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Abstract. In this paper, we investigate the relationship between
small functions and differential polynomials g (z) = d2f ′′ + d1f ′ + d0f ,
where d0 (z) , d1 (z) , d2 (z) are meromorphic functions which are not all
equal to zero with ρ (dj) < n (j = 0, 1, 2) generated by some second order
linear differential equations with meromorphic coefficients.

1. Introduction and statement of result

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna’s value
distribution theory (see [8, 10]). In addition, we will use λ (f) and λ (1/f) to
denote respectively the exponents of convergence of the zero-sequence and the
pole-sequence of a meromorphic function f , ρ (f) to denote the order of growth
of f , λ (f) and λ (1/f) to denote respectively the exponents of convergence of
the sequence of distinct zeros and distinct poles of f .

Consider the second order linear differential equation

(1.1) f ′′ +A1 (z) eP (z)f ′ +A0 (z) eQ(z)f = 0,

where P (z) , Q (z) are nonconstant polynomials, A1 (z) , A0 (z) ( 6≡ 0) are en-
tire functions such that ρ (A1) < degP (z) , ρ (A0) < degQ (z). Gundersen
showed in [7, p. 419] that if degP (z) 6= degQ (z) , then every nonconstant
solution of (1.1) is of infinite order. If degP (z) = degQ (z) , then (1.1) may
have nonconstant solutions of finite order. For instance f (z) = ez +1 satisfies
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f ′′ + ezf ′ − ezf = 0. In [9], Ki-Ho Kwon has investigated the hyper order of
solutions of (1.1) when degP (z) = degQ (z) .

In [4], Z. X. Chen and K. H. Shon have investigated the case when
degP (z) = degQ (z) and have proved the following results:

Theorem A ([4]). Let Aj (z) (/≡0) (j = 0, 1) be meromorphic functions
with ρ (Aj) < 1 (j = 0, 1) , a, b be complex numbers such that ab 6= 0 and
arg a 6= arg b or a = cb (0 < c < 1) . Then every meromorphic solution f(z) /≡
0 of the equation

(1.2) f ′′ +A1 (z) eazf ′ +A0 (z) ebzf = 0

has infinite order.

In the same paper, Z. X. Chen and K. H. Shon have investigated the
fixed points of solutions, their 1st and 2nd derivatives and the differential
polynomials and have obtained the following result:

Theorem B ([4]). Let Aj (z) (j = 0, 1) , a, b, c satisfy the additional hy-
potheses of Theorem A. Let d0, d1, d2 be complex constants that are not all
equal to zero. If f(z) /≡ 0 is any meromorphic solution of equation (1.2),
then:

(i) f, f ′, f ′′ all have infinitely many fixed points and satisfy

λ (f − z) = λ (f ′ − z) = λ (f ′′ − z) = ∞,

(ii) the differential polynomial

g (z) = d2f
′′ + d1f

′ + d0f

has infinitely many fixed points and satisfies λ (g − z) = ∞.

Recently Theorem A has been generalized to higher order differential
equations by the first named author as follows (see [2]):

Theorem C ([2]). Let Pj (z) =
n
∑

i=0

ai,jz
i (j = 0, ..., k − 1) be noncon-

stant polynomials where a0,j , ..., an,j (j = 0, 1, ..., k − 1) are complex numbers
such that an,jan,0 6= 0 (j = 1, ..., k − 1) , let Aj (z) (6≡ 0) (j = 0, ..., k − 1) be
meromorphic functions. Suppose that arg an,j 6= arg an,0 or an,j = can,0

(0 < c < 1) (j = 1, ..., k − 1) , ρ (Aj) < n (j = 0, ..., k − 1) . Then every mero-
morphic solution f (z) /≡ 0 of the equation

(1.3) f
(k)

+Ak−1 (z) ePk−1(z)f
(k−1)

+ ...+A1 (z) eP1(z)f ′ +A0 (z) eP0(z)f = 0,

where k ≥ 2, is of infinite order.

