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Abstract—The self-similar nature of bursty Internet traffic has
been investigated for the last decade. A first generation of papers,
approximately from 1994 to 2004, argued that the traditionally
used Poisson models oversimplified the characteristics of network
traffic and were not appropriate for modeling bursty, local-area,
and wide-area network traffic. Since 2004, a second generation
of papers has challenged the suitability of these results in
networks of the new century and has claimed that the traditional
Poisson-based and other models are still more appropriate for
characterizing today’s Internet traffic. A possible explanation
was that as the speed and amount of Internet traffic grow
spectacularly, any irregularity of the network traffic, such as
self-similarity, might cancel out as a consequence of high-speed
optical connections, new communications protocols, and the vast
number of multiplexed flows. These papers analyzed traffic traces
of Internet backbone collected in 2003. In one of our previous
papers we applied the theory of smoothly truncated Levy flights
and the linear fractal model in examining the variability of
Internet traffic from self-similar to Poisson. We demonstrated
that the series of interarrival times was still close to a self-
similar process, but the burstiness of the packet lengths decreased
significantly compared to earlier traces. Since then, new traffic
traces have been made public, including ones captured from the
Internet backbone in 2008. In this paper we analyze these traffic
traces and apply our new analytical methods to illustrate the
tendency of Internet traffic burstiness. Ultimately, we attempt to
answer the question: Does the Internet still demonstrate fractal
nature?

Index Terms—Network traffic, Burstiness, Lévy Flights, Long-
range dependence, Fractal modeling.

I. INTRODUCTION

Traffic that is bursty on many or all time scales can be
characterized statistically using the concept of self-similarity.
Self-similarity is often associated with objects in fractal geom-
etry, that is, objects that appear to look alike regardless of
the scale at which they are viewed. In the case of stochastic
processes, like time series, self-similarity refers to the process’
distribution; when viewed at varying time scales, the process’
distribution remains the same. A self-similar time series has
noticeable bursts—long periods with extremely high values
on all time scales. Characteristics of network traffic, such as
interarrival times or length of frames, can be considered as
stochastic time series. Therefore, measuring traffic burstiness
is the same as characterizing the self-similarity of the corre-
sponding time series.
The self-similarity of network traffic in the last decade

was observed in numerous papers, such as [1], [2], [3] and
[4]. These measurements of local-area network traffic [5] and
wide-area network traffic [6] proved that the widely used
Markovian process models could not be used to characterize
network traffic. If the traffic was a Markovian process, the traf-
fic’s burst length would be smoothed by being averaged over

a long time scale, which contradicted with the observations of
the traffic characteristics at that time.
Various papers discuss the impact of burstiness on network

congestion. Their conclusions are:
• Congested periods can be quite long with losses that are
heavily concentrated.

• Linear increases in buffer size do not result in large
decreases in packet drop rates.

• A slight increase in the number of active connections can
result in a large increase in the packet loss rate.

Results show that packet traffic “spikes” (which cause actual
losses) ride on longer-term “ripples,” which in turn ride on still
longer-term “swells” [[6]].
Many previous works also analyzed the burstiness and the

correlation structure of Internet traffic in various time scales
in terms of the protocol mechanisms of the TCP, such as time-
outs, congestion avoidance, self-clocking, etc. The paper [7]
illustrated that short time-scale burstiness is independent of
the TCP flow arrival process and showed that in networks
with light traffic, correlations across different flows did not
have an effect on the short scale burstiness. The same authors
illustrated in [8] that a Poisson cluster process could model
the aggregate traffic where the packet interarrivals within
individual clusters of each flow could be characterized by
an overdispersed Gamma distribution. At the same time, the
flow volumes showed heavy-tailed properties. Internet traffic
was classified in alpha and beta flows in the paper [9].
It was shown that large transfers over high-capacity links,
called alpha flows, produced non-Gaussian traffic, while the
beta flows—low-volume transmissions—produced Gaussian
and long-range dependent traffic. Long sequences of back-to-
back packets can cause significant correlations in short time
scales.
The majority of the papers focus on the modeling issues of

bursty traffic, but there are also an increasing number of pa-
pers dealing with controlling self-similar traffic. For instance,
the paper [10] presents an algorithm to control self-similar
traffic. According to the authors, the algorithm can reduce
the burstiness of packet flows at the intermediate routers
before forwarding them. Other papers, such as [11] stresses the
importance of the accurate and reliable measurement of bursty
Internet traffic. The paper [11] discusses significant techniques
for performance evaluation and control tools used in traffic
engineering.
Some recent papers have taken a different path [12], [13].

