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Abstract In this article, we discuss the growth of solutions of the second-order nonho-
mogeneous linear differential equation

f ′′ + A1(z)eazf ′ + A0(z)ebzf = F,

where a, b are complex constants and Aj(z) �≡ 0 (j = 0,1), and F �≡ 0 are entire func-
tions such that max{ρ(Aj) (j = 0,1), ρ(F )} < 1. We also investigate the relationship
between small functions and differential polynomials gf (z) = d2f ′′ +d1f ′ +d0f , where
d0(z), d1(z), d2(z) are entire functions that are not all equal to zero with ρ(dj) < 1 (j =

0,1,2) generated by solutions of the above equation.

1. Introduction and statement of results

Throughout this article, we assume that the reader is familiar with the funda-
mental results and the standard notation of the Nevanlinna value distribution
theory (see [14], [20]). In addition, we use λ(f) and λ(f) to denote, respectively,
the exponents of convergence of the zero-sequence and the sequence of distinct
zeros of f , ρ(f) to denote the order of growth of f . A meromorphic function ϕ(z)
is called a small function with respect to f(z) if T (r,ϕ) = o(T (r, f)) as r → +∞,
where T (r, f) is the Nevanlinna characteristic function of f .

To give the precise estimate of fixed points, we define the following.

DEFINITION 1.1 ([18, p. 192], [23])

Let f be a meromorphic function, and let z1, z2, . . . (|zj | = rj , 0 < r1 ≤ r2 ≤ · · · )
be the sequence of the fixed points of f , each point being repeated only once. The
exponent of convergence of the sequence of distinct fixed points of f is defined
by

τ(f) = inf
{

τ > 0 :
+∞∑
j=1

|zj | −τ < +∞
}

.

Clearly,

(1.1) τ(f) = lim
r→+∞

logN(r,1/(f − z))
log r

,
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where N(r,1/(f − z)) is the counting function of distinct fixed points of f(z) in
{|z| < r}.

For the second-order linear differential equation

(1.2) f ′ ′ + e−zf ′ + B(z)f = 0,

where B(z) is an entire function, it is well known that each solution f of the
equation (1.2) is an entire function and that if f1, f2 are two linearly independent
solutions of (1.2), then by [9, Lemma 3], there is at least one of f1, f2 of infinite
order. Hence, most solutions of (1.2) have infinite order. But equation (1.2) with
B(z) = −(1 + e−z) possesses a solution f(z) = ez of finite order.

A natural question arises: What conditions on B(z) will guarantee that
every solution f �≡ 0 has infinite order? Many authors, Frei [10], Ozawa [21],
Amemiya and Ozawa [1], Gundersen [11], and Langley [17], have studied this
problem. They proved that when B(z) is a nonconstant polynomial or B(z) is
a transcendental entire function with order ρ(B) �= 1, then every solution f �≡ 0
of (1.2) has infinite order.

In 2002, Z. X. Chen [6] considered the question: What conditions on B(z) when
ρ(B) = 1 guarantee that every nontrivial solution of (1.2) has infinite order?
He proved the following results, which improved results of Frei, Amemiya and
Ozawa, Ozawa, Langley, and Gundersen.

THEOREM A ([6, p. 291])

Let Aj(z) �≡ 0 (j = 0,1) and Dj(z) (j = 0,1) be entire functions with max{ρ(Aj)
(j = 0,1), ρ(Dj) (j = 0,1)} < 1, and let a, b be complex constants that satisfy
ab �= 0 and arga �= arg b or a = cb (0 < c < 1). Then every solution f �≡ 0 of the
equation

(1.3) f ′ ′ +
(
D1(z) + A1(z)eaz

)
f ′ +

(
D0(z) + A0(z)ebz

)
f = 0

is of infinite order.

Setting Dj ≡ 0 (j = 0,1) in Theorem A, we obtain the following result.

THEOREM B

Let Aj(z) �≡ 0 (j = 0,1) be entire functions with max{ρ(Aj) (j = 0,1)} < 1, and
let a, b be complex constants that satisfy ab �= 0 and arga �= arg b or a = cb (0 <

c < 1). Then every solution f �≡ 0 of the equation

(1.4) f ′ ′ + A1(z)eazf ′ + A0(z)ebzf = 0

is of infinite order.

THEOREM C ([6, p. 291])

Let Aj(z) �≡ 0 (j = 0,1) be entire functions with ρ(Aj) < 1 (j = 0,1), and let a, b

be complex constants that satisfy ab �= 0 and a = cb (c > 1). Then every solution
f �≡ 0 of the equation (1.4) is of infinite order.
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Consider the second-order nonhomogeneous linear differential equation

(1.5) f ′ ′ + A1(z)eazf ′ + A0(z)ebzf = F,

where a, b are complex constants and Aj(z) �≡ 0 (j = 0,1), F (z) are entire func-
tions with max{ρ(Aj) (j = 0,1), ρ(F )} < 1. In [22], J. Wang and I. Laine have
investigated the growth of solutions of (1.5) and have obtained the following.

