Champ de forces de symetrie locale des composés oxyfluorés du phosphore(V)—I. Les difluorodioxophosphates (DFP) alcalins

A. ADDOU et P. VAST

Spectrochimie Inorganique, Laboratoire de Chimie Appliquée, Bât. C.8, Université des Sciences et Techniques de Lille, 59655 Villeneuve d'Ascq, Cedex, France

et

P. LEGRAND*

Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), CNRS L.P. 2641, Bât. C.5, Université des Sciences et Techniques de Lille, 59655 Villeneuve d'Ascq, Cedex, France

(Received 20 January 1982)

Abstract—Alkali phosphorofluoridates (DFP) were prepared by reaction between phosphoryl diffuoride oxide $P_2O_3F_4$ and alkali fluorides. The caesium salt was obtained by reaction between HPO_3F_2 and caesium chloride. The aim was to establish a coherent description of the various vibrational modes of the $PO_1F_2^-$ ion, so as to use it for more complex molecules involving either of the PO_2 and PF_2 groups. For that purpose a local symmetric force field (LSFF) was chosen and good agreement found between calculated and observed frequencies. This investigation provided force constant values for the $PO_2F_2^-$ ion in $RbPO_2F_2$, and enabled us to test the transferability of the force field to the DFP whose cristallographic structures are known.

INTRODUCTION

L'intérêt actuel des applications pratiques des composés oxyfluorés du phosphore(V) fait que la connaissance de leurs caractéristiques structurales et donc spectroscopiques présente un caractère évident. La pauvreté des données bibliographiques qui traitent plus particulièrement des DFP inorganiques traduit la difficulté de leur synthèse. Les quelques mémoires [1-3] concernant les attributions des fréquences caractéristiques des DFP font apparaitre des disparités.

Ceci nous amène à reprendre l'étude spectroscopique complète basée sur un calcul à priori des fréquences de l'ion $PO_2F_2^{-}$.

PREPARATION

Dans des travaux antérieurs, nous avons montré la réactivité de l'oxyde de difluorure de phosphoryle $P_2O_3F_4$ sur les oxydes d'azote N_2O_5 , $N_2O_3[4]$, les acides iodiques et périodiques HIO₃ et $H_3IO_6[5]$ et l'anhydride vanadique[6].

Les DFP alcalins sont synthétisés suivant le même schéma réactionnel par action de l'oxyde de difluorure de phosphoryle sur les fluorures alcalins selon

$$P_2O_3F_4 + MF \rightarrow MPO_2F_2 + POF_3$$

avec M = Li, Na, K et Rb.

L'addition du fluorure alcalin est faite sur l'anhydride $P_2O_3F_4$ (10% an excès) maintenu à

l'état solide $(t_f = -0,1^{\circ}C)$, ce qui permet d'éviter tout échauffement dû à la forte exothermicité de la réaction. Un retour progressif à la température ambiante sous agitation magnétique jusqu'à la fin du dégagement gazeux de POF₃ permet l'obtention du DFP après élimination des dernières traces de POF₃ et de P₂O₃F₄ par évaporation sous vide à 100-120°C.

Les sels ainsi préparés sont pulvérulents et généralement purs à 99% (analyse des éléments P et F).

La réaction précédente ne permet pas d'atteindre le sel de césium à l'état pur. Il a donc été obtenu par action de l'acide DFP sur le chlorure de césium suivant

$$HPO_2F_2 + CsCl \rightarrow CsPO_2F_2 + HCl.$$

RESULTATS EXPERIMENTAUX

Nous donnons (Fig. 1) les spectres i.r. et Raman du DFP de rubidium. Dans le Tableau 1, nous reportons les nombres d'onde que nous observons pour les différents sels alcalins.

La réalisation expérimentale des spectres i.r. est effectuée à l'aide d'un spectromètre PE 457 ou PE 621. Les échantillons sont mis en suspension dans le nujol et placés entre deux fenêtres en chlorure d'argent ou en bromure de potassium. Lorsque nos produits ne réagissent pas avec KBr, nous avons utilisé la technique du pastillage.