The main purpose of this paper is to study the relation between small
functions and differential polynomials generated by second order linear differ-
ential equation (1.1). For some related results of linear differential equations
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with entire coefficients, we refer the reader to [3]. In fact we will prove the
following result:

Theorem 1.1. Let P (z) =
n
∑

i=0

aiz
i and Q (z) =

n
∑

i=0

biz
i be nonconstant

polynomials where ai, bi (i = 0, 1, ..., n) are complex numbers, an 6= 0, bn 6= 0
such that arg an 6= arg bn or an = cbn (0 < c < 1) and A1 (z) , A0 (z) ( 6≡ 0) be
meromorphic functions with ρ (Aj) < n (j = 0, 1). Let d0 (z) , d1 (z) , d2 (z)
be meromorphic functions that are not all equal to zero with ρ (dj) < n
(j = 0, 1, 2), ϕ (z) /≡ 0 is a meromorphic function with finite order. If f (z)
/≡ 0 is a meromorphic solution of (1.1) , then the differential polynomial

g (z) = d2f
′′ + d1f

′ + d0f satisfies λ (g − ϕ) = ∞.

Remark 1.2. Setting n = 1, ϕ (z) = z and d0, d1, d2 are complex
constants that are not all equal to zero in Theorem 1.1, we get Theorem B.

From Theorem 1.1, we obtain the following corollary:

Corollary 1.3. Suppose that P (z) , Q (z) , A1 (z) , A0 (z) satisfy the
hypotheses of Theorem 1.1. If ϕ (z) /≡ 0 is a meromorphic function with finite
order, then every meromorphic solution f (z) /≡ 0 of (1.1) satisfies λ (f − ϕ) =

λ (f ′ − ϕ) = λ (f ′′ − ϕ) = ∞.

2. Preliminary Lemmas

We need the following lemmas in the proofs of our theorem.

Lemma 2.1 ([6]). Let f be a transcendental meromorphic function of
finite order ρ, let Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denote a finite set of
distinct pairs of integers that satisfy ki > ji ≥ 0 for i = 1, ...,m and let ε > 0
be a given constant. Then the following estimations hold:

(i) there exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that
if ψ ∈ [0, 2π) − E1, then there is a constant R1 = R1 (ψ) > 1 such
that for all z satisfying arg z = ψ and |z| ≥ R1 and for all (k, j) ∈ Γ,
we have

(2.1)

∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

≤ |z|
(k−j)(ρ−1+ε)

.

(ii) there exists a set E2 ⊂ (1,∞) that has finite logarithmic measure,
such that for all z satisfying |z| /∈ E2 ∪ [0, 1] and for all (k, j) ∈ Γ, we
have

(2.2)

∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

≤ |z|
(k−j)(ρ−1+ε)

.

Lemma 2.2 ([1]). Let f (z) be a transcendental meromorphic function
of order ρ (f) = ρ < +∞. Then for any given ε > 0, there exists a set
E3 ⊂ [0, 2π) that has linear measure zero, such that if ψ1 ∈ [0, 2π)\E3, then
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there is a constant R2 = R2 (ψ1) > 1 such that for all z satisfying arg z = ψ1

and |z| = r ≥ R2, we have

(2.3) exp
{

−rρ+ε
}

≤ |f (z)| ≤ exp
{

rρ+ε
}

.

Lemma 2.3. Let P (z) = anz
n+...+a0, (an = α+ iβ 6= 0) be a polynomial

with degree n ≥ 1 and A (z) (/≡0) be a meromorphic function with ρ (A) < n.
Set f (z) = A (z) eP (z), z = reiθ , δ (P, θ) = α cosnθ − β sinnθ. Then for any
given ε > 0, there exists a set E4 ⊂ [0, 2π) that has linear measure zero,
such that if θ ∈ [0, 2π) \ (E4 ∪ E5) , where E5 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is
a finite set, then for sufficiently large |z| = r, we have

(i) if δ (P, θ) > 0, then

(2.4) exp {(1 − ε) δ (P, θ) rn} ≤ |f (z)| ≤ exp {(1 + ε) δ (P, θ) rn} ,

(ii) if δ (P, θ) < 0, then

(2.5) exp {(1 + ε) δ (P, θ) rn} ≤ |f (z)| ≤ exp {(1 − ε) δ (P, θ) rn} .

Proof. Set f (z) = h (z) e(α+iβ)zn

, where h (z) = A (z) ePn−1(z) and
Pn−1 (z) = P (z) − (α+ iβ) zn. Then ρ (h) = λ < n. By Lemma 2.2, for any
given ε (0 < ε < n− λ) , there is E4 ⊂ [0, 2π) that has linear measure zero,
such that if θ ∈ [0, 2π) \ (E4 ∪ E5) , where E5 = {θ ∈ [0, 2π) : δ (P, θ) = 0} ,
then there is a constant R2 (θ) > 1, such that, for all z satisfying arg z = θ
and r ≥ R2, we have

(2.6) exp
{

−rλ+ε
}

≤ |h (z)| ≤ exp
{

rλ+ε
}

.

