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1 Introduction and Results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna’s value distri-
bution theory ( [10] , [13]). In addition, we will use ρ (f) to denote the order
of growth of f , we say that a meromorphic function a (z) is a small func-
tion of f (z) if T (r, a) = S (r, f) , where S (r, f) = o (T (r, f)) , as r → +∞
outside of a possible exceptional set of finite logarithmic measure, we use
S (f) to denote the family of all small functions with respect to f (z). For a
meromorphic function f (z) , we define its shift by fc (z) = f (z + c) .

In 1959, Hayman proved in [11] that if f is a transcendental entire
function, then fnf ′ assume every nonzero complex number infinitely many
times, provided that n ≥ 3. Later, Hayman [12] conjectured that this result
remains to be valid when n = 1 and n = 2. Then Mues [18] confirmed the
case when n = 2 and Bergweiler-Eremenko [2] and Chen-Fang [3] confirmed
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the case when n = 1, independently. Since then, there are many research
publications (see [17]) regarding this type of Picard-value problem. In 1997,
Bergweiler obtained the following result.

Theorem A. ([1]) If f is a transcendental meromorphic function of finite

order and q is a not identically zero polynomial, then ff ′− q has infinitely

many zeros.

In 2007, Laine and Yang studied the difference analogue of Hayman’s theorem
and proved the following result.

Theorem B. ([14]) Let f (z) be a transcendental entire function of finite

order, and c be a nonzero complex constant. Then for n ≥ 2, fn (z) f (z + c)
assume every non-zero value a ∈ C infinitely often.

In the same paper, Laine and Yang showed that Theorem B does not
remain valid for the case n = 1. Indeed, take f (z) = ez + 1. Then

f (z) f (z + πi)− 1 = (1 + ez) (1− ez)− 1 = −e2z .

After their, a stream of studies on the value distribution of nonlinear differ-
ence polynomials in f has been launched and many related results have been
obtained, see e.g. [5, 14, 15, 16] . For example, Liu and Yang improved the
previous result and obtained the following.

Theorem C. ([15]) Let f (z) be a transcendental entire function of finite or-

der, and c be a nonzero complex constant. Then for n ≥ 2, fn (z) f (z + c)−
p (z) has infinitely many zeros, where p (z) 6≡ 0 is a polynomial in z.

Hence, it is natural to ask: What can be said about the value distribution of

f (z) f (z + c)− q (z) , when f is a transcendental meromorphic function and

q be a not identically zero small function of f? In this paper, as an attempt
in resolving this question, we obtain the following results.

Theorem 1.1 Let f be a transcendental entire function of finite order, let

c1, c2 be two nonzero complex numbers such that f (z + c1) 6≡ f (z + c2)
and q be not identically zero polynomial . Then f (z) f (z + c1) − q (z) and

f (z) f (z + c2)− q (z) at least one of them has infinitely many zeros.
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The following corollary arises directly from Theorem 1.1 and Theorem C.

Corollary 1.1 Let n ≥ 1 be an integer and let c1, c2 (c1c2 6= 0) be two distinct

complex numbers. Let α, β, p1, p2 and q ( 6≡ 0) be nonconstant polynomials.

If f is a finite order transcendental entire solution of

{

fn (z) f (z + c1)− q (z) = p1 (z) e
α(z)

fn (z) f (z + c2)− q (z) = p2 (z) e
β(z) ,

then, n = 1 and f must be a periodic function of period c1 − c2.

2 Some lemmas

The following lemma is an extension of the difference analogue of the
Clunie lemma obtained by Halburd and Korhonen [8].

Lemma 2.1 [4] Let f (z) be a non-constant, finite order meromorphic solu-

tion of

fnP (z, f) = Q (z, f) ,

where P (z, f) , Q (z, f) are difference polynomials in f (z) with meromorphic

coefficients aj (z) (j = 1, · · · , s) , and let δ < 1. If the degree of Q (z, f) as
a polynomial in f (z) and its shifts is at most n, then

m (r, P (z, f)) = o

(

T (r + |c| , f)

rδ

)

+ o (T (r, f)) +O

(

s
∑

j=1

m (r, aj)

)

.

for all r outside an exceptional set of finite logarithmic measure.

