On Picard Value Problem of Some Difference Polynomials

Zinelâabidine LATREUCH and Benharrat BELAÏDI
Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem (UMAB)
B. P. 227 Mostaganem-(Algeria)
z.latreuch@gmail.com
benharrat.belaidi@univ-mosta.dz

Abstract

In this paper, we study the value distribution of zeros of certain nonlinear difference polynomials of entire functions of finite order.

2010 Mathematics Subject Classification:30D35, 39A05.
Key words: Entire functions, Non-linear difference polynomials, Nevanlinna theory, Small function.

1 Introduction and Results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory ($[10],[13]$). In addition, we will use $\rho(f)$ to denote the order of growth of f, we say that a meromorphic function $a(z)$ is a small function of $f(z)$ if $T(r, a)=S(r, f)$, where $S(r, f)=o(T(r, f))$, as $r \rightarrow+\infty$ outside of a possible exceptional set of finite logarithmic measure, we use $S(f)$ to denote the family of all small functions with respect to $f(z)$. For a meromorphic function $f(z)$, we define its shift by $f_{c}(z)=f(z+c)$.

In 1959, Hayman proved in [11] that if f is a transcendental entire function, then $f^{n} f^{\prime}$ assume every nonzero complex number infinitely many times, provided that $n \geq 3$. Later, Hayman [12] conjectured that this result remains to be valid when $n=1$ and $n=2$. Then Mues [18] confirmed the case when $n=2$ and Bergweiler-Eremenko [2] and Chen-Fang [3] confirmed

[^0]the case when $n=1$, independently. Since then, there are many research publications (see [17]) regarding this type of Picard-value problem. In 1997, Bergweiler obtained the following result.

Theorem A. ([1]) If f is a transcendental meromorphic function of finite order and q is a not identically zero polynomial, then $f f^{\prime}-q$ has infinitely many zeros.

In 2007, Laine and Yang studied the difference analogue of Hayman's theorem and proved the following result.

Theorem B. ([14]) Let $f(z)$ be a transcendental entire function of finite order, and c be a nonzero complex constant. Then for $n \geq 2, f^{n}(z) f(z+c)$ assume every non-zero value $a \in \mathbb{C}$ infinitely often.

In the same paper, Laine and Yang showed that Theorem B does not remain valid for the case $n=1$. Indeed, take $f(z)=e^{z}+1$. Then

$$
f(z) f(z+\pi i)-1=\left(1+e^{z}\right)\left(1-e^{z}\right)-1=-e^{2 z}
$$

After their, a stream of studies on the value distribution of nonlinear difference polynomials in f has been launched and many related results have been obtained, see e.g. $[5,14,15,16]$. For example, Liu and Yang improved the previous result and obtained the following.

Theorem C. ([15]) Let $f(z)$ be a transcendental entire function of finite order, and c be a nonzero complex constant. Then for $n \geq 2, f^{n}(z) f(z+c)-$ $p(z)$ has infinitely many zeros, where $p(z) \not \equiv 0$ is a polynomial in z.

Hence, it is natural to ask: What can be said about the value distribution of $f(z) f(z+c)-q(z)$, when f is a transcendental meromorphic function and q be a not identically zero small function of f ? In this paper, as an attempt in resolving this question, we obtain the following results.

Theorem 1.1 Let f be a transcendental entire function of finite order, let c_{1}, c_{2} be two nonzero complex numbers such that $f\left(z+c_{1}\right) \not \equiv f\left(z+c_{2}\right)$ and q be not identically zero polynomial. Then $f(z) f\left(z+c_{1}\right)-q(z)$ and $f(z) f\left(z+c_{2}\right)-q(z)$ at least one of them has infinitely many zeros.

The following corollary arises directly from Theorem 1.1 and Theorem C.

