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Abstract—The relation between burstiness and self-similarity
of network traffic was identified in numerous papers in the past
decade. These papers suggested that the widely used Poisson
based models were not suitable for modeling bursty, local-area
and wide-area network traffic. Poisson models were abandoned
as unrealistic and simplistic characterizations of network traffic.
Recent papers have challenged the accuracy of these results in
today’s networks. Authors of these papers believe that it is time
to reexamine the Poisson traffic assumption. The explanation is
that as the amount of Internet traffic grows dramatically, any
irregularity of the network traffic, such as burstiness, might cancel
out because of the huge number of different multiplexed flows.
Some of these results are based on analyses of particular OC48
Internet backbone connections and other historical traffic traces.
We analyzed the same traffic traces and applied new methods to
characterize them in terms of packet interarrival times and packet
lengths. The major contribution of the paper is the application
of two new analytical methods. We apply the theory of smoothly
truncated Levy flights and the linear fractal model in examining
the variability of Internet traffic from self-similar to Poisson. The
paper demonstrates that the series of interarrival times is still
close to a self-similar process, but the burstiness of the packet
lengths decreases significantly compared to earlier traces.

Index Terms—Burstiness, fractal modelling, Lévy flights, long-
range dependence, network traffic.

I. INTRODUCTION

D URING the 1990s, measurements of local-area network
traffic [19] and wide-area network traffic [20] have proved

that the widely used Markovian process models could not be
applied for characterization of network traffic. If the traffic was
Markovian process, the traffic’s burst length would be smoothed
by averaging over a long time scale, which contradicted with the
observations of the traffic characteristics at that time. Measure-
ments of real network traffic of the last decade also confirmed
[1] that traffic burstiness was present on a wide range of time
scales. Traffic that is bursty on many or all time scales can be
characterized statistically using the concept of self-similarity.
Self-similarity is often associated with objects in fractal geom-
etry—objects that appear to look alike regardless of the scale
at which they are viewed. In case of stochastic processes, like
time series, the term self-similarity refers to the process’ distri-
bution remaining the same when viewed at varying time scales.
Self-similar time series have noticeable bursts of long periods
with extremely high values on all time scales. Characteristics of
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network traffic, such as packets/second, bytes/second, or length
of frames, can be considered as stochastic time series. There-
fore, measuring traffic burstiness is the same as characterizing
the self-similarity of the corresponding time series.

The self-similarity of network traffic was observed in nu-
merous papers, such as [2], [21], [24] and [6]. These and other
papers showed that packet loss, buffer utilization, and response
time were totally different when simulations used either real
traffic data or synthetic data that included self-similarity [7], [8].

Recent papers challenge the applicability of these papers’ re-
sults for today’s network traffic. For instance, the authors in
[15] believe that it is time to reexamine the Poisson traffic as-
sumption in the Internet backbone. They claim that traditional
Poisson models can be used again to represent the characteris-
tics of the aggregate traffic flow of multiplexed large numbers
of independent sources [16], [31]. Their explanation is that as
the amount of Internet traffic grows dramatically following the
changes of network-technology, any peculiarities of the network
traffic, such as burstiness, might cancel out as a result of the
huge number of different multiplexed flows. The paper reports
the analyses of current and historical traces of the Internet back-
bone. The authors found that packet arrivals appeared Poisson
at sub-second time scales, the traffic appeared nonstationary at
multi-second time scales, and the traffic exhibited long-range
dependence at scales of seconds and above.