Lemma 2.2 [6] Let f (z) be a non-constant, finite order meromorphic func-

tion and let c 6= 0 be an arbitrary complex number. Then

T (r, f (z + c)) = T (r, f (z)) + S (r, f) .

Lemma 2.3 [7] Let f (z) be a transcendental meromorphic function of finite

order ρ, and let ε > 0 be a given constant. Then, there exists a set E0 ⊂
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(1,+∞) that has finite logarithmic measure, such that for all z satisfying

|z| /∈ E0 ∪ [0, 1] , and for all k, j, 0 ≤ j < k, we have
∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

≤ |z|(k−j)(ρ−1+ε) .

The following lemma is the lemma of the logarithmic derivative.

Lemma 2.4 [10] Let f be a meromorphic function and let k ∈ N. Then

m

(

r,
f (k)

f

)

= S (r, f) ,

where S (r, f) = O (log T (r, f) + log r) , possibly outside a set E1 ⊂ [0,+∞)
of a finite linear measure. If f is of finite order of growth, then

m

(

r,
f (k)

f

)

= O (log r) .

The following lemma is a difference analogue of the lemma of the loga-
rithmic derivative for finite order meromorphic functions.

Lemma 2.5 [6, 8, 9] Let η1, η2 be two arbitrary complex numbers such that

η1 6= η2 and let f (z) be a finite order meromorphic function. Let σ be the

order of f (z). Then for each ε > 0, we have

m

(

r,
f (z + η1)

f (z + η2)

)

= O
(

rσ−1+ε
)

.

Lemma 2.6 Let f (z) be a transcendental meromorphic solution of the sys-

tem
{

f (z) f (z + c1)− q (z) = p1 (z) e
α(z),

f (z) f (z + c2)− q (z) = p2 (z) e
β(z),

(2.1)

where α, β are polynomials and p1, p2, q are not identically zero rational

functions. If N (r, f) = S (r, f) , then

degα = deg β = deg (α + β) = ρ (f) > 0.

Proof . First, we prove that deg α = ρ (f) and by the same we can deduce
that deg β = ρ (f) . It’s clear from (2.1) that deg α ≤ ρ (f) . Suppose that
degα < ρ (f) , this means that

f (z) f (z + c1) := F = q (z) + p1 (z) e
α(z) ∈ S (f) . (2.2)
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Applying Lemma 2.1 and Lemma 2.2 into (2.2) , we obtain T (r, fc) =
T (r, f) = S (r, f) which is a contradiction. Assume now that deg (α + β) <
ρ (f) , this leads to p1p2e

α+β ∈ S (f) . From this and (2.1) we have

f 2P (z, f) = p1p2e
α+β + q2,

where
P (z, f) = a (z) f 2 − b (z)

and

a =
fc1
f

fc2
f
, b = q

(

fc1
f

+
fc2
f

)

.

It’s clear that P (z, f) 6≡ 0, and by using Lemma 2.1, we get

m (r, P (z, f)) = S (r, f)

which leads to

2T (r, f) = m

(

r,
b (z) + P (z, f)

a (z)

)

= S (r, f)

which is a contradiction. Hence, deg (α + β) = degα = deg β. Finally, by
using Lemma 2.1, it’s easy to see that both of α and β are nonconstant
polynomials.

3 Proof of Theorem 1.1

We shall prove this theorem by contradiction. Suppose contrary to our as-
sertion that both of f (z) f (z + c1) − q (z) and f (z) f (z + c2) − q (z) have
finitely many zeros. Then, there exist four polynomials α, β, p1 and p2 such
that

f (z) f (z + c1)− q (z) = p1 (z) e
α(z) (3.1)

and
f (z) f (z + c2)− q (z) = p2 (z) e

β(z). (3.2)

By differentiating (3.1) and eliminating eα, we get

A1ffc1 − f ′fc1 − ff ′

c1
= B1, (3.3)
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where A1 =
p′1
p1

+ α′, B1 =
(

p′1
p1

+ α′

)

q − q′. By Lemma 2.6 we have

degα = deg β = deg (α + β) = ρ (f) > 0.

