.2.1 ([6]) Let ' be an increasing unbounded function on [1;+1): The '-orders of a

meromorphic function f are de�ned by

�0'(f) := lim sup
r!+1

'
�
eT (r;f)

�
log r

; �1'(f) := lim sup
r!+1

'(T (r; f))

log r
:

If f is an entire function, then the '-orders are de�ned by

~�0'(f) := lim sup
r!+1

'(M(r; f))

log r
; ~�1'(f) := lim sup

r!+1

'(logM(r; f))

log r
:

Proposition 1.2.2 ([6]) Let ' 2 � and f be an entire function. Then

�j'(f) = ~�
j
'(f); j = 0; 1:

We now turn our attention to the basic de�nitions which may be are new concepts. Below,

we will de�ne the growth for a meromorphic function of f near a singular point.

De�nition 1.2.2 ([15]) Let ' be an increasing and unbounded function on [1;+1). Then, the

orders of the growth of a meromorphic function in C� fz0g is given by

�0' (f; z0) = lim sup
r!0

'
�
eTz0 (r;f)

�
log 1r

; �1' (f; z0) = lim sup
r!0

' (Tz0(r; f))

log 1r
:

If f is an analytic function in C� fz0g, then the '-orders are de�ned by

e�0'(f; z0) = lim sup
r!0

'(Mz0(r; f))

log 1r
; e�1'(f; z0) = lim sup

r!0

'(logMz0(r; f))

log 1r
;

here Mz0(r; f) = maxfjf(z)j : jz � z0j = rg.

Remark 1.2.1 A motivational observation for the creation of the above de�nition is that ' (r) =

log log r 2 � it�s also obviously that e�0' (f; z0) = �0' (f; z0) due to the double inequality between M

and T in [11; p:41].

De�nition 1.2.3 ([15]) Let ' be an increasing and unbounded function on [1;1). Then, the types

of the growth of an analytic function in C�fz0g with e�0'(f; z0) 2 (0;+1) and e�1'(f; z0) 2 (0;+1)
are de�ned by e�0' (f; z0) = lim sup

r!0

exp f' (Mz0 (r; f))g
1

r
e�0'(f;z0)

;

e�1' (f; z0) = lim sup
r!0

exp f' (logMz0 (r; f))g
1

r
e�1'(f;z0)

:
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Recently, Long and Zeng have investigated the [p; q]-order of growth of solutions of equation

(1:2:1) and obtained some estimations of [p; q]-order of growth of solutions of such equation which

is a generalization of previous results from Fettouch-Hamouda [8]. Before stating the results of

Long and Zeng, we give here the de�nitions of the [p; q]-order and the [p; q]-type of a meromorphic

function near a singular point.

De�nition 1.2.4 ([20]) Let f a meromorphic function in C�fz0g, for p,q two integers p � q � 1,

the [p; q]�order of growth is de�ned by

�[p;q](f; z0) = lim sup
r�!0

log+p Tz0(r; f)

logq(
1
r )

If f is an analytic function in C� fz0g, then the [p; q]�order of growth is de�ned by

�M;[p;q](f; z0) = lim sup
r�!0

log+p+1Mz0(r; f)

logq(
1
r )

;

where Mz0(r; f) = max fjf(z)j : jz � z0j = rg.

De�nition 1.2.5 ([20]) Let f be a meromorphic function in C � fz0g with � = �[p;q](f; z0) 2

(0;1). Then the [p; q]�type of f is de�ned by

� [p;q](f; z0) = lim sup
r!0

log+p Tz0(r; f)

logq�1(
1
r )
�

If f is an analytic function in C� fz0g with � = �[p;q](f; z0) 2 (0;1), then the [p; q]�type of f is

de�ned by

�M;[p;q](f; z0) = lim sup
r!0

log+p+1Mz0(r; f)

logq�1(
1
r )
�

:

Theorem 1.2.1 ([20]) Let A0(z); A1(z); :::; Ak�1(z) be analytic functions in C � fz0g satisfying

max
n
�[p;q] (Aj ; z0) : j 6= 0

o
< �[p;q] (A0; z0) < 1. Then, every nontrivial solution of (1:2:1) that

is analytic in C� fz0g, satis�es �[p+1;q](f; z0) = �[p;q](A0; z0).