THEOREM D ([22, p. 40])

Let Aj(z) �≡ 0 (j = 0,1) and F (z) be entire functions with max{ρ(Aj) (j =
0,1), ρ(F )} < 1, and let a, b be complex constants that satisfy ab �= 0 and a �= b.
Then every nontrivial solution f of equation (1.5) is of infinite order.

The first main purpose of this article is to study the growth and the oscillation
of solutions of the second-order linear differential equation (1.5). We prove the
following results.

THEOREM 1.1

Let Aj(z) �≡ 0 (j = 0,1) and F �≡ 0 be entire functions with max{ρ(Aj) (j =
0,1), ρ(F )} < 1, and let a, b be complex constants that satisfy ab �= 0 and a �= b.
Then every solution f of equation (1.5) is of infinite order and satisfies

(1.6) λ(f) = λ(f) = ρ(f) = ∞.

REMARK 1.1

The proof of Theorem 1.1 in which every solution f of the equation (1.5) has
infinite order is quite different from that in the proof of Theorem D (see [22]).
The main ingredient in the proof is Lemma 2.12.

REMARK 1.2

If ρ(F ) ≥ 1, then equation (1.5) can posses solution of finite order. For instance
the equation

f ′ ′ + e−zf ′ + ezf = 1 + e2z

satisfies ρ(F ) = ρ(1 + e2z) = 1 and has a finite order solution f(z) = ez − 1.

THEOREM 1.2

Let Aj(z) �≡ 0 (j = 0,1) and Dj(z) (j = 0,1), F (z) �≡ 0 be entire functions with
max{ρ(Aj) (j = 0,1), ρ(Dj) (j = 0,1), ρ(F )} < 1, and let a, b be complex constants
that satisfy ab �= 0 and a �= b. Then every solution f of the equation

(1.7) f ′ ′ +
(
D1(z) + A1(z)eaz

)
f ′ +

(
D0(z) + A0(z)ebz

)
f = F

is of infinite order and satisfies (1.6).

REMARK 1.3

In [22], J. Wang and I. Laine studied equation (1.7) and obtained the same result
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as in Theorem 1.2 but under restriction that the complex constants a, b satisfy
ab �= 0 and b/a < 0.

REMARK 1.4

Setting Dj ≡ 0 (j = 0,1) in Theorem 1.2, we obtain Theorem 1.1.

THEOREM 1.3

Let Aj(z) (j = 0,1), a, b satisfy the additional hypotheses of Theorem 1.1, and
let F (z) be an entire function such that ρ(F ) ≥ 1. Then every solution f of the
equation (1.5) satisfies (1.6) with at most one finite-order solution f0.

Many important results have been obtained on the fixed points of general tran-
scendental meromorphic functions for almost four decades (see [24]). However,
there are few studies on the fixed points of solutions of differential equations.
It was in the year 2000 that Z. X. Chen first pointed out the relation between
the exponent of convergence of distinct fixed points and the rate of growth of
solutions of second-order linear differential equations with entire coefficients (see
[5]). In [23], Wang and Yi investigated fixed points and hyperorder of differential
polynomials generated by solutions of second-order linear differential equations
with meromorphic coefficients. In [16], Laine and Rieppo gave an improvement
of the results of [23] by considering fixed points and iterated order. In [18], Liu
and Zhang have investigated the fixed points and hyperorder of solutions of some
higher-order linear differential equations with meromorphic coefficients and their
derivatives. Recently, in [2], [3], Beläıdi gave an extension of the results of [18].

We know that a differential equation bears a relation to all derivatives of its
solutions. Hence, linear differential polynomials generated by its solutions must
have special nature because of the control of differential equations.

The second main purpose of this article is to study the relation between
small functions and some differential polynomials generated by solutions of the
second-order linear differential equation (1.5). We obtain some estimates of their
distinct fixed points.

THEOREM 1.4

Let Aj(z) �≡ 0 (j = 0,1) and F �≡ 0 be entire functions with max{ρ(Aj) (j =
0,1), ρ(F )} < 1, and let a, b be complex constants that satisfy ab �= 0 and arga �=
arg b or a = cb (0 < c < 1). Let d0(z), d1(z), d2(z) be entire functions that are not
all equal to zero with ρ(dj) < 1 (j = 0,1,2), and let ϕ(z) be an entire function
with finite order. If f is a solution of (1.5), then the differential polynomial
gf = d2f

′ ′ + d1f
′ + d0f satisfies λ(gf − ϕ) = ∞.

COROLLARY 1.1

Let Aj(z) (j = 0,1), F (z), dj(z) (j = 0,1,2), a, b satisfy the additional hypotheses
of Theorem 1.4. If f is a solution of (1.5), then the differential polynomial
gf = d2f

′ ′ + d1f
′ + d0f has infinitely many fixed points and satisfies τ(gf ) = ∞.
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Now, let us denote

(1.8) α1 = d1 − d2A1e
az, α0 = d0 − d2A0e

bz,

β1 = d2A
2
1e

2az −
(
(d2A1)′ + ad2A1 + d1A1

)
eaz

(1.9)
− d2A0e

bz + d0 + d′
1,

(1.10) β0 = d2A0A1e
(a+b)z −

(
(d2A0) + bd2A0 + d1A0

)
ebz + d′

0,

(1.11) h = α1β0 − α0β1,

and

(1.12) ψ =
α1(ϕ′ − (d2F )′ − α1F ) − β1(ϕ − d2F )

h
.