By
∣

∣

∣
e(α+iβ)(reiθ)

n
∣

∣

∣
= eδ(P,θ)rn

and (2.6) , we have

(2.7) exp
{

δ (P, θ) rn − rλ+ε
}

≤ |f (z)| ≤ exp
{

δ (P, θ) rn + rλ+ε
}

.

By θ /∈ E5 we see that:

(i) if δ (P, θ) > 0, then by 0 < λ + ε < n and (2.7) , we know that (2.4)
holds for a sufficiently large r;

(ii) if δ (P, θ) < 0, then by 0 < λ + ε < n and (2.7) , we know that (2.5)
holds for a sufficiently large r.

Lemma 2.4 ([5]). Let A0, A1, ..., Ak−1, F /≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution with ρ (f) = ∞ of the equation

(2.8) f (k) +Ak−1f
(k−1) + ...+A1f

′ +A0f = F,

then λ (f) = λ (f) = ρ (f) = ∞.
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Lemma 2.5. Let P (z) =
n
∑

i=0

aiz
i and Q (z) =

n
∑

i=0

biz
i be nonconstant

polynomials where ai, bi (i = 0, 1, ..., n) are complex numbers, an 6= 0, bn 6= 0
such that arg an 6= arg bn or an = cbn (0 < c < 1). We denote index sets by

Λ1 = {0, P} ,

Λ2 = {0, P,Q, 2P, P +Q} .

(i) If Hj (j ∈ Λ1) and HQ /≡ 0 are all meromorphic functions of orders
that are less than n, setting

Ψ1 (z) =
∑

j∈Λ1

Hj (z) ej ,

then Ψ1 (z) +HQe
Q /≡ 0.

(ii) If Hj (j ∈ Λ2) and H2Q /≡ 0 are all meromorphic functions of orders
that are less than n, setting

Ψ2 (z) =
∑

j∈Λ2

Hj (z) ej ,

then Ψ2 (z) +H2Qe
2Q /≡ 0.

Proof. The proof of (i) and (ii) are similar, we prove (ii) only. We
divide this into two cases.

Case 1: Suppose first that arg an 6= arg bn. Then arg an, arg bn,
arg (an + bn) are three distinct arguments. Set ρ (H0) = β < n. By Lemma
2.2, for any given ε

(

0 < ε < min
(

1
4 , n− β

))

, there is a set E1 that has linear
measure zero such that if arg z = θ ∈ [0, 2π) \E1, then there is R = R (θ) > 1
such that for all z satisfying arg z = θ and |z| = r ≥ R, we have

(2.9) |H0 (z)| ≤ exp
{

rβ+ε
}

.

By Lemma 2.3, there exists a ray arg z = θ ∈ [0, 2π) \E1 ∪ E2 ∪ E0, E2,
E0 ⊂ [0, 2π) being defined as in Lemma 2.3, E2 having linear measure zero,
E0 being a finite set, such that

δ (2P, θ) = 2δ (P, θ) < 0, δ (P +Q, θ) < 0, δ (2Q, θ) = 2δ (Q, θ) > 0

and for the above ε, we have for sufficiently large |z| = r
∣

∣H2Qe
2Q
∣

∣ ≥ exp {(1 − ε) 2δ (Q, θ) rn} ,(2.10)
∣

∣HQe
Q
∣

∣ ≤ exp {(1 + ε) δ (Q, θ) rn} ,(2.11)
∣

∣HP+Qe
P+Q

∣

∣ ≤ exp {(1 − ε) δ (P +Q, θ) rn} < 1,(2.12)
∣

∣H2P e
2P
∣

∣ ≤ exp {(1 − ε) 2δ (P, θ) rn} < 1,(2.13)
∣

∣HP e
P
∣

∣ ≤ exp {(1 − ε) δ (P, θ) rn} < 1.(2.14)
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If Ψ2 (z) +H2Qe
2Q ≡ 0, then by (2.9) − (2.14) , we have

exp {(1 − ε) 2δ (Q, θ) rn}

≤
∣

∣H2Qe
2Q
∣

∣ ≤ exp
{

rβ+ε
}

+ exp {(1 + ε) δ (Q, θ) rn} + 3

≤ 3 exp
{

rβ+ε
}

exp {(1 + ε) δ (Q, θ) rn} .(2.15)

By 2 (1 − ε) − (1 + ε) = 1 − 3ε > 1
4 , we have

(2.16) exp

{

1

4
δ (Q, θ) rn

}

≤ 3 exp
{

rβ+ε
}

.