Many previous works also analyzed the burstiness and the
correlation structure of Internet traffic in various time scales in
terms of the protocol mechanisms of the TCP, such as timeouts,
congestion avoidance, self-clocking, etc. The authors of the
paper [3] used a wavelet-based multiresolution tool to analyze
the scaling behavior of Internet traffic on short time scales.
This paper was one of the first works showing evidence that
Internet traffic could be modeled using a multifractal model.
The paper [4] demonstrated that scaling behavior of Internet
traffic in short time scales can be explained by the closed-loop
flow control of TCP and that the cutoff between short and
long scale behavior is the round-trip-time of the TCP transfers.
The paper [9] illustrated that short time scale burstiness is
independent of the TCP flow arrival process and showed that
in networks with light traffic, correlations across different
flows did not have an effect on the short scale burstiness. The
same authors illustrated in [10] that a Poisson cluster process
could model the aggregate traffic where the packet interarrivals
within individual clusters of each flow could be characterized
by an overdispersed Gamma distribution. At the same time, the
flow volumes showed heavy-tailed properties. Internet traffic
was classified in alpha and beta flows in the paper [28]. It was
shown that large transfers over high-capacity links, called alpha
flows, produced non-Gaussian traffic, while the beta flows,
low-volume transmissions, produced Gaussian and long-range
dependent traffic. Long sequence of back-to-back packets can
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cause significant correlations in short time scales. The reasons
of sending long back-to-back packets in TCP or UDP sources
were analyzed in [13], such as UDP message segmentation,
TCP slow start, lost ACKs, etc. The same authors in [14]
identified the actual protocol mechanisms that were responsible
for creating bursty traffic in small time scales. It was shown
that TCP self-clocking could shape the packet interarrivals
of a TCP connection in a two-level ON-OFF pattern. The
pattern causes burstiness in time scales up to the round-trip
time of the TCP connection. The paper also investigated the
effect of the aggregation of packet flows. The authors found
that the aggregated packet flows did not converge to a Poisson
stream, contradicting previous results. The authors argued that
the burstiness could be significantly reduced by TCP pacing;
selecting a 1-ms timer would make the traffic almost as smooth
as a Poisson stream in sub-round-trip-time scales, contradicting
the results in [15].

Our paper is motivated by the findings of [15]. We analyze
the same traffic traces and applied our methods to characterize
them. We are characterizing the network traffic traces as two
time series, one is the arrival times of the packets and the other
is the packet length in bytes. These two series are different in
nature. The arrival times form a monotone increasing series.
The differences between two consecutive times, called inter-
arrival times, are independent, identically distributed random
variables. The classical modeling of the interarrival times goes
back to Erlang, who successfully modeled the phone calls by
a Poisson process with interarrival times distributed exponen-
tially. We generalize his model by changing the distribution to a
general family of infinitely divisible distributions and by the cor-
responding Lévy processes [29]. Obviously, we are only inter-
ested in distributions that are totally concentrated on the positive
half-line. Since a subset of these distributions—called -stable
distributions (asymmetrical in our case)—provides self-similar
processes, we are able to examine if our traces are self-similar,
and more significantly, how close they are to being self-similar.
The instrument of our analysis is the so called Truncated Lévy
Flights [35].

The series of packet lengths has some specific properties as
well. First of all, we assume that the distribution of the packet
lengths, the correlation in particular, does not change in traces
captured at different time intervals. The flow of packets is multi-
plexed frequently with other flows along the route to some des-
tination, hence an important question to be addressed is: What
kind of statistical properties do the multiplexed flows exhibit
during this process? A typical approach to characterize the mul-
tiplexed flows of packets could be the application of central limit
theorems, but several findings show that these theorems would
not work in our case, since the burstiness does not smooth out.
The multiplexed flow of packets corresponds to the aggrega-
tion of the packets so the question arises again, whether the ag-
gregated series fulfils the assumptions of self-similar models.
Self-similarity is a distributional property of the series in hand.
We will apply a more general, linear fractal model departing
from self-similarity towards multifractality [23] and [12].

The Section II describes the mathematical models applied for
the analyses of the traces. The Section III discusses the types
of traces used in our work. The Sections IV and V present the

results of the application of our models for the data, followed by
the conclusion in Section VI and by the Appendix containing the
detailed descriptions of the methods used in the paper.

II. MODELS

In this section we introduce two models: the Smoothly Trun-
cated Levy Flights (STLFs) and the Multifractal models. The
former will be applied in Section IV for describing the distri-
bution of the interarrival times of the packet traces, while the
latter model will be used in Section V for modeling the packet
lengths of the same traces. The time series of the interarrival
times under consideration is the sequence of the differences be-
tween consecutive arrivals of packets collected in the Internet
backbone. The time series of the packet lengths is the sequence
of the number of bytes in the captured packets. The data collec-
tion details are described in Section III.