THEOREM 1.5

Let Aj(z) (j = 0,1), dj(z) (j = 0,1,2), a, b satisfy the additional hypotheses
of Theorem 1.4, and let F (z) be an entire function such that ρ(F ) ≥ 1. Let
ϕ(z) be an entire function with finite order such that ψ(z) is not a solution of
equation (1.5). If f(z) is a solution of (1.5), then the differential polynomial
gf = d2f

′ ′ + d1f
′ + d0f satisfies λ(gf − ϕ) = ∞ with at most one finite-order

solution f0.

Next, we investigate the relation between small functions and differential poly-
nomials of a pair of nonhomogeneous linear differential equations, and we obtain
the following result.

THEOREM 1.6

Let Aj(z) (j = 0,1), dj(z) (j = 0,1,2), a, b satisfy the additional hypotheses of
Theorem 1.4. Let F1 �≡ 0 and F2 �≡ 0 be entire functions such that max{ρ(Fj) : j =
1,2} < 1 and F1 − CF2 �≡ 0 for any constant C, and let ϕ(z) be an entire function
with finite order. If f1 is a solution of the equation

(1.13) f ′ ′ + A1(z)eazf ′ + A0(z)ebzf = F1

and f2 is a solution of the equation

(1.14) f ′ ′ + A1(z)eazf ′ + A0(z)ebzf = F2,

then the differential polynomial gf1−Cf2(z) = d2(f ′ ′
1 − Cf ′ ′

2 ) + d1(f ′
1 − Cf ′

2) +
d0(f1 − Cf2) satisfies λ(gf1−Cf2 − ϕ) = ∞ for any constant C.

2. Preliminary lemmas

We need the following lemmas in the proofs of our theorems.

LEMMA 2.1 ([12, p. 90])

Let f be a transcendental meromorphic function of finite order ρ, let Γ = {(k1, j1),
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(k2, j2), . . . , (km, jm)} denote a finite set of distinct pairs of integers that satisfy
ki > ji ≥ 0 for i = 1, . . . ,m, and let ε > 0 be a given constant. Then the following
estimations hold.

(i) There exists a set E1 ⊂ [0,2π) which has linear measure zero, such that
if ψ ∈ [0,2π) − E1, then there is a constant R1 = R1(ψ) > 1 such that for all z

satisfying arg z = ψ and |z| ≥ R1 and for all (k, j) ∈ Γ, we have

(2.1)
∣∣∣f

(k)(z)
f (j)(z)

∣∣∣ ≤ |z|(k−j)(ρ−1+ε).

(ii) There exists a set E2 ⊂ (1, ∞) which has finite logarithmic measure
lm(E2) =

∫ +∞
1

((χE2
(t))/t)dt, where χE2

is the characteristic function of E2,
such that for all z satisfying |z| /∈ E2 ∪ [0,1] and for all (k, j) ∈ Γ, we have

(2.2)
∣∣∣f

(k)(z)
f (j)(z)

∣∣∣ ≤ |z|(k−j)(ρ−1+ε).

LEMMA 2.2 ([8, p. 755])

Let f(z) be a transcendental meromorphic function of order ρ(f) = ρ < +∞.
Then for any given ε > 0, there exists a set E3 ⊂ [0,2π) which has linear measure
zero, such that if ψ1 ∈ [0,2π)\E3, then there is a constant R2 = R2(ψ1) > 1 such
that for all z satisfying arg z = ψ1 and |z| = r ≥ R2, we have

(2.3) exp{ −rρ+ε} ≤ |f(z)| ≤ exp{rρ+ε}.

The next lemma describing the behavior of eP (z), where P (z) is a linear polyno-
mial, is a special case of a more general result in [19, p. 254].

LEMMA 2.3 ([19, p. 254])

Let P (z) = (α + iβ)z, (α + iβ �= 0), and let A(z) �≡ 0 be a meromorphic function
with ρ(A) < 1. Set f(z) = A(z)eP (z), z = reiθ, δ(P, θ) = α cosθ − β sinθ. Then
for any given ε > 0, there exists a set E4 ⊂ [0,2π) which has linear measure zero,
such that if θ ∈ [0,2π)\(E4 ∪ E5), where E5 = {θ ∈ [0,2π) : δ(P, θ) = 0} is a finite
set, then for sufficiently large |z| = r, we have the following.

(i) If δ(P, θ) > 0, then

(2.4) exp
{
(1 − ε)δ(P, θ)r

}
≤ |f(z)| ≤ exp

{
(1 + ε)δ(P, θ)r

}
.

(ii) If δ(P, θ) < 0, then

(2.5) exp
{
(1 + ε)δ(P, θ)r

}
≤ |f(z)| ≤ exp

{
(1 − ε)δ(P, θ)r

}
.