Corollary 1.1 Let $n \geq 1$ be an integer and let $c_{1}, c_{2}\left(c_{1} c_{2} \neq 0\right)$ be two distinct complex numbers. Let $\alpha, \beta, p_{1}, p_{2}$ and $q(\not \equiv 0)$ be nonconstant polynomials. If f is a finite order transcendental entire solution of

$$
\left\{\begin{array}{l}
f^{n}(z) f\left(z+c_{1}\right)-q(z)=p_{1}(z) e^{\alpha(z)} \\
f^{n}(z) f\left(z+c_{2}\right)-q(z)=p_{2}(z) e^{\beta(z)}
\end{array}\right.
$$

then, $n=1$ and f must be a periodic function of period $c_{1}-c_{2}$.

2 Some lemmas

The following lemma is an extension of the difference analogue of the Clunie lemma obtained by Halburd and Korhonen [8].

Lemma 2.1 [4] Let $f(z)$ be a non-constant, finite order meromorphic solution of

$$
f^{n} P(z, f)=Q(z, f),
$$

where $P(z, f), Q(z, f)$ are difference polynomials in $f(z)$ with meromorphic coefficients $a_{j}(z)(j=1, \cdots, s)$, and let $\delta<1$. If the degree of $Q(z, f)$ as a polynomial in $f(z)$ and its shifts is at most n, then

$$
m(r, P(z, f))=o\left(\frac{T(r+|c|, f)}{r^{\delta}}\right)+o(T(r, f))+O\left(\sum_{j=1}^{s} m\left(r, a_{j}\right)\right)
$$

for all r outside an exceptional set of finite logarithmic measure.
Lemma $2.2[6]$ Let $f(z)$ be a non-constant, finite order meromorphic function and let $c \neq 0$ be an arbitrary complex number. Then

$$
T(r, f(z+c))=T(r, f(z))+S(r, f)
$$

Lemma 2.3 [7] Let $f(z)$ be a transcendental meromorphic function of finite order ρ, and let $\varepsilon>0$ be a given constant. Then, there exists a set $E_{0} \subset$
$(1,+\infty)$ that has finite logarithmic measure, such that for all z satisfying $|z| \notin E_{0} \cup[0,1]$, and for all $k, j, 0 \leq j<k$, we have

$$
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\rho-1+\varepsilon)} .
$$

The following lemma is the lemma of the logarithmic derivative.

Lemma 2.4 [10] Let f be a meromorphic function and let $k \in \mathbb{N}$. Then

$$
m\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)
$$

where $S(r, f)=O(\log T(r, f)+\log r)$, possibly outside a set $E_{1} \subset[0,+\infty)$ of a finite linear measure. If f is of finite order of growth, then

$$
m\left(r, \frac{f^{(k)}}{f}\right)=O(\log r)
$$

The following lemma is a difference analogue of the lemma of the logarithmic derivative for finite order meromorphic functions.

Lemma $2.5[6,8,9]$ Let η_{1}, η_{2} be two arbitrary complex numbers such that $\eta_{1} \neq \eta_{2}$ and let $f(z)$ be a finite order meromorphic function. Let σ be the order of $f(z)$. Then for each $\varepsilon>0$, we have

$$
m\left(r, \frac{f\left(z+\eta_{1}\right)}{f\left(z+\eta_{2}\right)}\right)=O\left(r^{\sigma-1+\varepsilon}\right) .
$$

Lemma 2.6 Let $f(z)$ be a transcendental meromorphic solution of the system

$$
\left\{\begin{array}{l}
f(z) f\left(z+c_{1}\right)-q(z)=p_{1}(z) e^{\alpha(z)} \tag{2.1}\\
f(z) f\left(z+c_{2}\right)-q(z)=p_{2}(z) e^{\beta(z)}
\end{array}\right.
$$

where α, β are polynomials and p_{1}, p_{2}, q are not identically zero rational functions. If $N(r, f)=S(r, f)$, then

$$
\operatorname{deg} \alpha=\operatorname{deg} \beta=\operatorname{deg}(\alpha+\beta)=\rho(f)>0
$$

Proof. First, we prove that $\operatorname{deg} \alpha=\rho(f)$ and by the same we can deduce that $\operatorname{deg} \beta=\rho(f)$. It's clear from (2.1) that $\operatorname{deg} \alpha \leq \rho(f)$. Suppose that $\operatorname{deg} \alpha<\rho(f)$, this means that

$$
\begin{equation*}
f(z) f\left(z+c_{1}\right):=F=q(z)+p_{1}(z) e^{\alpha(z)} \in S(f) . \tag{2.2}
\end{equation*}
$$

