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ENTIRE FUNCTIONS THAT SHARE A SMALL FUNCTION
WITH THEIR DIFFERENCE OPERATORS

ABDALLAH EL FARISSI, ZINELÂABIDINE LATREUCH,

BENHARRAT BELAÏDI, ASIM ASIRI

Abstract. In this article, we study the uniqueness of entire functions that

share small functions of finite order with their difference operators. In partic-

ular, we give a generalization of results in [3, 4, 13].

1. Introduction and statement of results

In this article, by meromorphic functions we mean meromorphic functions in the
complex plane. In what follows, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna’s value distribu-
tion theory of meromorphic functions [9, 11, 17]. In addition, we will use ρ(f) to
denote the order of growth of f and λ(f) to denote the exponent of convergence of
zeros of f , we say that a meromorphic function ϕ(z) is a small function of f(z) if
T (r, ϕ) = S(r, f), where S(r, f) = o(T (r, f)), as r → ∞ outside of a possible ex-
ceptional set of finite logarithmic measure, we use S(f) to denote the family of all
small functions with respect to f(z). For a meromorphic function f(z), we define
its shift by fc(z) = f(z + c) and its difference operators by

∆cf(z) = f(z + c)− f(z), ∆n
c f(z) = ∆n−1

c (∆cf(z)), n ∈ N, n ≥ 2.

In particular, ∆n
c f(z) = ∆nf(z) for the case c = 1.

Let f and g be two meromorphic functions and let a be a finite nonzero value. We
say that f and g share the value a CM provided that f −a and g−a have the same
zeros counting multiplicities. Similarly, we say that f and g share a IM provided
that f − a and g − a have the same zeros ignoring multiplicities. It is well-known
that if f and g share four distinct values CM, then f is a Möbius transformation
of g. Rubel and Yang [15] proved that if an entire function f shares two distinct
complex numbers CM with its derivative f ′, then f ≡ f ′ . In 1986, Jank et al
[10] proved that for a nonconstant meromorphic function f , if f , f ′ and f ′′ share a
finite nonzero value CM, then f ′ ≡ f . This result suggests the following question:

Question 1 in [17]. Let f be a nonconstant meromorphic function,
let a be a finite nonzero constant, and let n and m (n < m) be
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positive integers. If f , f (n) and f (m) share a CM, then can we get
the result f (n) ≡ f?

The following example from [18] shows that the answer to the above question is,
in general, negative. Let n and m be positive integers satisfying m > n+ 1, and let
b be a constant satisfying bn = bm 6= 1. Set a = bn and f(z) = ebz + a− 1. Then f ,
f (n) and f (m) share the value a CM, and f (n) 6≡ f . However, when f is an entire
function of finite order and m = n + 1, the answer to Question 1 is positive. In
fact, P. Li and C. C. Yang proved the following:

Theorem 1.1 ([14]). Let f be a nonconstant entire function, let a be a finite
nonzero constant, and let n be a positive integer. If f , f (n) and f (n+1) share the
value a CM, then f ≡ f ′.

Recently several papers have focussed on the Nevanlinna theory with respect to
difference operators see, e.g. [1, 5, 7, 8]. Many authors started to investigate the
uniqueness of meromorphic functions sharing values with their shifts or difference
operators. Chen et al [3, 4] proved a difference analogue of result of Jank et al and
obtained the following results.

Theorem 1.2 ([3]). Let f(z) be a nonconstant entire function of finite order, and
let a(z) ∈ S(f) (6≡ 0) be a periodic entire function with period c. If f(z), ∆cf(z)
and ∆2

cf(z) share a(z) CM, then ∆cf ≡ ∆2
cf .

Theorem 1.3 ([4]). Let f(z) be a nonconstant entire function of finite order, and
let a(z) ∈ S(f) (6≡ 0) be a periodic entire function with period c. If f(z), ∆cf(z)
and ∆n

c f(z) (n ≥ 2) share a(z) CM, then ∆cf ≡ ∆n
c f .