Le domaine spectral couvert est de 4000 à 400 cm^{-1} .

^{*}A qui la correspondance doit êtra adressée.

Fig. 1(a). Spectre i.r. de RbPO₂F₂.

Fig. 1(b). Spectre Raman de RbPO₂F₂.

Li ⁺		Na ⁴		к *		R6 ⁺		Cs ⁺			Attribution
L.R.	R	1.R	R	I.R	R	I.R.	R	ſ.R	R		
1170	1197	1150	1163	1145	1140	1140	1140	1145	1134		√ౖ ₹0,
895	887	865	869	835	822	820	818	830	806		V PF,
54D	521	520	527	570	514	560	512	505	507	4 A ₁	Def OPO
	360		354		353		353		350		Cis FPF
	n.o.		267		277		n.o.		n.0	A.2	tor FPF
1270		1320	1310	1320	1308	1300	1307	1330	1302		ນ PO2
477	477	b.c.	520	n .o.	n.o.	490	476	505	n.c.	2 ⁸)	Bal FPF
940	899	897	900	880	855	975	830	Q.0.	844		Vas PF2
510	521	512	540	520	501	560	49)	520	496	2 B ₂	rot FPF

Tableau 1. Nombres d'onde (cm⁻¹) observés en i.r. et diffusion Raman des DFP alcalins

n.o.: non observé.

Nous avons réalisé les spectres Raman à l'aide d'un spectromètre laser Coderg T.800, équipé d'un triple monochromateur. La source lumineuse (excitatrice) utilisée est un laser à argon ionisé Spectra Physics, dont nous avons utilisé les deux principales raies d'émission 488 et 514,5 nm.

ATTRIBUTION

Les neuf modes normaux de vibration de l'ion $PO_2F_2^-$ dans l'hypothèse d'une symétrie $C_{2\nu}$ sont répartis suivant

 $4A_1(R, i.r.), 1A_2(R), 2B_1(R, i.r.), 2B_2(R, i.r.).$

CHAMP DE FORCES DE SYMETRIE LOCALE DE L'ION PO₃F₂-

Coordonnées de symétrie locale

Un certain nombre de travaux sur l'étude radiocristallographique de l'ion $PO_2F_2^-$ associé à différents cations [7-10] permettent de retenir une géométrie très proche de la symétrie $C_{2\nu}$. Il suffit de prendre suivant le cas, des valeurs moyennes pour les deux distances P-F et P-O et pour les quatre angles γ (OPF). Ces coordonnées de symétrie locales sont définies de la manière suivante

$SL_1 = (\Delta r_{35} + \Delta r_{45}) \frac{1}{\sqrt{2}}$
$SL_2 = (\Delta r_{35} - \Delta r_{45}) \frac{1}{\sqrt{2}}$
$SL_3 = (4\Delta\alpha - \Delta\gamma_{13} - \Delta\gamma_{14} - \Delta\gamma_{23} - \Delta\gamma_{24})\frac{1}{\sqrt{20}}$
$SL_4 = (\Delta \gamma_{13} + \Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{24}) \frac{1}{2}$
$SL_5 = (\Delta \gamma_{13} - \Delta \gamma_{14} + \Delta \gamma_{23} - \Delta \gamma_{24})^{\frac{1}{2}}$
$SL_6 = (\Delta \gamma_{13} - \Delta \gamma_{14} - \Delta \gamma_{23} + \Delta \gamma_{24})^{\frac{1}{2}}.$

S'il n'existe aucune ambiguité pour attribuer les modes d'élongation symétrique et antisymétrique des groupements PO_2 et PF_2 , il n'en est pas de même pour les modes de déformation. BUHLER et BUES[1] ne considèrent que l'espace des coordonnées internes et ne peuvent pas différencier les modes de déformation OPO et FPF.

