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Blind Submarine Seismic Deconvolution
for Long Source Wavelets
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Hervé Nouzé

Abstract—In seismic deconvolution, blind approaches must
be considered in situations where reflectivity sequence, source
wavelet signal, and noise power level are unknown. In the presence
of long source wavelets, strong interference among the reflectors
contributions makes the wavelet estimation and deconvolution
more complicated. In this paper, we solve this problem in a
two-step approach. First, we estimate a moving average (MA)
truncated version of the wavelet by means of a stochastic expec-
tation–maximization (SEM) algorithm. Then, we use Prony’s
method to improve the wavelet estimation accuracy by fitting an
autoregressive moving average (ARMA) model with the initial
truncated wavelet. Moreover, a solution to the wavelet initializa-
tion problem in the SEM algorithm is also proposed. Simulation
and real-data experiment results show the significant improve-
ment brought by this approach.

Index Terms—Bernoulli–Gaussian (BG) process, blind decon-
volution, Gibbs sampler, maximum likelihood (ML), maximum
posterior mode (MPM), Monte Carlo Markov chains (MCMCs)
methods, Prony algorithm, seismic deconvolution, stochastic
expectation–maximization (SEM).

I. INTRODUCTION

THE aim of marine seismic exploration is to recover the
geological structure of the sea bottom lithography from

the analysis of reflected acoustic waves, originating in a seismic
wavelet emitted by an acoustic source. The recorded seismic
trace can be modeled as the convolution between a source
wavelet and a reflectivity sequence, in the presence of additive
noise [1]. It is often necessary to apply an inverse transform,
called deconvolution, to obtain the reflectivity sequence and
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to improve the detection accuracy of layers from seismic data
records. If the source wavelet is known, reflectivity can be
recovered quite easily from the seismic trace [1]. However, in
marine seismic deconvolution, the source wavelet is not exactly
known, at least for the following two reasons: acoustic sources
such as air guns and sparkers cannot be sufficiently controlled
in operational conditions, and the received signal is modified
by the ghost phenomenon caused by multiple reflections on
the free sea surface and high-frequency absorption during
propagation. In practice, a simple way to account for these later
phenomena consists in modeling them through distortion of the
wavelet [2]. Then, the source wavelet is not exactly known and
a blind deconvolution procedure must be applied to recover the
unknown source wavelet and the reflectivity sequence [3].

If the wavelet is sufficiently short, as in high-resolution
marine seismic exploration [2], where the studied seabed
thickness is only about 100 m with a resolution of 1 m, blind
deconvolution gives only small improvements compared to
raw seismic traces. On the contrary, in some experiments, the
emitted wavelet must have a very small frequency bandwidth
to penetrate deeper in the soil. As a consequence, we get a long
oscillating wavelet. In this case, the seismic image obtained by
stacking up consecutive traces is blurred and blind deconvolu-
tion is really useful in producing quality images for geologists.
In such situations, estimating directly the model parameters as
in [4] generally yields a high variance of the wavelet estimator.

So far, many techniques have been proposed to solve the
problem of blind deconvolution with respect to different criteria.
They are based on the classical hypothesis of reflectivity white-
ness. One early technique that copes with the presence of noise
is based on Wiener filtering [1], [3]. It supplies a minimum phase
wavelet from the second-order statistical content of the trace
signal. Unfortunately, this approach is not satisfactory since the
source wavelet is usually nonminimum phase. Thus, further sta-
tistical information upon the reflectivity sequence must be con-
sidered to recover the wavelet phase [5].

The sparse nature of the reflectivity sequence is not well
described by a Gaussian model, as assumed when minimum-
variance deconvolution [3] is applied. In addition, non-
Gaussianity is mandatory for blind deconvolution of scalar
signals convolved with a nonminimum phase filter. A main
underlying idea in using higher order statistics is highlighting
non-Gaussianity of the deconvolved sequence by maximizing
contrast criteria [6], [7].

