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ABSTRACT

Standard adaptive filtering algorithms, including the popu-
lar LMS and RLS algorithms, possess only one parameter
(step-size, forgetting factor) to adjust the tracking speed in
a non-stationary environment. Furthermore, existing tech-
niques for the automatic adjustment of this parameter are not
totally satisfactory and are rarely used. In this paper we pur-
sue the concept of Bayesian Adaptive Filtering (BAF) that
we introduced earlier, based on modeling the optimal adptive
filter coefficients as a stationary vector process, in particu-
lar a diagonal AR(1) model. Optimal adaptive filtering with
such a state model becomes Kalman filtering. The AR(1)
model parameters are determined with an adaptive version
of the EM algorithm, which leads to linear prediction on re-
constructed optimal filter correlations, and hence a meaning-
ful approximation/estimation compromise. The resulting al-
gorithm, of complexity O � N2 � , is shown by simulations to
have performance close to that of the Kalman filter with true
model parameters. In this paper, we apply a component-wise
EM approach to further reduce the complexity to being lin-
ear in the number of adaptive filtering coefficients. The good
performance of the resulting algorithm is illustrated in simu-
lations. The AR(1) state model can be further approximated
by a random walk, leading to further simplified adaptive fil-
ter that can be interpreted an LMS algorithm with a variable
step-size per filter tap.

1. INTRODUCTION

In Bayesian Adaptive Filtering (BAF) [1], the evolution of
filter coefficients is modeled as a stationary process. A sim-
ple choice for the search process is a first-order autoregres-
sive process (AR(1)). This AR(1) model can be considered
a state model. Hence, Bayesian Adaptive Filtering leads to
Kalman filtering. This Kalman filtering needs to be adap-
tive because the model parameters are unkown. Even though
adaptive Kalman filtering is a difficult problem, a surpris-
ingly large number of solutions exist. The following ap-
proaches can be identified:

1. Recursive Prediction-Error Method (RPEM)

2. Extended Kalman Filter (EKF)

3. Best Quadratic Unbiased Estimator (BQUE)

4. Expectation-Maximization (EM)

5. Second-Order Statistics (SOS)
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6. Subspace-Based Estimation Method (SBEM)

A common approach is the well-known Recursive
Prediction-Error Method (RPEM), which provides an esti-
mator that minimizes a prediction error criterion function
V

N
� θ � , of the form

θ̂ � argmin
θ

V
N

� θ � (1)

where θ is the set of parameters to be estimated. However,
for many scenarios (1) has no closed-form solution, due to
non convexity of V

N
� Θ � in Θ. A popular choice for solv-

ing the optimization problem are gradient-based search tech-
niques, and therefore implementation complexity becomes
similar to the ML approach. A standard state estimation
method used for polynomial systems is the Extended Kalman
Filter (EKF), which allows simultaneous estimation of states
and parameters through a Recursive prediction-correction
model [2]. As an approximate conditional mean filter, the
EKF is suboptimal. A popular and robust alternative to
these algorithms is provided by the subspace-based estima-
tion methods [3]. These algorithms extract the estimates of
system state-space matrices directly from data by first divid-
ing that data into past and future data and then projecting the
future data onto the space spanned by the past data. A bank of
Kalman filters is employed to compute the estimation of the
state sequence, which results in an approximation of Kalman
filter estimate of the state. A good alternative to the described
schemes is given by the EM algorithm, where the estimate of
the state sequence is found by a single Kalman smoothed es-
timation instead. In this case, the smoothed state estimates
are calculated under the assumption that the parameters of
the true system are the same as the current estimate. Other
approaches like Second-Order Statistics (SOS) methods and
Best Quadratic Unbiased Estimator (BQUE) can be found
in [4]. In our work we focus on EM parameter estimation
techniques.
Previous works on suboptimal adaptive filtering coefficient
estimation [5],have shown how an RLS (Recursive Least
Squares) approach can successfully converge at fast speed.
However, this approach is rather complex, presenting com-
putation complexity of order O � N2 � . A less compless solu-
tion can be found by using a LMS (Least Mean Squares) [6]
, [7], [8], which reduces the complexity of RLS [9] algo-
rithms in one order of magnitude, resulting O � N � . On the
other hand, while complexity is reduced convergence speed
of LMS is slower than the one shown by RLS algorithms. In
these techniques, the optimal adaptive filter is considered to
be an unknown deterministic function, which in reality is not
true due to channel randomness. Since the introduction of
the LMS algorithm by Widrow and Hopf in the 1960’s, most
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of the further work in adaptive filtering has focused on im-