This is a contradiction by β + ε < n. Hence Ψ2 (z) +H2Qe
2Q /≡ 0.

Case 2: Suppose now an = cbn (0 < c < 1) . Then for any ray arg z = θ,
we have

δ (P, θ) = cδ (Q, θ) , δ (2P, θ) = 2cδ (Q, θ) ,

δ (P +Q, θ) = (1 + c) δ (Q, θ) , δ (2Q, θ) = 2δ (Q, θ) .

Then by Lemma 2.2 and Lemma 2.3, for any given ε (0 < ε < min{ 1−c
4 , n−β})

there exist Ej ⊂ [0, 2π) (j = 0, 1, 2) that have linear measure zero, where
E0, E1 and E2 are defined as in the case 1 respectively. We take the ray
arg z = θ ∈ [0, 2π) \E1 ∪ E2 ∪ E0 such that δ (Q, θ) > 0 and for sufficiently
large |z| = r, we have (2.9) − (2.11) and

∣

∣HP e
P
∣

∣ ≤ exp {(1 + ε) cδ (Q, θ) rn} ,(2.17)
∣

∣HP+Qe
P+Q

∣

∣ ≤ exp {(1 + ε) (1 + c) δ (Q, θ) rn} ,(2.18)
∣

∣H2P e
2P
∣

∣ ≤ exp {(1 + ε) 2cδ (Q, θ) rn} .(2.19)

If Ψ2 (z) +H2Qe
2Q ≡ 0, then by (2.9) − (2.11) and (2.17) − (2.19) we have

exp {(1 − ε) 2δ (Q, θ) rn} ≤
∣

∣H2Qe
2Q
∣

∣ ≤ exp
{

rβ+ε
}

(2.20) +2 exp{(1 + ε) (1 + c) δ (Q, θ) rn} + 2 exp {(1 + ε) 2cδ (Q, θ) rn} .

By β + ε < n and 4ε < 1 − c, we have, as r → +∞

exp
{

rβ+ε
}

exp {(1 − ε) 2δ (Q, θ) rn}
→ 0,(2.21)

exp {(1 + ε) (1 + c) δ (Q, θ) rn}

exp {(1 − ε) 2δ (Q, θ) rn}
→ 0,(2.22)

exp {(1 + ε) 2cδ (Q, θ) rn}

exp {(1 − ε) 2δ (Q, θ) rn}
→ 0.(2.23)

By (2.20)−(2.23) , we get 1 ≤ 0. This is a contradiction, hence Ψ2 (z)+H2Qe
2Q

/≡ 0.
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Lemma 2.6. Let Ψ20 (z) ,Ψ21 (z) ,Ψ22 (z) ,Ψ23 (z) , Ψ24 (z) have the form
of Ψ2 (z) which is defined as in Lemma 2.5 (ii) and H2Q /≡ 0 is a meromorphic
function of order ρ (H2Q) < n, ϕ (z) /≡ 0 is a meromorphic function with finite
order. Then every meromorphic solution w /≡ 0 of the following equation

Ψ24 (z)w′′ + (Ψ23 (z) +
ϕ′ (z)

ϕ (z)
Ψ22 (z))w′

+(
ϕ′ (z)

ϕ (z)
Ψ21 (z) + Ψ20 (z) +H2Qe

2Q)w = 0(2.24)

is of infinite order.

Proof. Suppose that w /≡ 0 is a meromorphic solution of (2.24) with
ρ (w) < ∞. Set ρ =max{ρ (w) , ρ (ϕ)} < ∞. Then by Lemma 2.1, for any
given ε > 0, there exists a set E ⊂ [0, 2π) that has linear measure zero, such
that if θ ∈ [0, 2π) −E, then there is a constant R = R (θ) > 1 such that for
all z satisfying arg z = θ and |z| ≥ R, we have

(2.25)

∣

∣

∣

∣

w(k) (z)

w (z)

∣

∣

∣

∣

≤ |z|k(ρ−1+ε) ,

∣

∣

∣

∣

ϕ(k) (z)

ϕ (z)

∣

∣

∣

∣

≤ |z|k(ρ−1+ε) (k = 1, 2) .

