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GROWTH AND OSCILLATION OF MEROMORPHIC SOLUTIONS
OF LINEAR DIFFERENCE EQUATIONS

Zinelaâbidine Latreuch and Benharrat Beläıdi

Abstract. In this paper, we study the growth and the oscillation of solutions of linear
difference equations with meromorphic coefficients. Also, we investigate the growth of difference
polynomials generated by meromorphic solutions of some difference equations. We improve and
generalize some results due to Z. X. Chen, I. Laine and C. C. Yang.

1. Introduction

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribution
theory [13, 14, 22]. In addition, we will use λ(f) and λ(f) to denote respectively the
exponents of convergence of the zero-sequence and distinct zeros of a meromorphic
function f , ρ(f) to denote the order of growth of f and τ(f) the type of f .

Recently, there has been an increasing renewed interest in complex difference
equations and difference analogues of Nevanlinna theory [1, 3, 5–9, 11, 12, 15, 17,
18, 21, 23]. We firstly recall some existence results for meromorphic solutions of
difference equations. The following two results have been proved by Shimomura
[18] and Yanagihara [21], respectively.

Theorem A. [18] For any nonconstant polynomial P (y), the difference equa-
tion

y(z + 1) = P (y(z))

has a nontrivial entire solution.

Theorem B. [21] For any nonconstant rational function R(y), the difference
equation

y(z + 1) = R(y(z))

has a nontrivial meromorphic solution in the complex plane.
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The following two results concerning both existence and growth restrictions
for meromorphic solutions of linear difference equations, have been proved by Bank
and Kaufman [2] and Whittaker [20], respectively.

Theorem C. [2] For any nonconstant rational function R(z), the difference
equation

y(z + 1)− y(z) = R(z)

has a nontrivial meromorphic solution y(z) such that T (r, y) = O(r).

Theorem D. [20] Let ρ be a real number, and let Ψ(z) be a given entire
function with order ρ(Ψ) = ρ. Then the equation

F (z + 1) = Ψ(z)F (z)

admits a meromorphic solution of order ρ(F ) ≤ ρ + 1.

In the recent paper [8], Chiang and Feng improved Theorem D by showing
that ρ(F ) ≤ ρ + 1 can be replaced by ρ(F ) = ρ + 1 (Corollary 9.3). In fact, they
have investigated meromorphic solutions of the linear difference equation

an(z)f(z + n) + an−1(z)f(z + n− 1) + · · ·+ a1(z)f(z + 1) + a0(z)f(z) = 0, (1.1)

where an(z), . . . , a0(z) are entire functions such that an(z)a0(z) 6≡ 0, and proved
the following two results.

Theorem E. [8] Let a0(z), a1(z), . . . , an(z) be polynomials such that there ex-
ists an integer l, 0 ≤ l ≤ n such that

deg(al) > max
0≤j≤n, j 6=l

{deg(aj)}.

If f(z) is a meromorphic solution of (1.1), then ρ(f) ≥ 1.

Theorem F. [8] Let a0(z), a1(z), . . . , an(z) be entire functions such that there
exists an integer l, 0 ≤ l ≤ n such that

ρ(al) > max
0≤j≤n, j 6=l

{ρ(aj)}.

If f(z) is a meromorphic solution of (1.1), then ρ(f) ≥ ρ(al) + 1.

In [15], I. Laine and C. C. Yang obtained the following theorem which is an
improvement of the previous result.

Theorem G. [15] Let a0(z), a1(z), . . . , an(z) be entire functions of finite order
such that among those having the maximal order ρ = max0≤j≤n{ρ(aj)}, one has
exactly its type strictly greater than the others. Then for any meromorphic solution
of (1.1), we have ρ(f) ≥ ρ + 1.

Recently, Theorem E has been improved by Z. X. Chen as follows.
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Theorem H. [6, Theorem 1.2] Let a0(z), a1(z), . . . , an(z) be polynomials such
that an(z)a0(z) 6≡ 0 and satisfy

deg(a0 + a1 + · · ·+ an) = max{deg aj : j = 0, . . . , n} ≥ 1.

Then every finite order meromorphic solution f(z) 6≡ 0 of the equation (1.1) satisfies
ρ(f) ≥ 1, and f(z) assumes every non-zero value a ∈ C infinitely often and λ(f −
a) = ρ(f).