Applying Lemma 2.1 and Lemma 2.2 into (2.2), we obtain $T\left(r, f_{c}\right)=$ $T(r, f)=S(r, f)$ which is a contradiction. Assume now that $\operatorname{deg}(\alpha+\beta)<$ $\rho(f)$, this leads to $p_{1} p_{2} e^{\alpha+\beta} \in S(f)$. From this and (2.1) we have

$$
f^{2} P(z, f)=p_{1} p_{2} e^{\alpha+\beta}+q^{2}
$$

where

$$
P(z, f)=a(z) f^{2}-b(z)
$$

and

$$
a=\frac{f_{c_{1}}}{f} \frac{f_{c_{2}}}{f}, b=q\left(\frac{f_{c_{1}}}{f}+\frac{f_{c_{2}}}{f}\right) .
$$

It's clear that $P(z, f) \not \equiv 0$, and by using Lemma 2.1, we get

$$
m(r, P(z, f))=S(r, f)
$$

which leads to

$$
2 T(r, f)=m\left(r, \frac{b(z)+P(z, f)}{a(z)}\right)=S(r, f)
$$

which is a contradiction. Hence, $\operatorname{deg}(\alpha+\beta)=\operatorname{deg} \alpha=\operatorname{deg} \beta$. Finally, by using Lemma 2.1, it's easy to see that both of α and β are nonconstant polynomials.

3 Proof of Theorem 1.1

We shall prove this theorem by contradiction. Suppose contrary to our assertion that both of $f(z) f\left(z+c_{1}\right)-q(z)$ and $f(z) f\left(z+c_{2}\right)-q(z)$ have finitely many zeros. Then, there exist four polynomials α, β, p_{1} and p_{2} such that

$$
\begin{equation*}
f(z) f\left(z+c_{1}\right)-q(z)=p_{1}(z) e^{\alpha(z)} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) f\left(z+c_{2}\right)-q(z)=p_{2}(z) e^{\beta(z)} \tag{3.2}
\end{equation*}
$$

By differentiating (3.1) and eliminating e^{α}, we get

$$
\begin{equation*}
A_{1} f f_{c_{1}}-f^{\prime} f_{c_{1}}-f f_{c_{1}}^{\prime}=B_{1} \tag{3.3}
\end{equation*}
$$

where $A_{1}=\frac{p_{1}^{\prime}}{p_{1}}+\alpha^{\prime}, B_{1}=\left(\frac{p_{1}^{\prime}}{p_{1}}+\alpha^{\prime}\right) q-q^{\prime}$. By Lemma 2.6 we have

$$
\operatorname{deg} \alpha=\operatorname{deg} \beta=\operatorname{deg}(\alpha+\beta)=\rho(f)>0
$$

Now, we prove that $A_{1} \not \equiv 0$. To show this, we suppose the contrary. Then, there exists a constant A such that $A=p_{1}(z) e^{\alpha}$, which implies the contradiction $\operatorname{deg} \alpha=\rho(f)=0$. By the same, we can prove that $B_{1} \not \equiv 0$. By the same arguments as above, (3.2) gives

$$
\begin{equation*}
A_{2} f f_{c_{2}}-f^{\prime} f_{c_{2}}-f f_{c_{2}}^{\prime}=B_{2} \tag{3.4}
\end{equation*}
$$

where $A_{2}=\frac{p_{2}^{\prime}}{p_{2}}+\beta^{\prime}$ and $B_{2}=\left(\frac{p_{2}^{\prime}}{p_{2}}+\beta^{\prime}\right) q-q^{\prime}$. Obviously, $A_{2} \not \equiv 0$ and $B_{2} \not \equiv 0$. Dividing both sides of (3.3) and (3.4) by f^{2}, we get for each $\varepsilon>0$

$$
\begin{gathered}
2 m\left(r, \frac{1}{f}\right) \leq m\left(r, \frac{f_{c_{i}}}{f}\right)+m\left(r, \frac{f^{\prime}}{f} \frac{f_{c_{i}}}{f}\right)+m\left(r, \frac{f_{c_{i}}^{\prime}}{f_{c_{i}}} \frac{f_{c_{i}}}{f}\right)+O(\log r) \\
=O\left(r^{\rho-1+\varepsilon}\right)+O(\log r)=S(r, f)
\end{gathered}
$$