Theorem 1.2.2 ([20]) Let A0(z); A1(z); :::; Ak�1(z) be analytic functions in C � fz0g satisfying

the following conditions

i) max
n
�[p;q](Aj ; z0) : j 6= 0

o
6 �[p;q](A0; z0) <1;
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ii) max
n
� [p;q](Aj ; z0) : �[p;q](Aj ; z0) = �[p;q](A0; z0)

o
< � [p;q](A0; z0):

Then, every nontrivial solution of (1:2:1) that is analytic in C� fz0g, satis�es

�[p+1;q](f; z0) = �[p;q](A0; z0):

Theorem 1.2.3 ([20]) Let A0(z); A1(z); :::; Ak�1(z) be analytic functions in C� fz0g satisfying

max
n
�[p;q](Aj ; z0) : j 6= s

o
< �[p;q] (As; z0) <1:

Then, every nontrivial solution of (1:2:1) that is analytic in C� fz0g, satis�es

�[p+1;q](f; z0) 6 �[p;q] (As; z0) 6 �[p;q](f; z0):

Here is the full generalization for the work of Long and Zeng given on [20] by using the

concept of the '-order. The following theorem seems like to be a classical version that describes

the impact of A0.

Theorem 1.2.4 ([15]) Let A0(z); A1(z); :::; Ak�1(z) be analytic functions in C�fz0g, all together

satisfying max
�e�0' (Aj ; z0) : j 6= 0	 < e�0' (A0; z0) <1. Then, every nontrivial solution of (1:2:1)

is analytic in C� fz0g, satis�es e�1'(f; z0) = e�0'(A0; z0).

The following theorem discusses the case of the quality in the condition, namely A0 still a dominant

coe¢ cient but not the only one.

Theorem 1.2.5 ([15]) Let A0(z); A1(z); :::; Ak�1(z) be analytic functions in C�fz0g all together

satisfying the following conditions

i) max
�e�0'(Aj ; z0) : j 6= 0	 6 e�0'(A0; z0) <1;

ii) max
�e�0'(Aj ; z0) : e�0'(Aj ; z0) = e�0'(A0; z0)	 < e�0'(A0; z0):

Then, every nontrivial solution of (1:2:1) that is analytic in C� fz0g, satis�es

e�1'(f; z0) = e�0'(A0; z0):
For the last Theorem we suppose that the dominant coe¢ cient runs over the set f0; 1; 2; :::; k � 1g.
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Theorem 1.2.6 ([15]) Let A0(z); A1(z); :::; Ak�1(z) be analytic functions in C�fz0g all together

satisfying the following condition

max
�e�0'(Aj ; z0) : j 6= s

	
< e�0' (As; z0) <1:

Then, every nontrivial solution of (1:2:1) that is analytic in C� fz0g, satis�es

e�11(f; z0) 6 e�0' (As; z0) 6 e�0'(f; z0):
Remark 1.2.2 ([7])The condition that f is analytic in C � fz0g is necessary. The following

example shows that there exists a solution f (z) of (1:2:1) such that f (z) is not analytic in C �

fz0g provided that all coe¢ cients Aj(z) (j = 0; :::; k � 1) of (1:2:1) are analytic in C� fz0g. For

instance, we consider the equation

f 00 +

�
exp2

�
1

z0 � z

�
+

1

z0 � z

�
f 0 +

2

z0 � z
exp2

�
1

z0 � z

�
f = 0: (1.2.2)

The function f (z) = (z0 � z)2 solves (1:2:2), and f (z) is not analytic in C � fz0g. So, in our

results, we suppose always that f (z) is analytic in C� fz0g.

1.3 Preliminary results

We now concentrated on the main preliminaries needed for establishing the proofs of our

results. We �rstly clarify some notations. Denote, the logarithmic measure of a set E � (0; 1) by

ml(E) =

Z
E

dt

t
:

We also denote by �(r; g) the central index of an entire function g (z) in C, for more properties,

see [12; p:33� 35]. Finally, denote the central index of an analytic function f in C � fz0g by

�z0(r; f) (reader may check [10; p:996]).

Lemma 1.3.1 (As in [20], Lemma 2.5). Let g : (0; 1) ! R, h : (0; 1) ! R be a monotone

decreasing function such that g(r) > h(r) possibly outside an exceptional set E � (0; 1) that has

�nite logarithmic measure. Then, for any given � > 1; there exists a constant 0 < r0 < 1 such

that for all r 2 (0; r0); we have g(r�) > h(r):
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Proof . Set � =
R
E
dt
t < 1, and choose r0 = exp

�
�
1��

�
2 (0; 1): So that for all 0 < r < r0; the

interval Ir = [r�; r] meets Ec. Since,Z
Ir

dt

t
=

Z r

r�

dt

t
= (1� �) log r > (1� �) log r0 = �:

Therefore, by the monotonicity of g and h, there exists t 2 Ir for which

g(r�) > g(t) > h(t) > h(r):

Lemma 1.3.2 ([12]) Let f(z) =
+1P
n=0

an z
n be an entire function. Let �(r) and �f (r) denoting

respectively the maximum term and the central index of f; i:e:; �(r) = max fjanjrn;n = 0; 1; : : : g

and �f (r) = max fn : �(r) = janjrng : Then, we have

log�(r) = log ja0j+
Z r

0

�f (t)

t
dt (ja0j 6= 0); (1.3.1)

M(r; f) < �(r)

�
�f (R) +

R

R� r

�
(R > r): (1.3.2)

Lemma 1.3.3 ([15]) Let ' 2 � and f be an entire function: Then, we have

�0'(f) = lim sup
r!+1

'(exp �f (r))

log r
;

where �f (r) is the central index of f .