Many related solutions have been tested. In particular,
wavelet spectrum envelope can be estimated by using an au-
toregressive moving average (ARMA) model of the wavelet,
that is, a wavelet with rational transfer function. Its phase can
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be recovered by maximizing a kurtosis criterion [8] thanks
to reflections through the unit circle of zeros of the moving
average (MA) part, that is, the polynomial part of the wavelet.
Alternatively, multispectral techniques can be used, for in-
stance, by recovering the phase of the bispectrum of the trace
after it has been whitened at the second order [9].

The main difficulty of these approaches is that they require
a large amount of data to achieve reliable estimation. But, in
general, seismic trace signals often contain less than 1000 sam-
ples, leading to limited performance with the aforementioned
approaches.

Another way of applying the whiteness hypothesis for de-
convolution consists in minimizing the mutual information rate
[10]. It is related to the Küllback–Leibler divergence, which
measures the independence degree of the deconvolved data se-
quence. Unfortunately, this method is not robust with respect to
additive noise level, and its performance drops as the signal-to-
noise ratio (SNR) decreases.

Instead of considering higher order statistics or general pur-
pose information criteria, a nice way to fully account both for
non-Gaussianity and sparseness of the reflectivity sequence con-
sists in considering a prior probability model for the reflectivity
sequence. In [11], Mendel introduced a Bernoulli–Gaussian
(BG) model of the reflectivity sequence. The Bernoulli variable
indicates the presence or absence of a reflector. This model has
been extended to a mixture of two Gaussian distributions by
associating the high-variance Gaussian distribution to strong
reflectors [4], [11]. More precisely, conditional to the value
(zero or one) of the Bernoulli variable, the sequence at the point
under consideration has a Gaussian distribution with either low
or high variance, the later case corresponding to the presence
of a reflector. Recovering this reflectivity sequence from the
data and the corresponding underlying state (strong or weak
reflectivity) enables layers localization in the subsurface. The
direct optimization of the corresponding likelihood criterion
is unfeasible in practice and many approximate solutions to
this problem have been proposed. In particular, the single most
likely replacement (SMLR) [11] is a suboptimal solution to
this problem. It works in the following two iterative steps: 1)
an estimate of the wavelet is calculated from data and an esti-
mated reflectivity sequence and 2) one reflector is updated (the
one that achieves best posterior likelihood increase) with this
wavelet. The SMLR works in real time, but it may converge to
a local optimum. The iterated window maximization algorithm
[12] looks very similar to the SMLR, but instead of modifying
only one variable at each step, many variables are updated at
the same time, leading to improved estimator.

The posterior mean estimator of the reflectivity sequence can
be found by using Monte Carlo Markov chains (MCMCs) [13],
at the expense of higher computational effort.

As far as unknown parameters such as the wavelet or possibly
unknown parameters of the BG model or additive noise variance
are concerned, a standard tool for estimating them is the expec-
tation–maximization (EM) algorithm [14], [15] that maximizes
the likelihood functional of the completed data model, that is the
model that accounts for hidden variables corresponding here to
the reflectivity and its underlying Bernoulli process. But, due to
its deterministic structure, the EM converges to a local optimum.

This problem can be overcome by using stochastic versions of
the EM algorithm, namely, the stochastic EM (SEM) algorithm
[16], [17] or the stochastic approximation EM (SAEM) [18].
Finally, the estimation of the BG noise and source wavelet pa-
rameters can also be solved by means of MCMC techniques in
a fully Bayesian framework. In this case, parameters’ prior dis-
tributions are introduced [19]–[22]. A comparison of SEM and
Bayesian approaches can be found in [4].

After parameter estimation, a further step is carried out to
enable reflectivity sequence deconvolution. This is achieved by
the maximum posterior mode (MPM) method [23], [24], which
also involves MCMC simulation through Gibbs sampling [25].
Let us note that an alternative to the MPM for BG deconvolution
is the closely related but suboptimal iterated conditional mode
(ICM) algorithm [26].

