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Abstract— Measurements of local and wide-area network traf-
fic in the 90’s established the relation between burstiness and
self-similarity of network traffic. Several papers demonstrated
that the widely used Poisson based models could not be applied
for the past decade’s network traffic. If the traffic had been
a Poisson process, the traffic’s burst lengths would have been
smoothed by averaging over a long time scale contradicting
with the observations of the past decade’s traffic characteristics.
Poisson models were abandoned as unsuitable characterizations
of network traffic. Recent papers have questioned the direct
applicability of these results in networks of the new century.
Some authors of these papers demand the revision of previous
assumptions on the Poisson traffic models. They argue that as
newer and newer network technologies are implemented and the
amount of Internet traffic grows exponentially, the burstiness
of network traffic might cancel out due to the huge number
of aggregated traffic flows. Some results are based on analyses
of high-speed Internet backbone links and other traffic traces.
We analyzed the same traffic traces and applied novel methods
to characterize them in terms of packet interarrival time. We
demonstrate that the series of interarrival times is still close to
a self-similar process.

Index Terms— Network traffic, Burstiness, Lévy Flights, Long-
range dependence, Fractal modeling.

1. INTRODUCTION

Network congestion can be caused by several factors. The
most dangerous cause of congestion is the burstiness of the
network traffic. Recent results make evident that high-speed
network traffic is more bursty and its variability cannot be
predicted as assumed previously. It has been shown that
network traffic has similar statistical properties on many time
scales. Traffic that is bursty on many or all time scales can
be described statistically using the notion of self-similarity.
Self-similar traffic has observable bursts on all time scales.

One of the consequences of burstiness is that combining the
various flows of data, as it happens for example in the Internet,
does not result in the smoothing of traffic. Measurements of
local area network traffic [12] and wide-area network traffic
have proved [13] that the widely used Markovian process
models could not be applied for today’s network traffic. If the
traffic were Markovian process, the traffic’s burst length would
be smoothed by averaging over a long time scale contradicting
with the observations of today’s traffic characteristics. Com-
bining bursty data streams will also produce bursty combined
data flow. Various papers discuss the impact of the burstiness
on network congestion [1], [2] and [3]. Their conclusions are
that congested periods can be quite long with losses that are
heavily concentrated.

TThis work was partially supported by the Hungarian NSF OTKA No.
T047067.
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The self-similarity of network traffic was observed in nu-
merous papers, such as [2], [4], [14] and [16]. These and other
papers showed that packet loss, buffer utilization, and response
time were totally different when simulations used either real
traffic data or synthetic data that included self-similarity [5],
[6].

Papers, such as [8] and [21], challenge the direct applicabil-
ity of these results for today’s network traffic. They argue that
traditional Poisson models can be used again to characterize
the aggregate traffic flow of multiplexed large numbers of
independent sources in the Internet backbone [9], [20]. Their
explanation is that as the amount of Internet traffic grows
dramatically mainly due to the implementation of fiber optic
backbone links, the burstiness of network traffic might cancel
out as a result of the large number of multiplexed packet flows.
The paper describes the analyses of packet traces captured in
the Internet backbone. The authors found that packet arrivals
followed the Poisson distribution at sub-second time scales,
appeared to be nonstationary at multi-second time scales,
and the same packet trace showed evidence of long-range
dependence at scales of seconds and above.

In our paper we analyzed the same traffic traces as in [8],
and applied novel methods to characterize them. The network
traffic traces are considered as a time series of the arrival
times of the packets. Due to space limitation the analysis
of the packet lengths is omitted. The arrival times form a
monotone increasing series. The interarrival times are inde-
pendent, identically distributed random variables. The classical
modeling of the interarrival times goes back to Erlang, who
successfully modeled the phone calls by a Poisson process
with interarrival times distributed exponentially. We generalize
his model by changing the distribution to a general family of
infinitely divisible distributions and by the corresponding Lévy
processes [19]. Since a subset of these distributions—called
a—stable distributions (asymmetrical in our case)— provides
self-similar processes, we can analyze not just if the packet
traces are self-similar, but we go beyond the results of previous
papers and measure how close these packet traces are to being
self-similar. The instrument of our analysis is the so called
Truncated Lévy Flights [24].