A. Smoothly Truncated Lévy Flights

The Truncated Lévy Flights were introduced by Mantegna
and Stanley [22] as models for random phenomena, which ex-
hibit properties at small timescales similar to those of self-sim-
ilar Lévy processes. The Truncated Lévy Flights have distribu-
tions with cutoffs at large timescales, i.e., they have finite mo-
ments of any order. Building on Mantegna and Stanley’s ideas,
Koponen [18] defined the STLFs, which had the advantage of a
nice analytic form. Independently, the same family of distribu-
tions was described earlier by Hougaard [11] in the context of
a biological application. The concept of the more general dis-
tribution, called tempered stable distribution, is due to Rosiński
[26] (see, e.g., [35] and [34] for a partial history of these works).

Since the interarrival times are positive, we consider STLF
with a totally asymmetric distribution. It is given by the cumu-
lant function (log of the characteristic function)

(1)

where and . A more general discussion of
STLF is given in Appendix C. This distribution depends on three
parameters: the index , the truncation parameter , and the
scale parameter . These parameters provide some information
about the position of the distribution in the following manner:

Property 1. If and are fixed and tends to zero, then
the limit distribution is a totally asymmetric -stable distri-
bution and the corresponding Lévy process is self-similar.
Property 2. If and are fixed and tends to zero, then
the limit distribution is Gamma with parameters . In
particular, if is 1, then the limit is exponential, therefore
the Lévy process is Poisson.
Property 3. If and are fixed, then for small the dis-
tribution is close to the -stable distribution and for large
the distribution is close to Gaussian. More precisely, mo-
ments of any positive order (including fractional) have
the following asymptotics:

as
as .
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For , the cumulants, derived from the cumulant func-
tion (1), are given in terms of the parameters , , and , namely,

(2)

B. Self-Similarity and Fractality

The stochastic process is called self-similar, if for all
real numbers,

(3)

with some positive Hurst exponent , where means the
equality of finite-dimensional distributions. We are going
to investigate self-similarity in some more general context
considering multifractal processes that are generalization of
the self-similar processes. A wide variety of physical systems
including data network traffic exhibit fractal properties [5]. We
are interested in fractal data, i.e., data that appear the same
across a wide range of scales. The notion of fractal, in the sense
that it is similar on all scales, is approached by the definition of
a self-similar process with stationary increments. A self-similar
process with stationary increments characterized in terms
of the behavior of aggregated processes can be obtained by
multiplexing the increments , over
nonoverlapping blocks of size , i.e.,

(4)

The resulting aggregated process has finite-dimensional distri-
butions similar to , specifically, for each

(5)

The stationary process fulfilling (5) is called a stationary
self-similar -SSS process with Hurst exponent . A typical ex-
ample is the Fractional Gaussian Noise (FGN) process

, which is a unique Gaussian -SSS

process (see [30] and [27]). The order cumulants of the ag-
gregated -SSS processes also scale as

(6)

Now, if a stationary process fulfills (6) for each and
, then the logarithm of the modulus of

scales linearly with with coefficients , a homoge-
neous linear function of . Based on the statistical inference, a
generalization of self-similar processes to multifractal processes
is the following: A stationary process , , is a multi-
fractal process, if

(7)

for all , allowing the exponent to vary with the order .
The paper [32] defines the notion of multifractality essentially
by (7). We follow this latter definition. For a self-similar process

, i.e., is a homogeneous linear func-
tion of . Let us consider a more general linear function of ,
i.e., . The only process known of this type
has the form . We call it unifractal
process (see [12] and [23]). Note that if , then the ex-
ponent of is for a self-similar process and for a
unifractal process. The interesting fact is that the parameter
has a clear meaning of the parameter of the long-range depen-
dence, which corresponds to the Hurst exponent of self-sim-
ilar processes. Hence the notation is consistent. Indeed, the pa-
rameter of long-range dependence is defined as the rate of de-
caying of correlations

It follows that if we consider the averages in (4) instead
of a simple aggregation, then the decay of correlations
is , therefore

holds asymptotically as .
The unifractal model was successfully applied for ATM traffic
data, see [12]. A unifractal process has the following property:

(8)
Equation (8) is called the LISDLG model in [12]. In this
model is changing with . If we express from

, we have .
The best linear approximation of the values is
. Since for we have the long-range dependence with

parameter , thus we adjust the notation defining it as
. Hence the equation

will provide and .
This model will be called a linear-fractal model.

