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GROWTH AND OSCILLATION OF DIFFERENTIAL

POLYNOMIALS IN THE UNIT DISC
ABDALLAH EL FARISSI , BENHARRAT BELA [ DI, ZINELA Apiping LATREUCH
ABSTRACT . In this article , we give sufficiently conditions for the solutions and
the differential polynomials generated by second - order differential equations
to have the same properties of growth and oscillation . Also answer to the
question posed by Cao [ 6 ] for the second - order linear differential equations in
the unit disc .
1. INTRODUCTION AND MAIN RESULTS

The study on value distribution of differential polynomials generated by solutions of
a given complex differential equation in the case of complex plane seems to have been
started by Bank [ 1] . Since then a number of authors have been working on the subject
. Many authors have investigated the growth and oscillation of the solutions of complex
linear differential equations in C,see [2,4,7,10,13,17,18,19,21,25,28].
In the unit disc , there already exist many results [3,5,6,8,9,15,16,20, 23,
24,29 ], but the study is more difficult than that in the complex plane .  Recently ,
Fenton -

Strumia [ 1 1 ] obtained some results of Wiman - Valiron type for power series in the
unit disc , and Fenton - Rossi [ 1 2 ] obtained an asymptotic equality of Wiman - Valiron
type for the derivatives of analytic functions in the unit disc and applied to ODEs with
analytic coefficients .

In this article , we assume that the reader is familiar with the fundamental results
and the standard notation of the Nevanlinna ’ s theory on the complex plane and in the
unit disc D={z: |z| < 1},see[14, 18,22,24,26,27]. Inaddition,
we
will use A(f)(A2(f)) and -A(f)-Aa(s)) to denote respectively the exponents ( hyper -
exponents ) of convergence of the zero - sequence and the sequence of distinct zeros
of a meromorphic function f, p(f) to denote the order and p2(f) to denote the
hyper - order of f. See [9, 15,20, 24 ] for notation and definitions .

Definition 1 . 1. The type of a meromorphic function f in D with order 0 < p(f) <
oo is defined by

7(f) = limsup(l — r)”(f)T(r, ).
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2 A . EL FARISSI, B.BELA [ DI, Z.LATREUCH EJDE-2010 /87 Consider the linear
differential equation

FE 4 A1 (2)fF Y 4o Ay(2)f + Ag(2)f =0, (1.1)

where Ag, A1, ..., Ax_1 are analytic functions in D, and k is an integer ,k > 1.
Theorem 1. 2 ([5]). Let Ay(2),...,Ax—1(z), the coefficients of (1.1), be
analytic
in D. If max {p(4;):7=1,....k—1} < p(Ao), then p(Ao) < p2(f) < aar for all
s o lutio ns fequivalence —negationslash0 of (1. 1), where ap = max {pM(4;) :
j=0,.. k—1}

Recall that the order of an analytic function f in D is defined by

sup Jog™t logt M(r, f)

M(f) =1lim,_
P (f) rlgl loglir

)

where M (r, f) = max|;|—, | f(2) | . The following two st atements hold [ 24 , p . 205 ] .
(a) If fis an analytic function in D, then p(f) < pM(f) < p(f) + 1.
(b)) There exist analytic functions f in D which satisfy pM(f) # p(f). For
example , let > 1 be a constant , and set

P(z) = exp{(1 —2)7"},
where we choose the principal branch of the logarithm . Then p(v) = p — 1

andpM (¢) = p, see[9].

In contrast , the possibility that o ccurs in ( b ) cannot o ccur in the whole plane
C, because if p(f) and pM(f) denote the order of an entire function f in the plane C
( defined by the Nevanlinna characteristic and the maximum modulus , respectively ) ,
then it is well know that p(f) = pM(f).
Theorem 1 . 3 ([5])- Under the hypotheses of Theorem 1. 2, if
p2(4;) < 00, (j =
0,....,k —1), then every s o lution f#0 of (1.1) satisfies -Xyiy — 2) = p2(f).