So, by the first fundamental theorem, we deduce that

$$
\begin{equation*}
T(r, f)=N\left(r, \frac{1}{f}\right)+O\left(r^{\rho-1+\varepsilon}\right)+O(\log r) \tag{3.5}
\end{equation*}
$$

It's clear from (3.3) and (3.4) that any multiple zero of f is a zero of B_{i} $(i=1,2)$. Hence

$$
N_{(2}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{B_{i}}\right)=O(\log r)
$$

where $N_{(2}\left(r, \frac{1}{f}\right)$ denotes the counting function of zeros of f whose multiplicities are not less than 2. It follows by this and (3.5) that

$$
\begin{equation*}
T(r, f)=N_{1)}\left(r, \frac{1}{f}\right)+O\left(r^{\rho-1+\varepsilon}\right)+O(\log r) \tag{3.6}
\end{equation*}
$$

where $N_{1)}\left(r, \frac{1}{f}\right)$ is the counting function of zeros, where only the simple zeros are considered. From (3.3) and (3.4), for every zero z_{0} such that $f^{\prime}\left(z_{0}\right) \neq 0$ which is not zero or pole of B_{1} and B_{2}, we have

$$
\begin{equation*}
\left(f^{\prime} f_{c_{1}}+B_{1}\right)\left(z_{0}\right)=0 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(f^{\prime} f_{c_{2}}+B_{2}\right)\left(z_{0}\right)=0 \tag{3.8}
\end{equation*}
$$

By (3.7) and (3.8), we obtain

$$
\begin{equation*}
\left(B_{2} f_{c_{1}}-B_{1} f_{c_{2}}\right)\left(z_{0}\right)=0 \tag{3.9}
\end{equation*}
$$

which means that the function $\frac{B_{2} f_{c_{1}}-B_{1} f_{c_{2}}}{f}$ has at most a finite number of simple poles. We consider two cases:

Case 1. $B_{2} f_{c_{1}}-B_{1} f_{c_{2}} \not \equiv 0$. Set

$$
\begin{equation*}
h(z)=\frac{B_{2} f_{c_{1}}-B_{1} f_{c_{2}}}{f(z)} \tag{3.10}
\end{equation*}
$$

Then, from the lemma of logarithmic differences, we have $m(r, h)=O\left(r^{\rho-1+\varepsilon}\right)+$ $O(\log r)$. On the other hand

$$
\begin{aligned}
N(r, h)= & N\left(r, \frac{B_{2} f_{c_{1}}-B_{1} f_{c_{2}}}{f}\right)=N_{1)}\left(r, \frac{B_{2} f_{c_{1}}-B_{1} f_{c_{2}}}{f}\right) \\
& +O\left(r^{\rho-1+\varepsilon}\right)+O(\log r)=S(r, f) .
\end{aligned}
$$

Thus, $T(r, h)=O\left(r^{\rho-1+\varepsilon}\right)+O(\log r)=S(r, f)$. From the equation (3.10), we have

$$
\begin{equation*}
f_{c_{1}}(z)=\frac{B_{1}}{B_{2}} f_{c_{2}}(z)+\frac{h}{B_{2}} f(z) . \tag{3.11}
\end{equation*}
$$

By differentiating (3.11), we get

$$
\begin{equation*}
f_{c_{1}}^{\prime}(z)=\left(\frac{h}{B_{2}}\right)^{\prime} f(z)+\frac{h}{B_{2}} f^{\prime}(z)+\left(\frac{B_{1}}{B_{2}}\right)^{\prime} f_{c_{2}}(z)+\frac{B_{1}}{B_{2}} f_{c_{2}}^{\prime}(z) \tag{3.12}
\end{equation*}
$$

