On the hyper-order of solutions of a class of higher order linear differential equations

Karima Hamani Benharrat Belaïdi*

Abstract

In this paper, we investigate the growth of solutions of the linear differential equation $$
\begin{aligned} & f^{(k)}+\left(A_{k-1}(z) e^{P_{k-1}(z)}+B_{k-1}(z)\right) f^{(k-1)}+\cdots+ \\ & \quad\left(A_{1}(z) e^{P_{1}(z)}+B_{1}(z)\right) f^{\prime}+\left(A_{0}(z) e^{P_{0}(z)}+B_{0}(z)\right) f=0, \end{aligned}
$$

where $k \geq 2$ is an integer, $P_{j}(z)(j=0,1, \cdots, k-1)$ are nonconstant polynomials and $A_{j}(z)(\not \equiv 0), B_{j}(z)(\not \equiv 0)(j=0,1, \cdots, k-1)$ are meromorphic functions. Under some conditions, we determine the hyper-order of these solutions.

1 Introduction and statement of the result

Throughout this paper, we use the fundamental results and the standard notations of the Nevanlinna value distribution theory of meromorphic functions (see [7]). Let $\sigma(f)$ denote the order of growth of a meromorphic function $f(z)$ and $\sigma_{2}(f)$ the hyper-order of $f(z)$ which is defined by (see [8], [10])

$$
\sigma_{2}(f)=\underset{r \rightarrow+\infty}{\limsup } \frac{\log \log T(r, f)}{\log r}
$$

[^0]where $T(r, f)$ is the characteristic function of Nevanlinna. We define the logarithmic measure of a set $E \subset[1,+\infty)$ by $\operatorname{lm}(E)=\int_{1}^{+\infty} \frac{\chi_{E}(t)}{t} d t$, where χ_{E} is the characteristic function of E.

The main purpose of this paper is to study the growth of solutions of the linear differential equations of the form

$$
\begin{align*}
f^{(k)}+\left(A_{k-1}(z) e^{P_{k-1}(z)}+B_{k-1}(z)\right) f^{(k-1)} & +\cdots+\left(A_{1}(z) e^{P_{1}(z)}+B_{1}(z)\right) f^{\prime} \\
& +\left(A_{0}(z) e^{P_{0}(z)}+B_{0}(z)\right) f=0 \tag{1.1}
\end{align*}
$$

where $k \geq 2$ is an integer, $P_{j}(z)(j=0,1, \cdots, k-1)$ are nonconstant polynomials and $A_{j}(z)(\not \equiv 0), B_{j}(z)(\not \equiv 0)(j=0,1, \cdots, k-1)$ are meromorphic functions.

Many authors have also considered the higher order linear differential equations with entire coefficients. In [1], Belaïdi and Abbas have proved the following result:

Theorem A ([1]) Let $k \geq 2$ be an integer and $P_{j}(z)=\sum_{i=0}^{n} a_{i, j} z^{i}(j=0,1, \cdots, k-1)$ be nonconstant polynomials, where $a_{0, j}, \cdots, a_{n, j}(j=0, \cdots, k-1)$ are complex numbers such that $a_{n, j} a_{n, s} \neq 0(j \neq s)$. Let $A_{j}(z)(\not \equiv 0)(j=0,1, \cdots, k-1)$ be entire functions with $\sigma\left(A_{j}\right)<n(j=0,1, \cdots, k-1)$. Suppose that $\arg a_{n, j} \neq \arg a_{n, s}(j \neq s)$ or $a_{n, j}=c_{j} a_{n, s}\left(0<c_{j}<1\right)(j \neq s)$. Then every transcendental solution f of the differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) e^{P_{k-1}(z)} f^{(k-1)}+\cdots+A_{s}(z) e^{P_{s}(z)} f^{(s)}+\cdots+A_{0}(z) e^{P_{0}(z)} f=0 \tag{1.2}
\end{equation*}
$$

is of infinite order and satisfies $\sigma_{2}(f)=n$.
Furthermore, if $\max \left\{c_{1}, \cdots, c_{s-1}\right\}<c_{0}$, then every solution $f \not \equiv 0$ of equation (1.2) is of infinite order and satisfies $\sigma_{2}(f)=n$.

Recently, Tu and Yi have obtained the following result for equations of the form (1.2):

Theorem B ([9]) Let $A_{j}(z)(j=0,1, \cdots, k-1)(k \geq 2)$ be entire functions with $\sigma\left(A_{j}\right)<n(n \geq 1)$, and let $P_{j}(z)=\sum_{i=0}^{n} a_{i, j} z^{i}(j=0,1, \cdots, k-1)$ be polynomials with degree n, where $a_{n, j}(j=0,1, \cdots, k-1)$ are complex numbers such that $a_{n, 0}=$ $\left|a_{n, 0}\right| e^{i \theta_{0}}, a_{n, s}=\left|a_{n, s}\right| e^{i \theta_{s}}, a_{n, 0} a_{n, s} \neq 0(1 \leq s \leq k-1), \theta_{0}, \theta_{s} \in[0,2 \pi), \theta_{0} \neq \theta_{s}$, $A_{0} A_{s} \not \equiv 0$; for $j \neq 0, s, a_{n, j}$ satisfies either $a_{n, j}=c_{j} a_{n, 0}\left(c_{j}<1\right)$ or $\arg a_{n, j}=\theta_{s}$. Then every solution $f \not \equiv 0$ of equation (1.2) is of infinite order and satisfies $\sigma_{2}(f)=n$.