REED et THOMPSON [2] attribuent $\nu_7(B_1)$ et $\nu_9(B_2)$ à des "rocking" sans préciser le groupement. CHISTE et al. [3] proposent deux "rocking" et deux "scissoring" (PO₂ et PF₂). Cette confusion est due au fait qu'il y a deux plans de symétrie xz (FPF) et yz (OPO) (Fig. 2) et qu'il est nécessaire d'en choisir un pour définir les 5 modes de déformation.

Si nous retenons le plan yz, quatre de ces modes caractérisent le groupement PF_2 (cisaillement, balancement, rotation plane et torsion) et il convient d'y ajouter le mode déformation angulaire OPO. Si nous choisissions le plan xz, les quatre premiers modes définissent cette fois le groupement PO_2 et il suffit d'inverser dans l'attribution les dénominations cisaillement et déformation angulaire. C'est la première hypothèse qui a été retenue pour proposer l'attribution de Tableau 1. Ces six coordonnées définissent le groupement PF_2 . Il convient d'y en adjoindre trois, concernant le groupement PO_2

Valeur symétrique
$$SL_7 = (\Delta r_{15} + \Delta r_{25}) \frac{1}{\sqrt{2}}$$

PO₂
Valeur antisymétrique $SL_8 = (\Delta r_{15} - \Delta r_{25}) \frac{1}{\sqrt{2}}$

PO₂

PO₂

Déformation $SL_9 = (5\Delta\beta - \Delta\alpha - \Delta\gamma_{13})$

$$-\Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{24}) \frac{1}{\sqrt{30}}.$$

D'autre part, ces expressions sont valables si tous les angles sont tétraédriques. Le passage des dix coordonnées internes à celui des neuf coordonnées de symétrie locale nécessite d'exprimer une relation de redondance de type

$$A\Delta\alpha + B\Delta\beta + C(\Delta\gamma_{13} + \Delta\gamma_{14} + \Delta\gamma_{23} + \Delta\gamma_{24}) = 0.$$

Fig. 2. Définition des coordonnées internes de déformation de l'ion PO₂F₂⁻.

Les coefficients numériques des coordonnées de symétrie locale (C_{2v}) d'un groupement $XY_2Z_2[11]$ sont modifiés afin de rendre les cinq coordonnées de déformation orthogonale à la redondance[12].

Nous avons utilisé cette méthodologie sur les différentes géométries connues pour l'ion $PO_2F_2^-$ associé à K⁺, Rb⁺ et Cs⁺.

Nous obtenons les résultats suivants

	K⁺	R b⁺	Cs ⁺
A	0,309044	0.308616	0.309612
B	0,496473	0,500656	0.494202
С	0,405588	0,404382	0,406173

Les coordonnées de déformation qui en résultent sont neuf coordonnées de symétrie locales et huit constantes d'interaction dont six dans le premier bloc de symétrie et une dans chacun des deux derniers blocs. Devant l'absence de données numériques, nous avons été contraints dans un premier temps à conduire le raffinement uniquement sur les neuf constantes de force diagonales. Dans ce cas, le problème reste déterminé puisque neuf fréquences sont susceptibles d'être observées.

Malheureusement, comme nous le constatons dans le Tableau 1, nous n'avons jamais pu atteindre expérimentalement la totalité de ces modes. Le mouvement de torsion PF₂ uniquement actif en Raman est rarement observé. Ceci n'est d'ailleurs guère important pour le calcul, puisque c'est le seul mode de type A_2 , et qu'une seule constante de force suffit pour le définir. Pour cette raison, nous avons choisi de conduire le raffinement dans le cas du sel de rubidium où nous disposons des huit autres fréquences.