proving theinitial convergence. The Recursive Least-Squares

(RLS) algorithm was also developed in the 1960’sand pro-

vided an alternative algorithm for adaptive system identifica-

tion. The RLS algorithm is recursive and not iterative as the

LMS algorithm, solving a LS cost function exactly at each

update. As a result it converges very fast since it provides

an unbiased solution once the LS problem gets overdeter-

mined. This deterministic aspect adds up to the observation

that the RLS convergence is insensitive to the input signal

correlation structure (approximately, since there is some de-

pendence on the initialization). The RLS algorithm, though

providing computational savings w.r.t. the plain solving of

LS problems at each sampling period, is quite a bit more ex-

pensive than the LMS algorithm. The KF’ing framework can

be straightforwardly extended to incorporate time-varying

optimal parameters. The simplest way is probably through

the following AR � 1 � model state equation for optimal filter

variation

yk � XH
k H0

k � 1 	 vk (2)

where Xk is a N 
 1 input vector of white complex symbols

and N is the length of the filter. The noise vk is assumed

to be zero mean uncorrelated and normally distributed with

common covariance matrix R. The Bayesian Filter H0

k is as-

sumed to be of primary interest [1]; it is modeled as a first

order multivariate process of the form

H0

k � AH0

k � 1 	 Wk (3)

where E �WkW
H
k � � Qk is a N 
 N transition matrix describ-

ing the way the underlying series move through successive

time periods. The BF H0

k may be non-stationary since we do

not make special assumptions about the roots of the charac-

teristic equation A. The N 
 1 noise terms Wk, are zero-mean

uncorrelated normal vectors with common covariance matrix

Q.

The motivation for the model defined by (2) and (3) origi-

nates from a desire to account separately for uncertainties in

the model as defined by model error Wk and uncertainties in

measurements made on the model as expressed by the mea-

surement noise process vk. It might be helpful to envision

(2) as a kind of random-effects model for the time variation,

where the effect vector H0

k has a correlation structure over

time imposed by the multivariate autoregressive model (3).

In this context, it is a generalization of the ordinary autore-

gressive AR model which accounts for observation noise as

well as model induced noise.

In this paper, we provide a convenient method for dealing

with the incomplete data problem. To estimate H0

k we use

Kalman filtering with one-step smoothing. The primary aim

of a smoothing procedure is to estimate the unobserved time-

varying H0

k . If one knows the values for the parameters Q
and A the conventional Kalman smoothing estimators can be

calculated as conditional expectations and will have MMSE

.

Since the smoothed values in a Kalman filter estimator will

depend on the initial values assumed for the above parame-

ters, it is of interest to consider various ways in which they

might be estimated. In most cases this has been accom-

plished by Maximum likelihood techniques involving the

use of scoring or Newton-Raphson technique to solve the

nonlinear equations wich result from differentiating the log-

likelihood function. In this paper, we introduce an EM ap-

proach for iteratively update the parameter model. Exper-

imental results will be shown for the proposed algorithm,

comparing to KF filtering.

2. PARAMETER ESTIMATION VIA THE EM

ALGORITHM

In this section we develop the EM algorithm for estimating

the parameters of (2)- (3). Perhaps the most important step in

applying the EM algorithm to a particular problem is that of

choosing the missing data. The missing data should be cho-

sen so that the task of maximizing U � θ  θ � k � � for any value

of θk � � A  Q � is easy and so that it is possible to perform the

expectation step.

Fortunately, in this case, the choice of missing data is not too

difficult. Let us imagine for a moment that, in addition to the

system inputs and outputs, Xk and Yk respectively, the state

H0

k was available. In that case, ML estimation of A reduces

to argminA � � H0

k � AH0

k � 1 � � 2Q. The covariance elements of Wk,

Q, could then be calculated from the residuals. Moreover, the

conditional expectation of state sequence may be calculated

using a (slightly augmented) Kalman Smoother. All of this

suggests that the state sequence is a desirable conditionate

for the missing data. We therefore designate Y as the incom-

plete data so that the complete data set is Z � � H0

k  Yk � .
In order to develop a procedure for estimating the parame-

ters in the state-space model defined by (2)- (3), we note

first that applying the Bayes rule, the probability density as-

sociated with Z can be written in the form

fZ � z  θ � � f
Z �Y � y

� z  θ ��� fY � y;θ � (4)

where fY � y;θ � is the probability density function of Y and

f
Z �Y � y

� z  θ � is the conditional probability density of Z given

Y � y. Taking the logarithm on both sides of (4), we get the

log-likelihood function

log fY � y  θ � � log fZ � z  θ � � log f
Z �Y � y

� z  θ � (5)