2. Growth and oscillation of solutions

There arise many interesting questions such as:

Question 2.1. What can be said if we replace the condition “a0(z), . . . , an(z)
be entire functions” in Theorems F and G by “a0(z), . . . , an(z) be meromorphic
functions”?

Question 2.2. What about oscillation and fixed point of meromorphic solu-
tions of (1.1) under the above condition?

The aim of this paper is to give an answer for the above questions, and we
obtain the following results.

Theorem 2.1. Let a0(z), a1(z), . . . , an(z) be meromorphic functions such that
λ( 1

al
) < ρ(al) = ρ (0 < ρ < ∞), τ(al) = τ (0 < τ < ∞). Suppose that

max{ρ(aj) : 0 ≤ j ≤ n, j 6= l} ≤ ρ (2.1)

and ∑

ρ(aj)=ρ

τ(aj) < τ. (2.2)

If f(z) is a meromorphic solution of (1.1), then ρ(f) ≥ ρ(al) + 1.

Recently, Z. X. Chen [6,7] have investigated the complex oscillation of entire
solutions to homogeneous and nonhomogeneous linear difference equations, and
obtained some relations of the exponent of convergence of zeros and the order of
growth of entire solutions to complex linear difference equations. The following
theorem is an extension of result obtained by S. A. Gao, Z. X. Chen and T. W.
Chen in [10].

Theorem 2.2. Let a0(z), a1(z), . . . , an(z), F (z)( 6≡ 0) be finite order mero-
morphic functions. If f is a meromorphic solution of the equation

an f(z + n) + an−1f(z + n− 1) + · · ·+ a1f(z + 1) + a0f(z) = F (2.3)

with
max{ρ(aj) (j = 0, . . . , n), ρ(F )} < ρ(f), (2.4)

then λ(f) = ρ(f).
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Example 2.1. The function f(z) = 1
Γ(z) + 1 with ρ(f) = 1 satisfies the

difference equation
z(z + 1)f(z + 2)− zf(z + 1) = z2

and the assumption (2.4). Therefore λ(f) = ρ(f) = 1.
Example 2.2. The function f(z) = ez with ρ(f) = 1 satisfies

f(z + 2)− ef(z + 1) + f(z) = ez.

It is clear that f does not satisfies the assumption (2.4) and we have 0 = λ(f) <
ρ(f) = 1.

Theorem 2.3. Under the hypotheses of Theorem 2.1, let ϕ be a meromorphic
function such that one of the following conditions holds:

(i) ϕ is not a solution of (1.1) with ρ(ϕ) < ρ(f);
(ii) ϕ 6≡ 0 and ρ(ϕ) < ρ(al) + 1.

Then λ(f − ϕ) = ρ(f).

Corollary 2.1. Under the hypotheses of Theorem 2.3, we have λ(f − z) =
ρ(f).

Example 2.3. The function f(z) = ez2
with ρ(f) = 2 satisfies the difference

equation
e−4z−4f(z + 2)− f(z) = 0.

Set ϕ(z) = z. Then, obviously the hypotheses of Theorem 2.3 are satisfied. There-
fore, λ(ez2 − z) = ρ(ez2

) = 2.

3. Growth of difference polynomials

It is natural to ask what can be said about the growth of difference polynomials
generated by solutions of difference equations. In this section we consider the
difference equation

f(z + 2) + a(z)f(z + 1) + b(z)f(z) = 0, (3.1)

where a(z) and b(z) are meromorphic functions. We denote by
{

fj = f(z + j), j ≥ 1 is an integer,

f = f0 = f(z).
(3.2)

It is known that (see [8, 9] ) ρ(fj) = ρ(f) for all j ∈ N. We define also

∆f = f(z + 1)− f(z)

and
∆nf = ∆n−1(∆f), n ≥ 1 is an integer.
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In [9], Chiang and Feng proved the following inequality

ρ(∆nf) ≤ ρ(f), n ∈ N
and the equality is not true always. By using (3.2) the equation (3.1) can be written
as

f2 + a(z)f1 + b(z)f = 0. (3.3)

The aim of this section is to find the relation between the growth of the solution f
and the difference polynomial

g = ef2 + df1 + cf, (3.4)

where c(z), d(z) and e(z) are meromorphic functions of finite order. Before we state
our results, we define

α = d− ea, β = c− eb, (3.5)

γ = c1 − e1b1 − d1a + e1a1a, δ = e1a1b− d1b, (3.6)

h = αδ − βγ, (3.7)

where a1(z) := a(z + 1), b1(z) := b(z + 1), c1(z) := c(z + 1), d1(z) := d(z + 1) and
e1(z) := e(z + 1). We obtain the following results.