Now, we prove that A1 6≡ 0. To show this, we suppose the contrary. Then,
there exists a constant A such that A = p1 (z) e

α, which implies the contra-
diction degα = ρ (f) = 0. By the same, we can prove that B1 6≡ 0. By the
same arguments as above, (3.2) gives

A2ffc2 − f ′fc2 − ff ′

c2
= B2, (3.4)

where A2 =
p′2
p2
+β ′ and B2 =

(

p′2
p2

+ β ′

)

q−q′. Obviously, A2 6≡ 0 and B2 6≡ 0.

Dividing both sides of (3.3) and (3.4) by f 2, we get for each ε > 0

2m

(

r,
1

f

)

≤ m

(

r,
fci
f

)

+m

(

r,
f ′

f

fci
f

)

+m

(

r,
f ′

ci

fci

fci
f

)

+O (log r)

= O
(

rρ−1+ε
)

+O (log r) = S (r, f) .

So, by the first fundamental theorem, we deduce that

T (r, f) = N

(

r,
1

f

)

+O
(

rρ−1+ε
)

+O (log r) . (3.5)

It’s clear from (3.3) and (3.4) that any multiple zero of f is a zero of Bi

(i = 1, 2) . Hence

N(2

(

r,
1

f

)

≤ N

(

r,
1

Bi

)

= O (log r) ,

where N(2

(

r, 1
f

)

denotes the counting function of zeros of f whose multiplic-

ities are not less than 2. It follows by this and (3.5) that

T (r, f) = N1)

(

r,
1

f

)

+O
(

rρ−1+ε
)

+O (log r) , (3.6)

where N1)

(

r, 1
f

)

is the counting function of zeros, where only the simple zeros

are considered. From (3.3) and (3.4) , for every zero z0 such that f ′ (z0) 6= 0
which is not zero or pole of B1 and B2, we have

(f ′fc1 +B1) (z0) = 0 (3.7)
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and
(f ′fc2 +B2) (z0) = 0. (3.8)

By (3.7) and (3.8) , we obtain

(B2fc1 −B1fc2) (z0) = 0 (3.9)

which means that the function
B2fc1−B1fc2

f
has at most a finite number of

simple poles. We consider two cases:

Case 1. B2fc1 −B1fc2 6≡ 0. Set

h (z) =
B2fc1 − B1fc2

f (z)
. (3.10)

Then, from the lemma of logarithmic differences, we havem (r, h) = O (rρ−1+ε)+
O (log r) . On the other hand

N (r, h) = N

(

r,
B2fc1 −B1fc2

f

)

= N1)

(

r,
B2fc1 −B1fc2

f

)

+O
(

rρ−1+ε
)

+O (log r) = S (r, f) .

Thus, T (r, h) = O (rρ−1+ε) +O (log r) = S (r, f) . From the equation (3.10) ,
we have

fc1 (z) =
B1

B2

fc2 (z) +
h

B2

f (z) . (3.11)

By differentiating (3.11) , we get

f ′

c1
(z) =

(

h

B2

)

′

f (z) +
h

B2
f ′ (z) +

(

B1

B2

)

′

fc2 (z) +
B1

B2
f ′

c2
(z) . (3.12)

Substituting (3.11) and (3.12) into (3.3)
[

A1h

B2
−

(

h

B2

)

′
]

f 2 +

[

−
2h

B2

]

ff ′

+

[

A1B1

B2
−

(

B1

B2

)

′
]

ffc2 −
B1

B2
f ′fc2 −

B1

B2
ff ′

c2
= B1. (3.13)

Equation (3.4) , can be rewritten as

−
B1A2

B2
ffc2 +

B1

B2
f ′fc2 +

B1

B2
ff ′

c2
= −B1.
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By adding this to (3.13), we get
[

A1h

B2
−

(

h

B2

)

′
]

f+

[

−
2h

B2

]

f ′+

[

A1B1

B2
−

(

B1

B2

)

′

−
B1A2

B2

]

fc2 = 0. (3.14)

Its clear that − 2h
B2

6≡ 0. In order to complete the proof of our theorem, we
need to prove

A1h

B2

−

(

h

B2

)

′

6≡ 0 and
A1B1

B2

−

(

B1

B2

)

′

−
B1A2

B2

6≡ 0.