Define, for convenience

L � θ � � log fY � y  θ �
With this definition we can write

L � � 2log f
θ
� Hk  YM  θ �YM �

	 M logdetQ

	 M

∑
k � 1

tr � Hk � AHk � 1
� Q � 1 � Hk � AHk � 1

� H

	 M

∑
k � 1

tr � yk � XH
k Hk � 1

� R � 1 � yk � XH
k Hk � 1

� H
(6)

The log-likelihood given above depends on the unobserved

data H0

k . We consider applying the EM algorithm condition-

ally with respect to the observed ensemble Y . That is, the

estimated parameters at the � k 	 1 � � th iteration are the val-

ues A and Q that maximize

U � θ  θ̂k � � E
θ̂

k

�
log f

θ
� Hk  YM  θ �YM ��� (7)
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where E
θ̂

k

denotes the conditional expectaion relative to a

density containing the k � th iteration values.

In order to calculate the conditional expectation defined in

(??), it is convenient to define the conditional mean

Ĥk � E
θ̂

k

�
H0

k �YM �
Pk � E � H̃kH̃H

k �YM �
Pk � 1 � E � H̃k � 1

H̃H
k � 1 �YM �

we suppose the following definitions

 "!$# ! � M

∑
k % 1

&
E

θ̂
k

�
H0

k � 1

&
H0

k � 1 ' H �YM �)( Pk � 1 '
 "! �+* # ! � M

∑
k % 1

&
E

θ̂
k

�
H0

k

&
H0

k ' H �YM � ( Pk '
 "!-, ! �+* # ! � M

∑
k % 1

&
E

θ̂
k

�
H0

k

&
H0

k � 1 ' H �YM �)( Pk

,
k � 1 ' (8)

The Kalman filter terms Ĥk, Pk and Pk

,
k � 1

are computed

under the parameter values Ak and Qk using the recursions

in (8). Maximizing (7) w.r.t. A and Q, we obtain

. !0/ * � 1

M

&  "! # ! �  "!1, ! �+* # ! &  "! �2* # ! ' �+*  43!1, ! �2* # ! '5 !6/ * �  4!1, ! �2* # ! &  "! �+* # ! ' �2*
3. ADAPTIVE EM-KALMAN ALGORITHM

In our study, the tasks of smoothing in a missing data con-

text are interpreted as basically the problem of estimating the

BAF H0

k in the state-space model (2)- (3). The conditional

means provide a minimum MSE solution based on the ob-

served data. The parameters Q and A are estimated by ML

using the EM algorithm. We simplify the estimation problem

by considering A and Q diagonal matrices. The filter param-

eters are iteratively computed through M iterations. The esti-

mation of the optimal filter variation is carried out by KF’ing

and one step smoothing and we introduce an EM approach to

iteratively update the parameter model.

The resulting algorithm is shown in Table of Adaptive EM-

Kalman filter. The complexity of Kalman filter is limited to

O
&
N2 ' order and the Adaptive Kalman filter has the same

order of complexity. To reduce the complexity of our algo-

rithm we propose two methods. First, a cyclic minimization

method by using a Maximum A posteriory and Maximum

Likelihood estimation (MAP-ML), MAP for estimating the

Bayesian filter sequence and ML for estimating the param-

eters model. Second, a Component-Wise Adaptive Kalman

filter, which is based on the estimation of each parameter one

by one.

4. MAP-ML ESTIMATION

The value of H0

k that maximizes the posterior density (that is,

the mode of the posterior density) is called the maximum a

posterior probability estimate of H0

k .

If the posterior density of H0

k given A, Q and Y is unimodal

and symmetric, then it is easy to see that the MAP estimate

and the mean squared estimate coincide, since the posterior

density attains its maximum value at its expected value.

Let the sequence filter H0

k be considered as a random variable

distributed according to the posterior density f
H0

k

&
ho

k ' . The

posterior distribution for H, is given by

f
H0

k

,
Y

#
A

,
Q

&
ho

k 7 y � A 7 Q ' (9)

then 8HkMAP
is obtained by maximizing the logarithm of the

posterior density with respect to H0

k . Initially, A
0

and Q
0

are

set to a certain initial value. After the first iteration, Ak

/
1

and

Qk

/
1

are obtained by ML, given 9Hk

,
MAP.