Theorem 3.1. Let a and b be meromorphic functions satisfying λ( 1
b ) < ρ(b) <

∞, ρ(a) < ρ(b) and 0 < τ(a) < τ(b) < ∞ if ρ(a) = ρ(b) > 0, and let c, d, e be
meromorphic functions not all vanishing identically such that h 6≡ 0 and

max{ρ(c), ρ(d), ρ(e)} < ρ(b) + 1.

If f(z) is a meromorphic solution of (3.1), then the difference polynomial (3.4)
satisfies

ρ(g) = ρ(f) ≥ ρ(b) + 1.

Remark 3.1. In Theorem 3.1, if we do not have the condition h 6≡ 0, then
the conclusion of Theorem 3.1 cannot holds. For example, if e(z) = 1, d(z) = a(z)
and c(z) = b(z), then h ≡ 0. It is clear that

max{ρ(c), ρ(d), ρ(e)} < ρ(b) + 1

and g = 0, so ρ(g) 6= ρ(f). Hence the condition h 6≡ 0 in Theorem 3.1 is necessary.

Corollary 3.1. Let a and b be meromorphic functions satisfying λ(1
b ) <

ρ(b) < ∞, ρ(a) < ρ(b) and 0 < τ(a) < τ(b) < ∞ if ρ(a) = ρ(b) > 0. If f(z) is a
meromorphic solution of (3.1), then

ρ(∆f) = ρ(f).

Furthermore, if

h = b1 − 3b− 2a− aa1 − 2ba1 − bb1 − 1 6≡ 0,

then ρ(∆2f) = ρ(f).
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4. Some lemmas

Setting p = 1 in Lemma 3.5 in [4] (see, also Lemma 8 in [19]), we obtain

Lemma 4.1. Let f be a meromorphic function with ρ(f) = ρ (0 < ρ < ∞)
and τ(f) = τ (0 < τ < ∞). Then for any given β < τ(f), there exists a subset E1

of [1,∞) that has infinite logarithmic measure such that

T (r, f) > βrρ

holds for all r ∈ E1.

Lemma 4.2. [8] Let η1, η2 be two arbitrary complex numbers such that η1 6= η2

and let f(z) be a finite order meromorphic function. Let σ be the order of f(z),
then for each ε > 0, we have

m

(
r,

f(z + η1)
f(z + η2)

)
= O(rσ−1+ε).

Using the properties of the order of growth and the definition of the type, we
easily obtain the following result for which we omit the proof. For details see [16].

Lemma 4.3. [16] Let f and g be meromorphic functions in the complex plane
such that 0 < ρ(f), ρ(g) < ∞ and 0 < τ(f), τ(g) < ∞. Then we have:

(i) If ρ(f) > ρ(g), then we obtain

τ(f + g) = τ(fg) = τ(f). (4.1)

(ii) If ρ(f) = ρ(g) and τ(f) 6= τ(g), then we get

ρ(f + g) = ρ(fg) = ρ(f) = ρ(g). (4.2)

5. Proof of the theorems and corollaries

Proof of Theorem 2.1. If ρ(f) = ∞, then the result is trivial. Next we suppose
ρ(f) < ∞. We divide through equation (1.1) by f(z + l) to get

al(z) = −
(

an(z)
f(z + n)
f(z + l)

+ · · ·+ a1(z)
f(z + 1)
f(z + l)

+ a0(z)
f(z)

f(z + l)

)
. (5.1)

It follows that

T (r, al) = m(r, al) + N(r, al)

≤
n∑

j 6=l
j=0

m(r, aj) +
n∑

j 6=l
j=0

m

(
r,

f(z + j)
f(z + l)

)
+ N(r, al) + O(1).