Proof. Denote � := lim sup
r!+1

'(exp �f (r))
log r : Then, for any given " > 0 and su¢ ciently large r; we have

�f (r) 6 log'�1(log r�+"): (1.3.3)

By setting R = 2r in (1:3:2), we get

M(r; f) < �(r) (�f (2r) + 2) = ja�f (r)jr
�f (r) (�f (2r) + 2) : (1.3.4)

Since fjanjgn>0 is a bounded sequence; then by using (1:3:3) and (1:3:4), we obtain

M(r; f) < cr�f (r) (�f (2r) + 2)

< crlog'
�1(log r�+")

�
log'�1(log (2r)�+") + 2

�
= celog'

�1(log r�+") log r
�
log'�1(log (2r)�+") + 2

�
6 elog'

�1(log r�+3") = '�1(log r�+3"); (1.3.5)
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where c > 0 is a real constant. From (1:3:5), by the monotonicity of '; we get

'(M(r; f))

log r
6 �+ 3":

By arbitrariness of " > 0 and Proposition 1.2.2, we obtain

�0'(f) 6 � := lim sup
r!+1

'(exp �f (r))

log r
: (1.3.6)

Now, we prove the reverse inequality. Without loss of generality, we may assume ja0j 6= 0: It

follows from (1:3:1) that

log�(2r) = log ja0j+
Z 2r

0

�f (t)

t
dt > log ja0j+ �f (r)

Z 2r

r

dt

t

= log ja0j+ �f (r) log 2:

By Cauchy�s inequality we have �(2r) 6M(2r; f) and then

�f (r) 6
logM(2r; f)

log 2
� log ja0j

log 2
6 c1 logM(2r; f); (1.3.7)

where c1 > 2 is a real constant. It follows from (1:3:7) and Proposition 1.2.1, especially case (iii),

that
'(exp �f (r))

log r
6 '((M(2r; f))c1)

log 2r
� log 2r
log r

6 (1 + o (1))'(M(2r; f))

log 2r
� log 2r
log r

:

Hence

lim sup
r!+1

'(exp �f (r))

log r
6 lim sup

r!+1

'(M(2r; f))

log 2r
= �0'(f): (1.3.8)

We deduce from (1:3:6) and (1:3:8) that

�0'(f) = lim sup
r!+1

'(exp �f (r))

log r
:

Lemma 1.3.4 ([15]) Let f be a non constant analytic function in C�fz0g: For a function ' 2 �

one has

lim sup
r!0

'(e�z0 (r;f))

log 1r
= �0'(f; z0):

Proof . Set g (w) = f
�
z0 � 1

w

�
. As the function g is entire [10; Remark 7], it turns out that

�z0(r; f) = �(R; g); R =
1

r
:
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By Lemma 1.3.3, we have

�0'(g) = lim sup
R!+1

'(e�(R;g))

logR
:

By Lemma 2.2 in [8], we have

T (R; g) = Tz0(r; f):

That gives

�0'(f; z0) = �0'(g) = lim sup
r!0

'(exp(�z0 (r; g))

log 1r
:

Lemma 1.3.5 ([15]) Let f be a non constant analytic function in C � fz0g with �0'(f; z0) = �.

Then, there exists a set E � (0; 1) with ml(E) = +1 such that for all jz � z0j = r 2 E;

lim
r!0

'(Mz0(r; f))

log 1r
= �:

Proof . By De�nition 1.2.1, there exists a sequence frng1n=1 tending to 0 satisfying rn+1 < n
n+1rn

and

lim
n!+1

'(Mz0(rn; f))

log 1
rn

= �

Therefore, there exists n0 2 N such that for all n > n0 and for every r 2 [ n
n+1rn; rn] , we get

'(Mz0(rn; f))

log 1
n

n+1
rn

6 '(Mz0(r; f))

log 1r
6
'(Mz0(

n
n+1rn; f))

log 1
rn

:

Therefore, since

lim
n!+1

'(Mz0(rn; f))

log 1
n

n+1
rn

= lim
n!+1

'(Mz0(
n
n+1rn; f))

log 1
rn

= �;

then yielding

lim
r!0

'(Mz0(r; f))

log 1r
= �

for all r 2
h
n
n+1rn; rn

i
: By setting E =

1S
n=n0

h
n
n+1rn; rn

i
, the conclusion follows since E ful�lls

ml(E) = +1:

By analogous logic, we establish the same lemma with the limit.

Lemma 1.3.6 ([15]) Let f be a non constant meromorphic function in C�fz0g with �0'(f; z0) = �.