Multifractal processes allow the change of the Hurst exponent
during the aggregation. We are going to compare the self-sim-
ilarity and multifractality through the corresponding parame-
ters. The possible simplest multifractal model is a linear fractal
process when the slope of linearly varies with the level
of aggregation (see [38]).

III. DATA

We analyzed traffic traces captured in two different networks:
OC48 (2.5 Gbps) traffic collected by CAIDA1 (The Coopera-
tive Association for Internet Data Analysis) and the wide-area
traffic between the Lawrence Berkeley Laboratory (LBT) and
the rest of the world. We also analyzed the WIDE backbone
traffic captured by the MAWI Working Group2 and compared
it to the CAIDA and LBT traces (the results will be published
in a subsequent paper).

Our main focus in the paper is on the CAIDA traces [37].
CAIDA’s OC48 traffic monitoring devices collect packet

1Support for CAIDA’s OC48 Traces is provided by the National Science
Foundation, the U.S. Department of Homeland Security, DARPA, Digital
Envoy, and CAIDA Members.

2Samplepoint-B. http://www.wide.ad.jp/project/wg/mawi.html
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TABLE I
DETAILS OF THE TRACES

headers at large peering points of several large Internet Service
Providers (ISPs) in the United States. We used the traces
collected in both directions of an OC48 link at AMES Internet
Exchange (AIX) on three different times. The traces have been
split into a set of 5-minute files and another set of 60-minute
files to make the downloading easier. These traces include the
packet headers of packets with IP addresses anonymized with
the prefix-preserving Crypto-PAn library. These traces do not
include non-IPv4 traffic. The precision of the traces is in the
order of microseconds. Table I includes the details of the traces.

The second set of traces in our paper was gathered from the
Lawrence Berkeley Laboratory.3 Each trace contains an hour’s
amount of all wide-area traffic between the Lawrence Berkeley
Laboratory and the rest of the world. The traces were reduced
from tcpdump format to ASCII using the sanitize4 scripts. San-
itize is a collection of scripts that shrink tcpdump traces by
renumbering hosts and stripping out packet contents. We an-
alyzed the trace LBL_PKT_4 that was captured from 14:00 to
15:00 on Friday, January 21, 1994, and LBL_PKT_5 from 14:00
to 15:00 on Friday, January 28, 1994 in Pacific Standard Time.
Both traces were studied by V. Paxson and S. Floyd in their
well-known paper on the self-similarity of wide-area network
traffic in [25]. Each trace file captured around 1.3 million TCP
packets. The trace was captured on the Ethernet DMZ network
carrying flows all traffic between the Lawrence Berkeley Labo-
ratory and the rest of the world. Timestamps have microsecond
precision.

IV. INTERARRIVAL TIMES

In this section we present the results of the analysis of the
packet interarrival times.

First, we study the OC48 traffic traces, then we apply our
methods to the other packet traces captured in the Lawrence
Berkeley Laboratory. The series of interarrival times in the
OC48 traces are modeled as stochastic series. If the series
correspond to a Poisson process, then the interarrival times
have exponential distribution. In Fig. 1 we fitted the Gamma
distribution to the interarrival times of the OC48 traces cap-
tured on April, 24, 2003 (20030424-001000-0-anon.pcap).
(The Gamma distribution is more general than the exponential
distribution. It reduces to the exponential distribution, if the
shape parameter is 1, see Appendix A.) In fact, we fitted both
a Gamma distribution by maximum likelihood method and a
linear regression to the complementary cumulative distribution
function (CCDF). The latter one might be considered some
generalized exponential distribution.

Although the estimated parameters (0.945761, 30.3951)
suggest that the distribution of the interarrival times is close

3http://www.ita.ee.lbl.gov/html/contrib/LBL-PKT.html
4http://www.tcpdump.org/; http://www.ita.ee.lbl.gov/html/contrib/tcpdpriv.

html; http://www.ita.ee.lbl.gov/html/contrib/sanitize.html

Fig. 1. CCDF and Gamma distribution of the interarrival times.

to the exponential distribution, the Kolmogorov–Smirnov
test strongly rejects the hypothesis that the series follows the
Gamma distribution. Consequently, the corresponding process
cannot be a Poisson process. Therefore we reject the hypothesis
that the packet trace follows a Poisson process.