SEM and Bayesian approaches have been applied mostly with
short wavelets. Let us remark that the short wavelet case has
been extended to multichannel deconvolution [27]. So far, the
long wavelet case has not been considered often, despite its prac-
tical interest [28]. In fact, dealing with long unknown wavelets
is a difficult task. In such situations, direct ARMA modeling of
the wavelet generally appears to fail and estimating the param-
eters of a long MA model generally yields high variance of the
wavelet estimator.

In this paper, we propose a new method to deal with long
ARMA wavelet sources in reflectivity blind deconvolution that
overcomes the aforementioned problems within the framework
of classical blind seismic deconvolution techniques. More pre-
cisely, the following two-step approach is proposed. The first
step yields a robust estimation of a truncated version of the
wavelet by using the maximum-likelihood (ML) approach, via
an SEM algorithm. Then, an improved wavelet estimation is
achieved by fitting an ARMA model with the initial wavelet trun-
cated version (MA model), using Prony’s algorithm [29], [30].

In addition, we propose an efficient method to estimate the
order of the initial MA wavelet, based on a tradeoff between
bias and variance, and we introduce a new criterion to ensure
an accurate wavelet impulse response initialization in the SEM
procedure. These are important practical issues for achieving
accurate wavelet estimation.

This paper is organized as follows. In Section II, we describe
the data model and the standard SEM and MPM procedures for
blind reflectivity deconvolution. In Section III, we describe our
two-step improved wavelet estimation procedure. In Section IV,
we address the problems of the initial MA wavelet order selec-
tion and of its initial choice in the SEM procedure. In Section V,
we show on simulations and on real-data experiments the signif-
icant improvement brought by this approach. Finally, we sum-
marize our work in Section VI.

II. DATA MODEL AND STANDARD PROCEDURES FOR BLIND

REFLECTIVITY DECONVOLUTION

The blind submarine deconvolution aims at restoring the se-
quence of sea bottom reflectivity. The observed signal consists
of a noisy version of the reflectivity sequence convolved with
the source wavelet

(1)
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where is the wavelet finite-impulse response
of length , is the reflectivity sequence, and

is the observation white noise sequence with
variance . The reflectivity process is described by means of
a generalized BG process [11], characterized by an underlying
state model with at high reflectivity
points and at low reflectivity points. Thus, condi-
tional to is distributed according to a zero-mean Gaussian
distribution with variance if and if

(2)

with being the probability of having a reflector
at position , and . The BG distribution parameter
vector will be denoted by . For sake of
clarity, we recall derivations of the standard SEM and MPM
procedures.

A. Maximum Likelihood

To solve the deconvolution problem, one needs to estimate
. For that, we can use the log-likelihood criterion

[3]. Unfortunately, direct maximization of the log likelihood
is unfeasible. However, we are confronted with an incomplete
data problem [14] where the incomplete data are given by

, with . Then, we are led to work
with the log likelihood of the completed data model, defined
by . Since , can be
written as

(3)

Each component of this equation can be expressed easily.
As is a vector of independent Bernoulli variables,

. Furthermore, the vari-
ables are independent conditional to the variables . Ac-
cordingly

(4)

(5)

where represents convolution, with

(6)

and and are the convolution matrices associated with
and , respectively.

B. Gibbs Sampler

When the complete data vector is known, with respect to ,
maximizing is straightforward [see (5)]. In practice,

is unknown, but it can be simulated using the Gibbs sampler
[31], which consists of an iterative random simulation according
to the probability distribution ,
where . The moti-
vation of the Gibbs sampling is that iterative drawing of
entries , , of a vector
from amounts to simulating the whole distri-
butions of [31] in a generally much simpler way. Note
that , where

. The expressions
of , , and
can be found in [33].

For the simulation of , iterations of the Gibbs sampler are
implemented as follows [13], [25].