LEMMA 2.4 ([4])

Let A0,A1, . . . ,Ak−1, F �≡ 0, be finite-order meromorphic functions. If f is a
meromorphic solution with ρ(f) = ∞ of the equation

(2.6) f (k) + Ak−1f
(k−1) + · · · + A1f

′ + A0f = F,

then λ(f) = λ(f) = ρ(f) = ∞.
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LEMMA 2.5

Let a, b be complex numbers such that ab �= 0 and arga �= arg b or a = cb (0 < c <

1). We denote index sets by

Λ1 = {0, a},

Λ2 = {0, a, b,2a, a + b}.

(i) If Hj(j ∈ Λ1) and Hb �≡ 0 are all meromorphic functions of orders that
are less than 1, setting Ψ1(z) =

∑
j∈Λ1

Hj(z)ejz, then Ψ1(z) + Hbe
bz �≡ 0.

(ii) If Hj(j ∈ Λ2) and H2b �≡ 0 are all meromorphic functions of orders that
are less than 1, setting Ψ2(z) =

∑
j∈Λ2

Hj(z)ejz, then Ψ2(z) + H2be
2bz �≡ 0.

Proof
We prove only (i) (for the proof of (ii), see [8]). We divide this into two cases.

Case 1. Suppose first that arga �= arg b. Set ρ(H0) = β < 1. By Lemma 2.2,
for any given ε (0 < ε < 1 − β) there is a set E3 which has linear measure zero
such that if arg z = θ ∈ [0,2π)\E3, then there is R = R(θ) > 1 such that for all z

satisfying arg z = θ and |z| = r > R, we have

(2.7) |H0(z)| ≤ exp{rβ+ε}.

By Lemma 2.3, there exists a ray arg z = θ ∈ [0,2π)\E3 ∪ E4 ∪ E5, E3 ∪ E4, E5 =
{θ ∈ [0,2π) : δ(az, θ) = 0 or δ(bz, θ) = 0} ⊂ [0,2π) being defined as in Lemma 2.3,
E3 ∪ E4 having linear measure zero, E5 being a finite set, such that

δ(az, θ) < 0, δ(bz, θ) > 0,

and for the above ε, we have for sufficiently large |z| = r:

(2.8) |Hbe
bz | ≥ exp

{
(1 − ε)δ(bz, θ)r

}
,

(2.9) |Haeaz | ≤ exp
{
(1 − ε)δ(az, θ)r

}
< 1.

If Ψ1(z) + Hbe
bz ≡ 0, then by (2.7)–(2.9), we have

(2.10) exp
{
(1 − ε)δ(bz, θ)r

}
≤ |Hbe

bz | ≤ exp{rβ+ε} + 1.

This is a contradiction by β + ε < 1. Hence Ψ1(z) + Hbe
bz �≡ 0.

Case 2. Suppose now a = cb (0 < c < 1). Then for any ray arg z = θ, we
have

δ(az, θ) = cδ(bz, θ).

Then by Lemma 2.2 and Lemma 2.3, for any given ε (0 < ε < min((1 − c)/4,1 −
β)) there exist Ej ⊂ [0,2π) (j = 3,4,5) such that E3,E4 has linear measure zero
and E5 is a finite set, where E3,E4, and E5 are defined, respectively, as in case 1.
We take the ray arg z = θ ∈ [0,2π)\E3 ∪ E4 ∪ E5 such that δ(bz, θ) > 0, and for
sufficiently large |z| = r, we have (2.7), (2.8), and

(2.11) |Haeaz | ≤ exp
{
(1 + ε)cδ(bz, θ)r

}
.
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If Ψ1(z) + Hbe
bz ≡ 0, then by (2.7), (2.8), and (2.11), we have

exp
{
(1 − ε)δ(bz, θ)r

}
≤ |Hbe

bz |
(2.12)

≤ exp{rβ+ε} + exp{(1 + ε)cδ(bz, θ)r}.

By β + ε < 1 and 4ε < 1 − c, we have, as r → +∞,

(2.13)
exp{rβ+ε}

exp{(1 − ε)δ(bz, θ)r} → 0,

(2.14)
exp{(1 + ε)cδ(bz, θ)r}
exp{(1 − ε)δ(bz, θ)r} → 0.

By (2.12)–(2.14), we get 1 ≤ 0. This is a contradiction; hence Ψ1(z) + Hbe
bz �≡ 0.

�

By interchanging a and b in Lemma 2.5, we easily obtain the following.

LEMMA 2.6

Let a, b be complex numbers such that ab �= 0 and a = cb (c > 1). We denote index
sets by

Λ1 = {0, b}.

If Hj(j ∈ Λ1) and Ha �≡ 0 are all meromorphic functions of orders that are less
than 1, setting Ψ1(z) =

∑
j∈Λ1

Hj(z)ejz, then Ψ1(z) + Haeaz �≡ 0.

LEMMA 2.7 ([15, p. 344])

Let f(z) =
∑∞

n=0 anzn be an entire function, let μ(r) be the maximum term, that
is, μ(r) = max{ |an|rn; n = 0,1, . . .}, and let νf (r) be the central index of f , that
is, νf (r) = max{m;μ(r) = |am|rm}. Then

(2.15) νf (r) = r
d

dr
logμ(r) < [logμ(r)]2 ≤ [logM(r, f)]2

holds outside a set E6 ⊂ (1,+∞) of r of finite logarithmic measure.