Suppose contrary to our assertion that A1h
B2

−
(

h
B2

)

′

≡ 0. Then, by the defi-

nition of A1 and by simple integration, we get

p1e
α = C1

h

B2
,

where C1 is a nonzero constant. This implies that degα = ρ (f)− 1, which

is a contradiction. Hence, A1h
B2

−
(

h
B2

)

′

6≡ 0. Next, we shall prove A1B1

B2
−

(

B1

B2

)

′

− B1A2

B2
6≡ 0. Suppose that A1B1

B2
−
(

B1

B2

)

′

− B1A2

B2
≡ 0. Then we obtain

p1
p2
eα−β = C2

B1

B2
:= γ,

where C2 is a nonzero constant and γ is a small function of f. From (3.1)
and (3.2) we get

f (fc1 − γfc2) = (1− γ) q. (3.15)

If γ 6≡ 1, then by applying Clunie’s lemma to (3.15) , we obtain

m (r, fc1 − γfc2) = T (r, fc1 − γfc2) = S (r, f) .

By this and (3.15) , we have

T (r, f) = T

(

r,
(1− γ) q

fc1 − γfc2

)

= S (r, f)

which is a contradiction. If γ ≡ 1, then we obtain the contradiction fc1 (z) ≡

fc2 (z) . Thus,
A1B1

B2
−
(

B1

B2

)

′

−B1A2

B2
6≡ 0. From the above discussion and (3.14) ,

we have
fc2 (z) =M (z) f (z) +N (z) f ′ (z) (3.16)
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and
fc1 (z) = ϕ (z) f (z) + ψ (z) f ′ (z) , (3.17)

where

M =

(

h
B2

)

′

− A1
h
B2

(A1 − A2)
B1

B2
−
(

B1

B2

)

′
, N =

2h
B2

(A1 − A2)
B1

B2
−
(

B1

B2

)

′

and

ϕ (z) =
B1

B2

M +
h

B2

, ψ =
B1

B2

N.

Differentiation of (3.16) , gives

f ′

c2
=M ′f + (M +N ′) f ′ +Nf ′′. (3.18)

Substituting (3.16) and (3.18) into (3.4) , we get

[M ′ − A2M ] f 2 + [N ′ − A2N + 2M ] f ′f +N
(

(f ′)
2
+ ff ′′

)

= −B2. (3.19)

Differentiating (3.19) , we get

[M ′ −A2M ]
′

f 2 +
(

2 [M ′ − A2M ] + [N ′ − A2N + 2M ]
′
)

f ′f

+ (2N ′ − A2N + 2M)
(

(f ′)
2
+ ff ′′

)

+N (3f ′f ′′ + ff ′′′) = −B′

2. (3.20)

Suppose z0 is a simple zero of f and not a zero or pole of B2. Then from
(3.19) and (3.20) , we have

(

Nf ′ +
B2

f ′

)

(z0) = 0,

[

(2N ′ − A2N + 2M) f ′ + 3Nf ′′ +
B′

2

f ′

]

(z0) = 0.

It follows that z0 is a zero of [B2 (2N
′ −A2N + 2M)− B′

2N ] f ′ + 3B2Nf
′′.