For and , do the following:
• compute [see (1)];
• simulate ( denotes the

Bernoulli distribution with parameter );
• simulate ;

• update :

C. SEM Algorithm

Since we can now simulate with the Gibbs sampler, the
SEM algorithm can be used to estimate . The SEM algorithm
is a stochastic version of the EM where the expectation step is
replaced by simulation of one variable . Starting from an initial
parameter , an iteration of SEM consists of the following
steps, for iterations :

• SE step: simulate ;
• M step: .
The SEM does not converge pointwise. It generates a Markov

chain whose stationary distribution is more or less concentrated
around the ML parameter estimator. A natural parameter esti-
mate from an SEM sequence is the mean of the it-
erates value where the first burn-in
iterates have been discarded. An alternative estimate would be
the parameter , , leading to the highest
likelihood.

Leaving for clarity the iteration exponent , the SEM al-
gorithm can be summarized as follows.

• Initialization: choose and .
• For

— E step: simulate ;
— M step: calculate the parameters

(7)

where .

D. MPM Deconvolution

At the end of the SEM procedure, is well estimated while
reflectivity is not. The fact that the wavelet is accurately es-
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timated while reflectivity parameters are not can be understood
easily: The wavelet estimation benefits from multiple reflectors
diversity, and since it has a smooth shape, its mean square or
ML estimate is little affected by reflector position small shifts or
close reflectors overlapping. On the contrary, the parameters of a
single reflector do not benefit from averaging effects in their es-
timation. Similarly, parameters represent noise
and reflectivity statistics. Thus, they also all benefit more from
statistical averaging since the record is long. Therefore, an ad-
ditional deconvolution procedure based on the MPM algorithm
is performed for recovering from knowledge of [33].

As the parameters, and, in particular, wavelet , are com-
pletely estimated by the SEM procedure, the deconvolution is
no longer blind. But we still need to estimate the hidden vari-
ables in vector from the observation.

To estimate , let us remark that the posterior log likelihood
of conditional to and is

(8)

where the function does not depend on . The
principal separation [11] allows us to address the maximization
of in the following two steps:

• detection: ;
• estimation: .

is quadratic in , for fixed , leading to

(9)

The detection step is not so easy, because the vector has
( is the signal length) configurations. Testing all of them is not
possible. Instead, the posterior mode of each individual can
be searched applying for the MPM [19], [24].

The MPM algorithm simply generates samples of drawn
from just as for the Gibbs sampler used in the SEM
algorithm and described at the end of Section II-B. Then, from
these samples , a decision is made upon each

, and is estimated conditionally to as follows.
• Detect

if

otherwise.
(10)

• Estimate

if

otherwise.

(11)

For , is the posterior mode of . Other values of
correspond to other Bayesian cost functions [34].

III. IMPROVED WAVELET ESTIMATION

In some seismic experiments, the wavelet impulse response
is quite long. In such cases, the mean square error (MSE) of the
estimator is quite large. In particular, the last coefficients of ,
which have small values, are poorly estimated. For this reason,
searching for a vector with reduced length generally enables
a good compromise between bias and variance properties of the
estimator. However, performing the MPM deconvolution with a
truncated wavelet will degrade detection and estimation perfor-
mance for the reflectivity sequence.

The true wavelet can be described by an MA model
of length [MA model] with transfer function

. To avoid using a model with
many parameters when is large, one could instead use
an ARMA model, that is a wavelet with transfer function
in the form . In general,
one can take and much smaller than , in particular,
when dealing with long oscillating wavelets where oscillations
are well modeled by poles of the ARMA model. However, as
discussed in the introduction, direct use of an ARMA model in
the SEM procedure generally fails. Hence, we have developed
the approach described hereafter.

First, we use the SEM procedure described in Section II with
an MA wavelet model, with smaller than the true wavelet
length [35]. Then, from this truncated estimate of the
wavelet, with transfer function ,
we look for an ARMA wavelet with transfer function

(12)

Then, the idea is to choose coefficients and
such that for . This can be
achieved in a rather simple way by minimizing

(13)

where for . This method is known as Prony’s
method [29], [30]. Straightforward calculations show that the
optimum of is , where

(14)

and

...
. . .

...
. . .

(15)



NSIRI et al.: BLIND SUBMARINE SEISMIC DECONVOLUTION FOR LONG SOURCE WAVELETS 733

Fig. 1. Estimated wavelet for different initializations.