Theorem 1.4 ([4]). Let f(z) be a nonconstant entire function of finite order. If
f(z), ∆cf(z) and ∆n

c f(z) share 0 CM, then ∆n
c f(z) = C∆cf(z), where C is a

nonzero constant.

Recently Latreuch et al [13] proved the following results.

Theorem 1.5 ([13]). Let f(z) be a nonconstant entire function of finite order, and
let a(z) ∈ S(f) (6≡ 0) be a periodic entire function with period c. If f(z), ∆n

c f(z)
and ∆n+1

c f(z) (n ≥ 1) share a(z) CM, then ∆n+1
c f(z) ≡ ∆n

c f(z).

Theorem 1.6 ([13]). Let f(z) be a nonconstant entire function of finite order. If
f(z), ∆n

c f(z) and ∆n+1
c f(z) share 0 CM, then ∆n+1

c f(z) = C∆n
c f(z), where C is

a nonzero constant.

For the case n = 1, El Farissi and others gave the following result.

Theorem 1.7 ([6]). Let f(z) be a non-periodic entire function of finite order, and
let a(z) ∈ S(f) ( 6≡ 0) be a periodic entire function with period c. If f(z), ∆cf(z)
and ∆2

cf(z) share a(z) CM, then ∆cf(z) ≡ f(z).

We remark that Theorem 1.7 is essentially known in [6]. For the convenience of
readers, we give his proof in the Lemma 2.4. Now It is natural to ask the following
question:

Under the hypotheses of Theorem 1.5, can we obtain ∆cf(z) ≡
f(z)?

The aim of this article is to answer this question and to give a difference analogue
of result of Li and Yang [14]. In fact we obtain the following results:
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Theorem 1.8. Let f(z) be a nonconstant entire function of finite order such that
∆n
c f(z) 6≡ 0, and let a(z) ∈ S(f) (6≡ 0) be a periodic entire function with period c.

If f(z), ∆n
c f(z) and ∆n+1

c f(z) (n ≥ 1) share a(z) CM, then ∆cf(z) ≡ f(z).

The condition ∆n
c f(z) 6≡ 0 is necessary. Let us take for example the entire

function f(z) = 1+e2πiz and c = a = 1, then f−a and ∆nf−a = ∆n+1f−a = −1
have the same zeros but ∆f 6= f . On the other hand, under the conditions of
Theorem 1.8, ∆n

c f(z) 6≡ 0 can not be a periodic entire function with periodic c
because ∆n+1

c f(z) ≡ ∆n
c f(z) [13, Theorem 1.5].

Example 1.9. Let f(z) = ez ln 2 and c = 1. Then, for any a ∈ C, we notice that
f(z), ∆n

c f(z) and ∆n+1
c f(z) share a CM for all n ∈ N and we can easily see that

∆cf(z) ≡ f(z). This example satisfies Theorem 1.8.

Theorem 1.10. Let f(z) be a nonconstant entire function of finite order such that
∆n
c f(z) 6≡ 0, and let a(z), b(z) ∈ S(f) ( 6≡ 0) such that b(z) is a periodic entire

function with period c and ∆m
c a(z) ≡ 0 (1 ≤ m ≤ n). If f(z)− a(z), ∆n

c f(z)− b(z)
and ∆n+1

c f(z)− b(z) share 0 CM, then ∆cf(z) ≡ f(z) + b(z) + ∆ca(z)− a(z).

The condition b(z) 6≡ 0 is necessary in the proof of Theorem 1.10, for the case
b(z) ≡ 0, please see Theorem 1.17. The condition ∆m

c a(z) ≡ 0 in Theorem 1.10
is more general than the condition “periodic entire function of period c”. For the
case m = 1, we deduce the following result.

Corollary 1.11. Let f(z) be a nonconstant entire function of finite order such
that ∆n

c f(z) 6≡ 0, and let a(z), b(z) ∈ S(f) (6≡ 0) be periodic entire functions with
period c. If f(z) − a(z), ∆n

c f(z) − b(z) and ∆n+1
c f(z) − b(z) share 0 CM, then

∆cf(z) ≡ f(z) + b(z)− a(z).