In [4] and [8], earlier results can be found on related topics dealing with second order equations, whereas here we deal with k-th order equations. In this paper, we extend and improve Theorems A-B from entire solutions to meromorphic solutions by proving the following result:

Theorem 1.1 Let $k \geq 2$ be an integer and $P_{j}(z)=\sum_{i=0}^{n} a_{i, j} z^{i}(j=0,1, \cdots, k-1)$ be nonconstant polynomials, where $a_{0, j}, a_{1, j}, \cdots, a_{n, j}(j=0,1, \cdots, k-1)$ are complex numbers such that $a_{n, j} \neq 0(j=0,1, \cdots, k-1)$. Let $A_{j}(z)(\not \equiv 0), B_{j}(z)(\not \equiv 0)$ $(j=0,1, \cdots, k-1)$ be meromorphic functions with $\sigma\left(A_{j}\right)<n$ and $\sigma\left(B_{j}\right)<n$. Suppose that one of the following statements holds:
(i) there exists $d \in\{1, \cdots, k-1\}$ such that $\arg a_{n, j} \neq \arg a_{n, d}(j \neq d)$;
(ii) there exists $d \in\{1, \cdots, k-1\}$ such that $a_{n, j}=c_{j} a_{n, d}\left(0<c_{j}<1\right)(j \neq d)$;
(iii) there exist $d, s \in\{1, \cdots, k-1\}$ such that $a_{n, d}=\left|a_{n, d}\right| e^{i \theta_{d}}, a_{n, s}=\left|a_{n, s}\right| e^{i \theta_{s}}$, $\theta_{d}, \theta_{s} \in[0,2 \pi), \theta_{d} \neq \theta_{s}$ and for $j \in\{0, \cdots, k-1\} \backslash\{d, s\}, a_{n, j}$ satisfies either $a_{n, j}=d_{j} a_{n, d}\left(d_{j}<1\right)$ or $\arg a_{n, j}=\theta_{s}$.

Then every transcendental meromorphic solution f whose poles are of uniformly bounded multiplicity of equation (1.1) is of infinite order and satisfies $\sigma_{2}(f)=n$.

Furthermore, if $\max \left\{c_{1}, \cdots, c_{d-1}\right\}<c_{0}$ in case (ii), then every meromorphic solution $f \not \equiv 0$ whose poles are of uniformly bounded multiplicity of equation (1.1) is of infinite order and satisfies $\sigma_{2}(f)=n$.

Remark 1.1 Clearly, the method used in linear differential equations with entire coefficients can not deal with the case of meromorphic coefficients. In addition, the proofs of the results in [1] rely heavily on the idea of Lemma 2.3, Lemma 2.4 and Lemma 2.9 in [1]. However, it seems too complicated to deal with our cases. The methods in the proof of Theorem 1.1 are mainly the estimate for the logarithmic derivative of a transcendental meromorphic function of finite order due to Gundersen [6], Lemma 2.2 [2] due to Cao and Yi and Lemma 2.5 [5] due to Chen and Xu .

Remark 1.2 Recently, Chen and $\mathrm{Xu}[5]$ have investigated the growth of solutions of differential equations of the above type with meromorphic coefficients. So, it is also interesting to consider the growth and oscillation of meromorphic solutions of non-homogeneous linear differential equations with meromorphic coefficients.

2 Preliminary lemmas

Lemma 2.1 ([6]) Let $f(z)$ be a transcendental meromorphic function and let $\alpha>1$ and $\varepsilon>0$ be given constants. Then there exist a set $E_{1} \subset(1,+\infty)$ having finite logarithmic measure and a constant $B>0$ that depends only on α and $(i, j)(i, j$ positive integers with $i>j$) such that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, we have

$$
\left|\frac{f^{(i)}(z)}{f^{(j)}(z)}\right| \leq B\left[\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right]^{i-j}
$$

Remark 2.1 In [2], Cao and Yi have obtained the following lemma but with no mention of the existence of finite logarithmic set. Here we give the full lemma.

Lemma $2.2([2])$ Let $f(z)=g(z) / b(z)$ be a meromorphic function with $\sigma(f)=\sigma \leq$ $+\infty$, where $g(z)$ and $b(z)$ are entire functions satisfying one of the following conditions:
(i) g being transcendental and b being polynomial,
(ii) g, b all being transcendental and $\lambda(b)=\sigma(b)<\sigma(g)=\sigma$.

Then there exist a sequence $\left\{r_{m}\right\}_{m \in \mathbb{N}}, r_{m} \rightarrow+\infty$ and a set E_{2} of finite logarithmic measure such that the estimation

$$
\left|\frac{f(z)}{f^{(d)}(z)}\right| \leq r_{m}^{2 d} \quad(d \in \mathbb{N})
$$

holds for all z satisfying $|z|=r_{m} \notin E_{2}, r_{m} \rightarrow+\infty$ and $|g(z)|=M\left(r_{m}, g\right)$.
Lemma 2.3 ([3]) Let $g(z)$ be a transcendental meromorphic function of order $\sigma(g)=$ $\sigma<+\infty$. Then for any given $\varepsilon>0$, there exists a set $E_{3} \subset(1,+\infty)$ that has finite logarithmic measure, such that

$$
|g(z)| \leq \exp \left\{r^{\sigma+\varepsilon}\right\}
$$

holds for $|z|=r \notin[0,1] \cup E_{3}, r \rightarrow+\infty$.
Remark 2.2 Combining Lemma 2.3 and applying it to $\frac{1}{g(z)}$, it is clear that for any given $\varepsilon>0$, there exists a set $E_{4} \subset(1,+\infty)$ that has finite logarithmic measure, such that

$$
\exp \left\{-r^{\sigma+\varepsilon}\right\} \leq|g(z)| \leq \exp \left\{r^{\sigma+\varepsilon}\right\}
$$

holds for $|z|=r \notin[0,1] \cup E_{4}, r \rightarrow+\infty$.
Lemma 2.4 Let $P(z)=(\alpha+i \beta) z^{n}+\cdots(\alpha, \beta$ are real numbers, $|\alpha|+|\beta| \neq 0)$ be a polynomial with degree $n \geq 1$ and $A(z)$ be a meromorphic function with $\sigma(A)<n$. Set $f(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=\alpha \cos n \theta-\beta \sin n \theta$. Then for any given $\varepsilon>0$, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for any $\theta \in[0,2 \pi) \backslash H(H=\{\theta \in[0,2 \pi): \delta(P, \theta)=0\})$ and for $|z|=r \notin[0,1] \cup E_{5}$, $r \rightarrow+\infty$, we have
(i) if $\delta(P, \theta)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|f\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.1}
\end{equation*}
$$

(ii) if $\delta(P, \theta)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|f\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.2}
\end{equation*}
$$