To estimate the respective orders and of the AR and MA
parts, in [8], [36], we have proposed to use a Kurtosis maxi-
mization criterion. Although this criterion is efficient in many
cases, it may not be very satisfactory in certain situations. Al-
ternatively, we propose to estimate and by use of an exhaus-
tive search. For this aim, we use a nested loop with and as
indices. The optimum for is obtained when the criterion

is minimum. We will call SEM P (P for Prony) the
parameter estimation procedure that we have just proposed that
consists in applying the SEM algorithm followed by an ARMA
extension of the initial MA wavelet estimate.

IV. INITIAL MA MODEL ORDER SELECTION AND MAXIMUM

POSITION SELECTION

We now consider two important practical issues for the
SEM P algorithm working properly. Note that these consider-
ations can be useful for many other algorithms.

A. Initial MA Model Order Selection

In this section, we explain how the length of the initial
MA wavelet can be selected. Our approach is based on an
MSE criterion. The idea is to look for the order , for which the
estimated wavelet is as close as possible to the true wavelet .
Unfortunately, the true wavelet itself is not known in practice.
As the wavelet length is in some (possibly large) interval ,
we consider all the wavelet estimates supplied by the
SEM algorithm for these choices of . The MSE criterion would
lead to choosing . Since is
unknown, we estimated it as

(16)

If we compare the functions MSE: and

MSE: , we have checked on simulations that

they roughly behave in the same way (see Section V). Thus, a
good choice for is

(17)

B. Maximum Position Selection

It is well known that the nonminimum phase structure of the
wavelet makes its estimation complicated. One may think
that, due to the stochastic approximation of the expectation in
the first step of the SEM algorithm, it should not be sensitive
to the initialization parameters, but this is not the case. This
problem has already been pointed out in [37], where a simu-
lated annealing version of the SAEM algorithm is proposed to
solve the deconvolution problem.

As mentioned previously, the wavelet estimation is not ro-
bust with respect to the initialization. If we initialize with the
vector , , that has all entries equal to zero ex-
cept the th one which is equal to 1, we observe that the SEM
algorithm yields an estimate of with its maximum at entry .
As an example, Fig. 1 shows an estimated wavelet obtained for
distinct initializations in the case of Ricker’s wavelet.

To understand this phenomenon, let us remark that the knowl-
edge of the data vector , given by , permits us
to recover up to a time translation and an amplitude shift but
not , since we also have

(18)

for any amplitude and any delay , where and de-
note, respectively, the function delayed by and delayed
by . This explains why the SEM algorithm does not look for
a wavelet with its maximum, apart from the position of the
nonzero component of the initial guess . This interpretation is
impressively confirmed by simulations: For more than 99% of
the simulations, the estimated wavelet has its maximum at po-
sition when it is initialized with .
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Fig. 2. Gaussian mixture reflectivity sequence.

To end this discussion, let us remark that one should not con-
clude from relation (18) that any initialization would be satis-
factory due to the delay compensation between and . In-
deed, this would be true only if the searched wavelet support
were infinite. Here, bad initialization may cause poor estimation
of the wavelet, due to the limited wavelet support. We have seen
in Section II that limiting the support is necessary to achieve a
good parameter estimation performance.

We propose a deterministic procedure for initializing the
MA wavelet estimate. First, we have performed the decon-
volution for each initialization of . Then,
we note if the estimator obtained from initialization

has a positive derivative at the origin, and if it is
negative. It can be checked on simulations that
changes sign for entries corresponding to local optima of the
true wavelet. A justification of this phenomenon is presented in
the Appendix. Simulations on several examples show the very
good practical behavior of this technique (see Section V). The
retained solution for the maximum position is chosen among
the entries of for which its sign changes, by selecting the
one for which the kurtosis of the estimated reflectivity is
maximum.

V. RESULTS

In this section, we evaluate performance of the proposed
methods for the wavelet estimation and for the SEM algorithm
initialization, through simulations and real data experiments.