Substituting (3.11) and (3.12) into (3.3)

$$
\begin{gather*}
{\left[\frac{A_{1} h}{B_{2}}-\left(\frac{h}{B_{2}}\right)^{\prime}\right] f^{2}+\left[-\frac{2 h}{B_{2}}\right] f f^{\prime}} \\
+\left[\frac{A_{1} B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}\right] f f_{c_{2}}-\frac{B_{1}}{B_{2}} f^{\prime} f_{c_{2}}-\frac{B_{1}}{B_{2}} f f_{c_{2}}^{\prime}=B_{1} \tag{3.13}
\end{gather*}
$$

Equation (3.4), can be rewritten as

$$
-\frac{B_{1} A_{2}}{B_{2}} f f_{c_{2}}+\frac{B_{1}}{B_{2}} f^{\prime} f_{c_{2}}+\frac{B_{1}}{B_{2}} f f_{c_{2}}^{\prime}=-B_{1} .
$$

By adding this to (3.13), we get

$$
\begin{equation*}
\left[\frac{A_{1} h}{B_{2}}-\left(\frac{h}{B_{2}}\right)^{\prime}\right] f+\left[-\frac{2 h}{B_{2}}\right] f^{\prime}+\left[\frac{A_{1} B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}-\frac{B_{1} A_{2}}{B_{2}}\right] f_{c_{2}}=0 \tag{3.14}
\end{equation*}
$$

Its clear that $-\frac{2 h}{B_{2}} \not \equiv 0$. In order to complete the proof of our theorem, we need to prove

$$
\frac{A_{1} h}{B_{2}}-\left(\frac{h}{B_{2}}\right)^{\prime} \not \equiv 0 \text { and } \frac{A_{1} B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}-\frac{B_{1} A_{2}}{B_{2}} \not \equiv 0
$$

Suppose contrary to our assertion that $\frac{A_{1} h}{B_{2}}-\left(\frac{h}{B_{2}}\right)^{\prime} \equiv 0$. Then, by the definition of A_{1} and by simple integration, we get

$$
p_{1} e^{\alpha}=C_{1} \frac{h}{B_{2}}
$$

where C_{1} is a nonzero constant. This implies that $\operatorname{deg} \alpha=\rho(f)-1$, which is a contradiction. Hence, $\frac{A_{1} h}{B_{2}}-\left(\frac{h}{B_{2}}\right)^{\prime} \not \equiv 0$. Next, we shall prove $\frac{A_{1} B_{1}}{B_{2}}-$ $\left(\frac{B_{1}}{B_{2}}\right)^{\prime}-\frac{B_{1} A_{2}}{B_{2}} \not \equiv 0$. Suppose that $\frac{A_{1} B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}-\frac{B_{1} A_{2}}{B_{2}} \equiv 0$. Then we obtain

$$
\frac{p_{1}}{p_{2}} e^{\alpha-\beta}=C_{2} \frac{B_{1}}{B_{2}}:=\gamma,
$$

where C_{2} is a nonzero constant and γ is a small function of f. From (3.1) and (3.2) we get

$$
\begin{equation*}
f\left(f_{c_{1}}-\gamma f_{c_{2}}\right)=(1-\gamma) q \tag{3.15}
\end{equation*}
$$

If $\gamma \not \equiv 1$, then by applying Clunie's lemma to (3.15), we obtain

$$
m\left(r, f_{c_{1}}-\gamma f_{c_{2}}\right)=T\left(r, f_{c_{1}}-\gamma f_{c_{2}}\right)=S(r, f)
$$

By this and (3.15), we have

$$
T(r, f)=T\left(r, \frac{(1-\gamma) q}{f_{c_{1}}-\gamma f_{c_{2}}}\right)=S(r, f)
$$

which is a contradiction. If $\gamma \equiv 1$, then we obtain the contradiction $f_{c_{1}}(z) \equiv$ $f_{c_{2}}(z)$. Thus, $\frac{A_{1} B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}-\frac{B_{1} A_{2}}{B_{2}} \not \equiv 0$. From the above discussion and (3.14), we have

$$
\begin{equation*}
f_{c_{2}}(z)=M(z) f(z)+N(z) f^{\prime}(z) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{c_{1}}(z)=\varphi(z) f(z)+\psi(z) f^{\prime}(z) \tag{3.17}
\end{equation*}
$$

where

$$
M=\frac{\left(\frac{h}{B_{2}}\right)^{\prime}-A_{1} \frac{h}{B_{2}}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}}, N=\frac{\frac{2 h}{B_{2}}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}}
$$

and

$$
\varphi(z)=\frac{B_{1}}{B_{2}} M+\frac{h}{B_{2}}, \psi=\frac{B_{1}}{B_{2}} N
$$