Then, there exists a set E � (0; 1) with ml(E) = +1 such that for all jz � z0j = r 2 E;

lim
r!0

'(eTz0 (r;f))

log 1r
= �:
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Lemma 1.3.7 ([15]) Let f be a non constant analytic function in C� fz0g with e�0'(f; z0) = � 2

(0;1) and e�0'(f; z0) = � 2 (0;1), for any given � 2 (0;1), there exists a set E � (0; 1) of

in�nite logarithmic measure such that for jz � z0j = r 2 E;

' (Mz0 (r; f)) > log
�
�

r�

�
:

Proof. For the proof, by the same reasoning as the previous Lemma 1.3.5, we obtain the desired

conclusion. Here we omit the details.

Lemma 1.3.8 ([15]) Let Aj(z) be analytic in C� fz0g satisfying all together, the inequality

e�0'(Aj ; z0) 6 � <1; j = 0; 1; :::; k � 1:

Then every solution of (1:2:1) that is analytic in C� fz0g satis�es e�1'(f; z0) 6 �.

Proof . The equation (1:2:1) implies�����f (k)f
����� 6 jAk�1(z)j

�����f (k�1)f

�����+ � � �+ jA1(z)j
����f 0f
����+ jA0(z)j : (1.3.9)

By the de�nition of e�0'(f; z0) and since one has the bound e�0'(Aj ; z0) 6 � ( j = 0; 1; :::; k � 1),

then for any given " > 0, there exists r0 2 (0; 1) such that for all jz � z0j = r 2 (0; r0); we get

jAj(z)j 6 '�1
�
(�+ ") log

1

r

�
; ( j = 0; 1; :::; k � 1) : (1.3.10)

By throughing reader back to ([10], Theorem 8), there exists a set E � (0; 1) that has in�nite

logarithmic measure, such that for all j 2 f0; 1; :::; kg and r =2 E, we have�����f (j) (z)f (z)

����� = j1 + o(1)j
�
�z0(r; f)

r

�j
; r ! 0; (1.3.11)

for z in the cercle jz � z0j = r and jf(z)j = maxjz�z0j=r jf(z)j. Together, combining the three

estimations (1:3:9) ; (1:3:10) and (1:3:11), we get for all jz � z0j = r 2 (0; r0)�E and jf(z)j =

Mz0(r; f)

�z0(r;f) 6 kr'�1
�
(�+ ") log

1

r

�
j1 + o(1)j : (1.3.12)

Finally by Lemma 1.3.1, the last claim, and (1:3:12), the desired conclusion follows.
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Lemma 1.3.9 ([5]) (Logarithmic Derivative Lemma) Let f be a non constant meromorphic func-

tion in C� fz0g and k > 1 be an integer. Then, we have

mz0

 
r;
f (k)

f

!
= O

�
log Tz0(r; f) + log

1

r

�
for all r 2 (0; 1)�E; where ml (E) =

R
E
dr
r <1. If �(f; z0) <1; then

m

 
r;
f (k)

f

!
= O

�
log

1

r

�
:

Then the following lemma helps to complete the proof of the third theorem.

Lemma 1.3.10 ([20]) Let f be a non constant meromorphic function in C�fz0g. Then f enjoys

the following two properties

i) Tz0

�
r;
1

f

�
= Tz0(r; f) +O(1);

ii) Tz0(r; f
0) < O

�
Tz0(r; f) + log

1

r

�
; r 2 (0; r0]�E; where E � (0; r0] with ml (E) <1:

Proof . By Lemma 2.2 in [8] ; it is easy to see that Tz0 shares some same familiar properties as T

on the Nevanlinna theory. So a suitable substitution may prove the lemma. Set

g(w) = f

�
z0 �

1

w

�
:

Then Lemma 2.2 of [8] shows that

T

�
R;
1

g

�
= Tz0

�
1

R
;
1

f

�
:

By the �rst main Nevanlinna theory, we get

T

�
R;
1

g

�
= T (R; g) +O(1):

Thus

Tz0

�
r;
1

f

�
= Tz0(r; f) +O(1):

So, the conclusion (i) holds. By de�nition, one has

Tz0(r; f
0) = mz0(r; f

0) +Nz0(r; f
0) 6 2Tz0(r; f) +mz0

�
r;
f 0

f

�
:



1.3 Preliminary results 16

From the last inequality and Lemma 1.3.9 it follows that there exists a set E � (0; r0] that has

�nite logarithmic measure an for all jz � z0j = r 2 (0; r0]�E;

Tz0(r; f
0) 6 O

�
Tz0(r; f) + log

1

r

�
Hence, (ii) is established.