(5.2)
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By Lemma 4.2, we have for sufficiently large r and any given ε > 0

m

(
r,

f(z + j)
f(z + l)

)
= O(rρ(f)−1+ε), j = 0, . . . , n, j 6= l. (5.3)

Let us choose σ such that λ(1/al) < σ < ρ(al) = ρ. Then we have for any given ε
(0 < ε < ρ− σ)

N(r, al) ≤ r
λ( 1

al
)+ε

< rσ+ε. (5.4)

Assume that max0≤j≤n, j 6=l{ρ(aj)} ≤ ρ(al) and
∑

ρ(aj)=ρ τ(aj) < τ(al). Then
there exists a set J1 ⊆ {0, 1, . . . , l − 1, l + 1, . . . , n} such that for j ∈ J1 we have
ρ(aj) = ρ(al) = ρ and

∑
j∈J1

τ(aj) < τ(al) = τ and for i ∈ {0, 1, . . . , l − 1, l +
1, . . . , n} \ J1 we have ρ(ai) < ρ(al) = ρ. Hence, we can choose α1, α2 satisfying∑

j∈J1
τ(aj) < α1 < α2 < τ such that for any given ε (0 < ε < α2−α1

n ), we have

T (r, aj) ≤ (τ(aj) + ε)rρ, j ∈ J1 (5.5)

and
T (r, ai) ≤ rρ0 , i ∈ {0, 1, . . . , l − 1, l + 1, . . . , n} \ J1, (5.6)

where 0 < ρ0 < ρ. By applying Lemma 4.1, there exists a subset I of [1,∞) that
has infinite logarithmic measure such that for all r ∈ I, we have

T (r, al) > α2r
ρ. (5.7)

By using the assumptions (5.3)–(5.7), we obtain from (5.2) for any given ε (0 <
ε < min{α2−α1

n , ρ− σ}) and for all r ∈ I

α2r
ρ <

∑

j∈J1

(τ(aj) + ε)rρ +
∑

i∈{0,1,...,l−1,l+1,...,n}\J1

rρ0 + O(rρ(f)−1+ε) + rσ+ε

< (α1 + εn)rρ + nrρ0 + O(rρ(f)−1+ε) + rσ+ε.

It follows that

(α2 − α1 − εn)rρ < nrρ0 + O(rρ(f)−1+ε) + rσ+ε. (5.8)

Since 0 < ε < min{α2−α1
n , ρ−σ}, we obtain from (5.8) that ρ(al) = ρ ≤ ρ(f)− 1.

Proof of Theorem 2.2. By (2.3) we have

1
f(z)

=
1
F

(
an

f(z + n)
f(z)

+ · · ·+ a1
f(z + 1)

f(z)
+ a0

)
. (5.9)

Set max{ρ(aj) (j = 0, . . . , n), ρ(F )} = β < ρ(f) = ρ. Then, for any given ε (0 <

ε < ρ−β
2 ), we have

n∑
j=0

T (r, aj) + T (r, F ) ≤ (n + 2) exp{rβ+ε} = o(1) exp{rρ−ε}. (5.10)
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By (5.9), (5.10) and Lemma 4.2, we obtain

T (r, f) = T
(
r,

1
f

)
+ O(1) = m

(
r,

1
f

)
+ N

(
r,

1
f

)
+ O(1)

≤ N
(
r,

1
f

)
+ m

(
r,

1
F

)
+

n∑
j=0

m(r, aj) +
n∑

j=1

m
(
r,

f(z + j)
f(z)

)
+ O(1)

≤ N
(
r,

1
f

)
+ T

(
r,

1
F

)
+

n∑
j=0

T (r, aj) +
n∑

j=1

m
(
r,

f(z + j)
f(z)

)
+ O(1)

≤ N
(
r,

1
f

)
+ O(rρ−1+ε) + o(1) exp{rρ−ε}. (5.11)

By (5.11), we obtain that ρ(f) ≤ λ(f) and since λ(f) ≤ ρ(f) for every meromorphic
function, we deduce that λ(f) = ρ(f).

Proof of Theorem 2.3. Set w(z) = f(z)− ϕ(z).
(i) If ρ(f) > ρ(ϕ), then we have ρ(w) = ρ(f). Substituting w into equation

(1.1), we obtain

an w(z + n) + an−1w(z + n− 1) + · · ·+ a1w(z + 1) + a0w(z)

= −(anϕ(z + n) + an−1ϕ(z + n− 1) + · · ·+ a1ϕ(z + 1) + a0ϕ(z))

= A(z).