Proof. Set $f(z)=h(z) e^{(\alpha+i \beta) z^{n}}$, where $h(z)=A(z) e^{P_{n-1}(z)}, P_{n-1}(z)=P(z)-$ $(\alpha+i \beta) z^{n}$. Then $\rho(h)=\lambda<n$. By Remark 2.2, for any given $\varepsilon(0<\varepsilon<n-\lambda)$, there exists a set $E_{5} \subset(1,+\infty)$ that has finite logarithmic measure, such that for $|z|=r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$

$$
\begin{equation*}
\exp \left\{-r^{\lambda+\varepsilon}\right\} \leq|h(z)| \leq \exp \left\{r^{\lambda+\varepsilon}\right\} \tag{2.3}
\end{equation*}
$$

By $\left|e^{(\alpha+i \beta)\left(r e^{i \theta}\right)^{n}}\right|=e^{\delta(P, \theta) r^{n}}$ and (2.3), we have

$$
\begin{equation*}
\exp \left\{\delta(P, \theta) r^{n}-r^{\lambda+\varepsilon}\right\} \leq|f(z)| \leq \exp \left\{\delta(P, \theta) r^{n}+r^{\lambda+\varepsilon}\right\} \tag{2.4}
\end{equation*}
$$

By $\theta \notin H$, where $H=\{\theta \in[0,2 \pi): \delta(P, \theta)=0\}$, we see that:
(i) if $\delta(P, \theta)>0$, then by $0<\lambda+\varepsilon<n$ and (2.4), we know that (2.1) holds for $r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$;
(ii) if $\delta(P, \theta)<0$, then by $0<\lambda+\varepsilon<n$ and (2.4), we know that (2.2) holds for $r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$.

Lemma 2.5 ([5]) Let $k \geq 2$ be an integer and let $A_{j}(z)(j=0,1, \cdots, k-1)$ be meromorphic functions of finite order. If f is a transcendental meromorphic solution whose poles are of uniformly bounded multiplicity of the equation

$$
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=0
$$

then $\sigma_{2}(f) \leq \max \left\{\sigma\left(A_{j}\right): j=0,1, \cdots, k-1\right\}$.

3 Proof of Theorem 1.1

First of all we prove that equation (1.1) cannot have a transcendental meromorphic solution f with order $\sigma(f)<n$. Assume f is a transcendental meromorphic solution of equation (1.1) with $\sigma(f)=\sigma<n$. Then $\sigma\left(f^{(j)}\right)=\sigma<n$ $(j=1, \cdots, k)$. Set $\alpha=\max \left\{\sigma, \sigma\left(B_{j}\right)(j=0, \cdots, k-1)\right\}<n$.

Suppose that (i) holds. Since $\arg a_{n, j} \neq \arg a_{n, d}(j \neq d)$, there is a ray $\arg z=$ $\theta \in[0,2 \pi) \backslash H$, where $H=\left\{\theta \in[0,2 \pi): \delta\left(P_{0}, \theta\right)=0\right.$ or...or $\left.\delta\left(P_{k-1}, \theta\right)=0\right\}$ such that $\delta\left(P_{d}, \theta\right)>0, \delta\left(P_{j}, \theta\right)<0(j \neq d)$. By Lemma 2.3, for any given $\varepsilon(0<2 \varepsilon<$ $\min \{1, n-\alpha\})$, there exists a set $E_{3} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $|z|=r \notin[0,1] \cup E_{3}, r \rightarrow+\infty$, we have

$$
\begin{gather*}
\left|f^{(k)}(z)\right| \leq \exp \left\{r^{\alpha+\varepsilon}\right\}, \tag{3.1}\\
\left|B_{d}(z) f^{(d)}(z)\right| \leq \exp \left\{r^{\alpha+\varepsilon}\right\} \tag{3.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|B_{j}(z) f^{(j)}(z)\right| \leq \exp \left\{r^{\sigma\left(B_{j} f^{(j)}\right)+\frac{\varepsilon}{2}}\right\}(j \neq d) \tag{3.3}
\end{equation*}
$$

By Lemma 2.4 and $\sigma\left(A_{j} f^{(j)}\right)<n(j=0,1, \cdots, k-1)$, for the above ε, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$, we have

$$
\begin{equation*}
\left|A_{d}(z) e^{P_{d}(z)} f^{(d)}(z)\right| \geq \exp \left\{(1-\varepsilon) \delta\left(P_{d}, \theta\right) r^{n}\right\} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{j}(z) e^{P_{j}(z)} f^{(j)}(z)\right| \leq \exp \left\{(1-\varepsilon) \delta\left(P_{j}, \theta\right) r^{n}\right\}<1(j \neq d) . \tag{3.5}
\end{equation*}
$$

From (3.3) and (3.5), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup$
$E_{5}, r \rightarrow+\infty$, we have

$$
\begin{align*}
\left|\left(A_{j}(z) e^{P_{j}(z)}+B_{j}(z)\right) f^{(j)}(z)\right| & =\left|A_{j}(z) e^{P_{j}(z)} f^{(j)}(z)+B_{j}(z) f^{(j)}(z)\right| \\
\leq \exp \{(1-\varepsilon) & \left.\delta\left(P_{j}, \theta\right) r^{n}\right\}+\exp \left\{r^{\sigma\left(B_{j} f^{(j)}\right)+\frac{\varepsilon}{2}}\right\} \\
& \leq \exp \left\{r^{\sigma\left(B_{j} f^{(j)}\right)+\varepsilon}\right\} \leq \exp \left\{r^{\alpha+\varepsilon}\right\} \quad(j \neq d) . \tag{3.6}
\end{align*}
$$

By (1.1), we have

$$
\begin{align*}
\left|A_{d}(z) e^{P_{d}(z)} f^{(d)}(z)\right| \leq\left|B_{d}(z) f^{(d)}(z)\right| & +\left|f^{(k)}(z)\right| \\
& +\sum_{\substack{j=0 \\
j \neq d}}^{k-1}\left|\left(A_{j}(z) e^{P_{j}(z)}+B_{j}(z)\right) f^{(j)}(z)\right| . \tag{3.7}
\end{align*}
$$

By (3.1), (3.2), (3.4), (3.6) and (3.7), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H$, $|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$, we have