Lemma 1.3.11 ([15]) Let f1; f2 be analytic functions in C� fz0g satisfying �0'(f1; z0) = �1 > 0;

�0'(f2; z0) = �2 < 1 and �2 < �1. Then, there exists a set E � (0; 1) having in�nite logarithmic

measure such that for all jz � z0j = r 2 E one has

lim
r!0

Tz0(r; f2)

Tz0(r; f1)
= 0:

Proof . By De�nition 1.2.1, for any " > 0 with " < �1��2
2 , there exists r0 2 (0; 1) such that for all

jz � z0j = r 2 (0; r0) the following holds

Tz0(r; f2) 6 log'�1
�
(�2 + ") log

1

r

�
: (1.3.13)

Concerning the Lemma 1.3.6, we have deduce the existence of some sets E � (0; r0) of in�nite

logarithmic measure such that for all jz � z0j = r 2 E

Tz0(r; f1) > log'�1
�
(�1 � ") log

1

r

�
: (1.3.14)

Combining (1:3:13) and (1:3:14), it follows that for all jz � z0j = r 2 E \ (0; r0)

0 6 Tz0(r; f2)

Tz0(r; f1)
6
log'�1

�
(�2 + ") log

1
r

�
log'�1

�
(�1 � ") log 1r

�
as �2 + " < �1 � ", by setting (�2 + ") log 1r = x and �1�"

�2+"
= 1 + � (� > 0) and making use of

Proposition 1.2.1 (i)

lim
r!0

log'�1
�
(�2 + ") log

1
r

�
log'�1

�
(�1 � ") log 1r

� = lim
r!0

log'�1
�
(�2 + ") log

1
r

�
log'�1

�
�1�"
�2+"

(�2 + ") log
1
r

�
= lim
x!+1

log'�1 (x)

log'�1 ((1 + �)x)
= 0:

Therefore yielding

lim
r!0

Tz0(r; f2)

Tz0(r; f1)
= 0:
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Lemma 1.3.12 For a sequence (xj)j2Nn of no negative reals the following hold.

� log+(xi; xj) 6 log+ xi + log+ xj

� log+(
P
j6n xj) 6

P
j6n log

+ xj + log n

Proof . 1) For the �rst property we have to treat two cases.

Case 1 : If xixj 6 1, then log+ xixj = 0 6 log+ xi + log+ xj because the log+ is positive valued

function

Case 2 : If xixj > 1, then log+ xixj = log xixj = log xi + log xj . Since log+ x > log x, we obtain

log+ xixj 6 log+ xi + log+ xj

2) Without loss of generality suppose that

x1 6 x2 6 ::: 6 xn

Then

log n+

nX
j=1

log+ xj > log+ n+ log+ xn > log+(nxn) 6 log+
0@ nX
j=1

xj

1A :

The next lemma �nishes the preliminaries.

Lemma 1.3.13 ([8]) Let f be a nonconstant meromorphic function in C � fz0g, let  > 1,

" > 0 be given real constants and k 2 N. Then there exist a set E � (0; r0]; (r0 2 (0; 1))

having �nite logarithmic measure and a constant � > 0 that depends on  and k such that for all

jz � z0j = r 2 (0; r0] n E, we have�����f (k) (z)f (z)

����� 6 �

�
1

r2
Tz0

�
1


r; f

�
log Tz0 (r; f)

�k
:



Chapter 2

Growth of Solutions of Complex
Linear Di¤erential Equations Near an
Essential Singular Point

"Mathematical Analysis is as

extensive as nature herself"

Joseph Fourier

In this chapter, we perform initial and essential manipulation toward establishing the three the-

orems mentioned earlier. So, we will �nd it convenient to use the lemmas listed on the second

chapter in order to emphasize the theorems with no other technologies. All such proofs were

explored in a straight direction. These arguments are generalizations of the ones performed by

Long and Zeng in [20] but a good remark can be observed.

Remark 2.0.1 In [20] Long and Zeng used some positive integers q > 1 while we took q = 1 on

the de�nition of the '�order, that is I really can, let q be random on Z>0 while the results remain

almost possibly similar based all on the estimation obtained by the de�nition in a combination with

the fundamental results obtained by the other searchers.
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2.1 Proof of Theorems

Proof of Theorem 1.2.4 Set e�0'(A0; z0) = �. Choose � and � such that

max
�e�0'(Aj ; z0) : j 6= 0	 < � < � < �:

By De�nition 1.2.1, for any " 2
�
0;min(���2 ; ���2 )

�
, there exists r1 such that for all jz � z0j =

r < r1;

jAj(z)j 6 '�1
�
(� + ") log

1

r

�
; j = 1; 2; :::; k � 1: (2.1.1)

By Lemma 1.3.5 for all " given above, we conclude the existence of some r2 and a set E1 � (0; 1)

with in�nite logarithmic measure such that for all jz � z0j = r 2 (0; r2) \ E1 and jA0(z)j =

Mz0(r;A0)

jA0(z)j > '�1
�
(�� ") log 1

r

�
: (2.1.2)

Now, let r0 = min(r1; r2) and  > 1. By Lemma 1.3.13, there exists a set E2 � (0; r0] that have