Differentiation of (3.16), gives

$$
\begin{equation*}
f_{c_{2}}^{\prime}=M^{\prime} f+\left(M+N^{\prime}\right) f^{\prime}+N f^{\prime \prime} \tag{3.18}
\end{equation*}
$$

Substituting (3.16) and (3.18) into (3.4), we get

$$
\begin{equation*}
\left[M^{\prime}-A_{2} M\right] f^{2}+\left[N^{\prime}-A_{2} N+2 M\right] f^{\prime} f+N\left(\left(f^{\prime}\right)^{2}+f f^{\prime \prime}\right)=-B_{2} \tag{3.19}
\end{equation*}
$$

Differentiating (3.19), we get

$$
\begin{gather*}
{\left[M^{\prime}-A_{2} M\right]^{\prime} f^{2}+\left(2\left[M^{\prime}-A_{2} M\right]+\left[N^{\prime}-A_{2} N+2 M\right]^{\prime}\right) f^{\prime} f} \\
+\left(2 N^{\prime}-A_{2} N+2 M\right)\left(\left(f^{\prime}\right)^{2}+f f^{\prime \prime}\right)+N\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)=-B_{2}^{\prime} \tag{3.20}
\end{gather*}
$$

Suppose z_{0} is a simple zero of f and not a zero or pole of B_{2}. Then from (3.19) and (3.20), we have

$$
\begin{gathered}
\left(N f^{\prime}+\frac{B_{2}}{f^{\prime}}\right)\left(z_{0}\right)=0 \\
{\left[\left(2 N^{\prime}-A_{2} N+2 M\right) f^{\prime}+3 N f^{\prime \prime}+\frac{B_{2}^{\prime}}{f^{\prime}}\right]\left(z_{0}\right)=0}
\end{gathered}
$$

It follows that z_{0} is a zero of $\left[B_{2}\left(2 N^{\prime}-A_{2} N+2 M\right)-B_{2}^{\prime} N\right] f^{\prime}+3 B_{2} N f^{\prime \prime}$. Therefore the function

$$
H=\frac{\left[2 B_{2} N^{\prime}-B_{2} A_{2} N+2 B_{2} M-B_{2}^{\prime} N\right] f^{\prime}+3 B_{2} N f^{\prime \prime}}{f}
$$

satisfies $T(r, H)=S(r, f)$ and

$$
\begin{equation*}
f^{\prime \prime}=\frac{H}{3 B_{2} N} f+\frac{\left[-2 B_{2} N^{\prime}+B_{2} A_{2} N-2 B_{2} M+B_{2}^{\prime} N\right]}{3 B_{2} N} f^{\prime} \tag{3.21}
\end{equation*}
$$

Substituting (3.21) into (3.19), we get

$$
\begin{equation*}
q_{1} f^{2}+q_{2} f^{\prime} f+q_{3}\left(f^{\prime}\right)^{2}=-B_{2} \tag{3.22}
\end{equation*}
$$

where

$$
\begin{gathered}
q_{1}=M^{\prime}-A_{2} M+\frac{H}{3 B_{2}} \\
q_{2}=\frac{1}{3} N^{\prime}+\frac{1}{3}\left(\frac{B_{2}^{\prime}}{B_{2}}-2 A_{2}\right) N+\frac{4}{3} M, q_{3}=N
\end{gathered}
$$