The authors of [12] believe that it is time to revisit the Poisson
traffic assumption in the Internet backbone. Their position is
that traditional Poisson models can be used again to represent
the characteristics of the new types of traffic flows in the high-
speed backbone of the Internet at the beginning of the decade
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[14], [15]. They argue that as the amount of Internet traffic
grows dramatically, the huge number of different multiplexed
flows can moderate and eventually eliminate irregularities of
the network traffic, such as burstiness. The paper reports
the analysis of traces of the Internet backbone from 2003.
The authors found that packet arrivals appeared Poisson at
sub-second time scales, the traffic appeared nonstationary at
multi-second time scales, and the traffic exhibited long-range
dependence at scales of seconds and above.
In one of our previous papers [13] we applied the theory

of Smoothly Truncated Levy Flights and the linear fractal
model in examining the variability of Internet traffic from
self-similar to Poisson. The paper demonstrated that the series
of interarrival times of 2003 traces of the Internet backbone
was still close to a self-similar process, but the burstiness of
the packet lengths decreased significantly compared to earlier
traces. Instead of taking a yes-or-no position, we characterized
these traces with three parameters of Lévy Flights and posi-
tioned a particular trace somewhere in the space generated by
the Poisson and self-similar Lévy processes.
In this paper we analyze traffic traces captured in both

directions from an OC192 link of the Internet backbone in
2008. We apply our new analytical methods to illustrate the
tendency of the fractal nature of the Internet traffic. We are
characterizing the network traffic trace as a time series of the
arrival time of the packets. The instruments of our analysis
are the so called Truncated Lévy Flights [16].
We show that the burstiness of the interarrival times de-

creased significantly compared to earlier traces. Furthermore,
we found that in many traces the series of the interarrival times
was Gamma distributed getting closer to Poisson.
The second section describes the mathematical models ap-

plied for the analyses of the traces. The third section discusses
the types of traces used in our work. The fourth sections
present the results of the application of our models to the data,
followed by the conclusion in section five and the Appendix
containing the detailed descriptions of the methods used in the
paper.

II. TRAFFIC TRACES
We analyzed packet traces collected for four hours by

CAIDA1 in May, 2008. The data sets contained anonymized
traffic traces from an Internet data collection monitor on an
OC192 Internet backbone link (9953.28 Mbps). The Internet
data collection monitor was located in Chicago, IL, and was
connected to a Tier1 ISP between Chicago, IL and Seattle,
WA.
The traffic was captured by two network monitoring cards

in both directions. A single card was connected to a single
direction of the full-duplex backbone link. The directions were
denoted by A (Seattle to Chicago) and B (Chicago to Seattle).
Due to the size of the original trace files (Compressed size
of direction A is 4.1GB, compressed size of the trace in
direction B is 14 GB), we took only smaller, couple of minutes

1Support for CAIDA’s OC192 Traces is provided by the National Science
Foundation, the US Department of Homeland Security, DARPA, Digital
Envoy, and CAIDA Members

samples from both directions: Trace A was 2GB and Trace
B was 3.2GB. These traces were further divided into twelve
slices each with one million bytes in lengths (220 = 1048576)
denoted by A1, ..,A12 and B1,...,B12 respectively.
The capture cards supported a timestamp precision of

around 233 picoseconds. Since the card’s output file format
was not supported by the majority of traffic analysis tools,
CAIDA converted the original traces to a format with nanosec-
ond timestamp precision along with the packet lengths for both
IPv4 and IPv6 packets separately.
It is noticeable from the size of the traces that direction

A had less traffic then direction B. A possible reason of the
difference is that many content servers were located at one end
of the link. Another interesting observation of the traffic was
that based on a smaller sample, only a small portion (~8.6%)
of IPv4 addresses was captured as both source and destina-
tion IP addresses in packets after merging both directions.
This could be the indication that the network traffic in this
area of the backbone may have been routed asymmetrically
(Email communications with Emile Aben, Data Administrator,
CAIDA/SDSC/UCSD).