Example 1.12. Let f(z) = ez ln 2 − 2, a = −1 and b = 1. It is clear that f(z)− a,
∆nf(z)− b and ∆n+1f(z)− b share 0 CM. Here, we also get ∆f(z) = f(z) + b− a.

Example 1.13. Let f(z) = ez ln 2 + z3 − 1, a(z) = z3 and b = 1. It is clear that
f(z)−z3, ∆4f(z)−1 and ∆5f(z)−1 share 0 CM. On the other hand, we can verify
that ∆f(z) = f(z) + 1 + ∆z3 − z3 which satisfies Theorem 1.10.

Theorem 1.14. Let f(z) be a nonconstant entire function of finite order such that
∆n
c f(z) 6≡ 0. If f(z), ∆n

c f(z) and ∆n+1
c f(z) share 0 CM, then ∆cf(z) ≡ Cf(z),

where C is a nonzero constant.

Example 1.15. Let f(z) = eaz and c = 1 where a 6= 2kπi (k ∈ Z), it is clear that
∆n
c f(z) = (ea−1)neaz for any integer n ≥ 1. So, f(z), ∆n

c f(z) and ∆n+1
c f(z) share

0 CM for all n ∈ N and we can easily see that ∆cf(z) ≡ Cf(z) where C = ea − 1.
This example satisfies Theorem 1.14.

Corollary 1.16. Let f(z) be a nonconstant entire function of finite order such that
f(z), ∆n

c f(z) (6≡ 0) and ∆n+1
c f(z) (n ≥ 1) share 0 CM. If there exists a point z0

and an integer m ≥ 1 such that ∆m
c f(z0) = f(z0) 6= 0, then ∆m

c f(z) ≡ f(z).

By combining Theorem 1.10 and Theorem 1.14 we can prove the following result.

Theorem 1.17. Let f(z) be a nonconstant entire function of finite order such that
∆n
c f(z) 6≡ 0, and let a(z) ∈ S(f) such that ∆m

c a(z) ≡ 0 (1 ≤ m ≤ n). If f(z)−a(z),
∆n
c f(z) and ∆n+1

c f(z) share 0 CM, then ∆cf(z) ≡ Cf(z) + ∆ca(z) − a(z), where
C is a nonzero constant.
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2. Some lemmas

Lemma 2.1 ([5]). Let η1, η2 be two arbitrary complex numbers such that η1 6= η2

and let f(z) be a finite order meromorphic function. Let σ be the order of f(z),
then for each ε > 0, we have

m
(
r,
f(z + η1)
f(z + η2)

)
= O(rσ−1+ε).

By combining [2, Theorem 1.4] and [12, Theorem 2.2], we can prove the following
lemma.

Lemma 2.2. Let a0(z), a1(z), . . . , an(z)( 6≡ 0), F (z) (6≡ 0) be finite order meromor-
phic functions, ck (k = 0, . . . , n) be constants, unequal to each other. If f is a finite
order meromorphic solution of the equation

an(z)f(z + cn) + · · ·+ a1(z)f(z + c1) + a0(z)f(z + c0) = F (z) (2.1)

with
max{ρ(ai), (i = 0, . . . , n), ρ(F )} < ρ(f),

then λ(f) = ρ(f).

Proof. By (2.1) we have

1
f(z + c0)

=
1
F

(
an
f(z + cn)
f(z + c0)

+ · · ·+ a1
f(z + c1)
f(z + c0)

+ a0

)
. (2.2)

Set max{ρ(aj) (j = 0, . . . , n), ρ(F )} = β < ρ(f) = ρ. Then, for any given ε

(0 < ε < ρ−β
2 ), we have
n∑
j=0

T (r, aj) + T (r, F ) ≤ (n+ 2) exp{rβ+ε} = o(1) exp{rρ−ε}. (2.3)

By (2.2), (2.3) and Lemma 2.1, we obtain

T (r, f) = T
(
r,

1
f

)
+O(1)

= m(r,
1
f

) +N
(
r,

1
f

)
+O(1)

≤ N
(
r,

1
f

)
+m

(
r,

1
F

)
+

n∑
j=0

m(r, aj)

+
n∑
j=1

m(r,
f(z + cj)
f(z + c0)

) +O(1)

≤ N
(
r,

1
f

)
+ T (r,

1
F

) +
n∑
j=0

T (r, aj) +
n∑
j=1

m(r,
f(z + cj)
f(z + c0)

) +O(1)

≤ N
(
r,

1
f

)
+O(rρ−1+ε) + o(1) exp{rρ−ε}.