In the search for a distribution that would be suitable for char-
acterizing the interarrival times, the family of Lévy processes is
our next direction.

The Poisson process is one of the simplest Lévy processes
(see, e.g., [29]) with the main assumption that the incre-
ments—the differences of consecutive observations, in our
case the interarrival times—are independent, homogeneous and
exponential. Changing the distribution of the increments we
obtain a wide variety of Lévy-stable processes as candidates
for modeling the interarrival times [36]. Lévy-stable processes
show heavy tail behavior making it impossible to apply them
for the measured interarrival times: Fig. 1 depicts that there are
very few measurements after 200 micro second. The heavy tail
of a distribution also implies that the moments do not exist, so
these distributions are not appropriate for modeling purposes.
Other members of the family of Lévy processes, the STLFs,
have higher order moments. Since they have been successfully
applied for finance, biological, and physical phenomena it
seems plausible to apply it for traffic analysis as well. Some
applications of the STLFs are demonstrated in [11], [18], [22],
and [35]. The following formula of the cumulants of STLF pro-
vides a means for estimating the parameters by the method of
moments, i.e., calculating the empirical values from the traffic
traces and compare them with the theoretical values above:
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Fig. 2. Comparison of the cumulants and estimated cumulants of the OC48
trace.

TABLE II
ESTIMATED PARAMETERS OF THE OC48 5-MINUTE TRACES

IN DIRECTION “0”

More precisely, for a given trace we calculate the estimated cu-
mulants , , then we use the least squares
method for finding the estimates , , and (see Appendix D).

We carried out these calculations for the OC48 trace cap-
tured on April 24, 2003 (20030424-002500-0-anon.pcap). Fig. 2
shows the log of estimated cumulants , and the log of cu-
mulants , , of the STLFs when the param-
eters are estimated, i.e.,

where , , . Since the fit-
ting is good, it implies that this trace is close to the self-similar
process because the value of is very small. At the same time
the trace is not too far from the exponential distribution consid-
ering that the value of is small and is close to 1.

Tables II and III show the estimated parameters of the OC48
5-minute traces.

In general, we can conclude that the distribution of these
traces are close to -stable distribution, since the estimations
of are very small, hence the process is close to a self-similar

TABLE III
ESTIMATED PARAMETERS OF THE OC48 5 MINUTE TRACES

IN DIRECTION “1”

process (see Property 1 in Section II-A). It is also clear from
the parameters that the traces in direction “1” are closer to the
exponential distribution (see Property 2 in Section II-A) than
the ones in direction “0”, since the parameter is small and
is close to 1 at least in these traces: 05_1, 10_1, 25_1, 45_1,
and 50_1. Therefore, the traces in direction “1” are closer to a
Poisson process then the traces in direction “0”.

It was pointed out in [15] that the interarrival time distribu-
tion includes bursts of back-to-back packets separated by longer
times. Similarly to [15] we considered back-to-back packets
with less than 6 s for the interarrival time. We ran the previous
computations for the traces without back-to-back packets. We
found that the values of lambda increased around three times in
direction 0 and tenfold in direction 1 relative to the lambda in
Tables II and III. As a result, the distribution of the traces signif-
icantly deviated from the self-similar distribution. At the same
time, since alpha also increased, the heavy-tail property of the
distribution was even more emphasized. Similar results can also
be found in [15, Fig. 1]; the heavy-tail property of the distribu-
tion in [15, Fig. 1.a] is clearly visible above 220 s interarrival
times.

V. PACKET LENGTHS

Now, we turn our attention to the investigation of the packet
lengths of the traffic traces. We are going to model the packet
lengths as increment series of some processes with sta-
tionary increments. We fitted both self-similar (non-Gaussian)
and “linear” fractal (unifractal) models (see Appendix E) based
on higher order cumulants (see Appendix B). The self-similar
model is less definite, since the only statistics we use are the cu-
mulants of the marginal distribution while the unifractal model
is very specific with known distributional properties. The simi-
larity in these two models is that the parameters denoted by
and are the ones characterizing the long-range dependence
of the processes.