LEMMA 2.8 ([7, p. 55])

Let f(z) be a transcendental entire function. Then there is a set E7 ⊂ (1,+∞)
which has finite logarithmic measure, such that for all z with |z| = r /∈ [0,1] ∪ E7

at which |f(z)| = M(r, f), we have

(2.16)
∣∣∣ f(z)
f (s)(z)

∣∣∣ ≤ 2rs (s ∈ N).

To avoid some problems caused by the exceptional set, we recall the following
lemma.

LEMMA 2.9 ([13, p. 421])

Let g : [0,+∞) → R and h : [0,+∞) → R be monotone nondecreasing functions
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such that g(r) ≤ h(r) for all r /∈ [0,1] ∪ E8, where E8 ⊂ (1,+∞) is a set of finite
logarithmic measure. Let α > 1 be a given constant. Then there exists an r0 =
r0(α) > 0 such that g(r) ≤ h(αr) for all r ≥ r0.

LEMMA 2.10

Let Aj(z) �≡ 0 (j = 0,1) and Dj(z) (j = 0,1) be entire functions with max{ρ(Aj)
(j = 0,1), ρ(Dj) (j = 0,1)} < 1, and let a, b be complex constants that satisfy
ab �= 0 and arga �= arg b or a = cb (0 < c < 1). We denote

(2.17) Lf = f ′ ′ +
(
D1(z) + A1(z)eaz

)
f ′ +

(
D0(z) + A0(z)ebz

)
f.

If f �≡ 0 is a finite-order entire function, then ρ(Lf ) ≥ 1.

Proof
We suppose that ρ(Lf ) < 1, and then we obtain a contradiction.

(i) If ρ(f) = ρ < 1, then

f ′ ′ +
(
D1(z) + A1(z)eaz

)
f ′ +

(
D0(z) + A0(z)ebz

)
f − Lf = 0

has the form

Ψ1(z) + Hbe
bz = f ′ ′ + D1(z)f ′ + D0(z)f − Lf

+ A1(z)f ′eaz + A0(z)febz = 0,

and this is a contradiction by Lemma 2.5(i).
(ii) If ρ(f) = ρ ≥ 1, we rewrite

(2.18)
Lf

f
=

f ′ ′

f
+

(
D1(z) + A1(z)eaz

)f ′

f
+ D0(z) + A0(z)ebz.

Case 1. Suppose first that arga �= arg b. Set

max
{
ρ(Lf ),Dj(z) (j = 0,1)

}
= β < 1.

Then, for any given ε (0 < ε < 1 − β), we have, for sufficiently large r,

(2.19) |Lf | ≤ exp{rβ+ε}, |Dj(z)| ≤ exp{rβ+ε} (j = 0,1).

By Lemma 2.7, we know that there exists a set E6 with finite logarithmic measure
such that for a point z satisfying |z| = r /∈ E6 and |f(z)| = M(r, f), we have

(2.20) vf (r) < [logM(r, f)]2.

Since f is a transcendental function, we know that vf (r) → ∞. Then for suffi-
ciently large |z| = r we have |f(z)| = M(r, f) ≥ 1; then by (2.19),

(2.21)
∣∣∣Lf

f

∣∣∣ ≤ |Lf | ≤ exp{rβ+ε}.

Also, by Lemma 2.1, for the above ε there exists a set E1 ⊂ [0,2π) which has linear
measure zero, such that if θ ∈ [0,2π) − E1, then there is a constant R1 = R1(θ) > 1
such that for all z satisfying arg z = θ and |z| ≥ R1, we have

(2.22)
∣∣∣f

(k)(z)
f(z)

∣∣∣ ≤ |z|k(ρ−1+ε) (k = 1,2).
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By Lemma 2.3, there exists a ray arg z = θ ∈ [0,2π)\E1 ∪ E4 ∪ E5, E5 = {θ ∈
[0,2π) : δ(az, θ) = 0 or δ(bz, θ) = 0} ⊂ [0,2π), E1 ∪ E4 having linear measure zero
and E5 being a finite set, such that

δ(az, θ) < 0, δ(bz, θ) > 0

and for any given ε (0 < ε < 1 − β), by (2.19) and (2.22) we have, for sufficiently
large |z| = r,

(2.23) |A0e
bz | ≥ exp

{
(1 − ε)δ(bz, θ)r

}
,

∣∣∣(D1(z) + A1(z)eaz
)f ′

f

∣∣∣

≤ rρ−1+ε exp{rβ+ε} + rρ−1+ε exp
{
(1 − ε)δ(az, θ)r

}
(2.24)

≤ 2rρ−1+ε exp{rβ+ε}.

By (2.18), (2.19), (2.21), and (2.22)–(2.24), we have

exp
{
(1 − ε)δ(bz, θ)r

}
≤ |A0e

bz | ≤ 2exp{rβ+ε}
(2.25)

+ 2rρ−1+ε exp{rβ+ε} + r2(ρ−1+ε).