Consider a linear differential equation of the form

"+ A4 f + Ao(2)f = F, (1.2)

where A;(z), Ao(z)equivalence —negationslash0, F(z) are analytic functions in the unit
disc D ={z: z|< 1} . It is well - known that all solutions of equation ( 1. 2 ) are
analytic functions in D and that there are exactly two linearly independent solutions of
(1.2);8ee[15].

Many important results have been obtained on the fixed points of general tran -
scendental meromorphic functions for almost four decades , see [ 28 ] . However , there
are few studies on the fixed points of solutions of differential equations , specially in
the unit disc . Chen [ 7 | studied the problem on the fixed points and hyper - order
of solutions of second order linear differential equations with entire coefficients . After
that , there were some results which improve those of Chen ,see [2,10,19,21,25
] . Tt is natural to ask what can be said about similar situations in the unit disc D. Re -
cently , Cao [ 6 ] investigated the fixed points of solutions of linear complex differential
equations in the unit disc .

The main purpose of this article is to give sufficiently conditions for the solutions
and the differential polynomials generated by the second order linear differential equa-
tion (1. 2 ) to have the same properties of the growth and oscillation .  Also , we
answer to the following question posed by Cao [ 6 ] :



How about the fixed points and iterated order of differential poly -
nomial generated by solutions of linear differential equations in the
unit disc ?
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denote

ag = dg — don, ,80 = dngAl — (dQAO)/ — d1A0 + d6 (13)
a1 =dy —de Ay, Bl =doA} — (doAr) — d1 Ay — d2Ag +do + d. (1.4)
h:alﬁ()faoﬂl, (15)
o o o .
W) = a1 (@' — (doF) — an F) — Bl(p — doF) (16)

h

5

where Ag, A1,dy,d1,ds, p and F are analytic functions in the unit disc D = {z : | z |[< 1}
with finite order .

Theorem 1 . 4 . Let  Ai(z), Ao(z)equivalence — negationslash0 and F' be
analytic functions in D,  of finite order . Let dg,di,dy  be analytic functions
in D that are not al | equal to zero with p(d;) < oo (j = 0,1,2) such that
hequivalence — negationslash 0, where h is defined by (1.5). If f

is
an infinite order s o lutio n of (1. 2) with p2(f) = p, then the differential polynomial

gy = dof" +dif' + do fsatis fies
plgr) = p(f) =00, p2(gf) = p2(f) = p. (1.7)

Theorem 1. 5. Let Ai(z), Ao(2)equivalence —negationslashQ and F be analytic
functions in D of finite order . Let do(z2),d1(z),d2(2)  be analytic functions
in D which are not al | equal to zero with p(d;) <oo (5 =0,1,2) such that

hequivalence — negationslash0, andlet o(z) be an analytic

function in D with finite order such that (z) is not a s o lution of (1. 2) .
If fis an infinite order s o lutio n of (1. 2 ) with p2(f) = p, then the differential
polynomial

— —

gr =dof" +dif +dofsatisfies
Ay —®) =gy —») = plgy) = p(f) =00, (1.8)
Ao(g; — @) = Aalgr — ) = p2(g5) = p2(f) = p. (1.9)

Remark 1. 6. In Theorem 1.5, if we do not have the condition (%)
is not a solution of (1. 2 ), then the conclusions of Theorem 1 . 5 does not hold . For
example ,

the functions f1(z) = 1—2z and f2(z) = (1—z2) exp ( exp =) are linearly independent
solutions of the equation

"+ A1(2)f + Ao(2)f =0, (1.10)

where

exp liz 1 exp liz 1
Ao(z) = T2 128 Afz) = T(1—2)2 (1-2)2

Clearly f = f1+ f2isasolutionof (1. 10). Setds =d; =0 and dy = liz

Then gy =dof, h= —d3 and ¢(z) = % If we take ¢ = dpf1, then 9(z) = fl
is a solution of (1. 10 ) and we have

Mgy — ) = Adof — dof1) = Mdo f2) = Aexp(exp
On the other hand ,

172)):0'