�nite logarithmic measure and a constant � that depends on  such that for all jz � z0j = r 2

(0; r0] n E2 the following occurs�����f (j) (z)f (z)

����� 6 �

�
1

r2
Tz0

�
r


; f

�
log Tz0

�
r


; f

��j
; j = 0; 1; :::; k: (2.1.3)

By (1:2:1) ; we get

jA0(z)j 6
�����f (k)f

�����+ � � �+ jAj(z)j
�����f (j)f

�����+ � � �+ jA1(z)j
����f 0f
���� : (2.1.4)

As the last step, let E0 = (0; r0] \E1 nE2, obviously E0 has in�nite logarithmic measure. Conse-

quently, the combination between (2:1:1) ; (2:1:2) ; (2:1:3) and (2:1:4) gives for all jz � z0j = r 2 E0,

'�1
�
(�1 � ") log

1

r

�
6 �k

�
1

r
Tz0

�
r


; f

��2k
'�1

�
(� + ") log

1

r

�
: (2.1.5)

Without loss of generality assume that " is �xed small as we want. By contradiction suppose that

�1'(f; z0) < �:

Then we obtain for all such z as above

Tz0(r; f) 6 '�1
�
(�1 � ") log

1

r

�
(2.1.6)
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for some �1 < �: By (2:1:5) and (2:1:6) ; we obtain

'�1
�
(�� ") log 1

r

�
6 �k

r2k

�
'�1

�
(�1 � ") log



r

��2k
'�1

�
(� + ") log

1

r

�
:

Since �� " > max(�1 � "; � + "); we get

'�1
�
(�� ") log 1

r

�
6 �k

r2k

�
'�1

�
max (�1 � "; � + ") log



r

��2k+1
: (2.1.7)

Applying the logarithm on both sides, we �nd

2k log r

(2k + 1) log'�1
�
max (�1 � "; � + ") log r

� + log'�1
�
(�� ") log 1r

�
(2k + 1) log'�1

�
max (�1 � "; � + ") log r

�
<

log �k

(2k + 1) log'�1
�
max (�1 � "; � + ") log r

� + 1: (2.1.8)

Notice that '�1 is increasing, so by applying the Proposition 1.2.1 (ii), we get

lim
r!0

log r

log'�1
�
max(�1 � "; � + ") log r

� = 0 (2.1.9)

As we did earlier in Lemma 1.3.11, we have

lim
r!0

log'�1
�
(�� ") log 1r

�
log'�1

�
max(�1 � "; � + ") log r

� = +1: (2.1.10)

The right hand side on (2:1:8) is �nite while the left hand side is in�nite, thus contradiction holds

i,e.

�1' (f; z0) > �:

Thus by Remark 1.2.1 and as ' 2 � we obtain

e�1' (f; z0) > �:

By Lemma 1.3.8, we get e�1'(f; z0) = e�0'(A0; z0):
Proof of Theorem 1.2.5 By an analogous progress set e�0'(A0; z0) = �; e�0'(A0; z0) = � . If

maxf~�0' (Aj ; z0) : j = 1; :::; k�1g < ~�0' (A0; z0) = �; then by Theorem 1.2.4, we obtain ~�1' (f; z0) =

~�0' (A0; z0). Suppose that maxf~�0' (Aj ; z0) : j = 1; 2; :::; k � 1g = ~�0' (A0; z0) = � (0 < � < +1)

and maxf~�0' (Aj ; z0) : ~�0' (Aj ; z0) = ~�0' (A0; z0)g < ~�0' (A0; z0) = � (0 < � < +1). Then, there
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exists a set I � f1; 2; :::; k � 1g such that ~�0' (Aj ; z0) = ~�0' (A0; z0) = � (j 2 I) and ~�0' (Aj ; z0) <

~�0' (A0; z0) (j 2 I) : Thus, we choose �1; �2 satisfying

maxf~�0' (Aj ; z0) : (j 2 I)g < �1 < �2 < ~�
0
' (A0; z0) = � :

From De�nition 1.2.3, there exists r0 2 (0; 1) such that for all jz � z0j = r 2 (0; r0)

jAj (z)j 6 '�1
�
log

�1
r�

�
(j 2 I) (2.1.11)

and

jAj (z)j 6 '�1
�
log

1

r�1

�
6 '�1

�
log

�1
r�

�
(j 2 f1; :::; k � 1g n I) ; (2.1.12)

where 0 < �1 < �: We now turns to Lemma 1.3.13, it claims the existence of a set E1 � (0; r0]

having �nite logarithmic measure and a constant � > 0 that depends on some given  > 1 such

that for all jz � z0j = r =2 E1; we have�����f (j) (z)f (z)

����� 6 �

�
1

r2
Tz0

�
r


; f

�
log Tz0

�
r


; f

��j
(2.1.13)