The second section describes the mathematical models ap-
plied for the analyses of the traces. The third section discusses
the types of traces used in our work. The fourth section
presents the results of the application of our model for the
data, followed by the conclusion in section five.

II. MODEL: SMOOTHLY TRUNCATED LEVY FLIGHTS

In this section we introduce a model: The Smoothly Trun-
cated Levy Flights (STLFs). It will be applied in section IV
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for describing the distribution of the interarrival times of the
packet traces. The time series of the interarrival times under
consideration is the sequence of the differences between con-
secutive arrivals of packets collected in the Internet backbone.
The data collection details are described in section III.

The Truncated Lévy Flights were introduced by Mantegna
and Stanley [15] as models for random phenomena, which
exhibit properties at small time-scales similar to those of
self-similar Lévy processes. The Truncated Lévy Flights have
distributions with cutoffs at large time-scales, i.e., they have
finite moments of any order. Building on Mantegna and
Stanley’s ideas Koponen [11] defined the Smoothly Truncated
Lévy Flights (STLFs), which had the advantage of a nice
analytic form. Independently, the same family of distributions
was described earlier by Hougaard [7] in the context of
a biological application. The concept of the more general
distribution, called tempered stable distribution, is due to
Rosinski [18] (see, e.g., [24] and [23] for a partial history
of these works).

Since the interarrival times are positive, we consider STLF
with a totally asymmetric distribution. It is given by the
cumulant function (log of the characteristic function)

Ux (u) = al' (—a) [(A —iu)” = A, (M

where a € (0,1) and A\,a > 0. A more general discussion
of STLF is given in Appendix C. This distribution depends
on three parameters: the index «, the truncation parameter
A, and the scale parameter a. These parameters provide
some information about the position of the distribution in the
following manner:

Property 1. If « and a are fixed and A tends to zero, then the
limit distribution is a totally asymmetric - stable distribution
and the corresponding Lévy process is self-similar.

Property 2. If A and a are fixed and « tends to zero, then
the limit distribution is Gamma with parameters (a,\). In
particular, if a is 1, then the limit is exponential, therefore
the Lévy process is Poisson.

Property 3. If A and « are fixed, then for small a the
distribution is close to the - stable distribution and for
large a the distribution is close to Gaussian. More precisely,
moments of any positive order ¢ (including fractional) have
the following asymptotics:

log B(|X|) ~ {

For m > 1, the cumulants, derived from the cumulant
function (1), are given in terms of the parameters «, A, and
a, namely,

a — 0;
a — 00.

min(g/a,1)loga +¢;, as
ologa + cs, as

cumy, (X) =aX* "' (m —«).

@

III. TRAFFIC TRACES

The traffic traces were captured from OC48 (2.5 Gbps)
connections of the Internet backbone collected by CAIDA
[26]' (The Cooperative Association for Internet Data Analy-
sis). CAIDA’s OC48 traffic gathering devices compile packet

'Support for CAIDA’s OC48 Traces is provided by the National Science
Foundation, the US Department of Homeland Security, DARPA, Digital
Envoy, and CAIDA Members.

headers at large peering points of several large Internet Service
Providers (ISPs) in the United States. We used the traces
collected in both directions of an OC48 link at AMES Internet
Exchange (AIX) on three different times. The traces have
been divided into a collection of 5-minute files and another
collection of 60-minute files to allow downloading the traces
easier. These packet traces include the packet headers of pack-
ets with IP addresses anonymized with the prefix-preserving
Crypto-PAn library. These traces include only IPv4 traffic. The
precision of the traces is in the order of microseconds. Table
I includes the details of the traces.