We prove first $q_{2} \not \equiv 0$. Suppose the contrary. Then

$$
\frac{q_{2}}{q_{3}}=\frac{2}{3} \frac{N^{\prime}}{N}-\frac{1}{3} \frac{B_{2}^{\prime}}{B_{2}}-\frac{2}{3}\left(A_{1}+A_{2}\right)+\frac{2}{3} \frac{h^{\prime}}{h}=0
$$

which leads to

$$
\alpha^{\prime}+\beta^{\prime}=\frac{N^{\prime}}{N}-2 \frac{B_{2}^{\prime}}{B_{2}}+\frac{h^{\prime}}{h}-\frac{p_{1}^{\prime}}{p_{1}}-\frac{p_{2}^{\prime}}{p_{2}} .
$$

By simple integration of both sides of the above equation, we get

$$
\begin{equation*}
p_{1} p_{2} e^{\alpha+\beta}=c \frac{N}{B_{2}^{2}} h \tag{3.23}
\end{equation*}
$$

where c is a nonzero constant, this leads to the contradiction $\operatorname{deg}(\alpha+\beta)<$ $\operatorname{deg} \alpha=\operatorname{deg} \beta$. Hence, $q_{2} \not \equiv 0$. Differentiating (3.22), we obtain

$$
\begin{equation*}
q_{1}^{\prime} f^{2}+\left(2 q_{1}+q_{2}^{\prime}\right) f^{\prime} f+\left(q_{2}+q_{3}^{\prime}\right)\left(f^{\prime}\right)^{2}+q_{2} f^{\prime \prime} f+2 q_{3} f^{\prime} f^{\prime \prime}=-B_{2}^{\prime} \tag{3.24}
\end{equation*}
$$

Let z_{0} be a simple zero of f which is not a zero or pole of B_{2}. Then from (3.22) and (3.24) we have

$$
\begin{gathered}
\left(q_{3} f^{\prime}+\frac{B_{2}}{f^{\prime}}\right)\left(z_{0}\right)=0 \\
{\left[\left(q_{2}+q_{3}^{\prime}\right) f^{\prime}+2 q_{3} f^{\prime \prime}+\frac{B_{2}^{\prime}}{f^{\prime}}\right]\left(z_{0}\right)=0}
\end{gathered}
$$

Therefore z_{0} is a zero of $\left(B_{2}\left(q_{2}+q_{3}^{\prime}\right)-B_{2}^{\prime} q_{3}\right) f^{\prime}+2 B_{2} q_{3} f^{\prime \prime}$. Hence the function

$$
R=\frac{\left(B_{2}\left(q_{2}+q_{3}^{\prime}\right)-B_{2}^{\prime} q_{3}\right) f^{\prime}+2 B_{2} q_{3} f^{\prime \prime}}{f}
$$

satisfies $T(r, R)=S(r, f)$ and

$$
\begin{equation*}
f^{\prime \prime}=\frac{R}{2 B_{2} q_{3}} f+\frac{B_{2}^{\prime} q_{3}-B_{2}\left(q_{2}+q_{3}^{\prime}\right)}{2 B_{2} q_{3}} f^{\prime} \tag{3.25}
\end{equation*}
$$

Substituting (3.25) into (3.24)

$$
\begin{gather*}
{\left[q_{1}^{\prime}+\frac{q_{2} R}{2 B_{2} q_{3}}\right] f^{2}+\left[2 q_{1}+q_{2}^{\prime}+\frac{1}{2} \frac{B_{2}^{\prime}}{B_{2}} q_{2}-\frac{1}{2}\left(q_{2}+q_{3}^{\prime}\right) \frac{q_{2}}{q_{3}}+\frac{R}{B_{2}}\right] f^{\prime} f} \\
+\frac{B_{2}^{\prime} q_{3}}{B_{2}}\left(f^{\prime}\right)^{2}=-B_{2}^{\prime} \tag{3.26}
\end{gather*}
$$

Combining (3.26) and (3.22), we obtain

$$
\begin{equation*}
\left[q_{1}^{\prime}+\frac{q_{2} R}{2 B_{2} q_{3}}-\frac{B_{2}^{\prime}}{B_{2}} q_{1}\right] f+\left[2 q_{1}+q_{2}^{\prime}-\frac{1}{2} \frac{B_{2}^{\prime}}{B_{2}} q_{2}-\frac{1}{2}\left(q_{2}+q_{3}^{\prime}\right) \frac{q_{2}}{q_{3}}+\frac{R}{B_{2}}\right] f^{\prime}=0 \tag{3.27}
\end{equation*}
$$