(2.4)

From this this inequality we obtain that ρ(f) ≤ λ(f) and since λ(f) ≤ ρ(f) for
every meromorphic function, we deduce that λ(f) = ρ(f). �

Recently, Wu and Zheng [16] obtained Lemma 2.2 by using a different proof.
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Lemma 2.3 ([17]). Suppose fj(z) (j = 1, 2, . . . , n + 1) and gj(z) (j = 1, 2, . . . , n)
(n ≥ 1) are entire functions satisfying the following conditions:

(i)
∑n
j=1 fj(z)e

gj(z) ≡ fn+1(z);
(ii) The order of fj(z) is less than the order of egk(z) for 1 ≤ j ≤ n + 1,

1 ≤ k ≤ n. Furthermore, the order of fj(z) is less than the order of
egh(z)−gk(z) for n ≥ 2 and 1 ≤ j ≤ n+ 1, 1 ≤ h < k ≤ n.

Then fj(z) ≡ 0, (j = 1, 2, . . . n+ 1).

Lemma 2.4 ([6]). Let f(z) be a non-periodic entire function of finite order, and let
a(z) ∈ S(f) ( 6≡ 0) be a periodic entire function with period c. If f(z), ∆cf(z)and
∆2
cf(z) share a(z) CM, then ∆cf(z) ≡ f(z).

Proof. Suppose that ∆cf(z) 6≡ f(z). Since f , ∆cf and ∆2
cf share a(z) CM, we

have
∆cf(z)− a(z)
f(z)− a(z)

= eP (z),
∆2
cf(z)− a(z)
f(z)− a(z)

= eQ(z)

where P (eP 6≡ 1) and Q are polynomials. Using Theorem 1.2, we obtain that
∆2
cf ≡ ∆cf , which means that

α(z) = ∆cf(z)− f(z) (2.5)

is entire periodic function of period c. By (2.5) we have

∆cf(z)− a(z) = f(z)− a(z) + α(z),

then
∆cf(z)− a(z)
f(z)− a(z)

= 1 +
α(z)

f(z)− a(z)
= eP (z),

which is equivalent to

f(z)− a(z) =
α(z)

eP (z) − 1
. (2.6)

Since α(z) and a(z) are periodic functions of period c, we have

∆cf(z) = α(z)∆c(
1

eP (z) − 1
), (2.7)

∆2
cf(z) = α(z)∆2

c(
1

eP (z) − 1
). (2.8)

We have the following two subcases:
(i) If P ≡ K (K 6= 2kπi, K ∈ Z), then by (2.7) we have ∆cf(z) = 0. On the

other hand, by using (2.5), (2.6) and ∆cf(z) = 0, we deduce that

f(z)− a(z) =
−f(z)
eK − 1

, K ∈ C− {2kπi, k ∈ Z}.

So,

f(z) =
eK − 1
eK

a(z).

Hence
T (r, f) = S(r, f),

which is a contradiction.
(ii) If P is nonconstant and since ∆2

cf(z) = ∆cf(z), then

ePc(z)+P (z) − 3eP2c(z)+P (z) + 2eP2c(z)+Pc(z) + eP2c(z) − 3ePc(z) + 2eP (z) = 0
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which is equivalent to

ePc(z) + (2e∆cP (z) − 3)eP2c(z) = −e∆cPc(z)+∆cP (z) + 3e∆cP (z) − 2. (2.9)

Since deg ∆cP = degP − 1, we have

ρ(ePc + (2e∆cP − 3)eP2c) = ρ(−e∆cPc+∆cP + 3e∆cP − 2) ≤ degP − 1. (2.10)

On the other hand,

ρ(ePc + (2e∆cP − 3)eP2c) = ρ(ePc) = degP (2.11)

because if we have the contrary

ρ(ePc + (2e∆cP − 3)eP2c) < ρ(ePc),

we obtain the following contradiction

degP = ρ(
ePc + (2e∆cP − 3)eP2c

ePc
) = ρ(1 + (2e∆cP − 3)e∆Pc) ≤ degP − 1.