IV. PACKET INTERARRIVAL TIMES

The series of interarrival times in the OC48 traces are
modeled as stochastic series. If the series correspond to a
Poisson process, then the interarrival times have exponential
distribution. In Figure 1 we fitted the Gamma distribution to
the interarrival times of the OC48 traces captured on April,
24, 2003 (20030424-001000-0-anon.pcap). (The Gamma dis-
tribution is more general than the exponential distribution. It
reduces to the exponential distribution, if the shape parameter
is 1)

Gamma fitting (0.945761, 30.3951)
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Fig. 1. Gamma distribution of the interarrival times.

Although the estimated parameters (0.945761, 30.3951)
suggest that the distribution of the interarrival times is close
to the exponential distribution, the Kolmogorov-Smirnov test
strongly rejects the hypothesis that the series follows the
Gamma distribution. Consequently, the corresponding process
cannot be a Poisson process. Therefore we reject the hypoth-
esis that the packet trace follows a Poisson process.

We continue the search for a distribution that would be
suitable for characterizing the interarrival times by applying
the family of Lévy processes.

The Poisson process is one of the simplest Lévy
processes (see, e.g., [19]) with the main assumption that the
increments—the interarrival times— are independent, homo-
geneous and exponential. Changing the distribution of the
increments we obtain a wide variety of Lévy-stable processes
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Date Duration Length of the trace in bytes
Aug 14, 2002 | 3 hours, with 1 hour gap in one direction 108GB
Jan 15, 2003 1 hour, in both directions 30GB
Apr 24, 2003 1 hour, in both directions 13GB

TABLE I
DETAILS OF THE TRACES.

as candidates for modeling the interarrival times [25]. Lévy-
stable processes show heavy tail behavior making it impossible
to apply them for the measured interarrival times: Figure 1
depicts that there are very few measurements after 200 micro
second. The heavy tail of a distribution also implies that the
moments do not exist, so these distributions are not appropriate
for modeling purposes. Other members of the family of Lévy
processes, the Smoothly Truncated Lévy Flights (STLF), have
higher order moments. Since they have been successfully
applied for finance, biological, and physical phenomena it
is reasonable to apply it for traffic analysis as well. Some
applications of the STLF are demonstrated in [15], [11], [7],
and [24]. The following formula of the cumulants of STLF
provides a means for estimating the parameters by the method
of moments, i.e., calculating the empirical values from the
traffic traces and compare them with the theoretical values
above:
cum,, (X) =aX*" "I (m — a),

More precisely, for a given trace we calculate the estimated
cumulants ¢um,,, m = 1,2,...8, then we use the least
squares method for finding the estimates @, A, and @ (for the
details, please see the authors).

We carried out these calculations for the OC48 trace
captured on April 24, 2003 (20030424-002500-0-anon.pcap).
Figure 2 shows the log of estimated cumulants cum,,, and
the log of cumulants cum,,, m = 1,2,...8, of the Smoothly
Truncated Lévy Flights when the parameters are estimated,
ie.,

~Q—1

cumy, (X) =ax T (m—a),

where @ = 0.15570, A = 0.01768, @ = 1.30567. Since
the fitting is good, it implies that this trace is close to the
self-similar process because the value of A is very small. At
the same time the trace is not too far from the exponential
distribution considering that the value of a is small and a is
close to 1.

The Table II and III show the estimated parameters of the
0C48 five minute traces.

In general, we can conclude that the distribution of these
traces are close to « - stable distribution, since the estimations
of A are very small, hence the process is close to a self-similar
process (see Property 1 in section II. A). It is also clear from
the parameters that the traces in direction ’1° are closer to the
exponential distribution (see Property 2 in section II. A) than
the ones in direction *0’, since the parameter « is small and a
is close to 1 at least in these traces: 05 1, 10 1, 25 1,45 1,
and 50 1. Therefore, the traces in direction 1’ are closer to a
Poisson process then the traces in direction *0’. The reason for
the different characteristics of the traffic traces in directions
’0” and ’1” is under investigation.

20030424-002500-0-anon.pcap
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Fig. 2. Comparison of the cumulants and estimated cumulants of the OC48
trace.