By Lemma 1.3.7, there exists a set E2 � (0; 1) of in�nite logarithmic measure for which

' (Mz0(r;A0)) > log
�2
r�

equivalently

Mz0(r;A0) > '�1
�
log

�2
r�

�
: (2.1.14)

Set E0 = E2 n E1, for sure E0 has in�nite logarithmic measure. Combining (2:1:11) ; (2:1:12) ;

(2:1:13) and (2:1:14) with (2:1:4) we get for all jz � z0j = r 2 E0;

'�1
�
log

�2
r�

�
6 �k

�
1

r
Tz0(

r


; f)

�2k
'�1

�
log

�1
r�

�
: (2.1.15)

The last inequality implies �1'(f) > � . To see why assume there �1'(f) < �. Then there exists

�2 < � such that

Tz0(r; f) 6 '�1
�
�2 log

1

r

�
: (2.1.16)

Consequently, by (2:1:15) and (2:1:16)

'�1
�
log

�2
r�

�
6 �k

1

r2k

�
'�1

�
log

�2

r�2

��2k
'�1

�
log

�1
r�

�
:
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6 �k
1

r2k

�
'�1

�
log

�1
r�

��2k+1
:

Applying the logarithm on both sides, we �nd

2k log r

(2k + 1) log'�1
�
log �1r�

�

+
log'�1

�
log �2r�

�
(2k + 1) log'�1

�
log �1r�

� 6 log (�k)

(2k + 1) log'�1
�
log �1r�

� + 1: (2.1.17)

As we did before

lim
r!0

log r

log'�1
�
log �1rp

� = 0
and

lim
r!0

log'�1
�
log �2r�

�
(2k + 1) log'�1

�
log �1r�

� = +1
because log �2r� > log

�1
r� : Since the right hand side of the inequality (2:1:17) is bounded by 1, thus

taking limits yielding +1 6 1 which is a contradiction, hence the conclusion. As �2 < �1 and

' 2 �; we get �1'(f; z0) > �. Finally, by applying Lemma 1.3.8, the desired theorem will be proved.

Proof of Theorem 1.2.6. For this section, suppose that the dominant coe¢ cient is unique and

runs over the set f0; 1; :::; k � 1g. In other words, there exists s 2 f0; 1; :::; k � 1g such that

max
�e�0'(Aj ; z0) : j 6= s

	
< e�0'(As; z0):

The equation (1:2:1) yields

mz0(r;As) 6
X
j 6=s

mz0

 
r;
f (j)

f (s)

!
+
X
j 6=s

mz0(r;Aj) + log k: (2.1.18)

By Lemma 1.3.10, there exists a set E1 � (0; r0] for �xed r0 2 (0; 1) which has �nite logarithmic

measure such that for all jz � z0j = r 2 (0; r0] n E1

Tz0(r; f
0) < O

�
Tz0(r; f) + log

1

r

�
:

Consequently

Tz0(r; f
(j)) < O

�
Tz0(r; f) + log

1

r

�
:



2.1 Proof of Theorems 23

Then, it follows X
j 6=s

mz0

 
r;
f (j)

f (s)

!
6 O

�
Tz0(r; f) + log

1

r

�
: (2.1.19)

By Lemma 1.3.11, there exists a set E2 � (0; r0] with in�nite logarithmic measure such that for

all jz � z0j = r 2 E2
lim
r!0

Tz0(r;Aj)

Tz0(r;As)
= 0; j 6= s;

so for any given " 2
�
0; 1
2(k�1)

�
mz0(r;Aj) 6 "mz0(r;As); j 6= s: (2.1.20)

By (2:1:18) ; (2:1:19) and (2:1:20), we conclude that for all jz � z0j = r 2 E2 n E1,

1

2
mz0(r;As) 6 O

�
Tz0(r; f) + log

1

r

�
+O(1):

using this, we get

lim sup
r!0

'(exp(mz0(r;As)))

log 1r
6 lim sup

r!0

'(exp(c
�
Tz0(r; f) + log

1
r

�
)

log 1r
;

where " > 0 is some constant. Using the fact that ' is slowly growing we get

lim sup
r!0

'(exp(mz0(r;As)))

log 1r
6 lim sup

r!0

'(eTz0 (r;f))

log 1r
= �0'(f; z0):

Therefore,

�0'(As; z0) 6 �0'(f; z0):

It remains to show that �1'(f; z0) 6 �0'(As; z0). By Lemma 1.3.8, it follows

�1'(f; z0) 6 �0'(As; z0):

So we have the double inequality

�1'(f; z0) 6 �0'(As; z0) 6 �0'(f; z0)

and by Reamark 1.2.1 this leads

e�1'(f; z0) � e�0'(As; z0) � e�0'(f; z0):



Chapter 3

Examples

Here we provide some examples that illustrate all what we did before.

