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Abstract. We investigate the complex oscillation of some differential poly-
nomials generated by solutions of the differential equation

f ′′ + A1(z)f ′ + A0(z)f = 0,

where A1(z), A0(z) are meromorphic functions having the same finite iterated
p-order.

1. Introduction and statement of results

We assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna value distribution theory of meromorphic
functions [7, 12]. The iterated order, an order notion for functions of fast growth,
was defined by Schönhage [14] and Sato [13] (see also [6, 8, 9] for an extensive
survey). For the definition of the iterated order of a meromorphic function, we use
the same definition as in [8] (for iterated order of entire function see [2, p. 317],
[9, p. 129]). For all r ∈ R we define exp1 r := er and expp+1 r := exp(expp r), p ∈ N.
We also define for all r sufficiently large log1 r := log r and logp+1 r := log(logp r),
p ∈ N. Moreover, we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and
exp−1 r := log1 r.

Definition 1.1. [8] Let f be a meromorphic function. Then the iterated
p-order ρp(f) of f is defined by

ρp(f) = lim
r→+∞

logp T (r, f)
log r

(p � 1 is an integer),
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where T (r, f) is the Nevanlinna characteristic function of f [7, 12]. For p = 1, this
notation is called order and for p = 2 hyperorder.

Definition 1.2. [8] The finiteness degree of the order of a meromorphic func-
tion f is defined by

i(f) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if f is rational,
min{j ∈ N : ρj(f) < ∞}, if f is transcendental with

ρj(f) < ∞ for some j ∈ N,
∞, if ρj(f) = ∞ for all j ∈ N.

Definition 1.3. [4] Let f be a meromorphic function. Then the iterated
p-type of f , with iterated p-order 0 < ρp(f) < ∞ is defined by

σp(f) = lim
r→+∞

logp−1 T (r, f)
rρp(f) (p � 1 is an integer).

Definition 1.4. [3, 8] Let f be a meromorphic function. Then the iterated
exponent of convergence of the sequence of distinct zeros of f(z) is defined by

λ̄p(f) = lim
r→+∞

logp N̄(r, 1/f)
log r

(p � 1 is an integer),

where N̄(r, 1/f) is the counting function of distinct zeros of f(z) in {z : |z| < r}.
For p = 1 this notation is called exponent of convergence of the sequence of distinct
zeros and for p = 2 hyperexponent of convergence of the sequence of distinct zeros.

Definition 1.5. [10] Let f be a meromorphic function. Then the iterated
exponent of convergence of the sequence of distinct fixed points of f(z) is defined
by

τ̄p(f) = λ̄p(f − z) = lim
r→+∞

logp N̄(r, 1/(F − z))
log r

(p � 1 is an integer).

For p = 1, this notation is called exponent of convergence of the sequence of distinct
fixed points and for p = 2 hyperexponent of convergence of the sequence of distinct
fixed points [11]. Thus τ̄p(f) = λ̄p(f − z) is an indication of oscillation of distinct
fixed points of f(z).

Definition 1.6. [4, 8] The finiteness degree of the iterated convergence expo-
nent of the sequence of zeros of a meromorphic function f(z) is defined by

iλ(f) =

⎧⎪⎨
⎪⎩

0, if n(r, 1/f) = O(log r),
min{j ∈ N : λj(f) < ∞}, if λj(f) < ∞ for some j ∈ N,

∞, if λj(f) = ∞ for all j ∈ N.

Remark 1.1. Similarly, we can define the finiteness degree iλ̄(f) of λ̄p(f).

Consider the linear differential equation

(1.1) f ′′ + A1(z)f ′ + A0(z)f = 0,
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where A1(z), A0(z) are meromorphic of finite iterated p-order. For almost four
decades, substantial results have been obtained on the fixed points of general tran-
scendental meromorphic functions [16]. However, there are few studies on the fixed
points of solutions of differential equations. In [5] Chen firstly pointed out the re-
lation between the exponent of convergence of distinct fixed points and the rate of
growth of solutions of second order linear differential equations with entire coeffi-
cients. In [15] Wang and Yi investigated fixed points and hyperorder of differential
polynomials generated by solutions of second order linear differential equations with
meromorphic coefficients. In [10] Laine and Rieppo gave an improvement of the
results of [15] by considering fixed points and iterated order.

Recently, the author has studied the relation between solutions and their deriva-
tives of the differential equation

(1.2) f (k) + A(z)f = 0,

where k � 2, A(z) is a transcendental meromorphic function of finite iterated order
ρp(A) = ρ > 0 and have obtained the following result.