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq(k+1) \exp \left\{r^{\alpha+\varepsilon}\right\} \tag{3.8}
\end{equation*}
$$

This is absurd. Hence $\sigma(f) \geq n$.
Suppose that (ii) holds. Since $a_{n, j}=c_{j} a_{n, d}\left(0<c_{j}<1\right)(j \neq d)$, it follows that $\delta\left(P_{j}, \theta\right)=c_{j} \delta\left(P_{d}, \theta\right)(j \neq d)$. Put $c=\max \left\{c_{j}(j \neq d)\right\}$. Then $0<c<1$. We take a ray $\arg z=\theta \in[0,2 \pi) \backslash H$, where $H=\left\{\theta \in[0,2 \pi): \delta\left(P_{d}, \theta\right)=0\right\}$, such that $\delta\left(P_{d}, \theta\right)>0$. By Lemma 2.3, for any given $\varepsilon\left(0<2 \varepsilon<\min \left\{\frac{1-c}{1+c}, n-\alpha\right\}\right)$, there exists a set $E_{3} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $|z|=r \notin[0,1] \cup E_{3}, r \rightarrow+\infty$, we have (3.1) and

$$
\begin{equation*}
\left|B_{j}(z) f^{(j)}(z)\right| \leq \exp \left\{r^{\alpha+\varepsilon}\right\} \quad(j=0, \cdots, k-1) \tag{3.9}
\end{equation*}
$$

By Lemma 2.4 and $\sigma\left(A_{j} f^{(j)}\right)<n(j=0,1, \cdots, k-1)$, for the above ε, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$, we have (3.4) and

$$
\begin{equation*}
\left|A_{j}(z) e^{P_{j}(z)} f^{(j)}(z)\right| \leq \exp \left\{(1+\varepsilon) c \delta\left(P_{d}, \theta\right) r^{n}\right\} \quad(j \neq d) \tag{3.10}
\end{equation*}
$$

From (1.1), we have

$$
\begin{align*}
&\left|A_{d}(z) e^{P_{d}(z)} f^{(d)}(z)\right| \leq\left|f^{(k)}(z)\right| \\
&+\sum_{j=0}^{k-1}\left|B_{j}(z) f^{(j)}(z)\right|+\sum_{\substack{j=0 \\
j \neq d}}^{k-1}\left|A_{j}(z) e^{P_{j}(z)} f^{(j)}(z)\right| \tag{3.11}
\end{align*}
$$

By (3.1), (3.4), (3.9) - (3.11) and $0<2 \varepsilon<n-\alpha$, for all z with $\arg z=\theta \in$ $[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$, we have

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta\left(P_{d}, \theta\right) r^{n}\right. & \leq(k+1) \exp \left\{r^{\alpha+\varepsilon}\right\} \\
+ & (k-1) \exp \left\{(1+\varepsilon) c \delta\left(P_{d}, \theta\right) r^{n}\right\} \\
& =(k-1)(1+o(1)) \exp \left\{(1+\varepsilon) c \delta\left(P_{d}, \theta\right) r^{n}\right\} \tag{3.12}
\end{align*}
$$

By $0<2 \varepsilon<\frac{1-c}{1+c}$ and (3.12), we have

$$
\begin{equation*}
\exp \left\{\frac{(1-c)}{2} \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq M_{1} \tag{3.13}
\end{equation*}
$$

where $M_{1}(>0)$ is some constant. This is a contradiction. Hence $\sigma(f) \geq n$.
Suppose that (iii) holds. Suppose that $a_{n, j_{1}} \cdots, a_{n, j_{m}}$ satisfy $a_{n, j_{\gamma}}=d_{j_{\gamma}} a_{n, d}$, $j_{\gamma} \in\{0, \cdots, k-1\} \backslash\{d, s\}, \gamma \in\{1, \cdots, m\}, 1 \leq m \leq k-2$ and $\arg a_{n, j}=\theta_{s}$ for $j \in\{0, \cdots, k-1\} \backslash\left\{d, s, j_{1}, \cdots, j_{m}\right\}$. Choose a constant ρ satisfying $\max \left\{d_{j_{1}}, \cdots\right.$, $\left.d_{j_{m}}\right\}<\rho<1$. We divide the proof into two cases:
(a) $\rho \leq 0$;
(b) $0<\rho<1$.

Case (a). $\rho \leq 0$. Since $\theta_{d} \neq \theta_{s}$, there is a ray $\arg z=\theta \in[0,2 \pi) \backslash H$, where $H=$ $\left\{\theta \in[0,2 \pi): \delta\left(P_{d}, \theta\right)=0\right.$ or $\left.\delta\left(P_{s}, \theta\right)=0\right\}$ such that $\delta\left(P_{d}, \theta\right)>0$ and $\delta\left(P_{s}, \theta\right)<$ 0 . Hence

$$
\begin{gather*}
\delta\left(P_{j_{\gamma}}, \theta\right)=d_{j_{\gamma}} \delta\left(P_{d}, \theta\right)<0(\gamma=1, \cdots, m), \tag{3.14}\\
\delta\left(P_{j}, \theta\right)=\left|a_{n, j}\right| \cos \left(\theta_{s}+n \theta\right)<0, j \in\{0, \cdots, k-1\} \backslash\left\{d, s, j_{1}, \cdots, j_{m}\right\} \tag{3.15}
\end{gather*}
$$

By Lemma 2.3, for any given $\varepsilon(0<2 \varepsilon<\min \{1, n-\alpha\})$ there exists a set $E_{3} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $|z|=$ $r \notin[0,1] \cup E_{3}, r \rightarrow+\infty$, we have (3.1), (3.2) and (3.3). By Lemma 2.4 and $\sigma\left(A_{j} f^{(j)}\right)<n(j=0,1, \cdots, k-1)$, for the above ε, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=$ $\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$, we have (3.4) and from (3.14) and (3.15), we obtain (3.5). By (3.3) and (3.5), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H$, $|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$, we have (3.6). By (3.1), (3.2), (3.4), (3.6) and (3.7), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$, we have (3.8). This is absurd. Hence $\sigma(f) \geq n$.