It follows that on the ray arg z = θ ∈ [0, 2π) − E,

w(k) (z)

w (z)
Hj (z) ej (k = 1, 2; j ∈ Λ2) ,

ϕ′ (z)

ϕ (z)

w′ (z)

w (z)
Hj (z) ej (j ∈ Λ2) ,

ϕ′ (z)

ϕ (z)
Hj (z) ej (j ∈ Λ2)

keep the properties of Hj (z) ej (j ∈ Λ2) which are defined as in (2.9) , (2.11)−
(2.14) or (2.9) , (2.11) , (2.17) − (2.19) . By using similar reasoning to that in
the proof of Lemma 2.5 (ii) , we obtain a contradiction. Then ρ (w) = ∞.

3. Proof of Theorem

We first prove ρ (g) = ρ (d2f
′′ + d1f

′ + d0f) = ∞. Suppose that f (z) /≡
0 is a meromorphic solution of equation (1.1). Then by Theorem C we have
ρ (f) = ∞. First we suppose that d2 (z) /≡ 0. Substituting f ′′ = −A1e

P f ′ −
A0e

Qf into g, we get

(3.1) g =
(

d1 − d2A1e
P
)

f ′ +
(

d0 − d2A0e
Q
)

f.

Differentiating both sides of equation (3.1) and replacing f ′′ with f ′′ =
−A1e

P f ′ −A0e
Qf, we obtain

g′ =
[

d2A
2
1e

2P −
(

(d2A1)
′
+ P ′d2A1 + d1A1

)

eP − d2A0e
Q + d0 + d′1

]

f ′

+
[

d2A0A1e
P+Q −

(

(d2A0)
′
+Q′d2A0 + d1A0

)

eQ + d′0
]

f.(3.2)
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Set

α1 = d1 − d2A1e
P , α0 = d0 − d2A0e

Q,(3.3)

β1 = α′

1 + α0 − α1A1e
P

= d2A
2
1e

2P −
(

(d2A1)
′ + P ′d2A1 + d1A1

)

eP

−d2A0e
Q + d0 + d′1,(3.4)

β0 = α′

0 − α1A0e
Q = d2A0A1e

P+Q

−
(

(d2A0)
′ +Q′d2A0 + d1A0

)

eQ + d′0.(3.5)

Then we have

α1f
′ + α0f = g,(3.6)

β1f
′ + β0f = g′.(3.7)

Set

h = α1β0 − α0β1

=
(

d1 − d2A1e
P
) [

d2A0A1e
P+Q − ((d2A0)

′
+Q′d2A0 + d1A0)e

Q + d′0
]

−
(

d0 − d2A0e
Q
) [

d2A
2
1e

2P − ((d2A1)
′
+ P ′d2A1 + d1A1)e

P

−d2A0e
Q + d0 + d′1

]

.(3.8)

Now check all the terms of h. Since the term d2
2A

2
1A0e

2P+Q is eliminated, by
(3.8) we can write h = Ψ2 (z)−d2

2A
2
0e

2Q, where Ψ2 (z) is defined as in Lemma
2.5 (ii). By d2 /≡ 0, A0 /≡ 0 and Lemma 2.5 (ii) we see that h /≡ 0. By (3.6) ,
(3.7) , we obtain

hf = α1g
′ − β1g,(3.9)

hf ′ = −α0g
′ + β0g.(3.10)

Differentiating both sides of equation (3.10) we obtain

(3.11) (hf ′)
′
= −α0g

′′ + (β0 − α′

0) g
′ + β′

0g.

On the other hand by (1.1), (3.9) and (3.10)

(hf ′)
′

= h′f ′ + hf ′′ =
(

h′ − hA1e
P
)

f ′ − hA0e
Qf

=

(

h′

h
−A1e

P

)

(−α0g
′ + β0g) −A0e

Q (α1g
′ − β1g) .(3.12)

Equating (3.11), (3.12) and applying (3.5) yields

(3.13) α0g
′′−α0

(

h′

h
−A1e

P

)

g′+

[

β0

(

h′

h
−A1e

P

)

+ β1A0e
Q − β′

0

]

g = 0.
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Hence by (3.3) , (3.4) , (3.5) , we can write (3.13) in the form

Ψ24 (z) g′′ +

(

Ψ23 (z) +
h′ (z)

h (z)
Ψ22 (z)