III. OUR MODEL
A. Smoothly Truncated Lévy Flights
In this section we introduce a model: The Smoothly Trun-

cated Levy Flights (STLFs). The concept of the more general
distribution, called tempered stable distribution, is due to
Rosiński [18] (see, e.g., [16] and [19] for a partial history of
these works). STLFs will be applied below for describing the
distribution of the interarrival times of the packet traces. Since
the interarrival times are positive, we consider STLF with a
totally asymmetric distribution. It is given by the cumulant
function (log of the characteristic function)

ψX (u) = aΓ (−α) [(λ− iu)α − λα] , (1)

where α ∈ (0, 1) and λ, a > 0. A more general discussion
of STLF is given in Appendix. This distribution depends on
three parameters: the index α, the truncation parameter λ, and
the scale parameter a. These parameters introduced in [13]
provide some information about the position of the distribution
in the following manner:
Property 1. If α and a are fixed and λ tends to zero, then the

limit distribution is a totally asymmetric α−stable distribution
and the corresponding Lévy process is self-similar.
Property 2. If λ and a are fixed and α tends to zero, then

the limit distribution is Gamma with parameters (a, λ). In
particular, if a is 1, then the limit is exponential, therefore
the Lévy process is Poisson.
Property 3. If λ and α are fixed, then for small a the

distribution is close to the α- stable distribution and for large
a the distribution is close to Gaussian.
Both λ and a depend on the scaling of interarrival times

X. When α is zero and the parameter a equals one, then
the distribution is exponential. Since we are interested in the
distance of the traces from being exponential, we choose a =
1. Therefore, the distance from the α−stable distribution can
be measured by the single parameter λ provided α is small.
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More precisely, if X is distributed as STLFα (a, 0, λ), then
the distribution of cX is STLFα (acα, 0, λ/c), where c > 0.
In case α = 0, we get Propety 2 above.
For m ≥ 1, the cumulants, derived from the cumulant

function (1), are given in terms of the parameters α, λ, and
a, namely,

cumm (X) = aλα−mΓ (m− α) . (2)

IV. PACKET INTERARRIVAL TIMES

We are going to search for a distribution that would be
suitable for characterizing the interarrival times by applying
the family of Lévy processes. The Poisson process is one of
the simplest Lévy processes (see, e.g., [24]) with the main
assumption that the increments—the interarrival times— are
independent, homogeneous and exponential. Changing the dis-
tribution of the increments we obtain a wide variety of Lévy-
stable processes as candidates for modeling the interarrival
times [25]. The heavy tail of a distribution also implies that the
moments do not exist, so these distributions are not appropriate
for modeling purposes. Other members of the family of Lévy
processes, the Smoothly Truncated Lévy Flights (STLF), have
higher order moments. Since they have been successfully
applied for finance, biological, and physical phenomena it
is reasonable to apply it for traffic analysis as well. Some
applications of the STLF are demonstrated in [26], [27], [28],
and [16]. The following formula of the cumulants of STLF
provides a means for estimating the parameters by the method
of moments, i.e., calculating the empirical values from the
traffic traces and compare them with the theoretical values
above:

cumm (X) = aλα−mΓ (m− α) ,

More precisely, for a given trace we calculate the estimated
cumulants \cumm, m = 1, 2, . . . 8, then we use the least
squares method for finding the estimates bα , bλ, and ba (for
the details, please see the authors).
We carried out these calculations for the OC192 traces. The

Table 1 and Table 2 contain the estimated parameters bα, bλ,
and ba for direction A and B respectively. The second column
of Table 1 shows that half of the alpha values of the traces in
direction A is close to zero, therefore, it follows from property
2 that the limit distribution is close Gamma with parameters
(bα , bλ). Please note that for traces A9, A10, and A12 the alpha
values are zero, therefore we consider the distribution being
Gamma. The majority of the alpha values in direction B is
around 1/2 corresponding to the Inverse Gaussian distribution.