A. Simulation Results

We will define the SNR as

SNR (19)

where is the source wavelet energy and is the wavelet
length: .

1) Reflectivity and Noise Parameters: The reflectivity se-
quence samples are distributed according to a Gaussian mixture

Fig. 3. Noisy seismic data (SNR = 10 dB).

Fig. 4. MSE: “—” ; MSE: “- - -”.

TABLE I
SEM DECONVOLUTION: ESTIMATED PARAMETERS FOR SNR = 13 dB

with , , , and .
A typical reflectivity sequence is presented in Fig. 2. The cor-
responding seismic trace is presented in Fig. 3. This synthetic
trace is generated by using the long convolution wavelet shown
in Fig. 5.

To show that it is better to use a truncated wavelet estimator
instead of a full length one, we compare the quality of the es-
timators for parameters in both cases. In addi-
tion, we check this for SNR 8 dB and SNR 13 dB, which
roughly corresponds to the range of SNR values in practical ex-
periments. Results are presented in Tables I and II. It clearly
appears that better parameter estimation for is
achieved with the truncated wavelet. One main difference be-
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TABLE II
SEM DECONVOLUTION: ESTIMATED PARAMETERS FOR SNR = 8 dB

TABLE III
KURTOSIS OF r̂ FOR THE SEM PROCEDURE INITIALIZED FROM THE FIRST

LOCAL MAXIMA OF ĥ DETECTED FROM C (WAVELET OF FIG. 5)

Fig. 5. Estimated maxima positions for a long wavelet.

Fig. 6. Estimated maxima positions for Marmousi’s wavelet.

tween using truncated and full size wavelet is that in the second
case there are more degrees of freedom; in particular, the trun-
cated wavelet can be seen as a full size one with zeroed last

Fig. 7. Estimated maxima positions for Morlet’s wavelet.

Fig. 8. Estimated maxima positions for Ricker’s wavelet.

coefficients. Thus, the long size wavelet can be adjusted to fit
more potential reflectors in the seismic trace. This explains why

is overestimated when the long wavelet is used.
2) Wavelet Estimation: One important issue discussed in

Section IV-A was the choice of the length of the truncated
wavelet. For data of Fig. 4, we computed the empirical function
MSE and the true MSE .
The shape of both criteria is roughly the same, which makes it
meaningful choosing the position of the minimum of MSE to
define the length of the truncated wavelet.

The problem of wavelet initialization led us to define the func-
tion (see Section IV-B). As mentioned in Section IV-B, initial-
izations with wavelets with only one nonzero entry at a transi-
tion of function are retained. The kurtosis of the deconvolved
sequence with the corresponding estimated wavelets can be seen
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Fig. 9. Estimated long wavelet by a standard SEM procedure.

Fig. 10. Estimated Marmousi’s wavelet.

in Table III. The maximum of the kurtosis is achieved for ini-
tialization at position 9 which corresponds to the wavelet
maximum position.

We tested the standard SEM procedure [4] with several
wavelets. They are represented in Figs. 5–8 together with the
corresponding functions. Vertical lines represent the tran-
sitions of between values and . We check that in all
cases there is a good match between these transitions and the
local optima of the wavelet. Figs. 5–8 show the corresponding
deconvolution wavelets. We can see that the short wavelets
(Figs. 10–12) are well estimated, which justifies using the

Fig. 11. Estimated Morlet’s wavelet.

Fig. 12. Estimated Ricker’s wavelet.

standard SEM procedure in such cases. On the contrary, the last
part of the long wavelet is poorly estimated.

Now, let us show that the proposed SEM P wavelet estima-
tion procedure works better for long wavelets than the standard
SEM. Indeed, we can observe in Fig. 13 that the two-step esti-
mation (truncated wavelet estimation followed by Prony exten-
sion) achieves almost perfect long wavelet recovery. Figs. 9 and
13 show the significant gain of the SEM P against the SEM.
Furthermore, to study improvements brought by the deconvolu-
tion method, we consider the following performance indices:

and (20)

represents the error energy of the estimated wavelet,
while represents the error of noiseless data reconstruc-
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Fig. 13. Estimated wavelet by SEM + P.