5. COMPONENT-WISE ADAPTIVE KALMAN

ALGORITHM

Our goal is to design an optimal algorithm with reduced com-

plexity in a realistic environment, considering the filter coef-

ficients to estimate random variables. In a previous section,

a Bayesian Adaptive Filtering (BAF) approach has been pro-

posed, showing a complexity of order O
&
N2 ' . To reduce the

complexity of the algorithm presented in Table of Adaptive

EM-Kalman filter, we propose a Component-Wise Adaptive

Kalman algorithm to update the filter coefficients, which de-

creases computational complexity in 1 order of magnitude

while preserving convergence. Experimental results will be

shown for the proposed algorithm, comparing to KF filtering

and Adaptive Kalman algorithms.The filter parameters are it-

eratively computed through M iterations. The system (2)-(3)

becomes for n � 1 :;:<: N, where N is the length of the filter

ho
k

,
n � anho

k � 1

,
n ( wk

,
n (10)

yk � ho
k � 1

,
nxk

,
n ( N

∑
j =% n

ho
k � 1

,
nxk

,
n ( vk (11)

and

ho
k � ĥk ( h̃k

we can write

yk � N

∑
j =% n

ĥo
k � 1

,
nxk

,
n � ho

k � 1

,
nxk

,
n ( N

∑
j =% n

h̃o
k � 1

,
nxk

,
n ( vk

In each iteration yk and vk are updated as follows

y >k � yk � N

∑
j =% n

ĥo
k � 1

,
nxk

,
n

and

v >k � N

∑
j =% n

h̃o
k � 1

,
nxk

,
n ( vk

The missing data should be chosen so that the task of maxi-

mizing U
&
θ 7 θ k

n ' for n � 1 :?:;: N θ
l
n � &

an 7 qn ' is easy and so

that it is possible to perform the expectation step.

Fortunately, in this case, the choice of missing data is not too
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difficult. Let us imagine for a moment that, in addition to

the system inputs and outputs, xk @ n and Yk respectively, the

state h0
n was avaible then ML estimation of an reduces to ap-

plying to (11). The covariance elements, qn, of wk could

then be calculated from the residuals. Moreover, the condi-

tional expectation of state sequence may be calculated using

a (slightly augmented) Kalman Smoother. All of this sug-

gests that the state sequence is a desirable conditionate for

the missing data. We therefore designate Y as the incomplete

data so that the complete data set is Z ACB ho
n D Y E .

For the n F th iteration the log-likelihood function can be

writen as

L AGF 2log f
θ
B ho

n D YM D θ HY EA N logdetqn

I M

∑
k J 1

q K 2

n B ho
k @ n F anho

k K 1 @ n ELB ho
k @ n F anho

k K 1 @ n E H
I M

∑
k J 1

σ K 2

v B yk F xH
k @ nho

k K 1 @ n EMB yk F xH
k ho

k K 1 @ n E H (12)

where L is to be maximized with respect to parameters an

and qn . Since the log-likelihood given above depends on the

unobserved data ho
k @ n, we consider applying the EM algorithm

conditionally with respect to the observed Y . That is, the

estimated parameters at the B k I 1 ENF th iterate as the values

an and qn which maximize

U B θ D θ̂k EOA E
θ̂

k

P
log f

θ
B ho

n D YM D θ HY E�Q (13)

where E
θ̂

k

denotes the conditional expectaion relative to a

density containing the k th iterate values.

In order to calculate the conditional expectation defined in

(13), it is convenient to define the conditional mean

ĥk @ n A E
θ̂

k

P
hk @ n HY Q

and

Pk @ n A E
P
h̃k @ nh̃H

k @ n Q
we suppose the following definitions

π
k @ n R k A M

∑
k J 1

E
θ̂

k

P
ho

k K 1 @ nhoH
k K 1 @ n HY Q I Pk K 1 @ n

π
k K 1 @ n R k A M

∑
k J 1

E
θ̂

k

P
ho

k @ nhoH
k @ n HY Q I Pk @ n

π
k @ k K 1 @ n R k A M

∑
k J 1

E
θ̂

k

P
ho

k @ nhoH
k K 1 @ n HY Q I Pk @ k K 1

(14)