Le résultat du calcul est tout à fait remarquable puisque les huit constantes de force diagonales sont suffisantes pour obtenir une concordance parfaite entre les fréquences calculées et observées. D'autre part, ces constantes sont indépendantes et peuvent être raffinées en même temps, quelles que soient leurs valeurs initiales, ce qui est très satisfaisant dans la mesure où l'absence de données bibliographiques ne nous permettait pas

$$\begin{split} \mathbf{K}^{+} & SL_{3} = (5,249578 \ \Delta \alpha - \Delta \gamma_{13} - \Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{24}) \frac{1}{\sqrt{20}} \\ & SL_{9} = (4,911055 \ \Delta \beta - \Delta \alpha - \Delta \gamma_{13} - \Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{24}) \frac{1}{\sqrt{30}} \\ \mathbf{Rb}^{+} & SL_{3} = (5,241237 \ \Delta \alpha - \Delta \gamma_{13} - \Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{24}) \frac{1}{\sqrt{20}} \\ & SL_{9} = (4,899796 \ \Delta \beta - \Delta \alpha - \Delta \gamma_{13} - \Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{24}) \frac{1}{\sqrt{30}} \\ \mathbf{Cs}^{+} & SL_{3} = (5,247507 \ \Delta \alpha - \Delta \gamma_{13} - \Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{24}) \frac{1}{\sqrt{20}} \\ & SL_{9} = (4,939289 \ \Delta \beta - \Delta \alpha - \Delta \gamma_{13} - \Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{24}) \frac{1}{\sqrt{20}} \\ \end{split}$$

Les neuf modes de vibration de l'ion $PO_2F_2^-$ se répartissent alors suivant les opérations du groupe C_{2v} , soit

$$4A_1(SL_1, SL_3, SL_7, SL_9), 1A_2(SL_6),$$

 $2B_1(SL_4, SL_8), 2B_2(SL_2, SL_5).$

CHAMP DE FORCES

Le champ de forces est obtenu en définissant neuf constantes diagonales correspondant aux de choisir au départ des valeurs numériques cohérentes. Ces résultats sont consignés dans le Tableau 2.

Le seule ambiguité qui subsiste concerne le mode de torsion PF_2 vers 270 cm^{-1} (valeur observée pour les sels de sodium et de potassium). En supposant la même fréquence pour le sel de rubidium, la valeur de la constante de force est de 0,58 md Å.

Nous avons pensé que les vibrations de balancement et de rotation PF_2 observées et cal-

_		Nbre d'onde calculé cm ⁻¹	Nbre d'onde observé cm ^{-l}	Attribution	Distribution d'énergie potentielle (%)
	sl,	1140	1140	Valence symétrique P-0 ₂	64,77 SL ₁ + 26,347 SL ₇ + 7,51 SL ₃ + 1,4 SL ₉
	sl7	818	818	Valence symftrique P-F ₂	$33,63 \text{ sL}_1 + 61,95 \text{ sL}_7 + 3,97 \text{ sL}_3 + 0,55 \text{ sL}_9$
A	sl3	512	512	Déformation PO ₂	$1,28 \text{ sL}_1 + 10,21 \text{ sL}_7 + 88,46 \text{sL}_3 + 0,05 \text{ sL}_9$
	^{SL} 9	355	355	Cisaillement PF ₂	$0,32 \text{ SL}_{1} + 1,56 \text{ SL}_{7} + 0,07 \text{ SL}_{3} + 0,05 \text{ SL}_{9}$
A ₂	sl ₆	270	n.o.	Torsion PF ₂	100 % de SL ₆
	sl ₈	1307	1307	Valence antisymétrique F	²⁰ 2 63,01 SL ₈ + 36,99 SL ₄
Bl	SL4	491	491	Balancement PF ₂	36,99 SL ₈ + 63,01 SL ₄
	SL2	830	830	Valence antisymétrique P	97,77 SL ₂ + 2,23 SL ₅
^B 2	^{SL} 5	476	476	Rotation PF ₂	2,23 SL ₂ + 97,77 SL ₅

Tableau 2.	DFP	(Rb ⁺):	nombres	d'onde	(cm ⁻¹)	observés	et	calculés.	Description	des	modes	et
distribution d'énergie potentielle												

n.o.: non observé.