Trace o A a

(Direction’0")

00 0 0.13106 0.02010 1.21465
050 0.17247 0.01871 1.37994
100 0.2162 0.0177 1.5266
150 0.13525 0.01828 1.23914
20 0 0.15424 0.01771 1.29506
250 0.15570 0.01768 1.30567
300 0.19040 0.01773 1.42341
350 0.22436 0.01802 1.56060
40 0 0.25456 0.01717 1.68368
450 0.19989 0.01760 1.44594
50 0 0.11637 0.01699 1.14885
550 0.14671 0.01818 1.26795

TABLE 1II

THE ESTIMATED PARAMETERS OF THE OC48 5 MINUTE TRACES IN
DIRECTION ’0’.

Trace « A a

(Direction’1’)

00 1 0.19944 0.02666 1.31111
051 0.06867 0.03078 0.99380
10_1 0.08212 0.02729 0.99712
151 0.17804 0.02431 1.29634
20 1 0.17372 0.02390 1.28337
251 0.07781 0.02525 0.98236
301 0.16226 0.02449 1.20388
351 0.11714 0.02452 1.07384
40 1 0.20719 0.02221 1.35552
451 0.07819 0.02307 1.00036
50 1 0.08903 0.02259 1.01705
551 0.16310 0.02214 1.21355

TABLE III

THE ESTIMATED PARAMETERS OF THE OC48 5 MINUTE TRACES IN
DIRECTION 17,
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V. CONCLUSION

We presented a novel model for analyzing the self-similarity
of Internet traffic captured by CAIDA. The network traffic
traces were considered as a time series of the arrival times
of the packets. We characterized the traffic traces with three
parameters of Lévy Flights and placed a particular trace some-
where in the space generated by the Poisson and self-similar
Lévy processes. Previous papers characterized the same traces
as either self-similar or not self-similar traces. We were able
to measure how close these packet traces were to being self-
similar. We concluded that the distribution of these traces was
close to « - stable distribution, since the estimations of A
were very small, hence the process was close to a self-similar
process. It was also clear from the parameters that the traces
in direction ’1” were closer to the exponential distribution than
the ones in direction ’0’. Therefore, the traces in direction ’1’
were closer to a Poisson process then the traces in direction
’0’. The further analyses of the traces will be presented in a
follow-up paper.

APPENDIX
A. Cumulants

It is well known that there is a one to one correspondence
between the moments and cumulants. The expected value is
the cumulant of first order:

cum; (X) = EX.

The cumulants of order 2 and 3 are equal to the central
moments

cumy(X) = Cov(X,X) (3)
= E(X-EX)?,
cums(X) = E(X —EX)?,

but this is not true for higher order cumulants. One might
easily check this for the case of cumulants of order four.
Let us denote the central moment of k** order by m; =
E (X — EX)", then we have

cumy(X) = mg—3m3, 4)
cums(X) = ms— 10mgma,

cumg(X) = mg — 15mymy — 10m3 4 30m3,
cumy(X) = mg — 2lmgmsa — 35myms + 210msms3,
cumg(X) mg — 28megmso — 56msms — 35mi

+420mym3 + 560m3ms — 630ms3,

see [10] p.64, [22] p.10. If a sample z1,x2,...x, IS given,
then the estimated expected value, i.e., first order cumulant is
the mean 7, and the estimated k' order central moment

mry = (z—71)
1 n
= =D (@ -2
n -
j=1

Now, the estimated cumulants are given in terms of estimated
central moments (see formulae (4) above). For example, the
4th order estimated cumulant cumy is calculated by

CTIEM(X) = 7/1\7,4 - 3T?l§

B. STLF
Let us recall that the STLF X (t) is a Lévy process, i.e.,
a process with homogeneous and independent increments and
X(0) = 0. The probability distribution of X = X (1) has
characteristic function of the form
Px (u) =exp (Vx (u)),

where the cumulant function

Ux (u) = aX® [p¢, (=u/A) + ¢, (u/A)] + iub,
and A > 0, a,p,q >0, p+q=1, b is a real number, and

L(—a)[(1—ir)* 1], for 0<a<l;
Co (1) = (1 —ir)log (1 —ir) +ir, for a=1;
['(—a)[(1—ir)* —1+iar], for 1<a<2.