)

g′

+

(

h′ (z)

h (z)
Ψ21 (z) + Ψ20 (z) +H2Qe

2Q

)

g = 0,(3.14)

where

Ψ24 (z) = α0 = d0 − d2A0e
Q,

Ψ23 (z) = A1e
Pα0 = d0A1e

P − d2A0A1e
P+Q,

Ψ22 (z) = −α0 = d2A0e
Q − d0,

Ψ21 (z) = β0 = d2A0A1e
P+Q −

(

(d2A0)
′
+Q′d2A0 + d1A0

)

eQ + d′0,

Ψ20 (z) +H2Qe
2Q = β1A0e

Q − β0A1e
P − β′

0

=
(

α′

1 + α0 − α1A1e
P
)

A0e
Q −

(

α′

0 − α1A0e
Q
)

A1e
P − β′

0

= α′

1A0e
Q + α0A0e

Q − α′

0A1e
P − β′

0

= α′

1A0e
Q +

(

d0 − d2A0e
Q
)

A0e
Q − α′

0A1e
P − β′

0

= α′

1A0e
Q + d0A0e

Q − α′

0A1e
P − β′

0 − d2A
2
0e

2Q.

But ρ (h) ≤ n, Ψ24 /≡ 0, d2A
2
0 /≡ 0 and by Lemma 2.6, we obtain ρ (g) = ∞.

If d2 ≡ 0, d1 /≡ 0, then g = d1f
′ + d0f and g′ = d1f

′′ + (d′1 + d0) f
′ + d′0f .

Since d1 /≡ 0, we conclude ρ (g′) = ∞ by using a similar argument as for the
case d2 /≡ 0. Thus ρ (g) = ∞.

Now we prove λ (g − ϕ) = ∞. First we suppose that d2 (z) /≡ 0. Set

w = g − ϕ, then ρ (w) = ∞, λ (w) = λ (g − ϕ). Substituting g = w + ϕ,
g′ = w′ + ϕ′, g′′ = w′′ + ϕ′′ into (3.14), we obtain

Ψ24 (z)w′′ +

(

Ψ23 (z) +
h′ (z)

h (z)
Ψ22 (z)

)

w′

+

(

h′ (z)

h (z)
Ψ21 (z) + Ψ20 (z) +H2Qe

2Q

)

w

= −

[

Ψ24 (z)ϕ′′ +

(

Ψ23 (z) +
h′ (z)

h (z)
Ψ22 (z)

)

ϕ′

+

(

h′ (z)

h (z)
Ψ21 (z) + Ψ20 (z) +H2Qe

2Q

)

ϕ

]

.(3.15)

Since ϕ (z) /≡ 0 is a finite order meromorphic function, Lemma 2.6 implies

Ψ24 (z)ϕ′′ +

(

Ψ23 (z) +
h′ (z)

h (z)
Ψ22 (z)

)

ϕ′

+

(

h′ (z)

h (z)
Ψ21 (z) + Ψ20 (z) +H2Qe

2Q

)

ϕ /≡ 0.
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Hence by Lemma 2.4, we λ (w) = λ (w) = ρ (w) = ∞. Then λ (g − ϕ) = ∞.
Suppose d2 ≡ 0, d1 /≡ 0. Using a similar reasoning as above we get

λ (w) = ρ (w) = ∞.
Finally, if d2 ≡ 0, d1 ≡ 0, d0 /≡ 0 then we have w = d0f − ϕ, ρ (w) = ∞.

By substituting

(3.16) f =
w

d0
+
ϕ

d0
, f ′ =

(

w

d0

)′

+

(

ϕ

d0

)′

, f ′′ =

(

w

d0

)′′

+

(

ϕ

d0

)′′

into equation (1.1) we obtain
(3.17)
(

w

d0

)′′

+A1e
P

(

w

d0

)′

+A0e
Q w

d0
= −

(

(

ϕ

d0

)′′

+A1e
P

(

ϕ

d0

)′

+A0e
Qϕ

d0

)

.

Writing (3.17) in the form

(3.18) w′′ + Φ1w
′ + Φ0w = −d0

(

(

ϕ

d0

)′′

+A1e
P

(

ϕ

d0

)′

+A0e
Qϕ

d0

)

,

where Φ1 (z) and Φ0 (z) are meromorphic functions with ρ (Φ1) ≤ n, ρ (Φ0) ≤

n. Since d0 /≡ 0 and ϕ(z)
d0(z) is a finite order meromorphic function so by Theorem

C we have

(3.19) d0

(

(

ϕ

d0

)′′

+A1e
P

(

ϕ

d0

)′

+A0e
Q ϕ

d0

)

/≡ 0.

Hence by Lemma 2.4, we have λ (w) = ρ (w) = ∞. Then λ (w) = ∞, i.e.,
λ (d0f − ϕ) = ∞.
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