This is a contradiction by β + ε < 1. Hence ρ(Lf ) ≥ 1.
Case 2. Suppose now that a = cb (0 < c < 1). Then for any ray arg z = θ,

we have

δ(az, θ) = cδ(bz, θ).

Then, by Lemma 2.1 and Lemma 2.3, for any given ε (0 < ε < min(2(1 − c)/(1 +
c),1 − β)), there exist Ej ⊂ [0,2π) (j = 1,4,5) such that E1,E4 has linear measure
zero and E5 is a finite set, where E1,E4, and E5 are defined, respectively, as in
case 1. We take the ray arg z = θ ∈ [0,2π)\E1 ∪ E4 ∪ E5 such that δ(bz, θ) > 0
and for sufficiently large |z| = r, we have (2.23), and by (2.19) and (2.22), we
obtain

∣∣∣(D1(z) + A1(z)eaz
)f ′

f

∣∣∣ ≤ rρ−1+ε exp{rβ+ε}
(2.26)

+ rρ−1+ε exp
{
(1 + ε)cδ(bz, θ)r

}
.

By (2.18), (2.19), (2.21)–(2.23), and (2.26), we have

exp
{
(1 − ε)δ(bz, θ)r

}

≤ |A0e
bz |

≤ 2exp{rβ+ε} + rρ−1+ε exp{rβ+ε}(2.27)

+ rρ−1+ε exp
{
(1 + ε)cδ(bz, θ)r

}
+ r2(ρ−1+ε)

≤ 3rρ−1+ε exp{rβ+ε} + rρ−1+ε exp
{
(1 + ε)cδ(bz, θ)r

}
+ r2(ρ−1+ε).
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By ε (0 < ε < min((1 − c)/2(1 + c),1 − β)), we have, as r → +∞,

(2.28)
rρ−1+ε exp{rβ+ε}

exp{(1 − ε)δ(bz, θ)r} → 0,

(2.29)
rρ−1+ε exp{(1 + ε)cδ(bz, θ)r}

exp{(1 − ε)δ(bz, θ)r} → 0,

(2.30)
r2(ρ−1+ε)

exp{(1 − ε)δ(bz, θ)r} → 0.

By (2.27)–(2.30), we get 1 ≤ 0. This is a contradiction. Hence ρ(Lf ) ≥ 1. �

LEMMA 2.11

Let Aj(z) �≡ 0 (j = 0,1) and Dj(z) (j = 0,1) be entire functions with max{ρ(Aj)
(j = 0,1), ρ(Dj) (j = 0,1)} < 1, and let a, b be complex constants that satisfy
ab �= 0 and a = cb (c > 1). If f �≡ 0 is a finite-order entire function, then Lf ,
which is defined in (2.17), satisfies ρ(Lf ) ≥ 1.

Proof
First, if f(z) ≡ C �= 0, then

Lf =
(
D0(z) + A0(z)ebz

)
C.

Hence ρ(Lf ) = 1, and Lemma 2.11 holds.
If f �≡ C, we suppose that ρ(Lf ) < 1 and then we obtain a contradiction.
(i) If ρ(f) = ρ < 1, then

f ′ ′ +
(
D1(z) + A1(z)eaz

)
f ′ +

(
D0(z) + A0(z)ebz

)
f − Lf = 0

has the form of

Ψ1(z) + Haeaz = f ′ ′ + D1(z)f ′ + D0(z)f − Lf

+ A0(z)febz + A1(z)f ′eaz = 0,

and this is a contradiction by Lemma 2.6.
(ii) If ρ(f) = ρ ≥ 1, we rewrite

(2.31)
Lf

f

f

f ′ =
f ′ ′

f ′ +
(
D0(z) + A0(z)ebz

) f

f ′ + D1(z) + A1(z)eaz.

By Lemma 2.1, for any given ε (0 < ε < min((c − 1)/2(c + 1),1 − β)), there exists
a set E1 ⊂ [0,2π) which has linear measure zero, such that if θ ∈ [0,2π) − E1,
then there is a constant R1 = R1(θ) > 1 such that for all z satisfying arg z = θ

and |z| ≥ R1, we have

(2.32)
∣∣∣f

′ ′(z)
f ′(z)

∣∣∣ ≤ |z|ρ−1+ε.

Also, by Lemma 2.8, there is a set E7 ⊂ (1,+∞) which has finite logarithmic
measure such that for all z with |z| = r /∈ [0,1] ∪ E7 at which |f(z)| = M(r, f),
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we have

(2.33)
∣∣∣ f(z)
f ′(z)

∣∣∣ ≤ 2r.

For any ray arg z = θ, we have

δ(az, θ) = cδ(bz, θ).