)) = oo

Theorem 1. 7. Let Ai(z),Ao(z) Z0 and F be finite order analytic functions in
D such that all s o lutions of (1.2) are of infinite order . Let do(2),d1(z),d2(2)
be analytic functions in D which are not al | equal to zero with p(d;) < oo(j =0,1,2)
such that hequivalence — negationslash0, andle t ©(z) be an analytic function
i D with finite o rder . If

p9r) = p(dof) = p(dof1 +dof2) = p(1 + exp(exp i .
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lution of (1.2) with p2(f) = p, then th e differential polynomial

g9r =

daof" + dyf' + do fsatisfies(1.8)and(1.9).

Remark 1 . 8. In Theorems 1. 4, 1. 5,1. 7, if we do not have the
condition h # 0, then the differential polynomial can be of finite order . For example
, if dao(z)equivalence — negationslash0, is a finite order analytic function in D and
do(z) = Ao(2)dz2(2),d1(z) = A1(2)da(z), then h = 0 and gy = F(z)d2(z) is of finite
order .
In the following we give an application of the above results .

Corollary 1.9. Let Ao(z), Ai(z),do,d1,ds be analytic functions in D such
that

max{p(A1), p(d;) (j = 0,1,2)} < p(Ao) = p(0 < p < 50), 7(Ao) = 7(0 < T < o0),

and le t pequivalence — negationslash0 be an analytic function in D with p(p) < oo.
If fequivalence — negationslash0 is a s o lution of equation (1. 10 ), then the
differential polynomial gy = dof" + dif' + dof satisfies

Agr — @) = Mgy =) = plgy) = p(f) =00, (1.11)
am = Aa(g; — @) = Aalgr = ¢) = p2(95) = p2(f) = p(Ao), (1.12)
whereay = max{pM(A4;):j=0,1}.
Remark 1. 10. The special case ¢(z) = z in the above theorems reduces to the
fixed points of the differential polynomial g;.

2. AUXILIARY LEMMAS Lemma 2.1 ([5]). Let f(z) be a meromorphic s
o lution of the equation

L(f) = f™ + Apa(2) f5D 4 4 Ao (2) f = F(2), (2.1)

where k is an positive integer | Ag,...,Ax_1, F # 0 are meromorphic functions in D
such that max {pi(F), pi(4;)(j=0,....k—1)} <pi(f),(i=1,2). Then,

“Nipy = Ailf) = pi(f) (i=1,2). (2.2)

Using the properties of the order of growth see [3, Proposition 1. 1]
and the
definition of the type, we easily obtain the following result which we omit the proof .
Lemma 2. 2. Let f and g be meromorphic functions in D such that 0 < p(f),
p(g) < oo and 0<7(f),7(9) <oo. Then the following two s tatements hold :

(i) If p(f) > p(g), then

(f +9) = 7(fg) = 7(f). (2.3)
(i1) If p(f) = plg) and 7(f) > (g), then

p(f+g) =p(fg) =p(f) = plg). (2.4)



Lemma 2 . 3. Let Ap(z), Ai(2), do, di1, do

be analytic functions in D
such that

max{p(A1), p(d;), (7 = 0,1,2)} < p(Ao) = p(0 < p < 0),7(Ag) = 7(0 <7 < 00).

Then h # 0, where h is given by (1. 5) . Proof .

First we suppose that
da(z)equivalence — negationslash0. Set

h 160 d’Bl = (d1 B d2(A1)(d2AO Al —

=q -« — Ao)’
= _(d(J — &g 2A0)(d2142

doAy) —diAl —(d2d2 Ao+ — dldéi:tr/l).df)) (2-5)
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the term d3 A3 Ap is eliminated , by (2. 5 ) we can
write

h = —d3A% — doda AT + (ddo + 2dody — dydy — d3) Ag
+(d/2d0 — d2d6 + dOdl)Al + d1d2AOA1 — d1d2A6 (26)
—|—d0d2A/1 + dgAE)Al — d%AoAll + dlodl — dodll — dg

By dsequivalence — negationslash0, Agequivalence — negationslash0 and Lemma 2 . 2
we get from (2. 6 ) that p(h) = p(Ag) = p > 0, then h Z 0.