By using (2.10) and (2.11), we obtain degP ≤ degP − 1 which is a contradiction.
This leads to ∆cf(z) = f(z). Thus, the proof is complete. �

3. Proof of main results

Proof of the Theorem 1.8. Obviously, suppose that ∆cf(z) 6≡ f(z). By using The-
orem 1.5, we have

∆n
c f(z)− a(z)
f(z)− a(z)

= eP (z), (3.1)

∆n+1
c f(z)− a(z)
f(z)− a(z)

= eP (z), (3.2)

where P (eP 6≡ 1) is a polynomial. We divide into two cases:
Case 1. P is a nonconstant polynomial. Setting now g(z) = f(z) − a(z), from
(3.1) and (3.2) we have

∆n
c g(z) = eP (z)g(z) + a(z), (3.3)

∆n+1
c g(z) = eP (z)g(z) + a(z). (3.4)

By (3.3) and (3.4), we have

gc(z) = 2eP−Pcg(z) + a(z)e−Pc .

Using the principle of mathematical induction, we obtain

gic(z) = 2ieP−Picg(z) + a(z)(2i − 1)e−Pic , i ≥ 1. (3.5)

Now, we can rewrite (3.3) as

∆n
c g(z) =

n∑
i=1

Cin(−1)n−i(2ieP−Picg(z) + a(z)(2i − 1)e−Pic) + (−1)ng(z)

= eP g(z) + a(z),

which implies ( n∑
i=0

Cin(−1)n−i2ieP−Pic − eP
)
g(z)
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+ a(z)
( n∑
i=0

Cin(−1)n−i(2i − 1)e−Pic − 1
)

= 0.

Hence
An(z)g(z) +Bn(z) = 0, (3.6)

where

An(z) =
n∑
i=0

Cin(−1)n−i2ieP−Pic − eP ,

Bn(z) = a(z)
( n∑
i=0

Cin(−1)n−i(2i − 1)e−Pic − 1
)
.

By the same method, we can rewrite (3.4) as

An+1(z)g(z) +Bn+1(z) = 0, (3.7)

where

An+1(z) =
n+1∑
i=0

Cin+1(−1)n+1−i2ieP−Pic − eP ,

Bn+1(z) = a(z)
( n+1∑
i=0

Cin+1(−1)n+1−i(2i − 1)e−Pic − 1
)
.

We can see easily from the equations (3.6) and (3.7) that

h(z) = An(z)Bn+1(z)−An+1(z)Bn(z) ≡ 0. (3.8)

On the other hand, we remark that

ePBn(z) = a(z)eP
( n∑
i=0

Cin(−1)n−i2ie−Pic −
n∑
i=0

Cin(−1)n−ie−Pic − 1
)

= a(z)eP
( n∑
i=0

Cin(−1)n−i2ie−Pic − 1−∆n
c (e−P )

)
= a(z)(An(z)− eP∆n

c (e−P )).

Then
Bn(z) = a(z)(e−PAn(z)−∆n

c (e−P )). (3.9)

By the same method, we obtain

Bn+1(z) = a(z)(e−PAn+1(z)−∆n+1
c (e−P )). (3.10)

Now we return equation (3.8), by using (3.9) and (3.10), we obtain

h(z) = An(z)Bn+1(z)−An+1(z)Bn(z)

= An(z)[a(z)(e−PAn+1(z)−∆n+1
c (e−P ))]

−An+1(z)[a(z)(e−PAn(z)−∆n
c (e−P ))]

= a(z)[An+1(z)∆n
c (e−P )−An(z)∆n+1

c (e−P )] ≡ 0.