By Lemma 2.3, there exists a ray arg z = θ ∈ [0,2π)\E1 ∪ E4 ∪ E5, E5 = {θ ∈
[0,2π) : δ(az, θ) = 0 or δ(bz, θ) = 0} ⊂ [0,2π), E1 ∪ E4 having linear measure zero
and E5 being a finite set, such that

δ(az, θ) = cδ(bz, θ) > 0,

and by (2.19), (2.21), (2.33), and Lemma 2.9, for sufficiently large |z| = r we have

(2.34) |A1e
az | ≥ exp

{
(1 − ε)cδ(bz, θ)r

}
,

(2.35)
∣∣∣Lf

f

f

f ′

∣∣∣ ≤ 2r exp{rβ+ε},

(2.36)
∣∣∣(D0(z) + A0(z)ebz

) f

f ′

∣∣∣ ≤ 2r exp{rβ+ε} + 2r exp
{
(1 + ε)δ(bz, θ)r

}
.

By (2.19), (2.31), (2.32), and (2.34)–(2.36), we have

exp
{
(1 − ε)cδ(bz, θ)r

}
≤ |A1e

az |

≤ 2r exp{rβ+ε} + exp{rβ+ε} + 2r exp{rβ+ε}
(2.37)

+ 2r exp
{
(1 + ε)δ(bz, θ)r

}
+ rρ−1+ε

≤ 5r exp{rβ+ε} + 2r exp
{
(1 + ε)δ(bz, θ)r

}
+ rρ−1+ε.

By ε (0 < ε < min((c − 1)/2(1 + c),1 − β)), we have, as r → +∞,

(2.38)
r exp{rβ+ε}

exp{(1 − ε)cδ(bz, θ)r} → 0,

(2.39)
r exp{(1 + ε)δ(bz, θ)r}
exp{(1 − ε)cδ(bz, θ)r} → 0,

(2.40)
rρ−1+ε

exp{(1 − ε)cδ(bz, θ)r} → 0.

By (2.37)–(2.40), we get 1 ≤ 0. This is a contradiction. Hence ρ(Lf ) ≥ 1. �

Setting Dj ≡ 0 (j = 0,1) in Lemmas 2.10 and 2.11, we obtain the following lemma.

LEMMA 2.12

Let Aj(z) �≡ 0 (j = 0,1) be entire functions with max{ρ(Aj) : j = 0,1} < 1, and
let a, b be complex constants that satisfy ab �= 0 and a �= b. We denote

(2.41) Lf = f ′ ′ + A1(z)eazf ′ + A0(z)ebzf.
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If f �≡ 0 is a finite-order entire function, then ρ(Lf ) ≥ 1.

3. Proof of Theorem 1.1

Assume that f is a solution of equation (1.5). We prove that f is of infinite
order. We suppose the contrary ρ(f) < ∞. By Lemma 2.12, we have 1 ≤ ρ(Lf ) =
ρ(F ) < 1, and this is a contradiction. Hence, every solution of equation (1.5) is
of infinite order. By Lemma 2.4, every solution f satisfies (1.6). �

4. Proof of Theorem 1.2

By using Lemma 2.10, Lemma 2.11, and a proof similar to that of Theorem 1.1,
we obtain Theorem 1.2. �

5. Proof of Theorem 1.3

Assume that f0 is a solution of (1.5) with ρ(f0) = ρ < ∞. If f1 is another finite-
order solution of (1.5), then ρ(f1 − f0) < ∞, and f1 − f0 is a solution of the
corresponding homogeneous equation (1.4) of (1.5), but ρ(f1 − f0) = ∞ from
Theorems B and C; this is a contradiction. Hence, (1.5) has at most one finite-
order solution f0, and all other solutions f1 of (1.5) satisfy (1.6) by Lemma 2.4.

�

6. Proof of Theorem 1.4

Suppose that arga �= arg b or a = cb (0 < c < 1). We first prove ρ(gf ) = ρ(d2f
′ ′ +

d1f
′ + d0f) = ∞. Suppose that f(z) is a solution of equation (1.5). Then by

Theorem 1.1, we have ρ(f) = ∞. First, we suppose that d2 �≡ 0. Substituting
f ′ ′ = F − A1e

azf ′ − A0e
bzf into gf , we get

(3.1) gf − d2F = (d1 − d2A1e
az)f ′ + (d0 − d2A0e

bz)f.

Differentiating both sides of equation (3.1) and replacing f ′ ′ with f ′ ′ = F −
A1e

azf ′ − A0e
bzf, we obtain

g′
f − (d2F )′ − (d1 − d2A1e

az)F

=
[
d2A

2
1e

2az −
(
(d2A1)′ + ad2A1 + d1A1

)
eaz − d2A0e

bz + d0 + d′
1

]
f ′(3.2)

+
[
d2A0A1e

(a+b)z −
(
(d2A0)′ + bd2A0 + d1A0

)
ebz + d′

0

]
f.

Then by (3.1), (3.2), (1.8), (1.9), and (1.10), we have

(3.3) α1f
′ + α0f = gf − d2F,

(3.4) β1f
′ + β0f = g′

f − (d2F )′ − (d1 − d2A1e
az)F.

Set

h = α1β0 − α0β1

= (d1 − d2A1e
az)

[
d2A0A1e

(a+b)z −
(
(d2A0)′ + bd2A0 + d1A0

)
ebz + d′

0

]
(3.5)
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− (d0 − d2A0e
bz)

[
d2A

2
1e

2az −
(
(d2A1)′ + ad2A1 + d1A1

)
eaz

− d2A0e
bz + d0 + d′

1

]
.