Theorem 1.1. [1] Let k � 2 and A(z) be a transcendental meromorphic func-
tion of finite iterated order ρp(A) = ρ > 0 such that δ(∞, A) = lim

r→+∞
m(r,A)
T (r,A) =δ >0.

Suppose, moreover, that either:
(i) all poles of f are of uniformly bounded multiplicity or (ii) δ(∞, f) > 0.

If ϕ(z) �≡ 0 is a meromorphic function with finite iterated p-order ρp(ϕ) < +∞,
then every meromorphic solution f(z) �≡ 0 of (1.2), satisfies

λ̄p(f − ϕ) = λ̄p(f ′ − ϕ) = · · · = λ̄p

(
f (k) − ϕ

)
= ρp(f) = ∞,

λ̄p+1(f − ϕ) = λ̄p+1(f ′ − ϕ) = · · · = λ̄p+1
(
f (k) − ϕ

)
= ρp+1(f) = ρ.

We know that a differential equation bears a relation to all derivatives of its
solutions. Hence, linear differential polynomials generated by its solutions must
have special nature because of the control of differential equations.

The main purpose of this paper is to study the growth and the oscillation
of some differential polynomials generated by solutions of the second order linear
differential equation (1.1). We obtain some estimates of their iterated order and
fixed points.

Theorem 1.2. Let A1(z), A0(z) be meromorphic functions, and let i(A0) = p
(1 � p < +∞). Assume that either iλ(1/A0) < p or λp(1/A0) < ρp(A0) = ρ
(0 < ρ < +∞) and that i(A1) < p. Let d0(z), d1(z) be meromorphic functions
such that at least one of d0(z), d1(z) does not vanish identically with max{ρp(dj) :
j = 0, 1} < ρp(A0). Let ϕ(z) �≡ 0 be a meromorphic function with ρp(ϕ) < ρp(A0)
such that P = (d′

1 + d0 − d1A1)ϕ − d1ϕ′ �≡ 0. If f �≡ 0 is a meromorphic solution
of (1.1) whose poles are of uniformly bounded multiplicity, then the differential
polynomial gf = d1f ′ + d0f satisfies

λ̄p(gf − ϕ) = ρp(gf ) = ρp(f) = ∞,

λ̄p+1(gf − ϕ) = ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ.
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Applying Theorem 1.2 for ϕ(z) = z, we obtain the following result.

Corollary 1.1. Suppose that A1(z), A0(z), d0(z), d1(z) satisfy the additional
hypotheses of Theorem 1.2 such that (d′

1 + d0 − d1A1)z − d1 �≡ 0. If f �≡ 0 is a
meromorphic solution of (1.1) whose poles are of uniformly bounded multiplicity,
then the differential polynomial gf = d1f ′ +d0f satisfies τ̄p(gf) = ρp(gf ) = ρp(f) =
∞ and τ̄p+1(gf ) = ρp+1(gf ) = ρp(A0) = ρ.

In what follows we obtain a result without the additional condition P �≡ 0.

Theorem 1.3. Let A1(z), A0(z) be meromorphic functions, and let i(A0) = p
(1 � p < +∞). Assume that either iλ(1/A0) < p or λp(1/A0) < ρp(A0) = ρ
(0 < ρ < +∞) and that ρp(A0) = ρp(A1), σp(A1) < σp(A0) = σ (0 < σ < +∞).
Let d0(z), d1(z) be meromorphic functions such that at least one of d0(z), d1(z) does
not vanish identically with max{ρp(dj) : j = 0, 1} < ρp(A0). Let ϕ(z) �≡ 0 be a
meromorphic function with ρp(ϕ) < ρp(A0). If f �≡ 0 is a meromorphic solution
of (1.1) whose poles are of uniformly bounded multiplicity, then the differential
polynomial gf = d1f ′ + d0f satisfies

λ̄p(gf − ϕ) = ρp(gf ) = ρp(f) = ∞,

λ̄p+1(gf − ϕ) = ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ.

Applying Theorem 1.3 for ϕ(z) = z, we obtain the following result.

Corollary 1.2. Suppose that A1(z), A0(z), d0(z), d1(z) satisfy the additional
hypotheses of Theorem 1.3. If f �≡ 0 is a meromorphic solution of (1.1) whose
poles are of uniformly bounded multiplicity, then the differential polynomial gf =
d1f ′ + d0f satisfies τ̄p(gf ) = ρp(gf ) = ρp(f) = ∞ and τ̄p+1(gf ) = ρp+1(gf ) =
ρp+1(f) = ρp(A0) = ρ.