For a trace we consider the time series of the packet
lengths in some unit time interval, e.g., 100 s. Since the
original traces include the packet sizes along with timestamps,
the series of packet sizes can be considered as observations in
random time making the characterization of the traces difficult,
since we do not know the exact distribution of the random time.
Rather, we use the sum of the sizes of the packets arriving in
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Fig. 3. Self-similar model fitting to the cumulants.

100 s. We choose the 100 s because it is in the order of
precision of the packet traces.

We estimate the cumulants according to the formula in
Appendix C after estimating the moments, then apply the
formula (7), i.e.,

(9)

For fix we calculate the left hand side of (9) for different
values of aggregation level , then is estimated
taking regression to

and constant 1.
Now, if self-similar model is assumed, then

in (9). After is estimated, , the estimate
of the Hurst exponent is simply

For a unifractal model we have .
For the sake of the representation, we use a re-weighted least
squares method for the estimation of . Additionally, we es-
timate some more parameters as well (see (19) in Appendix E).

As an example, consider the packets from the OC48
trace 25_0. We plotted the estimated log-cumulants

versus for
in Figs. 3 and 4. The figures show that the log-cumulants
of packets from the OC48 trace 25_0 are fitting on some
lines for each fixed . After and are
estimated, the lines are depicted according to the formula

.
Both models work well this time, although the parameters

and are significantly different. If
we assume the linear fractal model, where

, then the estimation of is obtained after linear
regression of , , on . If
the regression parameters are and , then . We

Fig. 4. Unifractal model fitting to the cumulants.

Fig. 5. Fitting lines to the estimated slopes of log-cumulants with different
order.

plot these three lines, namely , , and
together with the estimated slopes of in

Fig. 5. It is natural that the line “LinF” based on linear regression
fits best. The problem with the linear regression is that we do
not know any result, which describes the probabilistic structure
of this type of processes except the challenging definition of
dilative stability in [12] (see also in Appendix E). Nevertheless,
we keep estimating all three parameters , and for
other traces as well.

We continue our analysis with the LBL traces. We obtain for
the estimates of the Hurst parameter:

LBL_PKT_4 TCP:

LBL_PKT_5 TCP:
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TABLE IV
RESULTS OF THE ANALYSES OF THE OC48 TRACES IN DIRECTION “0”

TABLE V
RESULTS OF THE ANALYSES OF THE OC48 TRACES IN DIRECTION “1”

The results of the analyses of the OC48 traces are summarized
in Tables IV and V.

We conclude that all OC48 traces of both directions have
long-range dependence parameter less than the middle
of the admissible interval [1/2,1). Therefore, the burstiness
decreased significantly compared to earlier traces like Belcore
trace BC10Oct89 [19] or LBL_PKT_4 TCP and LBL_PKT_5
TCP where the long-range dependence parameter was found
to be close to 1.

We can measure the self-similarity by the distance of the
self-similar model from the linear fractal model in the following
way: Let be the norm of the difference between the esti-
mated slopes and slopes from the self-similar modeling and sim-
ilarly, let be the norm of the difference between the esti-
mated slopes and slopes from the linear fractal modeling, both
for . Consider the ratio , which is
smaller than 1 in general. The ratio is close to 1, if the self-sim-
ilar model fits as good as the linear fractal model. Table VI
shows that traces of both directions can be modeled by self-sim-
ilar model in a reasonably high precision. The exceptions are the
traces OC48_0: 10, 20, 40, 55 and OC48_1: 00, 30.

VI. CONCLUSION

In this paper we have considered the problem of modeling
high speed-network traces. One of the most interesting ques-
tions is the self-similarity nature of these time series. Instead of
taking a yes-or-no position we characterized these traces with
three parameters of Lévy Flights and positioned a particular

trace somewhere in the space generated by the Poisson and
self-similar Lévy processes. We compared the series of the inter-
arrival times of the OC48 traces captured by CAIDA in both di-
rections. We found that the traces in direction 1 are closer to the
Poisson processes than in the other direction. For the time series
of packet lengths of the same traces we provided three models:
self-similar, unifractal, and linear fractal. The common prop-
erty of these models is the long-range dependence. All models
fit on the OC48 traces prove the decrease of dependence, and
therefore the decrease of burstiness. The common plot of slopes
of the log-cumulants of the estimates according to the different
models showed the applicability of these models for the traces.
Both the self-similar and unifractal models are particular cases
of the linear fractal model. The linear fractal model fit for all
traces reasonably well and the self-similar model was better than
the unifractal model. This happened since the unifractal model
was preferable only in the case when the Hurst parameter was
close to the upper boundary, which is 1. We also compared the
goodness of fit of self-similar model versus linear fractal model
for the OC48 traces.