Traces bα bλ ba
A1 0.09658 0.04486 1
A2 0.15645 0.08802 1
A3 0.30021 0.12282 1
A4 0.17906 0.09853 1
A5 0.11054 0.05847 1
A6 0.09934 0.04399 1
A7 0.20211 0.11745 1
A8 0.08422 0.03182 1
A9 0 0.16318 0.86673
A10 0.00699 0.15841 0.81487
A11 0.08522 0.02687 1
A12 0 0.16705 0.84965

Table 1. Estimated STLF parameters, direction A.

Traces bα bλ ba
B1 0.47701 0.08701 1
B2 0.44731 0.09006 1
B3 0.40701 0.08398 1
B4 0.43144 0.08824 1
B5 0.45038 0.09043 1
B6 0.27388 0.0696 1
B7 0.44736 0.08575 1
B8 0.28557 0.07404 1
B9 0.4586 0.09149 1
B10 0.32728 0.07944 1
B11 0.58562 0.07973 1
B12 0.36027 0.08969 1

Table 2. Estimated STLF parameters, direction B.

Figure 1 corresponds to slice A9 in Table 1 shows the log of
estimated cumulants \cumm, and the log of cumulants ĉumm,
m = 1, 2, . . . 8, of the Smoothly Truncated Lévy Flights when
the parameters are estimated, i.e.,

ĉumm (X) = babλbα−mΓ (m− bα) .
It is shown in figure 1 that the fitting is very good.

V. CONCLUSION
In this paper we attempted to answer the question: Does

the Internet still have fractal properties? We analyzed traffic
traces captured by CAIDA in May 2008 from an OC192,
high-speed link of the Internet in both directions, A and B.
We applied our model to the traces to illustrate the trend of
Internet traffic in terms of self-similarity relative to previous
traffic traces. Our model, built on the Truncated Lévy Flights,
positioned a particular trace somewhere in the space generated
by the Poisson and self-similar Lévy processes. We compared
the series of the interarrival times of the OC192 traces in
direction A with the interarrival times in direction B. We
found that the burstiness of the interarrival times decreased
significantly compared to earlier traces, especially in direction
A. Furthermore, we found that in many traces the distribution
of the interarrival times was Poisson deviating from previous
observations. Therefore, in answering our original question,
we can conclude that based on the sample traces, the Internet
is losing its self-similar nature that was so prevalent for years.
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Fig. 1. Comparison of the STLF log-cumulants and estimated ones of the
OC192 trace.
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VI. APPENDIX
A. STLF
Let us recall that the STLF X(t) is a Lévy process, i.e.,

a process with homogeneous and independent increments and
X(0) = 0. The probability distribution of X = X(1) has
characteristic function of the form

ϕX (u) = exp (ψX (u)) ,

where the cumulant function

ψX (u) = aλα [pζα (−u/λ) + qζα (u/λ)] + iub,

and λ > 0, a, p, q ≥ 0, p+ q = 1, b is a real number, and

ζα (r) =

⎧⎨⎩ Γ (−α) [(1− ir)
α − 1] , for 0 < α < 1;

(1− ir) log (1− ir) + ir, for α = 1;
Γ (−α) [(1− ir)α − 1 + iαr] , for 1 < α < 2.

(See [16] for details.)
Without loss of generality, we only consider the case when

the shift parameter b = 0. Parameters p and q describe the
skewness of the probability distributions, and p = q = 1/2
yields a symmetric distribution. Parameter λ will be referred
to as the truncation parameter.
In the case of 0 < α < 1, the cumulant function is given

by the formula

ψX (u) = aλαΓ (−α)
h
p
³
1 + i

u

λ

´α
+ q

³
1− i

u

λ

´α
− 1
i
,

(3)
and if p = 0, the cumulant function

ψX (u) = aλαΓ (−α)
h³
1− i

u

λ

´α
− 1
i

(4)