(See [24] for details.)

Without loss of generality, we only consider the case when
the shift parameter b = 0. Parameters p and ¢ describe the
skewness of the probability distributions, and p = ¢ = 1/2
yields a symmetric distribution. Parameter A will be referred
to as the truncation parameter.

In the case of 0 < a < 1, the cumulant function is given
by the formula

by (1) = a°T (—a) [p (1 +z§)a +q (1 - Z%)a - 1] :
and if p = 0, the cumulant function ©
U () = aXT (—a) [(1- zg)a ~1] 6)
= al' (=a) [(A —iu)® = X7,

describes a distribution totally concentrated on the posi-
tive half-line. The distribution of X will be denoted by
STLF, (a,p, \). The index « corresponds to the nontruncated
limit when A = 0. In this case the distribution of X is the
classical Lévy’s a—stable probability distribution. The scale
parameter a tunes the time unit to a, hence the distribution of
X(t) is STLF, (at,p, \).

The role of the truncation parameter A is obvious in the
following particular case. For the one-sided ST LF, (a,0,\)
distribution with 0 < « < 1, the cumulant function has the
form

U () = aXT (—a) [(1- z%)a -1]. %)

As A — 0, the distribution STLF, (a,0,\) converges to
the a—stable distribution ST LF,(a,0,0). The parameter
A looks appropriate for measuring the distance from the
a—stable distribution, but it can be noticed that scaling X
will change the value of A as well. More precisely, if X
distributed as STLF,, (a,0, ) then the distribution of ¢X is
STLF, (ac*,0,\/c), where ¢ > 0. Therefore the distance
from the av—stable distribution can be measured by the para-
meter A when the value a is fixed to 1.

For a fixed \,a > 0, as a — 0, the distribution ST LF,
tends to the Gamma distribution I" (a, \). Indeed, for 0 < o <
1, the Laplace transform ¢, of STLF, (a,0, ) is

éx (u) = exp (aA"T (—a) (1 +u/N)* - 1)),
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and

Clgrb exp (—aF (1-a) "

=exp(—alog (1 +u/N)) =

(A+u)°“—,\°‘)

by the L’Hospital rule.

C. Estimating the parameters of STLF, (a,0, \)
Take the logarithm of

cum,, (X) =aX\* " "I (m —a).
We obtain

log cum,,, (X) =loga+(a —

m)log A+logT' (m — «) .

(I+u/N)7"

®)

Plug the estimated cumulants ¢um,,, (see (4) above) into the
left side of equation (8), then we have three unknowns a, A,
and «. In order to find the parameter values for the best fitting
start with the system of equations when m = 2,3,4, i.e,

logcums (X) = loga+ (a—2)log) ©)
+logl' (2 —«a),
logéumz (X) = loga+ (o — 3)log (10)
+logT' (3 — «)
= loga+ (a—3)logA
+log (2 —a) +1logl' (2 — ),
logcumy (X) = loga+ (a—4)log (11
+logT' (4 — )
= loga+ (o —4)logA
+log (3 —a) +1log (2 — )
+logl'(2—a).
The difference of the first two equations (9-10) gives
log cums (X) — logcumy (X) = —logA +log (2 — )
~ log 2— 047
A
hence o
a=2— )\Cini)’i(X).
cumy (X)

Similarly from the last two equations (10-11)

g G ()
cum (X)’
therefore we obtain
T _ cum; (X) cums (X)
ety (X) e (X) — [emms (X))
o [ (X))
CTTT G () (X) — [amm (X))
a = Aac—/uzIE(X) ‘
A T'(2-0q)

We obtain more precise estimations for the parameters, if we
use these estimates as initial values and refine the estimates
using nonlinear least squares, which minimizes
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X) = a)*""T (m — a)]®

8
E cum,y, (

=1
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