Now suppose dy = 0, dyequivalence — negationslash0.  Using a similar reasoning
as above we get hequivalence — negationslashQ.
Finally , if dy = 0,d; = 0,dg # 0, then we have h = —d3 #0. O

3. PROOF OF MAIN RESULTS

Proof of Theorem 1 . / . Suppose that f is a solution of (1. 2 ) with p(f) = oo
and p2(f) = p. Substituting f” = F — A, f' — Ao f into gy, we have

gf — doF' = (dl — dQAl)f/ + (do — dng)f (31)

Differentiating both sides of ( 3. 1) and using that f” = F — Ay f' — Ay f, we obtain

g — (daF) = (dy — dp A\ F = [0 0 {20 10 AL = dida AZY + dioldo f. + di] f*

(3.2)

Then ,by (1.3),(1.4),(3.1)and (3.2), we have
041f/ +aof = gf — doF, (3.3)
B1f + BOf = g} — (d2F)" — (di — da A1) F. (3.4)

Set

h = alﬁO - Ck()ﬁl
= (dl - dQAl)(dQA% - (dgAl)/ — d1A1 — dgAO —+ do —+ dll) (35)
—(do — dng)(dngAl — (d2A0)/ — d1A0 + dg)

By the condition h Z0 and (3.3 )-(3.5), we obtain

a1(gy — (doF) — a1 F) — Bl(gy — doF)

f= o | (3.6)

If p(gs) < oo, then by (3. 6 ) we obtain p(f) < oo and this is a contradiction . Hence

p(gr) = oc.

Now , we prove that p2(gy) = p2(f) = p. By gy = dof” +d1f' + dof, we obtain
p2(gs) < p2(f)andby (3. 6), wehave p2(f) < p2(gs). Hence p2(gs) = p2(f) =

p. O



Proof of Theorem 1. 5. Suppose that f is a solution of (1. 2 ) with p(f) = co and
p2(f) = p. Setw(z) = gf—¢. Since p(p) < oo, then by Theorem
1. 4, wehave p(w) =plgr) =p(f) = ooandp2(w) =p2g) =
p2(f) =p. Toprove-Ay, —¢) = Agr —¢) =00 and -Aa(y, — @) = A2(gf — ) = p,
we need to prove only -A(,) = AMw) = 00 and -Ay) = A2(w) = p. By g5 = w + ¢,
and using (3. 6 ) , we have

ajw’ — f1¥

=P (), (37)

=
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are definedin (1.3)-(1.6). Substituting (3. 7 ) into equation
(1.2), we obtain

aq

h
where ¢;(j = 0,1, 2) are meromorphic functions in D with p(¢;) < co(j = 0,1, 2). Since
¥(z) is not a solution of (1.2 ), it follows that A% 0. Then, by Lemma
2. 1, weobtain -A,) = AMw) = p(w) = 00 and -Ay) = A2(w) = p2(w) =p;i.e.,

W+ ¢2%" £ P14 G0V = F — (" + A ()0 + Ao(2)0) = A, (3.8)

gy =) = Ags — ) = ccand-dag, —¢) = Aalgr =) =p. U
Proof of Theorem 1 . 7. By the hypotheses of Theorem 1. 7 , all solutions of ( 1. 2
) are
of infinite order . From (1. 6 ), we see that ¢(2) is of finite order , then () is not a
solution of equation (1. 2 ) . By Theorem 1. 5, we obtain Theorem 1.7. O
Proof of Corollary 1. 9 . By Theorem 1 . 2, all solutions f Z0of (1. 10) are
of infinite order and satisfy

p(Ao) < p2(f) < max{pM(Ao), pM (A1)}

Also, by Lemma 2.3, we have hequivalence — negationslash 0. Then, by
using Theorem 1 . 7 we obtain Corollary 1.9. [
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