Hence
An+1(z)∆n

c (e−P )−An(z)∆n+1
c (e−P ) ≡ 0.
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Therefore,

∆n
c (e−P )

( n+1∑
i=0

Cin+1(−1)n+1−i2ie−Pic − 1
)

−∆n+1
c (e−P )

( n∑
i=0

Cin(−1)n−i2ie−Pic − 1
)

= 0.

Thus

∆n
c (e−P )

n+1∑
i=0

Cin+1(−1)n+1−i2ie−Pic −∆n+1
c (e−P )

n∑
i=0

Cin(−1)n−i2ie−Pic

= ∆n
c (e−P )−∆n+1

c (e−P ) = ∆n
c (2e−P − e−Pc).

Then
n∑
i=0

(∆n
c (e−P )Cin+1(−1)n+1−i −∆n+1

c (e−P )Cin(−1)n−i)2ie−Pic

+ ∆n
c (e−P )2n+1e−P(n+1)c

= ∆n
c (2e−P − e−Pc),

which yields

n∑
i=0

(∆n
c (e−P )Cin+1 + ∆n+1

c (e−P )Cin)(−1)n+1−i2ieP(n+1)c−Pic

+ ∆n
c (e−P )2n+1 = eP(n+1)c∆n

c (2e−P − e−Pc).

(3.11)

Let us denote

αi(z) = (−1)n+1−i2ieP(n+1)c−Pic , i = 0, . . . , n

and

αn+1(z) = eP(n+1)c∆n
c (2e−P − e−Pc).

It is clear that ρ(αi) ≤ degP − 1 for all i = 0, 2, . . . , n+ 1. Then (3.11) becomes

n∑
i=0

(∆n
c (e−P )Cin+1 + ∆n+1

c (e−P )Cin)αi(z) + ∆n
c (e−P )2n+1

=
( n∑
i=0

Cin+1αi(z) + 2n+1
)

∆n
c (e−P )

+
( n∑
i=0

Cinαi(z)
)

∆n+1
c (e−P ) = αn+1(z).

(3.12)

For convenience, we denote

M(z) =
n∑
i=0

Cin+1αi(z) + 2n+1, N(z) =
n∑
i=0

Cinαi(z).
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Then (3.12) is equivalent to

M(z)
n∑
i=0

Cin(−1)n−ie−Pic +N(z)
n+1∑
i=0

Cin+1(−1)n+1−ie−Pic

=
n∑
i=0

(CinM(z)− Cin+1N(z))(−1)n−ie−Pic +N(z)e−P(n+1)c

= αn+1(z).

(3.13)

As a conclusion, (3.13) can be written as

an+1(z)e−P (z+(n+1)c) + an(z)e−P (z+nc) + · · ·+ a0(z)e−P (z) = αn+1(z), (3.14)

where a0(z), . . . , an+1(z) and αn+1(z) are entire functions. We distingue the fol-
lowing two subcases.
(i) If degP > 1, then

max{ρ(ai) (i = 0, . . . , n+ 1), ρ(αn+1)} < degP. (3.15)

To prove that αn+1(z) 6≡ 0, it suffices to show that ∆n
c (2e−P − e−Pc) 6≡ 0. Suppose

the contrary. Thus
n∑
i=0

Cin(−1)n−i(2e−Pic − e−P(i+1)c) ≡ 0. (3.16)

The equation (3.16) can be written as
n+1∑
i=0

bie
−Pic ≡ 0,

where

bi =


2(−1)n, if i = 0
(2Cin + Ci−1

n )(−1)n−i, if 1 ≤ i ≤ n
−1, if i = n+ 1.

Since degP = m > 1, then for any two integers j and k such that 0 ≤ j < k ≤ n+1,
we have

ρ(e−Pkc+Pjc) = degP − 1.
It is clear now that all the conditions of Lemma 2.3 are satisfied. So, by Lemma 2.3
we obtain bi ≡ 0 for all i = 0, . . . , n + 1, which is impossible. Then, αn+1(z) 6≡ 0.
By Lemma 2.2, (3.14) and (3.15) , we deduce that λ(eP ) = degP > 1, which is a
contradiction.
(ii) degP = 1. Suppose now that P (z) = µz+η (µ 6= 0). Assume that αn+1(z) ≡ 0.
It easy to see that

∆n
c (2e−P − e−Pc) = (2− e−µc)∆n

c (e−P ).