2. Auxiliary Lemmas

We need the following lemmas in the proofs of our theorems.

Lemma 2.1. [8, Remark 1.3] If f is a meromorphic function with i(f) = p � 1,
then ρp(f) = ρp(f ′).

Lemma 2.2. [10] If f is a meromorphic function with 0 < ρp(f) < ρ (p � 1),
then ρp+1(f) = 0.

Lemma 2.3. [1] Let A0, A1, . . . , Ak−1, F �≡ 0 be finite iterated p-order mero-
morphic functions. If f is a meromorphic solution with ρp(f) = ∞ and ρp+1(f) =
ρ < ∞ of the equation

f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = F,

then λ̄p(f) = λp(f) = ρp(f) = ∞ and λ̄p+1(f) = λp+1(f) = ρp+1(f) = ρ.

Lemma 2.4. Let f, g be meromorphic functions with iterated p-orders 0 < ρp(f),
ρp(g) < ∞ and iterated p-types 0 < σp(f), σp(g) < ∞ (1 � p < +∞). Then the
following statements hold:
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(i)If ρp(g) < ρp(f), then
(2.1) σp(f + g) = σp(fg) = σp(f).

(ii) If ρp(f) = ρp(g) and σp(g) �= σp(f), then
ρp(f + g) = ρp(fg) = ρp(f).

Proof. By the definition of the iterated p-type, we have
(2.2)

σp(f + g) = lim
r→+∞

logp−1 T (r, f + g)
rρp(f+g) � lim

r→+∞
logp−1(T (r, f) + T (r, g) + O(1))

rρp(f+g) .

Since ρp(g) < ρp(f), then ρp(f + g) = ρp(f). Thus, from (2.2), we obtain

(2.3) σp(f + g) � lim
r→+∞

logp−1 T (r, f)
rρp(f) + lim

r→+∞
logp−1 T (r, g) + O(1)

rρp(f) = σp(f).

On the other hand since ρp(f + g) = ρp(f) > ρp(g), then by (2.3), we get
(2.4) σp(f) = σp(f + g − g) � σp(f + g).
Hence by (2.3) and (2.4), we obtain σp(f + g) = σp(f). Now, we prove σp(fg) =
σp(f). Since ρp(g) < ρp(f), then ρp(fg) = ρp(f). By the definition of the iterated
p-type, we have

σp(fg) = lim
r→+∞

logp−1 T (r, fg)
rρp(fg) = lim

r→+∞
logp−1 T (r, fg)

rρp(f)(2.5)

� lim
r→+∞

logp−1(T (r, f) + T (r, g))
rρp(f)

� lim
r→+∞

logp−1 T (r, f)
rρp(f) + lim

r→+∞
logp−1 T (r, g) + O(1)

rρp(f) = σp(f).

Since ρp(fg) = ρp(f) > ρp(g) = ρp(1/g), then by (2.5), we obtain

(2.6) σp(f) = σp

(
fg

1
g

)
� σp(fg).

Thus, by (2.5) and (2.6), we obtain σp(fg) = σp(f).
(ii) Without lost of generality, we suppose that ρp(f) = ρp(g) and σp(g) <

σp(f). Then we have ρp(f + g) � max{ρp(f), ρp(g)} = ρp(f) = ρp(g). If we
suppose that ρp(f + g) < ρp(f) = ρp(g), then by (2.1) we get

σp(g) = σp(f + g − f) = σp(f)
and this is a contradiction. Hence ρp(f + g) = ρp(f) = ρp(g).

Now, we prove that ρp(fg) = ρp(f) = ρp(g). Also we have
ρp(fg) � max{ρp(f), ρp(g)} = ρp(f) = ρp(g).

If we suppose that ρp(fg) < ρp(f) = ρp(g) = ρp(1/f), then by (2.1) we can write

σp(g) = σp

(
fg

1
f

)
= σp

( 1
f

)
= σp(f)

and this is a contradiction. Hence ρp(fg) = ρp(f) = ρp(g). �
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Lemma 2.5. Let A1(z), A0(z) be meromorphic functions, and let i(A0) = p
(1 � p <+∞). Assume that either i(A1)<p or ρp(A1) = ρp(A0) = ρ (0 < ρ <+∞)
and σp(A1) < σp(A0) = σ (0 < σ < +∞). Let dj (j = 0, 1) be meromorphic
functions that are not all vanish identically with max{ρp(dj) : j = 0, 1} < ρp(A0).
Then

(2.7) h = d1(d′
0 − d1A0) − d0(d′

1 + d0 − d1A1) �≡ 0.