Case (b). $0<\rho<1$. Using the same reasoning as above, there exists a ray $\arg z=\theta \in[0,2 \pi) \backslash H$, where H is defined as above, such that $\delta\left(P_{d}, \theta\right)>0$ and $\delta\left(P_{s}, \theta\right)<0$. Hence

$$
\begin{gather*}
\delta\left(-\rho P_{d}, \theta\right)=-\rho \delta\left(P_{d}, \theta\right)<0, \delta\left((1-\rho) P_{d}, \theta\right)=(1-\rho) \delta\left(P_{d}, \theta\right)>0, \tag{3.16}\\
\delta\left(P_{j}, \theta\right)=\left|a_{n, j}\right| \cos \left(\theta_{s}+n \theta\right)<0, j \in\{0, \cdots, k-1\} \backslash\left\{d, s, j_{1}, \cdots, j_{m}\right\}, \tag{3.17}\\
\delta\left(P_{j}-\rho P_{d}, \theta\right)<0, j \in\{0, \cdots, k-1\} \backslash\left\{d, j_{1}, \cdots, j_{m}\right\} \tag{3.18}
\end{gather*}
$$

and

$$
\begin{equation*}
\delta\left(P_{j_{\gamma}}-\rho P_{d}, \theta\right)=\left(d_{j_{\gamma}}-\rho\right) \delta\left(P_{d}, \theta\right)<0(\gamma=1, \cdots, m) \tag{3.19}
\end{equation*}
$$

By Lemma 2.4 and $\max \left\{\sigma\left(f^{(k)}\right), \sigma\left(A_{j} f^{(j)}\right), \sigma\left(B_{j} f^{(j)}\right)(j=0,1, \cdots, k-1)\right\}<$ n, for any given $\varepsilon(0<2 \varepsilon<1)$, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin$ $[0,1] \cup E_{5}, r \rightarrow+\infty$, we have

$$
\begin{equation*}
\left|A_{d}(z) e^{(1-\rho) P_{d}(z)} f^{(d)}(z)\right| \geq \exp \left\{(1-\varepsilon)(1-\rho) \delta\left(P_{d}, \theta\right) r^{n}\right\} \tag{3.20}
\end{equation*}
$$

$$
\begin{gather*}
\left|e^{-\rho P_{d}(z)} f^{(k)}(z)\right| \leq \exp \left\{-(1-\varepsilon) \rho \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq 1 \tag{3.21}\\
\left|B_{j}(z) e^{-\rho P_{d}(z)} f^{(j)}(z)\right| \leq \exp \left\{-(1-\varepsilon) \rho \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq 1(j=0, \cdots, k-1) \tag{3.22}
\end{gather*}
$$

and from (3.18) and (3.19) we obtain

$$
\begin{equation*}
\left|A_{j}(z) e^{P_{j}(z)-\rho P_{d}(z)} f^{(j)}(z)\right| \leq \exp \left\{(1-\varepsilon) \delta\left(P_{j}-\rho P_{d}, \theta\right) r^{n}\right\} \leq 1(j \neq d) \tag{3.23}
\end{equation*}
$$

By (1.1), we have

$$
\begin{align*}
\left|A_{d}(z) e^{(1-\rho) P_{d}(z)} f^{(d)}(z)\right| \leq\left|e^{-\rho P_{d}(z)} f^{(k)}(z)\right| & +\sum_{\substack{j=0 \\
j \neq d}}^{k-1}\left|A_{j}(z) e^{P_{j}(z)-\rho P_{d}(z)} f^{(j)}(z)\right| \\
& +\sum_{j=0}^{k-1}\left|B_{j}(z) e^{-\rho P_{d}(z)} f^{(j)}(z)\right| . \tag{3.24}
\end{align*}
$$

By (3.20) - (3.24), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{5}$, $r \rightarrow+\infty$, we have

$$
\begin{equation*}
\exp \left\{(1-\varepsilon)(1-\rho) \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq 2 k \tag{3.25}
\end{equation*}
$$

This is absurd. Hence $\sigma(f) \geq n$.
Assume f is a transcendental meromorphic solution whose poles are of uniformly bounded multiplicity of equation (1.1). By Lemma 2.1, there exist a constant $B>0$ and a set $E_{1} \subset(1,+\infty)$ having finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(d)}(z)}\right| \leq \operatorname{Br}[T(2 r, f)]^{j-d+1} \quad(j=d+1, \cdots, k) \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq B r[T(2 r, f)]^{j+1} \quad(j=1,2, \cdots, d-1) \tag{3.27}
\end{equation*}
$$

By (1.1), it follows that the poles of f can only occur at the poles of A_{j} and B_{j} $(j=0, \cdots, k-1)$. Note that the poles of f are of uniformly bounded multiplicity. Hence $\lambda(1 / f) \leq \max \left\{\sigma\left(A_{j}\right), \sigma\left(B_{j}\right)(j=0, \cdots, k-1)\right\}<n$. By Hadamard factorization theorem, we know that f can be written as $f(z)=\frac{g(z)}{b(z)}$, where $g(z)$ and $b(z)$ are entire functions with $\lambda(b)=\sigma(b)=\lambda(1 / f)<n \leq \sigma(f)=\sigma(g)$. By Lemma 2.2, there exist a sequence $\left\{r_{m}\right\}_{m \in \mathbb{N}}, r_{m} \rightarrow+\infty$ and a set E_{2} of finite logarithmic measure such that the estimation

$$
\begin{equation*}
\left|\frac{f(z)}{f^{(d)}(z)}\right| \leq r_{m}^{2 d} \tag{3.28}
\end{equation*}
$$

holds for all z satisfying $|z|=r_{m} \notin E_{2}, r_{m} \rightarrow+\infty$ and $|g(z)|=M\left(r_{m}, g\right)$. Set $\beta=\max \left\{\sigma\left(B_{j}\right) \quad(j=0, \cdots, k-1)\right\}$.