TABLE IV
MSE AND MSE PERFORMANCE INDICES FOR SEM AND SEM + P

METHODS (WAVELET OF FIG. 5)

tion, that is, the convolution of wavelet and reflectivity. Indeed,
direct comparison of and is not suitable since is a sparse
spike train sequence and thus very small reflector location off-
sets may lead to high MSE .

Table IV confirms the improvement of the performance in-
dices and [see (20)], with the SEM P pro-
cedure compared to the standard SEM when applied to a long
wavelet.

3) Reflectivity Estimation: Once the wavelet and model
distribution parameters are estimated, we are
able to recover the reflectivity sequence by means of the MPM
algorithm. We are going to see that the quality of the estimator of

strongly influences the estimation performance
of .

The reflectivity sequence estimated by the SEM MPM
and the (SEM P) MPM algorithms are given, respectively,
in Figs. 14 and 15. Note that after applying the algorithms,
it may occur that instead of one reflector two neighboring
reflectors are found, either contiguous or separated by only
one sample. Then, a postprocessing procedure can be applied
to fuse these reflectors at their gravity center with cumulated
amplitudes [4]. With the SEM MPM approach (Fig. 14),
there are often many neighboring strong reflectors, which
prevents applying this technique, while it has been possible to
apply it with the (SEM P) MPM (Fig. 15) because distinct
reflectors had sufficiently separated contributions, leading to
much better results than the standard SEM MPM procedure
(Fig. 14).

Fig. 14. Estimated reflectivity sequence by SEM +MPM (SNR = 8 dB).

Fig. 15. Estimated reflectivity sequence by (SEM+ P)+MPM (SNR= 8 dB).

Fig. 16. Data record (trace 602).

B. Real-Data Experiments

Here, we consider real data acquired by IFREMER,1 con-
sisting of seismic traces obtained from an innovative manner
for synchronizing a cluster of air guns to achieve deeper penetra-
tion. The fact that the sources are not synchronized in their firing

1French Research Institute for Exploitation of the Sea—Institut Français de
Recherche pour L’Exploitation de la Mer (IFREMER), Bretagne, France.
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TABLE V
ESTIMATED PARAMETERS FOR SHOT 1 AND 40, AND MEAN OF 50 SHOTS

Fig. 17. Full length estimated wavelet.

Fig. 18. Truncated estimated wavelet and C function.

order but on their time of maximum energy will decrease the
signal bandwidth, and increase significantly the low-frequency
content, and thus, the penetration. Each source is composed of
13 air guns, shooting a wavelet every 20 s with spectrum band-
width 0–128 Hz. The multitrace streamer is composed of 360
clusters of 16 hydrophones. Its role is to improve the SNR by
summing the received signals. The length of the streamer is
4.5 km and each cluster is separated by 12.5 m.

Fig. 19. MSE.

Fig. 20. Estimated wavelet by SEM + P.

A typical recorded trace is presented in Fig. 16. Fig. 17 shows
the full length wavelet estimated by SEM, while Fig. 18 repre-
sents a truncated wavelet estimated by SEM together with the
corresponding function. The wavelet in Fig. 17 does not cor-
respond to the kind of wavelet generated by air guns.

Fig. 19 shows that a good choice for the truncated wavelet
length is 130 ms and Fig. 20 shows the Prony extension of the
truncated wavelet estimate (SEM P estimate). Fig. 21 shows
the deconvolution results obtained for several traces. Fig. 22
presents the wavelets estimated by the SEM P algorithm for
different recorded seismic traces. We can observe that these
wavelets are somewhat distinct, and thus, wavelet estimation
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Fig. 21. (a) Real data (traces 402 to 406). (b) Estimated wavelet by SEM + P. (c) Estimated reflectivity by (SEM + P) +MPM.

is necessary on each trace for proper recovery of reflectivity.
However, there is a good similarity among them, and thus, the
wavelet estimated for one trace could be a good initialization
candidate for the deconvolution of the other traces.