Therefore the function

H =
[2B2N

′ −B2A2N + 2B2M − B′

2N ] f ′ + 3B2Nf
′′

f

9



satisfies T (r,H) = S (r, f) and

f ′′ =
H

3B2N
f +

[−2B2N
′ +B2A2N − 2B2M +B′

2N ]

3B2N
f ′. (3.21)

Substituting (3.21) into (3.19) , we get

q1f
2 + q2f

′f + q3 (f
′)
2
= −B2, (3.22)

where

q1 =M ′ −A2M +
H

3B2
,

q2 =
1

3
N ′ +

1

3

(

B′

2

B2
− 2A2

)

N +
4

3
M, q3 = N.

We prove first q2 6≡ 0. Suppose the contrary. Then

q2
q3

=
2

3

N ′

N
−

1

3

B′

2

B2

−
2

3
(A1 + A2) +

2

3

h′

h
= 0

which leads to

α′ + β ′ =
N ′

N
− 2

B′

2

B2
+
h′

h
−
p′1
p1

−
p′2
p2
.

By simple integration of both sides of the above equation, we get

p1p2e
α+β = c

N

B2
2

h, (3.23)

where c is a nonzero constant, this leads to the contradiction deg (α+ β) <
degα = deg β. Hence, q2 6≡ 0. Differentiating (3.22) , we obtain

q′1f
2 + (2q1 + q′2) f

′f + (q2 + q′3) (f
′)
2
+ q2f

′′f + 2q3f
′f ′′ = −B′

2. (3.24)

Let z0 be a simple zero of f which is not a zero or pole of B2. Then from
(3.22) and (3.24) we have

(

q3f
′ +

B2

f ′

)

(z0) = 0,

[

(q2 + q′3) f
′ + 2q3f

′′ +
B′

2

f ′

]

(z0) = 0.
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Therefore z0 is a zero of (B2 (q2 + q′3)− B′

2q3) f
′+2B2q3f

′′. Hence the function

R =
(B2 (q2 + q′3)−B′

2q3) f
′ + 2B2q3f

′′

f
.

satisfies T (r, R) = S (r, f) and

f ′′ =
R

2B2q3
f +

B′

2q3 −B2 (q2 + q′3)

2B2q3
f ′. (3.25)

Substituting (3.25) into (3.24)

[

q′1 +
q2R

2B2q3

]

f 2 +

[

2q1 + q′2 +
1

2

B′

2

B2
q2 −

1

2
(q2 + q′3)

q2
q3

+
R

B2

]

f ′f

+
B′

2q3
B2

(f ′)
2
= −B′

2. (3.26)

Combining (3.26) and (3.22) , we obtain

[

q′1 +
q2R

2B2q3
−
B′

2

B2

q1

]

f +

[

2q1 + q′2 −
1

2

B′

2

B2

q2 −
1

2
(q2 + q′3)

q2
q3

+
R

B2

]

f ′ = 0.

(3.27)
From (3.27) , we deduce that

q′1 +
q2R

2B2q3
−
B′

2

B2
q1 = 0

and

2q1 + q′2 −
1

2

B′

2

B2

q2 −
1

2
(q2 + q′3)

q2
q3

+
R

B2

= 0.

By eliminating R from the above two equations, we obtain

q3
(

4q1q3 − q22
) B′

2

B2

+ q2
(

4q1q3 − q22
)

− q3
(

4q1q3 − q22
)

′

+ q′3
(

4q1q3 − q22
)

= 0.

(3.28)
Thus, equation (3.25) can be rewritten as

f ′′ =

(

B′

2

B2

q1
q2

−
q′1
q2

)

f +
1

2

(

B′

2

B2

−
q2
q3

−
N ′

N

)

f ′. (3.29)
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Subcase 1. If 4q1q3 − q22 6≡ 0, then from (3.28) we have

q2
q3

=
(4q1q3 − q22)

′

(4q1q3 − q22)
−
B′

2

B2
−
q′3
q3
.

On the other hand

q2
q3

=
1

3

N ′

N
+

1

3

B′

2

B2
−

2

3
(A1 + A2) +

2

3

(

h
B2

)

′

h
B2

.

Hence

2 (A1 + A2) = −3
(4q1q3 − q22)

′

(4q1q3 − q22)
+ 4

N ′

N
+ 4

B′

2

B2
+ 2

(

h
B2

)

′

h
B2

.