In the following two subcases, we prove that both of (2 − e−µc) and ∆n
c (e−P ) are

not vanishing.
(A) Suppose that 2 = e−µc. Then for any integer i, we have e−iµc = 2i and
e−Pic = 2ie−P , applying that on (3.6), we obtain

An(z) =
n∑
i=0

Cin(−1)n−i2ie−iµc − eP = 3n − eP ,
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Bn(z) = a(z)
( n∑
i=0

Cin(−1)n−i(2i − 1)e−Pic − 1
)

= a(z)(
n∑
i=0

Cin(−1)n−i(4i − 2i)e−P − 1) = a(z)((3n − 1)e−P − 1).

Then
(3n − eP )g(z) + a(z)((3n − 1)e−P − 1) = 0,

which is equivalent to

g(z) = a(z)
eP − (3n − 1)
eP (3n − eP )

. (3.17)

By the same argument as before and (3.7), we obtain

g(z) = a(z)
eP − (3n+1 − 1)
eP (3n+1 − eP )

,

which contradicts (3.17).
(B) Suppose now that ∆n

c (e−P ) ≡ 0. Then

∆n
c (e−P ) =

n∑
i=0

Cin(−1)n−ie−µ(z+ic)−η

= e−P
n∑
i=0

Cin(−1)n−ie−µic

= e−P (e−µc − 1)n.

This together with ∆n
c e
−P ≡ 0 gives (e−µc − 1)n ≡ 0, which yields eµc ≡ 1.

Therefore, for any j ∈ Z,

eP (z+jc) = eµz+µjc+η = (eµc)jeP (z) = eP (z). (3.18)

On the other hand, from (3.1) we have

∆n
c f(z) = eP (z)(f(z)− a(z)) + a(z). (3.19)

By (3.18) and (3.19), we have

∆n+1
c f(z) = eP (z)∆cf(z) (3.20)

Combining (3.2) and (3.20), we obtain

∆cf(z) = (f(z)− a(z)) + a(z)e−P (z)

which means that ∆n+1
c f(z) = ∆n

c f(z) for all n ≥ 1. Therefore, f(z), ∆cf(z)
and ∆2

cf(z) share a(z) CM and by Lemma 2.4 we obtain ∆cf(z) = f(z), which
contradicts the hypothesis. Then ∆n

c (e−P ) 6≡ 0. From the subcases (A) and (B),
we can deduce that αn+1(z) 6≡ 0. It is clear that

max{ρ(ai), ρ(αn+1), i = 0, . . . , n+ 1} < degP = 1.

By using Lemma 2.2, we obtain λ(eP ) = degP = 1, which is a contradiction, and
P must be a constant.
Case 2. P (z) ≡ K, K ∈ C− {2kπi, k ∈ Z}. From (3.1) we have

∆n
c f(z) = eK(f(z)− a(z)) + a(z).

Hence
∆n+1
c f(z) = eK∆cf(z). (3.21)
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Combining (3.2) and (3.21), we obtain

∆cf(z) = (f(z)− a(z)) + a(z)e−K

which means that ∆n+1
c f(z) = ∆n

c f(z) for all n ≥ 1. Therefore, f(z), ∆cf(z)
and ∆2

cf(z) share a(z) CM and by Lemma 2.4 we obtain ∆cf(z) = f(z), which
contradicts the hypothesis. Then eP ≡ 1 and the proof is complete. �

Proof of the Theorem 1.10. Setting g(z) = f(z) + b(z) − a(z). Since ∆m
c a(z) ≡ 0

(1 ≤ m ≤ n), we can remark that

g(z)− b(z) = f(z)− a(z),

∆n
c g(z)− b(z) = ∆n

c f(z)− b(z),
∆n+1
c g(z)− b(z) = ∆n

c f(z)− b(z), n ≥ 2.