Tableau 3. DFP (K⁺, Cs⁺): nombres d'onde (cm⁻¹) observés et calculés

KP02F2		CsPO2 ^F 2		
observées	calculées	observées		
1140	1133,8	1134		
822	816,6	806		
514	508,7	507	^A 1	
353	356,5	350		
277	n.o.	n.o	A2	
1308	1308,9	1302	-	
n.o.	474,1	n.o.	Bl	
855	834,4	844	-	
501	490,7	496	¹⁶ 2	
	202F2 observées 1140 822 514 353 277 1308 n.o. 855 501	Cop2F2 CosP02 observões calculēes 1140 1133,8 822 816,6 514 508,7 353 356,5 277 n.o. 1308 1308,9 n.o. 474,1 855 834,4 501 490,7	CSP02F2 CSP02F2 observées calculées observées 1140 1133,8 1134 822 816,6 806 514 508,7 507 353 356,5 350 277 n.o. n.o 1308 1308,9 1302 n.o. 474,1 n.o. 855 834,4 844 501 490,7 496	

n.o.: non observé.

Tableau 4. Valeurs numériques des constantes dans le champ de forces de symétrie locale de l'ion $PO_2F_2^-$. Les unités sont la md Å⁻¹ pour les constantes de valence, la md Å pour les constantes de déformation

$f(SL_7) = 5,668$	f (SL ₈) = 3,457	f (SL ₉) = 1,21
$f(SL_4) = 1,824$	$f(SL_5) = 2,212$	f (SL ₆) = 0,58
$f(SL_1) = 8,112$	$f(SL_2) = 8,826$	f (SL ₃) = 1,5

culées respectivement à 491 et 476 cm⁻¹ pouvaient être éventuellement inversées. Nous avons pu nous rendre compte de la précision du calcul, puisque dans ce cas, il n'est pas possible de converger vers ces valeurs sans faire intervenir une constante d'interaction $f(SL_2, SL_5)$ dans ce bloc de symétrie.

Un dernier stade de ce travail a consisté à transférer ce champ de forces dans les différents DFP alcalins dont la structure est connue. Il s'agit des sels de potassium et de césium. Le Tableau 3 rassemble ces résultats.

Nous constatons que les fréquences calculées sont affectées par le changement de géométrie de l'anion. Toutefois ce résultat n'est guère significatif étant donné que les glissements de fréquences les plus importants sont attendus pour les sels de lithium et de sodium pour lesquels nous ne disposons pas de données structurales.

CONCLUSION

Nous reportons dans le Tableau 4 les valeurs numériques du champ de forces de symétrie locale de l'ion $PO_2F_2^-$.

Nous avons vérifié qu'en intervertissant les angles α et β nous parvenons à un résultat identique. Les constantes $f(SL_4)$, $f(SL_5)$, $f(SL_6)$ et $f(SL_9)$ se rapportent alors au motif PO₂. Ceci nous permettra ultérieurement d'utiliser indifféremment la transférabilité du champ de forces dans des molécules comportant l'un ou l'autre de ces deux motifs.

BIBLIOGRAPHIE

- [1] K. BUHLER et W. BUES, Z. Anorg. Allg. Chem. 62, 3 (1961).
- [2] R. C. THOMPSON and W. REED, Inorg. Nucl. Chem. Letters 5, 581 (1969).
- [3] K. O. CHISTE, R. D. WILSON et C. J. STHACK, Inorg. Chem. 19, 3046 (1980).
- [4] A. ADDOU et P. VAST, J. Fluorine Chem. 14, 163 (1979).

- [5] A. ADDOU et P. VAST, J. Fluorine Chem. 16, 89 (1980).
- [6] A. ADDOU et P. VAST, Rev. Chimie Minérale 18, 184 (1981).
- [7] R. W. HARRISSON, R. C. THOMPSON et J. TROTTER, J. Chem. Soc. A 1775 (1966).
- [8] J. TROTTER et S. H. WHITLOW, J. Chem. Soc. A 1383 (1967).
- [9] R. W. HARRISSON et J. TROTTER, J. Chem. Soc. A 1783 (1969).
- [10] W. GRANIER, J. DURAND, J. L. GALIGNE et L. COT, Acta Cryst. B.31, 2506 (1975).
 [11] T. SHIMANOUCHI, Phys. Chem. 4, 233 (1970).
 [12] J. P. HUVENNE, Thèse Lille (1979).