By the definition of Ai (i = 1, 2) and simple integration, we deduce that

deg (α + β) < degα = deg β

which is a contradiction.

Subcase 2. If 4q1q3 ≡ q22, then from (3.29) and (3.21) we have

B′

2

B2

q1
q2

−
q′1
q2

=
H

3B2N
. (3.30)

On the other hand
q1
q3

−
M ′ − A2M

N
=

H

3B2N
. (3.31)

Combining (3.30) and (3.31) , we obtain

5

4

B′

2

B2

(

(A1 − A2)
B1

B2
−
(

B1

B2

)

′

)

′

(A1 − A2)
B1

B2
−
(

B1

B2

)

′

+
1

6











(

(A1 − A2)
B1

B2
−
(

B1

B2

)

′

)

′

(A1 −A2)
B1

B2
−
(

B1

B2

)

′











′

−

(

1

2
A1 + A2

)

(

(A1 −A2)
B1

B2
−
(

B1

B2

)

′

)

′

(A1 − A2)
B1

B2
−
(

B1

B2

)

′

12



−
5

3

h′

h

(

(A1 − A2)
B1

B2
−
(

B1

B2

)

′

)

′

(A1 − A2)
B1

B2
−
(

B1

B2

)

′
−

5

6
(A1 + A2)

h′

h
+

23

12

B′

2

B2

h′

h
−

5

4

(

h′

h

)2

−
1

9
(A1 + A2)

(

(A1 − A2)
B1

B2
−
(

B1

B2

)

′

)

′

(A1 −A2)
B1

B2
−
(

B1

B2

)

′
+

1

9

B′

2

B2

(

(A1 − A2)
B1

B2
−
(

B1

B2

)

′

)

′

(A1 −A2)
B1

B2
−
(

B1

B2

)

′

+
2

9

B′

2

B2

(A1 + A2)−
7

9

(

B′

2

B2

)2

−
19

36











(

(A1 −A2)
B1

B2
−
(

B1

B2

)

′

)

′

(A1 − A2)
B1

B2
−
(

B1

B2

)

′











2

−
1

6

(

B′

2

B2

)

′

−
1

2
A′

1 +
1

3
(A′

1 + A′

2) +
1

3
(A1 + A2)

B′

2

B2
+

1

2
A2A1

=
1

9
(A1 + A2)

2 .

Dividing both sides of the above equation by (A1+A2)
2

2
and since lim

z→∞

R′(z)
R(z)

= 0

if R is a nonzero rational function, we obtain

∣

∣

∣

∣

A2A1

(A1 + A2)
2 −

2

9

∣

∣

∣

∣

≤
5

3

∣

∣

h′

h

∣

∣

|A1 + A2|
+

23

6

∣

∣

∣

∣

B′

2

B2

∣

∣

∣

∣

∣

∣

h′

h

∣

∣

|A1 + A2|
2 +

5

2

∣

∣

h′

h

∣

∣

2

|A1 + A2|
2 + o (1)

(3.32)
On the other hand, since ρ (h) ≤ ρ (f)− 1 and by Lemma 2.3

∣

∣

∣

∣

h′ (z)

h (z)

∣

∣

∣

∣

≤ |z|ρ(f)−2+ε (3.33)

for all z satisfying |z| /∈ E0 ∪ [0, 1] , where E0 ⊂ (1,∞) is a set of finite
logarithmic measure. By combining (3.32) and (3.33) , we deduce

lim
z→∞

|z|/∈E0∪[0,1]

A2A1

(A1 + A2)
2 = lim

z→∞

|z|/∈E0∪[0,1]

α′β′

(α′ + β ′)
2 =

2

9
.