APPENDIX

A. Gamma Distribution

The Gamma pdf is

where and are positive and called shape and scale parameter,
respectively. If , then it reduces to the exponential distri-
bution.

B. Cumulants

It is well known that there is a one-to-one correspondence
between the moments and cumulants. The expected value is the
cumulant of first order:

The cumulants of order 2 and 3 are equal to the central moments:

(10)

but this is not true for higher order cumulants. One might easily
check this for the case of cumulants of order four. Let us denote
the central moment of th order by , then
we have

(11)
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TABLE VI
GOODNESS OF FIT OF SELF-SIMILAR MODEL VERSUS LINEAR FRACTAL MODEL

(see [17, p. 64], [33, p. 10]). If a sample is given,
then the estimated expected value, i.e., first order cumulant is
the mean , and the estimated th order central moment

Now, the estimated cumulants are given in terms of estimated
central moments (see formulae (11) above). For example, the
4th order estimated cumulant is calculated by

C. STLF

Let us recall that the STLF is a Lévy process, i.e., a
process with homogeneous and independent increments and

. The probability distribution of has
characteristic function of the form

where the cumulant function

and , , , is a real number, and

for
for
for .

(See [35] for details.)
Without loss of generality, we only consider the case when

the shift parameter . Parameters and describe the skew-
ness of the probability distributions, and yields a
symmetric distribution. Parameter will be referred to as the
truncation parameter.

In the case of , the cumulant function is given by
the formula

(12)

and if , the cumulant function

(13)

describes a distribution totally concentrated on the positive half-
line. The distribution of will be denoted by .
The index corresponds to the nontruncated limit when .
In this case the distribution of is the classical Lévy’s -stable
probability distribution. The scale parameter tunes the time
unit to , hence the distribution of is .

The role of the truncation parameter is obvious in the fol-
lowing particular case. For the one-sided dis-
tribution with , the cumulant function has the form

(14)

As , the distribution converges to the
-stable distribution . The parameter looks

appropriate for measuring the distance from the -stable distri-
bution, but it can be noticed that scaling will change the value
of as well. More precisely, if distributed as
then the distribution of is , where

. Therefore the distance from the -stable distribution can be
measured by the parameter when the value is fixed to 1.

For a fixed , as , the distribution tends
to the Gamma distribution . Indeed, for , the
Laplace transform of is

and

by the L’Hospital rule.

D. Estimating the Parameters of

Take the logarithm of

We obtain

(15)

Plug the estimated cumulants (see (11) above) into the
left side of (15), then we have three unknowns , , and . In
order to find the parameter values for the best fitting start with
the system of equations when ,3,4, i.e.,

(16)

(17)

(18)

The difference of the first two (16), (17) gives
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hence

Similarly from the last two (17), (18)

therefore we obtain

We obtain more precise estimations for the parameters, if we use
these estimates as initial values and refine the estimates using
nonlinear least squares, which minimizes

E. Unifractal Process

The unifractal process has several interesting proper-
ties. It is nonlinear and non Gaussian with the same covariance
function as FGN. In particular, it has been constructed for de-
scribing high speed network traffic, since the traffic is a super-
position (aggregation) of several individual traces (see [12]).
Moreover, we have the exact expression for the ,
namely,

(19)

where , , are parameters and

The parameters , , of this model are estimated in two
steps. First we estimate the left side of (8) for different and

use then linear regression on the , weighted according
to . The regression coefficient provides the estimate of .
The next step is the estimation of , using the expression
(19) and when is given. Therefore, we are able to
compare the estimated cumulants to the theoretical ones, which
are calculated after the parameters , , are estimated.

The stochastic process is called dilative stable, if for all
real numbers,

with some positive exponents and , where means the
equality of finite-dimensional distributions and denotes the
convolution power.
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