The Kalman filter terms ĥk @ n, Pk @ n and Pk @ k K 1
are computed

under the parameter values an @ k and qn @ k using the recursions

in (12).Furthermore, it is easy to see that the choices

qk S 1 @ n S 1
A 1

γk

B π T R TUF π T @ T K+V R TNB π T K+V R T E?K+V B π T @ T K2V R T E;WXE
ak S 1 @ n S 1

A π T @ T K+V R T B π T K+V R T E<K+V
maximize the last two lines in the Expectation-likelihood

function (13). In our study, the tasks of smoothing in a miss-

ing data context are interpreted as basically the problem of

estimating the BAF h0

k @ n in the state-space model (3)-(4). The

conditional means provide a minimum MSE solution based

on the observed data. The parameters qn and an are esti-

mated by ML using the component-wise EM algorithm. We

simplify the estimation problem by considering an and qn

diagonal matrices. The filter parameters are iteratively com-

puted through M iterations. The estimation of the optimal

filter variation is carried out by KF’ing and one step smooth-

ing and we introduce an EM approach for iteratively update

the parameter model.

The algorithm is resulting in Table of component-wise Adap-

tive EM-Kalman.

6. NUMERICAL RESULTS

The behavior of Kalman and Adaptive Kalman filters are

compared on the basis of simulation results, as shown in

Fig. 1. The proposed algorithms are implemented with the

initial parameters α A 0 Y 9 and forgeting factor λ A 0 Y 95.

The concept of Bayesian Adaptive Filtering (BAF) that we

introduced earlier, based on modeling the optimal adaptive

filter coefficients as a stationary vector process, is in partic-

ular a diagonal AR(1) model H0

k A AH0

k K 1

I
Wk. Optimal

adaptive filtering with such a state model becomes Kalman

filtering. The AR(1) model parameters are determined with

an adaptive version of the EM algorithm, which leads to lin-

ear prediction on reconstructed optimal filter correlations,

and hence a meaningful approximation/estimation compro-

mise. The optimal parameters are A A 0 Y 96 Z I,where I is

identity matrix, and the error covaraince matrix Q is an expo-

nential power delay profile, with the characteristic parameter

β A 0 Y 9. The input signal X is considered to be white.
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Figure 1: Comparison between the proposed Adaptive

Kalman algorithm and Kalman filter

The behavior of CW-EM Adaptive Kalman, Adaptive

Kalman and Kalman filter algorithms are compared on the

basis of simulation results, as shown in Fig. 2
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Figure 2: Comparison between the proposed CW-EM Adap-

tive Kalman algorithm and Adaptive Kalman and Kalman fil-

ter typical algorithms

7. SIMPLIFIED COMPONENT-WISE ADAPTIVE

KALMAN ALGORITHM

We consider A to be an indentity matrix. Hence the comlexity

of the adaptive part is comparable to the one exhibited by tap

Variable Step-Size (TVSS) LMS [10], [6], [7], [8] like 4N. In

practice A tends to the identity matrix when MSE converges

to MMSE . The process is low-pass which is equivalent to a

random walk.

8. CONCLUSION

As Fig. 1 shows, the proposed Adaptive Kalman algorithm

converges to the ML estimator. The convergence speed of

the proposed algorithm in a random time-varying environ-

ment is approximately as fast as the one shown by conven-

tional deterministic Kalman filtering (known parameters). In

the proposed scheme, parameter estimation is carried out

through the EM algorithm, hence assuring convergence to the

ML estimator when a favorable initialization is provided.On

the other hand, to take A and Q a digonal matrix, the com-

plexity of Kalman filter is limited to O [ N2 \
order and the

Adaptive Kalman filtering have the some order of complex-

ity. As Fig. 2 shows, the proposed Component-Wise adap-

tive Kalman algorithm converges to the ML estimator. The

convergence speed is slower than in the cases where con-

ventional Kalman adaptive filter or Kalman filter algorithm

is applied. However, the proposed algorithm clearly outper-

forms the other approaches in terms of complexity.Hence,

the complexity of Component-Wise adaptive Kalman filter is

linear in N, the adaptive filter order. Never the less, upon

convergence, the perfermance of the Component-Wise adap-

tive Kalman filter is comparable of the kown Kalman filter.

Adaptive EM-Kalman Algorithm

Computation Cost ]_2̂`
Initializationabdcfe chgjikmlhn cfe chgpo k0k0q2lr c g

α
qNl6s c g ] o+t α ` q 2Nu cfe c g kml uwv�x cye c g k-l uwv e c g k

γ z 0 { g 0

Kalman filtering and one step smoothingab}| e |f~ v g ir | ab}|f~ vMe |f~ v
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gX���| ab}| e |f~ v
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Talbe.1: Adaptive EM-Kalman Algorithm
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Adaptive Component-Wise EM-Kalman Algorithm

Computation Cost �_�2�
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ĥ

k � n � k ¢ 1 � a
n � kĥ
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