Now check all the terms of h. Since the term d2
2A

2
1A0e

(2a+b)z is eliminated,
by (3.5) we can write h = Ψ2(z) − d2

2A
2
0e

2bz , where Ψ2(z) is defined as in
Lemma 2.5(ii). By d2 �≡ 0, A0 �≡ 0, and Lemma 2.5(ii), we see that h �≡ 0.
By (3.3), (3.4), and (3.5), we obtain

(3.6) f =
α1(g′

f − (d2F )′ − α1F ) − β1(gf − d2F )
h

.

If ρ(gf ) < ∞, then by (3.6) we get ρ(f) < ∞, and this is a contradiction. Hence,
ρ(gf ) = ∞.

Set w(z) = d2f
′ ′ + d1f

′ + d0f − ϕ. Since ρ(ϕ) < ∞, then ρ(w) = ρ(gf ) =
ρ(f) = ∞. In order to prove λ(gf − ϕ) = ∞, we need to prove only λ(w) = ∞.
By gf = w + ϕ, we get, from (3.6),

(3.7) f =
α1(w′ + ϕ′ − (d2F )′ − α1F ) − β1(w + ϕ − d2F )

h
.

So

(3.8) f =
α1w

′ − β1w

h
+ ψ,

where

ψ(z) =
α1(ϕ′ − (d2F )′ − α1F ) − β1(ϕ − d2F )

h
.

Substituting (3.8) into equation (1.5), we obtain
α1

h
w′ ′ ′ + φ2w

′ ′ + φ1w
′ + φ0w

(3.9)
= F −

(
ψ′ ′ + A1(z)eazψ′ + A0(z)ebzψ

)
= A,

where φj (j = 0,1,2) are meromorphic functions with ρ(φj) < ∞ (j = 0,1,2).
Since ρ(ψ) < ∞, by Theorem 1.1 it follows that A �≡ 0. By α1 �≡ 0, h �≡ 0, and
Lemma 2.4, we obtain λ(w) = λ(w) = ρ(w) = ∞, that is, λ(gf − ϕ) = ∞.

Now suppose d2 ≡ 0, d1 �≡ 0 or d2 ≡ 0, d1 ≡ 0, and d0 �≡ 0. Using reasoning
similar to that above, we get λ(w) = λ(w) = ρ(w) = ∞, that is, λ(gf − ϕ) = ∞.

�

7. Proof of Theorem 1.5

By the hypothesis of Theorem 1.5, ψ(z) is not a solution of equation (1.5). Then

(4.1) F −
(
ψ′ ′ + A1(z)eazψ′ + A0(z)ebzψ

)
�≡ 0.

By reasoning similar to that in the proof of Theorem 1.4, we can prove Theo-
rem 1.5. �

REMARK 4.1

The condition “ψ(z) is not a solution of equation (1.5)” in Theorem 1.5 is nec-
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essary, because if ψ(z) is a solution of equation (1.5), then we have

F −
(
ψ′ ′ + A1(z)eazψ′ + A0(z)ebzψ

)
≡ 0.

8. Proof of Theorem 1.6

Suppose that f1 is a solution of equation (1.13) and that f2 is a solution of
equation (1.14). Set w = f1 − Cf2. Then w is a solution of the equation w′ ′ +
A1(z)eazw′ + A0(z)ebzw = F1 − CF2. By ρ(F1 − CF0) < 1, F1 − CF2 �≡ 0, and
Theorem 1.1, we have ρ(w) = ∞. Thus, by Theorem 1.4, we obtain

(5.1) λ(gf1−Cf2 − ϕ) = ∞.
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[2] B. Beläıdi, Growth and oscillation theory of solutions of some linear differential

equations, Mat. Vesnik 60 (2008), 233–246.

[3] , Oscillation of fixed points of solutions of some linear differential

equations, Acta Math. Univ. Comenian. (N.S.) 77 (2008), 263–269.

[4] Z. X. Chen, Zeros of meromorphic solutions of higher order linear differential

equations, Analysis 14 (1994), 425–438.

[5] , The fixed points and hyper-order of solutions of second order complex

differential equations (in Chinese), Acta Math. Sci. Ser. A Chin. Ed. 20 (2000),

425–432.

[6] , The growth of solutions of f ′′ + e−zf ′ + Q(z)f = 0 where the order

(Q) = 1, Sci. China Ser. A 45 (2002), 290–300.

[7] Z. X. Chen and K. H. Shon, On the growth of solutions of a class of higher

order differential equations, Acta Math. Sci. Ser. B Engl. Ed. 24 (2004), 52–60.

[8] , On the growth and fixed points of solutions of second order differential

equations with meromorphic coefficients, Acta Math. Sin. (Engl. Ser.) 21

(2005), 753–764.

[9] G. Frank and S. Hellerstein, On the meromorphic solutions of nonhomogeneous

linear differential equations with polynomial coefficients, Proc. London Math.

Soc. (3) 53 (1986), 407–428.
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