By setting α (z) = amz
m + · · ·+ a0 and β (z) = bmz

m + · · ·+ b0, we deduce

lim
z→∞

|z|/∈E0∪[0,1]

α′β ′

(α′ + β ′)
2 =

ambm

(am + bm)
2 =

2

9

13



which implies that am
bm

= 2 or 1
2
. We consider first the case am

bm
= 1

2
, we get

from (3.1) and (3.17)

ϕf 2 + ψf ′f − q = Ae
1
2
bmzm (3.34)

and
Mf 2 +Nf ′f − q = Bebmzm, (3.35)

where A = p1e
am−1z

m−1+···+a0 and B = p2e
bm−1z

m−1+···+b0 . From (3.34) and
(3.35) , we get

ϕf 2 + ψf ′f = q + A

(

Mf 2 +Nf ′f − q

B

)
1
2

.

Hence

ϕf + ψf ′ =
q

f
+ A

(

Mf 2 +Nf ′f − q

Bf 2

)
1
2

.

Therefore
T (r, ϕf + ψf ′) = m (r, ϕf + ψf ′) + S (r, f)

=
1

2π

∫

E1

log+
∣

∣ϕ
(

reiθ
)

f
(

reiθ
)

+ ψ
(

reiθ
)

f ′
(

reiθ
)∣

∣ dθ

+
1

2π

∫

E2

log+
∣

∣ϕ
(

reiθ
)

f
(

reiθ
)

+ ψ
(

reiθ
)

f ′
(

reiθ
)∣

∣ dθ + S (r, f) ,

where E1 =
{

θ :
∣

∣f
(

reiθ
)∣

∣ ≤ 1
}

and E2 =
{

θ :
∣

∣f
(

reiθ
)∣

∣ > 1
}

. Now

1

2π

∫

E1

log+
∣

∣ϕ
(

reiθ
)

f
(

reiθ
)

+ ψ
(

reiθ
)

f ′
(

reiθ
)∣

∣ dθ

≤
1

2π

∫

E1

log+
∣

∣f ′
(

reiθ
)∣

∣ dθ + S (r, f)

≤
1

2π

∫

E1

log+

∣

∣

∣

∣

∣

f ′
(

reiθ
)

f (reiθ)

∣

∣

∣

∣

∣

dθ + S (r, f) = S (r, f) .

On the other hand

1

2π

∫

E2

log+
∣

∣ϕ
(

reiθ
)

f
(

reiθ
)

+ ψ
(

reiθ
)

f ′
(

reiθ
)∣

∣ dθ

14



=
1

2π

∫

E2

log+

∣

∣

∣

∣

∣

q
(

reiθ
)

f (reiθ)

∣

∣

∣

∣

∣

dθ

+
1

4π

∫

E2

log+

∣

∣

∣

∣

∣

M
(

reiθ
)

B (reiθ)
+
N
(

reiθ
)

B (reiθ)

f ′
(

reiθ
)

f (reiθ)
−

q
(

reiθ
)

f 2 (reiθ)

∣

∣

∣

∣

∣

dθ+S (r, f) = S (r, f) .

Hence
T (r, fc1) = T (r, ϕf + ψf ′) = S (r, f)

which is a contradiction. If am
bm

= 2, then by the same argument we have

Mf 2 +Nf ′f = q +B

(

ϕf 2 + ψf ′f − q

A

)
1
2

which implies the contradiction

T (r, fc2) = T (r,Mf +Nf ′) = S (r, f) .

Case 2. B2fc1 − B1fc2 ≡ 0, by using the same arguments as in the proof of
(3.14) , we obtain that

A1B1

B2
−

(

B1

B2

)

′

−
B1A2

B2
≡ 0

which leads to
p1
p2
eα−β = k

B1

B2
= k

fc1
fc2

, (3.36)

where k is a nonzero complex constant. By this (3.1) and (3.2) , we have

(1− c) ffc1fc2 = q (fc2 − kfc1) . (3.37)

If k 6= 1, then by applying Clunie lemma to (3.37) , we deduce the contra-
diction T (r, fci) = S (r, f) . Hence, k = 1 and from the equation (3.36) , we
conclude that fc1 ≡ fc2 which exclude the hypothesis of our theorem. This
shows that at least one of f (z) f (z + c1)− q (z) and f (z) f (z + c2)− q (z)
has infinitely many zeros.
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