Since ϕ is not a solution of (1.1), then A 6≡ 0. By Theorem 2.1 we have

ρ(f) ≥ max
0≤j≤n

{ρ(aj)}+ 1

which implies

ρ(w) = ρ(f) > max{ρ(A), ρ(aj) (j = 0, . . . , n)}. (5.12)

Then, by Theorem 2.2 we have λ(w) = ρ(w), i.e., λ(f − ϕ) = ρ(f).
(ii) Suppose now that ϕ 6≡ 0 and ρ(ϕ) < ρ(al) + 1. Since ϕ 6≡ 0 and

ρ(ϕ) < ρ(al) + 1 = max
0≤j≤n

{ρ(aj)}+ 1 ≤ ρ(f),

then A 6≡ 0. By (5.12) and Theorem 2.2, we obtain λ(w) = ρ(w), i.e., λ(f − ϕ) =
ρ(f). This completes the proof of Theorem 2.3.

Proof of Corollary 2.1. Setting g(z) = f(z) − z, it is clear that ρ(g) = ρ(f)
because ρ(f) > ρ(z) = 0. Substituting f = g + z into equation (1.1), we obtain

n∑
j=0

aj(z)g(z + j) = −
n∑

j=0

(z + j)aj(z).

In order to prove ρ(f) = λ(f − z) we need to prove
∑n

j=0(z + j)aj(z) 6≡ 0. Suppose
that

∑n
j=0(z + j)aj(z) ≡ 0. Then, by the conditions (2.1), (2.2) and Lemma 4.3

we have

ρ

(
n∑

j=0

(z + j)aj(z)
)

= ρ(al) > 0

which is a contradiction. Hence, by applying Theorem 2.3 we obtain λ(f − z) =
ρ(f − z) = ρ(f).
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Proof of Theorem 3.1. By using Theorem 2.1, we have ρ(f) ≥ ρ(b) + 1. Sub-
stituting f2 = −af1 − bf into g = ef2 + df1 + cf , we get

g = e(−af1 − bf) + df1 + cf = (d− ea)f1 + (c− eb)f. (5.13)

Then

g1 = (d1 − e1a1)f2 + (c1 − e1b1)f1

= (d1 − e1a1)(−af1 − bf) + (c1 − e1b1)f1

= (c1 − e1b1 − (d1 − e1a1)a)f1 + (−d1b + e1a1b)f

= (c1 − e1b1 − d1a + e1a1a)f1 + (e1a1b− d1b)f. (5.14)

By using (3.5), (3.6) we can deduce from (5.13) and (5.14) that
{

g = αf1 + βf,

g1 = γf1 + δf,

which implies by using (3.7) and h 6≡ 0 that

f =
αg1 − γg

h
. (5.15)

It is clear from (3.4) that ρ(g) ≤ ρ(f), and by (5.15) we have ρ(f) ≤ ρ(g). Hence,
ρ(f) = ρ(g).

Proof of Corollary 3.1. Set g = ∆f(z) = f1(z)− f(z). Then by (3.4) we have

e(z) = 0, d(z) = 1 and c(z) = −1.

By (3.5)–(3.7), we obtain

α = d− ea = 1, β = c− eb = −1,

γ = c1 − e1b1 − d1a + e1a1a = −1− a, δ = e1a1b− d1b = −b,

and
h = αδ − βγ = −a− b− 1.

Since ρ(a) < ρ(b) < ∞ and 0 < τ(a) < τ(b) < ∞ if ρ(a) = ρ(b) < ∞, then by
Lemma 4.3 we have ρ(h) = ρ(b) > 0, so h 6≡ 0. By using Theorem 3.1, we have
ρ(g) = ρ(∆f) = ρ(f).

Now set g = ∆2f(z) = f2(z)− 2f1(z) + f(z). Then by (3.4) we have e(z) = 1,
d(z) = −2 and c(z) = 1. By (3.5)–(3.7), we obtain

α = −2− a, β = 1− b,

γ = 1− b1 + 2a + a1a, δ = a1b + 2b,

and
h = αδ − βγ = b1 − 3b− 2a− aa1 − 2ba1 − bb1 − 1.

Since h 6≡ 0, then by using Theorem 3.1, we have ρ(g) = ρ(∆2f) = ρ(f).
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