Suppose that (i) holds. Using the same reasoning as above, there is a ray $\arg z=\theta \in[0,2 \pi) \backslash H$, where H is defined above such that $\delta\left(P_{d}, \theta\right)>0$, $\delta\left(P_{j}, \theta\right)<0(j \neq d)$. By Lemma 2.3, for any given $\varepsilon(0<2 \varepsilon<\min \{1, n-\beta\})$, there exists a set $E_{3} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $|z|=r \notin[0,1] \cup E_{3}, r \rightarrow+\infty$, we have

$$
\begin{equation*}
\left|B_{d}(z)\right| \leq \exp \left\{r^{\beta+\varepsilon}\right\} \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|B_{j}(z)\right| \leq \exp \left\{r^{\sigma\left(B_{j}\right)+\frac{\varepsilon}{2}}\right\}(j \neq d) \tag{3.30}
\end{equation*}
$$

By Lemma 2.4, for any given $\varepsilon(0<2 \varepsilon<\min \{1, n-\beta\})$, there exists a set $E_{5} \subset$ $(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=\theta \in$ $[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$, we have

$$
\begin{equation*}
\left|A_{d}(z) e^{P_{d}(z)}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(P_{d}, \theta\right) r^{n}\right\} \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(P_{j}, \theta\right) r^{n}\right\}<1(j \neq d) \tag{3.32}
\end{equation*}
$$

By (3.29) and (3.31), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup$ $E_{5}, r \rightarrow+\infty$, we have

$$
\begin{equation*}
\left|A_{d}(z) e^{P_{d}(z)}+B_{d}(z)\right| \geq(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(P_{d}, \theta\right) r^{n}\right\} \tag{3.33}
\end{equation*}
$$

By (3.30) and (3.32), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup$ $E_{5}, r \rightarrow+\infty$, we have

$$
\left.\begin{array}{rl}
\left|A_{j}(z) e^{P_{j}(z)}+B_{j}(z)\right| \leq \exp \{ & \left.(1-\varepsilon) \delta\left(P_{j}, \theta\right) r^{n}\right\}
\end{array}\right)+\exp \left\{r^{\sigma\left(B_{j}\right)+\frac{\varepsilon}{2}}\right\},
$$

We can rewrite (1.1) as

$$
\begin{align*}
A_{d}(z) e^{P_{d}(z)}+B_{d}(z)=\frac{f^{(k)}}{f^{(d)}}+\sum_{j=d+1}^{k-1} & \left(A_{j}(z) e^{P_{j}(z)}+B_{j}(z)\right) \frac{f^{(j)}}{f^{(d)}} \\
& +\sum_{j=0}^{d-1}\left(A_{j}(z) e^{P_{j}(z)}+B_{j}(z)\right) \frac{f^{(j)}}{f} \frac{f}{f^{(d)}} \tag{3.35}
\end{align*}
$$

Hence from (3.26) - (3.28) and (3.33) - (3.35), for all z with $\arg z=\theta \in[0,2 \pi) \backslash$ $H,|z|=r_{m} \notin[0,1] \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{5}, r_{m} \rightarrow+\infty$ and $|g(z)|=M\left(r_{m}, g\right)$, we obtain

$$
\begin{equation*}
(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(P_{d}, \theta\right) r_{m}^{n}\right\} \leq M_{2} r_{m}^{2 d+1} \exp \left\{r_{m}^{\beta+\varepsilon}\right\}\left[T\left(2 r_{m}, f\right)\right]^{k} \tag{3.36}
\end{equation*}
$$

where $M_{2}(>0)$ is some constant. Thus $0<2 \varepsilon<\min \{1, n-\beta\}$ implies $\sigma(f)=$ $+\infty$ and $\sigma_{2}(f) \geq n$. By Lemma 2.5, we have $\sigma_{2}(f)=n$.

Suppose that (ii) holds. Using the same reasoning as above, we take a ray $\arg z=\theta \in[0,2 \pi) \backslash H$, where $H=\left\{\theta \in[0,2 \pi): \delta\left(P_{d}, \theta\right)=0\right\}$, such that $\delta\left(P_{d}, \theta\right)>0$. By Lemma 2.3, for any given $\varepsilon\left(0<2 \varepsilon<\min \left\{\frac{1-c}{1+c}, n-\beta\right\}\right)$, there exists a set $E_{3} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $|z|=r \notin[0,1] \cup E_{3}, r \rightarrow+\infty$, we have

$$
\begin{equation*}
\left|B_{j}(z)\right| \leq \exp \left\{r^{\beta+\varepsilon}\right\}(j=0, \cdots, k-1) \tag{3.37}
\end{equation*}
$$

By Lemma 2.4, for any given $\varepsilon\left(0<2 \varepsilon<\min \left\{\frac{1-c}{1+c}, n-\beta\right\}\right)$, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=$ $\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$, we have (3.31) and

$$
\begin{equation*}
\left|A_{j}(z) e^{P_{j}(z)}\right| \leq \exp \left\{(1+\varepsilon) c \delta\left(P_{d}, \theta\right) r^{n}\right\}(j \neq d) \tag{3.38}
\end{equation*}
$$

By (3.31) and (3.37), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup$ $E_{5}, r \rightarrow+\infty$, we have (3.33). By (3.37) and (3.38), for all z with $\arg z=\theta \in$ $[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$, we have

$$
\begin{equation*}
\left|A_{j}(z) e^{P_{j}(z)}+B_{j}(z)\right| \leq(1+o(1)) \exp \left\{(1+\varepsilon) c \delta\left(P_{d}, \theta\right) r^{n}\right\} \quad(j \neq d) \tag{3.39}
\end{equation*}
$$

Hence from (3.26) - (3.28) and (3.33), (3.35) and (3.39), for all z with $\arg z=\theta \in$ $[0,2 \pi) \backslash H,|z|=r_{m} \notin[0,1] \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{5}, r_{m} \rightarrow+\infty$ and $|g(z)|=M\left(r_{m}, g\right)$, we obtain

$$
\begin{align*}
& (1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(P_{d}, \theta\right) r_{m}^{n}\right\} \\
& \quad \leq M_{3} r_{m}^{2 d+1}(1+o(1)) \exp \left\{(1+\varepsilon) c \delta\left(P_{d}, \theta\right) r_{m}^{n}\right\}\left[T\left(2 r_{m}, f\right)\right]^{k} \tag{3.40}
\end{align*}
$$

where $M_{3}(>0)$ is a constant. By $0<2 \varepsilon<\frac{1-c}{1+c}$ and (3.40), we have

$$
\begin{equation*}
\exp \left\{\frac{(1-c)}{2} \delta\left(P_{d}, \theta\right) r_{m}^{n}\right\} \leq M_{4} r_{m}^{2 d+1}\left[T\left(2 r_{m}, f\right)\right]^{k} \tag{3.41}
\end{equation*}
$$

where $M_{4}(>0)$ is a constant. Hence (3.41) implies $\sigma(f)=+\infty$ and $\sigma_{2}(f) \geq n$. By Lemma 2.5, we have $\sigma_{2}(f)=n$.