Proof. First, we suppose that d1 �≡ 0. If i(A1) < p, then ρp(A1) = 0 and by
(2.7), we obtain ρp(h) = ρp(A0) = ρ > 0. If ρp(A1) = ρp(A0) = ρ (0 < ρ < +∞)
and σp(A1) < σp(A0) = σ (0 < σ < +∞), then by (2.7) and Lemma 2.4 we have
ρp(h) = ρp(A0) = ρ > 0. Thus h �≡ 0.

Now, if d1 ≡ 0, d0 �≡ 0, then h = −d2
0 �≡ 0. �

Lemma 2.6. [4] Let A0(z), . . . , Ak−1(z) be meromorphic functions, and let
i(A0) = p (1 � p < +∞). Assume that either iλ(1/A0) < p or λp(1/A0) < ρp(A0)
and that either max{i(Aj) : j = 1, 2, . . . , k − 1} < p or

max{ρp(Aj) : j = 1, 2, . . . , k − 1} � ρp(A0) = ρ (0 < ρ < +∞) and
max{σp(Aj) : ρp(Aj) = ρp(A0)} < σp(A0) = σ (0 < σ < +∞).

Then every meromorphic solution f �≡ 0 of the equation

f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = 0

whose poles are of uniformly bounded multiplicity satisfies i(f)=p+1 and ρp(f)=∞,
ρp+1(f) = ρp(A0) = ρ.

Lemma 2.7. Let A1(z), A0(z) be meromorphic functions, and let i(A0) = p
(1 � p < +∞). Assume that either iλ(1/A0) < p or λp(1/A0) < ρp(A0) and that
either i(A1) < p or ρp(A1) = ρp(A0) = ρ (0 < ρ < +∞) and σp(A1) < σp(A0) = σ
(0 < σ < +∞). Let d0(z), d1(z) be meromorphic functions such that at least one
of d0(z), d1(z) does not vanish identically with max{ρp(dj) : j = 0, 1} < ρp(A0).
If f �≡ 0 is a meromorphic solution of (1.1) whose poles are of uniformly bounded
multiplicity, then the differential polynomial

(2.8) gf = d1f ′ + d0f

satisfies
ρp(gf ) = ρp(f) = ∞, ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ.

Proof. Suppose that f �≡ 0 is a meromorphic solution of equation (1.1)
whose poles are of uniformly bounded multiplicity. Then, by Lemma 2.6, we have
ρp(f) = ∞ and ρp+1(f) = ρp(A0) = ρ. Differentiating both sides of equation (2.8)
and replacing f ′′ with f ′′ = −A1f ′ − A0f , we obtain

(2.9) g′
f = (d′

1 + d0 − d1A1)f ′ + (d′
0 − d1A0)f.

Set

(2.10) α0 = d′
0 − d1A0, α1 = d′

1 + d0 − d1A1.
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Then, by (2.8), (2.9) and (2.10), we have

(2.11) d1f ′ + d0f = gf , α1f ′ + α0f = g′
f .

Set

(2.12) h = d1α0 − d0α1 = d1(d′
0 − d1A0) − d0(d′

1 + d0 − d1A1).

By Lemma 2.5 we have h �≡ 0. By h �≡ 0, (2.11) and (2.12), we obtain

(2.13) f =
d1g′

f − α1gf

h
.

If ρp(gf ) < ∞, then by (2.13) and Lemma 2.1, we get ρp(f) < ∞ and this is a
contradiction. Hence ρp(gf) = ∞.