= aΓ (−α) [(λ− iu)α − λα] ,

describes a distribution totally concentrated on the posi-
tive half-line. The distribution of X will be denoted by
STLFα (a, p, λ). The index α corresponds to the nontruncated
limit when λ = 0. In this case the distribution of X is the
classical Lévy’s α−stable probability distribution. The scale
parameter a tunes the time unit to a, hence the distribution of
X(t) is STLFα (at, p, λ).
The role of the truncation parameter λ is obvious in the

following particular case. For the one-sided STLFα (a, 0, λ)
distribution with 0 < α < 1, the cumulant function has the
form

ψX (u) = aλαΓ (−α)
h³
1− i

u

λ

´α
− 1
i
. (5)

As λ→ 0, the distribution STLFα (a, 0, λ) converges to the
α−stable distribution STLFα(a, 0, 0).
For a fixed λ, a > 0, as α → 0, the distribution STLFα

tends to the Gamma distribution Γ (a, λ). Indeed, for 0 < α <
1, the Laplace transform φλ of STLFα (a, 0, λ) is

φλ (u) = exp (aλ
αΓ (−α) [(1 + u/λ)

α − 1]) ,

and

lim
α→0 exp

µ
−aΓ (1− α)

(λ+ u)α − λα

α

¶
= exp (−a log (1 + u/λ)) = (1 + u/λ)

−a ,

by the L’Hospital rule.

B. Estimating the parameters of STLFα (a, 0, λ)

Take the logarithm of

cumm (X) = aλα−mΓ (m− α) .

We obtain

log cumm (X) = log a+(α−m) log λ+logΓ (m− α) . (6)

Plug the estimated cumulants \cumm into the left side of
equation (6), then we have three unknowns a, λ, and α. We
obtain

bλ =
[cum3 (X)[cum2 (X)

[cum4 (X) [cum2 (X)−
£
[cum3 (X)

¤2 ,
bα = 2−

£
[cum3 (X)

¤2
[cum4 (X) [cum2 (X)−

£
[cum3 (X)

¤2 ,
ba =

[cum2 (X)bλbα−2Γ (2− bα) .
We obtain more precise estimations for the parameters, if we
use these estimates as initial values and refine the estimates
using nonlinear least squares, which minimizes

8X
m=1

£
cumm (X)− aλα−mΓ (m− α)

¤2
.
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[18] Rosiński, J.: Tempering stable processes. Stochastic Process. Appl. 117
(2007) 677–707

[19] Terdik, G., Woyczynski, W.A.: Rosiñski measures for tempered stable
and related ornstein-uhlenbeck processes. Probability and Mathematical
Statistics (PMS) Urbanik Volume 26 (2006) 213–243

[20] Gong, W.B., Liu, Y., Misra, V., Towsley, D.: Self-similarity and long
range dependence on the internet: A second look at the evidence, origins
and implications. Computer Networks 48 (2005) 377–399

[21] Sinai, Y.G.: Self-similar probability distributions. Theor. Probability and
Appl. 21 (1976) 64–84

[22] Samorodnitski, G., Taqqu, M.S.: Stable Non-Gaussian Random
Processes. Stochastic Models with Infinite Variance. Chapman and Hall,
New York London (1994)

[23] Taqqu, M.S., Teverovsky, V., Willinger, W.: Is network traffic self-similar
or multifractal? Fractals 5 (1997) 63–73

[24] Sato, K.: Lévy processes and infinitely divisible distributions. Volume 68
of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge (1999) Translated from the 1990 Japanese original,
Revised by the author.

[25] Xiaohu, G., Guangxi, Z., Yaoting, Z.: On the testing for alpha-stable
distributions of network traffic. Computer Communications 27 (2004)
447–457

[26] Mantegna, R.N., Stanley, H.E.: Stochastic processes with ultraslow
convergence to a Gaussian: The truncated Lévy flight. Phys. Rev. Lett.
73 (1994) 2946–2949

[27] Koponen, I.: Analytic approachto the problem of convergence of
truncated Lévy flights towards the Gaussian stochastic process. Phys.
Rev. E. 52 (1995) 1197–1199

[28] Hougaard, P.: Survival models for heterogeneous populations derived
from stable distributions. Biometrika 73 (1986) 387–396

34