Suppose that (iii) holds.
Case (a). $\rho \leq 0$. Using the same reasoning as above, there exists a ray $\arg z=\theta \in$ $[0,2 \pi) \backslash H$, where H is defined as above, such that $\delta\left(P_{d}, \theta\right)>0$ and $\delta\left(P_{s}, \theta\right)<$ 0 . Hence (3.14) and (3.15) hold. By Lemma 2.3, for any given $\varepsilon(0<2 \varepsilon<$ $\min \{1, n-\beta\})$ there exists a set $E_{3} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $|z|=r \notin[0,1] \cup E_{3}, r \rightarrow+\infty$, we have (3.29) and (3.30) . By Lemma 2.4, for the above ε, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin$ $[0,1] \cup E_{5}, r \rightarrow+\infty$, we have (3.31) and (3.32). By (3.29) and (3.31), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$, we have (3.33). By (3.30) and (3.32), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup E_{5}$, $r \rightarrow+\infty$, we have (3.34). Hence from (3.26) - (3.28) and (3.33) - (3.35), for all
z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r_{m} \notin[0,1] \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{5}, r_{m} \rightarrow+\infty$ and $|g(z)|=M\left(r_{m}, g\right)$, we obtain (3.36). Thus $0<2 \varepsilon<\min \{1, n-\beta\}$ implies $\sigma(f)=+\infty$ and $\sigma_{2}(f) \geq n$. By Lemma 2.5, we have $\sigma_{2}(f)=n$.

Case (b). $0<\rho<1$. Using the same reasoning as above, there exists a ray $\arg z=\theta \in[0,2 \pi) \backslash H$, where H is defined as above, such that $\delta\left(P_{d}, \theta\right)>0$ and $\delta\left(P_{s}, \theta\right)<0$. Hence (3.16) - (3.19) hold. By Lemma 2.4, for any given ε $(0<2 \varepsilon<1)$, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$, we have

$$
\begin{gather*}
\left|A_{d}(z) e^{(1-\rho) P_{d}(z)}\right| \geq \exp \left\{(1-\varepsilon)(1-\rho) \delta\left(P_{d}, \theta\right) r^{n}\right\}, \tag{3.42}\\
\left|e^{-\rho P_{d}(z)}\right| \leq \exp \left\{-(1-\varepsilon) \rho \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq 1, \tag{3.43}\\
\left|B_{j}(z) e^{-\rho P_{d}(z)}\right| \leq \exp \left\{-(1-\varepsilon) \rho \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq 1(j=0, \cdots, k-1), \tag{3.44}\\
\left|A_{j}(z) e^{P_{j}(z)-\rho P_{d}(z)}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(P_{j}-\rho P_{d}, \theta\right) r^{n}\right\} \leq 1(j \neq d) \tag{3.45}
\end{gather*}
$$

We can rewrite (1.1) as

$$
\begin{align*}
A_{d}(z) e^{(1-\rho) P_{d}(z)}= & -B_{d}(z) e^{-\rho P_{d}(z)}+e^{-\rho P_{d}(z)} \frac{f^{(k)}}{f^{(d)}} \\
+ & \sum_{j=d+1}^{k-1}\left(A_{j}(z) e^{P_{j}(z)-\rho P_{d}(z)}+B_{j}(z) e^{-\rho P_{d}(z)}\right) \frac{f^{(j)}}{f^{(d)}} \\
& \quad+\sum_{j=0}^{d-1}\left(A_{j}(z) e^{P_{j}(z)-\rho P_{d}(z)}+B_{j}(z) e^{-\rho P_{d}(z)}\right) \frac{f^{(j)}}{f} \frac{f}{f^{(d)}} . \tag{3.46}
\end{align*}
$$

By (3.26) - (3.28) and (3.42) - (3.46), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H$, $|z|=r_{m} \notin[0,1] \cup E_{1} \cup E_{2} \cup E_{5}, r_{m} \rightarrow+\infty$ and $|g(z)|=M\left(r_{m}, g\right)$, we obtain

$$
\begin{equation*}
\exp \left\{(1-\varepsilon)(1-\rho) \delta\left(P_{d}, \theta\right) r_{m}^{n}\right\} \leq M_{5} r_{m}^{2 d+1}\left[T\left(2 r_{m}, f\right)\right]^{k} \tag{3.47}
\end{equation*}
$$

where $M_{5}(>0)$ is some constant. Thus $0<2 \varepsilon<1$ implies $\sigma(f)=+\infty$ and $\sigma_{2}(f) \geq n$. By Lemma 2.5, we have $\sigma_{2}(f)=n$.

If $\arg a_{n, j}=\theta_{s}(j \neq d, s)$, then $\arg a_{n, j} \neq \arg a_{n, d}(j \neq d)$ and by case (i), it follows that every transcendental solution f of equation (1.1) is of infinite order and satisfies $\sigma_{2}(f)=n$.

Suppose now that max $\left\{c_{1}, \cdots, c_{d-1}\right\}<c_{0}$ in case (ii). If f is a rational solution of (1.1), then by $\max \left\{c_{1}, \cdots, c_{d-1}\right\}<c_{0}$, the hypotheses of case (ii) and

$$
\begin{align*}
& f=-\left(\frac{1}{A_{0}(z) e^{P_{0}(z)}+B_{0}(z)} f^{(k)}+\frac{A_{k-1}(z) e^{P_{k-1}(z)}+B_{k-1}(z)}{A_{0}(z) e^{P_{0}(z)}+B_{0}(z)} f^{(k-1)}\right. \\
&\left.+\cdots+\frac{A_{1}(z) e^{P_{1}(z)}+B_{1}(z)}{A_{0}(z) e^{P_{0}(z)}+B_{0}(z)} f^{\prime}\right) \tag{3.48}
\end{align*}
$$

we obtain a contradiction since the left side of equation (3.48) is a rational function but the right side is a transcendental meromorphic function.