The parameters estimated with the SEM al-
gorithm are presented in Table V. The noise variance seems to
be the parameter that more varies among traces.

The seismic profile is presented in Figs. 23 and 24. We can see
the deconvolution results obtained with our approach. On raw
data presented in Fig. 23, the main reflectors are about 200-ms
width (see seafloor, for example), and composed of an alterna-
tion of two black and three white phases. In Fig. 24, after de-
convolution, the reflectors are reduced to a single black phase,
about 70 ms wide. Thus, the deconvolution, as expected, im-
proves substantially the resolution of the section. The decrease
of the signal width enables us to define more precisely the re-
lationships between the different seismic units: For example, it
is now much easier to follow the top of the erosional surface
at the top left of the seismic line. It helps discriminating real
events from artifacts: A seismic reflector, about 300 ms below
the seafloor, with a negative polarity, the polarity and existence
of which were not obvious, is now well imaged. Weaker reflec-
tors which were not visible because of their interferences with Fig. 22. Estimated wavelets.
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Fig. 23. Seismic profile. Y-label: shot number. X-label: time (s).

bouncing of the major reflectors are now apparent (see, for ex-
ample, reflectors just below the seafloor).

VI. CONCLUSION

In this paper, we have proposed a new approach for blind de-
convolution of seismic data in the presence of a long wavelet.

We have shown that the estimation of a truncated wavelet fol-
lowed by an ARMA extension (SEM P) yields improved
wavelet estimation, compared to the classical SEM approach.
We have also proposed a new method for choosing the truncated
wavelet order. Furthermore, an efficient procedure has been pro-
posed for the wavelet initialization in the SEM algorithm. Simu-



NSIRI et al.: BLIND SUBMARINE SEISMIC DECONVOLUTION FOR LONG SOURCE WAVELETS 741

Fig. 24. Deconvolved seismic profile. Y-label: shot number. X-label: time (s).

lations and real-data experiments have shown that our approach
achieves significant improvement.

APPENDIX

In this section, we justify why the proposed criterion for max-
imum position selection works efficiently, as shown in the simu-
lation part. Let us recall, as discussed in Section IV-B, that when

the impulse response is initialized with one at the th entry
and zeros at other entries, the SEM algorithm converges to a
solution where the estimated has its maximum at position .
In other words, we can say that the SEM algorithm looks for a
solution that minimizes the norm error with a max-
imum constraint at position .

Let us rephrase this idea in the continuous time domain. We
are led to search for a solution that achieves minimum error
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norm under the null derivative constraint . In mathe-
matical terms, we are considering the following constrained op-
timization problem:

(21)

Equivalently, problem (21) can be rewritten in the Fourier trans-
form domain

(22)

where denotes the Fourier transform of and is the
signal bandwidth. Using Lagrange multipliers (see, for instance,
[38]) and introducing real and complex variations of yields the
following conditions upon the solution of problem (22), denoted
by :

(23)
Indeed, considering the functional

(24)

and denoting by any real valued small variation of ,
the optimality constraint
yields

(25)

leading thus to the first equation of (23). The second equation of
(23) is derived in a similar way by considering imaginary small
variation of . Then, summing both equations of (23) yields

(26)

with . Then, the solution of (22) is of the form

(27)

Now, let us denote , which cor-
responds to the true wavelet in the noise-free case.
After we insert solution (27) in the constraint equation

, it follows:

(28)

Thus, from (27) and (28), we get the time-domain solution

(29)

Now, let us remark that

(30)

Clearly, if , changes sign at if has a
local optimum at point . This shows that, providing the true
wavelet has an horizontal tangent at point 0, the derivative of
the estimated wavelet changes sign around point
[note that the term in the parenthesis in (30) is always positive].
We have checked that this result remains true for wavelets
with small tangent slopes at point 0 which corresponds to most
practical situations, where wavelets have a smooth shape and
thus small slope at the origin.
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