Since f(z)−a(z), ∆n
c f(z)−b(z) and ∆n+1

c f(z)−b(z) share 0 CM, then g(z), ∆n
c g(z)

and ∆n+1
c g(z) share b(z) CM. By using Theorem 1.8, we deduce that ∆cg(z) ≡ g(z),

which leads to ∆cf(z) ≡ f(z) + b(z) + ∆ca(z)−a(z) and the proof is complete. �

Proof of the Theorem 1.14. Note that f(z) is a nonconstant entire function of finite
order. Since f(z), ∆n

c f(z) and ∆n+1
c f(z) share 0 CM, it follows from Theorem 1.6

that ∆n+1
c f(z) = C∆n

c f(z), where C is a nonzero constant. Then we have

∆n
c f(z)
f(z)

= eP (z), (3.22)

∆n+1
c f(z)
f(z)

= CeP (z), (3.23)

where P is a polynomial. By (3.22) and (3.23) we obtain

fic(z) = (C + 1)ieP−Picf(z). (3.24)

Then

∆n
c f(z) =

( n∑
i=0

Cin(−1)n−i(C + 1)ieP−Pic

)
f(z) = eP (z)f(z). (3.25)

This equality leads to degP = 0. Hence P (z)− Pic(z) ≡ 0 and (3.25) will be
n∑
i=0

Cin(−1)n−i(C + 1)i = Cn = eP (z). (3.26)

By (3.22), (3.23) and (3.26) we deduce that

∆n
c f(z) = Cnf(z),

∆n+1
c f(z) = Cn+1f(z).

Then

∆n+1
c f(z) = ∆c(∆n

c f(z)) = ∆c(Cnf(z)) = Cn∆cf(z) = Cn+1f(z),

which implies ∆cf(z) = Cf(z). Thus, the proof is complete. �

Proof of Corollary 1.16. By Theorem 1.14 we have ∆cf(z) = Cf(z), where C is a
nonzero constant. Then

∆m
c f(z) = C∆m−1

c f(z) = Cmf(z), m ≥ 1. (3.27)
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On the other hand, for z0 ∈ C we have

∆m
c f(z0) = f(z0). (3.28)

By (3.27) and (3.28) we deduce that Cm = 1. Hence ∆m
c f(z) = f(z). �

Proof of the Theorem 1.17. Setting g(z) = f(z)− a(z), we have

g(z) = f(z)− a(z),

∆n
c g(z) = ∆n

c f(z)− b(z),
∆n+1
c g(z) = ∆n

c f(z)− b(z), n ≥ 2.

Since f(z) − a(z), ∆n
c f(z) − b(z) and ∆n+1

c f(z) − b(z) share 0 CM, it follows
that g(z), ∆n

c g(z) and ∆n+1
c g(z) share 0 CM. Using Theorem 1.14, we deduce

that ∆cg(z) ≡ Cg(z), where C is a nonzero constant, which leads to ∆cf(z) ≡
Cf(z) + ∆ca(z)− a(z) and the proof is complete. �

4. Open Problem

It has been proved in [6] that

Theorem 4.1 ([6, Corollary 1.1]). Let f(z) be a non-periodic entire function of
finite order, and let a(z) ∈ S(f) ( 6≡ 0) be a periodic entire function with period c.
If f(z), ∆cf(z) and ∆3

cf(z) share a(z) CM, then ∆cf(z) ≡ f(z).

It is an open question to see under what conditions Theorem 4.1 holds for entire
functions share a small function with ∆n

c f(z) and ∆n+2
c f(z) (n ≥ 1). We believe

that:
Let f(z) be a nonconstant entire function of finite order such that
∆n
c f(z) 6≡ 0, and let a(z) ∈ S(f) ( 6≡ 0) be a periodic entire function

with period c. If f(z), ∆n
c f(z) and ∆n+2

c f(z) (n ≥ 1) share a(z)
CM, then ∆cf(z) ≡ f(z).

Unfortunately, we have not succeed in proving this.

Acknowledgements. The authors would like to thank to anonymous referees for
their helpful comments.
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