Now, we prove that ρp+1(gf ) = ρp+1(f) = ρ. By (2.8), Lemma 2.1 and Lemma
2.2, we get ρp+1(gf ) � ρp+1(f) and by (2.13) we have ρp+1(f) � ρp+1(gf ). This
yields ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ. �

3. Proof of Theorem 1.2

Suppose that f �≡ 0 is a meromorphic solution of equation (1.1) whose poles
are of uniformly bounded multiplicity. Then, by Lemma 2.6, we have ρp(f) = ∞
and ρp+1(f) = ρp(A0) = ρ. Set w(z) = d1f ′ + d0f − ϕ. Since ρp(ϕ) < ρp(A0), then
by Lemma 2.7 we have ρp(w) = ρp(gf ) = ρp(f) = ∞ and ρp+1(w) = ρp+1(gf ) =
ρp+1(f) = ρp(A0) = ρ. In order to prove λ̄p(gf − ϕ) = ∞ and λ̄p+1(gf − ϕ) = ρ,
we need to prove only λ̄p(w) = ∞ and λ̄p+1(w) = ρ. By gf = w + ϕ, we get from
(2.13)

(3.1) f = d1w′ − α1w

h
+ ψ,

where

(3.2) ψ = d1ϕ′ − α1ϕ

h

and ρp(ψ) < ∞. Substituting (3.1) into equation (1.1), we obtain

d1

h
w′′′ + φ2w′′ + φ1w′ + φ0w = −(ψ′′ + A1(z)ψ′ + A0(z)ψ) = A,

where φj (j = 0, 1, 2) are meromorphic functions with ρp(φj) � ρp(A0) < ∞
(j = 0, 1, 2). Since (d′

1 + d0 − d1A1)ϕ − d1ϕ′ �≡ 0, from (3.2) we have ψ(z) �≡ 0.
Hence, by ψ(z) �≡ 0 and ρp(ψ) < ∞, it follows by Lemma 2.6 that A �≡ 0. Thus,
by Lemma 2.3, we obtain λ̄p(w) = ρp(w) = ∞, λ̄p+1(w) = ρp+1(w) = ρ, i.e.,
λ̄p(gf − ϕ) = ρp(gf ) = ρp(f) = ∞ and λ̄p+1(gf − ϕ) = ρp+1(gf ) = ρp+1(f) =
ρp(A0) = ρ.

Remark 3.1. From the proof of Theorem 1.2, we see that the condition
(d′

1 + d0 − d1A1)ϕ − d1ϕ′ �≡ 0 is necessary because if (d′
1 + d0 − d1A1)ϕ − d1ϕ′ ≡ 0,

then ψ(z) ≡ 0 and A(z) ≡ 0.
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4. Proof of Theorem 1.3

Suppose that f �≡ 0 is a meromorphic solution of equation (1.1) whose poles
are of uniformly bounded multiplicity. Then, by Lemma 2.6, we have ρp(f) = ∞
and ρp+1(f) = ρp(A0) = ρ. Set w(z) = d1f ′ + d0f − ϕ. Since ρp(ϕ) < ρp(A0), then
by Lemma 2.7 we have ρp(w) = ρp(gf ) = ρp(f) = ∞ and ρp+1(w) = ρp+1(gf ) =
ρp+1(f) = ρp(A0) = ρ. In order to prove λ̄p(gf − ϕ) = ∞ and λ̄p+1(gf − ϕ) = ρ,
we need to prove only λ̄p(w) = ∞ and λ̄p+1(w) = ρ. Substituting gf = w + ϕ into
(2.13) and using a similar reasoning as in the proof of Theorem 1.2, we get that

d1

h
w′′′ + φ2w′′ + φ1w′ + φ0w = −(ψ′ + A1(z)ψ′ + A0(z)ψ) = B,

where φj (j = 0, 1, 2) are meromorphic functions with ρp(φj) � ρp(A0) < ∞
(j = 0, 1, 2) and

(4.1) ψ = d1ϕ′ − α1ϕ

h
.

Now, we prove that ψ(z) �≡ 0. Assume that ψ(z) ≡ 0. Then from (4.1), we
obtain that
(4.2) (d′

1 + d0 − d1A1)ϕ = d1ϕ′.

First, if d1 ≡ 0, then by (4.2), we get d0 ≡ 0 and this is a contradiction. Now if
d1 �≡ 0, since ρp(ϕ) < ρp(A0), then by (4.2), we get

ρp((d′
1 + d0 − d1A1)ϕ) = ρp(A1) = ρp(d1ϕ′) < ρp(A0) = ρp(A1)

and this is a contradiction. Hence ψ(z) �≡ 0. Since ψ(z) �≡ 0 and ρp(ψ) < ∞,
it follows by Lemma 2.6 that B �≡ 0. Thus, by Lemma 2.3, we obtain λ̄p(w) =
ρp(w) = ∞, λ̄p+1(w) = ρp+1(w) = ρ, i.e., λ̄p(gf − ϕ) = ρp(gf ) = ρp(f) = ∞ and
λ̄p+1(gf − ϕ) = ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ.
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