Example 3.0.1 Consider the equation

f 00 �
�

1

(z � z0)2
+

2

z0 � z

�
f 0 +

1

(z � z0)4
e

2
z0�z f = 0: (3.0.1)

It is not hard to see that f(z) = exp
�
exp 1

z�z0

�
which is analytic in C � fz0g is a solution for

(3:0:1). Notice that, the function '(t) = log log t = log2 t is a function of �, that is ' is unbounded,

increasing and  (t) = '(et) = log t is clearly slowly growing. A hand wavy calculations give

e�0'(A1; z0) = 0; e�0'(A0; z0) = 1
Lossly speaking A0 is a dominant coe¢ cient so by Theorem 1.2.4 we conclude that

e�1'(f; z0) = e�0'(A0; z0) = 1:
On the other hand, a simple computation gives

Mz0(r; f) = ee
1
r :

Therefore

e�1'(f; z0) = lim sup
r!0

'(logMz0(r; f))

log 1r
= lim sup

r!0

'(log log log ee
1
r )

log 1r
= 1:

This emphasizes the conclusion of the �rst Theorem 1.2.4.
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Example 3.0.2 Consider the equation

f 00 +

��
1� 1

z2

�
e
1
z � 2z + 1

z2

�
f 0 +

e
2
z

z2
f = 0: (3.0.2)

It is not hard to see that f(z) = exp
�
exp 1z

�
which is analytic in C n f0g is a solution for (3:0:2).

Notice that, the function '(t) = log log t = log2 t is a function of �, that is ' is unbounded,

increasing and  (t) = '(et) = log t is clearly slowly growing. A hand wavy calculations give

e�0'(A1; 0) = e�0'(A0; 0) = 1;
and e�0'(A1; 0) = 1 < e�0'(A0; 0) = 2:
Lossly speaking A0 is a dominant coe¢ cient so by Theorem 1.2.5 we conclude that

e�1'(f; 0) = e�0'(A0; 0) = 1:
This emphasizes the conclusion of the second Theorem 1.2.5.

Example 3.0.3 Consider the equation

f 000 + e�
1
z f 00 +

�
2

z
� 5

z2
� 6

z3
� 1

z4

�
f 0 +

�
2

z3
+
1

z4

�
f = 0:

This equation accepts the analytic function f in C n f0g given by f(z) = e
1
z � 1. By letting

' = log2 2 � and setting

A0(z) =
2

z3
+
1

z4
;

A1(z) =
2

z
� 5

z2
� 6

z3
� 1

z4
;

A2(z) = exp

�
�1
z

�
We see that e�0'(A0; 0) = e�0'(A1; 0) = 0 and e�0' (A2; 0) = 1: So the coe¢ cient A2 is the dominant.
Therefore, by the Theorem 1.2.6 one gets,

e�1'(f; 0) 6 1 6 e�0'(f; 0):
While simple calculations give

e�0'(f; 0) = lim sup
r!0

log log
�
e
1
r � 1

�
log 1r

= 1;



Examples 26

e�1'(f; 0) = lim sup
r!0

log log log
�
e
1
r � 1

�
log 1r

= 0:

Consequently the conclusion of the third Theorem 1.2.6 holds.



CONCLUSION

We have seen throughout this work that the growth of the solutions of some given linear

di¤erential equations with complex analytic coe¢ cients fAjg06j6k�1 in the whole extended punc-

tured plan denoted by C � fz0g; where z0 is an essential singularity is linked to the nature of

these coe¢ cients. In other words, we found that the growth of the nontrivial solutions can be

determined or estimated by the one of the dominant coe¢ cient which has the greatest growth

among all the other coe¢ cients. In particular, we demostrated �rstly that if A0 is the unique

dominant coe¢ cient then the e�1'-order of any nontrivial solution which is assumed to be analytic
in C � fz0g is equal to the order of A0 and we write e�1'(f; z0) = e�0'(A0; z0). Then we have dis-
cussed the case when A0 isn�t the unique dominant coe¢ cient so that we added an hypothesis

that A0 still dominant by considering its type of growth and as a result e�1'(f; z0) = e�0'(A0; z0) for
nontrivial analytic solutions.

Finally we treated the case when the dominant coe¢ cient As is unique and runs over the set

f0; 1; :::; k � lg and here we get the double unequality �1'(f; z0) 6 �0'(As; z0) 6 �0'(f; z0) for non-

trivial solutions.

Toward establishing the theorems we made use of some strong lemmas and we worked by the

equivalence A = B if only if A 6 B and A > B which can be seen as a principal argument in

the proofs. By last, we would like to say that this work and other similar researches helped to

understand the behavior of the complicated solutions of our di¤erential equation which can�t be

given in some explicate formulas and as a perspective we can arrive to derive similar results by

considering the lower limit as we can de�ne,

e�0'(f; z0) := lim inf
r!0

'(Mz0(r; f))

log 1r
:
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