Now we prove that equation (1.1) cannot have a nonzero polynomial solution. Suppose that $c^{\prime}=\max \left\{c_{1}, \cdots, c_{d-1}\right\}<c_{0}$ and let $f(z)$ be a nonzero polynomial solution of equation (1.1) with $\operatorname{deg} f(z)=q$. We take a ray $\arg z=\theta \in$ $[0,2 \pi) \backslash H$, where H is defined as above, such that $\delta\left(P_{d}, \theta\right)>0$. By Lemma 2.3, for any given $\varepsilon\left(0<2 \varepsilon<\min \left\{\frac{1-c}{1+c}, \frac{c_{0}-c^{\prime}}{c_{0}+c^{\prime}}, n-\beta\right\}\right)$, there exists a set $E_{3} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $|z|=$ $r \notin[0,1] \cup E_{3}, r \rightarrow+\infty$, we have (3.37). By Lemma 2.4, for the above ε, there exists a set $E_{5} \subset(1,+\infty)$ having finite logarithmic measure such that for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{5}, r \rightarrow+\infty$, we have (3.31) and (3.38). By (3.31) and (3.37), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H$, $|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$, we have (3.33) and by (3.37) and (3.38), for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$, we have (3.39). If $q \geq d$, by (1.1), (3.33) and (3.39), we obtain for all z with $\arg z=\theta \in[0,2 \pi) \backslash H$, $|z|=r \notin[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$

$$
\begin{align*}
& M_{6} r^{q-d}(1-o(1)) \exp \left\{(1-\varepsilon) \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq\left|A_{d}(z) e^{P_{d}(z)}+B_{d}(z)\right|\left|f^{(d)}(z)\right| \\
& \leq \sum_{j \neq d}\left|A_{j}(z) e^{P_{j}(z)}+B_{j}(z)\right|\left|f^{(j)}(z)\right| \\
& \leq M_{7} r^{q}(1+o(1)) \exp \left\{(1+\varepsilon) c \delta\left(P_{d}, \theta\right) r^{n}\right\} \tag{3.49}
\end{align*}
$$

where $M_{6}(>0), M_{7}(>0)$ are constants. By (3.49), we get

$$
\begin{equation*}
\exp \left\{\frac{(1-c)}{2} \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq M_{8} r^{d} \tag{3.50}
\end{equation*}
$$

where $M_{8}(>0)$ is some constant. Hence (3.50) is a contradiction. If $q<d$, by (1.1), (3.33) and (3.39), we obtain for all z with $\arg z=\theta \in[0,2 \pi) \backslash H,|z|=r \notin$ $[0,1] \cup E_{3} \cup E_{5}, r \rightarrow+\infty$

$$
\begin{gather*}
M_{9} r^{d-1}(1-o(1)) \exp \left\{(1-\varepsilon) c_{0} \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq\left|A_{0}(z) e^{P_{0}(z)}+B_{0}(z)\right||f(z)| \\
\leq \sum_{j=1}^{d-1}\left|A_{j}(z) e^{P_{j}(z)}+B_{j}(z)\right|\left|f^{(j)}(z)\right| \\
\leq M_{10} r^{d-2}(1+o(1)) \exp \left\{(1+\varepsilon) c^{\prime} \delta\left(P_{d}, \theta\right) r^{n}\right\}, \tag{3.51}
\end{gather*}
$$

where $M_{9}(>0), M_{10}(>0)$ are constants. By (3.51), we get

$$
\begin{equation*}
\exp \left\{\frac{\left(c_{0}-c^{\prime}\right)}{2} \delta\left(P_{d}, \theta\right) r^{n}\right\} \leq \frac{M_{11}}{r} \tag{3.52}
\end{equation*}
$$

where $M_{11}(>0)$ is some constant. This is a contradiction. Therefore, if $\max \left\{c_{1}, \cdots, c_{d-1}\right\}<c_{0}$, then every meromorphic solution of equation (1.1) is of infinite order and satisfies $\sigma_{2}(f)=n$.

Acknowledgments. The authors would like to thank the referees for their helpful remarks and suggestions to improve the paper. This paper is supported by ANDRU (Agence Nationale pour le Développement de la Recherche Universitaire) and University of Mostaganem (UMAB), (PNR Project Code 8/u27/3144).

References

[1] B. Belaïdi and S. Abbas, On the hyper-order of solutions a class of higher order linear differential equations, An. Şt. Univ. Ovidius Constanţa, Vol. 16(2), 2008, 1-16.
[2] T. B. Cao and H. X. Yi, On the complex oscillation of higher order linear differential equations with meromorphic functions, J. Syst. Sci. Complex. 20 (2007), no. 1, 135-148.
[3] Z. X. Chen, The zero, pole and orders of meromorphic solutions of differential equations with meromorphic coefficients, Kodai Math. J., 19 (1996), 341-354.
[4] Z. X. Chen, The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the order $(Q)=1$, Sci. China Ser. A 45 (2002), no. 3, 290-300.
[5] W. J. Chen and J. F. Xu, Growth of meromorphic solutions of higher order linear differential equations, Electron. J. Qual. Theory Differ. Equ. 2009, No. 1, 1-13.
[6] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88-104.
[7] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
[8] K. H. Kwon, Nonexistence of finite order solutions of certain second linear differential equations, Kodai Math. J., 19 (1996), 378-387.
[9] J. Tu and C. F. Yi, On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order, J. Math. Anal. Appl. 340 (2008), no. 1, 487-497.
[10] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem (UMAB)
B. P. 227 Mostaganem, Algeria
email:hamani@univ-mosta.dz, belaidi@univ-mosta.dz

[^0]: *Corresponding author
 Received by the editors June 2011 - In revised form in February 2012.
 Communicated by P. De Maesschalck.
 2000 Mathematics Subject Classification : 34M10, 30D35.
 Key words and phrases : Linear differential equation, meromorphic function, hyper-order.