From (3.27), we deduce that

$$
q_{1}^{\prime}+\frac{q_{2} R}{2 B_{2} q_{3}}-\frac{B_{2}^{\prime}}{B_{2}} q_{1}=0
$$

and

$$
2 q_{1}+q_{2}^{\prime}-\frac{1}{2} \frac{B_{2}^{\prime}}{B_{2}} q_{2}-\frac{1}{2}\left(q_{2}+q_{3}^{\prime}\right) \frac{q_{2}}{q_{3}}+\frac{R}{B_{2}}=0
$$

By eliminating R from the above two equations, we obtain

$$
\begin{equation*}
q_{3}\left(4 q_{1} q_{3}-q_{2}^{2}\right) \frac{B_{2}^{\prime}}{B_{2}}+q_{2}\left(4 q_{1} q_{3}-q_{2}^{2}\right)-q_{3}\left(4 q_{1} q_{3}-q_{2}^{2}\right)^{\prime}+q_{3}^{\prime}\left(4 q_{1} q_{3}-q_{2}^{2}\right)=0 \tag{3.28}
\end{equation*}
$$

Thus, equation (3.25) can be rewritten as

$$
\begin{equation*}
f^{\prime \prime}=\left(\frac{B_{2}^{\prime}}{B_{2}} \frac{q_{1}}{q_{2}}-\frac{q_{1}^{\prime}}{q_{2}}\right) f+\frac{1}{2}\left(\frac{B_{2}^{\prime}}{B_{2}}-\frac{q_{2}}{q_{3}}-\frac{N^{\prime}}{N}\right) f^{\prime} . \tag{3.29}
\end{equation*}
$$

Subcase 1. If $4 q_{1} q_{3}-q_{2}^{2} \not \equiv 0$, then from (3.28) we have

$$
\frac{q_{2}}{q_{3}}=\frac{\left(4 q_{1} q_{3}-q_{2}^{2}\right)^{\prime}}{\left(4 q_{1} q_{3}-q_{2}^{2}\right)}-\frac{B_{2}^{\prime}}{B_{2}}-\frac{q_{3}^{\prime}}{q_{3}} .
$$

On the other hand

$$
\frac{q_{2}}{q_{3}}=\frac{1}{3} \frac{N^{\prime}}{N}+\frac{1}{3} \frac{B_{2}^{\prime}}{B_{2}}-\frac{2}{3}\left(A_{1}+A_{2}\right)+\frac{2}{3} \frac{\left(\frac{h}{B_{2}}\right)^{\prime}}{\frac{h}{B_{2}}}
$$

Hence

$$
2\left(A_{1}+A_{2}\right)=-3 \frac{\left(4 q_{1} q_{3}-q_{2}^{2}\right)^{\prime}}{\left(4 q_{1} q_{3}-q_{2}^{2}\right)}+4 \frac{N^{\prime}}{N}+4 \frac{B_{2}^{\prime}}{B_{2}}+2 \frac{\left(\frac{h}{B_{2}}\right)^{\prime}}{\frac{h}{B_{2}}}
$$

By the definition of $A_{i}(i=1,2)$ and simple integration, we deduce that

$$
\operatorname{deg}(\alpha+\beta)<\operatorname{deg} \alpha=\operatorname{deg} \beta
$$

which is a contradiction.
Subcase 2. If $4 q_{1} q_{3} \equiv q_{2}^{2}$, then from (3.29) and (3.21) we have

$$
\begin{equation*}
\frac{B_{2}^{\prime}}{B_{2}} \frac{q_{1}}{q_{2}}-\frac{q_{1}^{\prime}}{q_{2}}=\frac{H}{3 B_{2} N} \tag{3.30}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\frac{q_{1}}{q_{3}}-\frac{M^{\prime}-A_{2} M}{N}=\frac{H}{3 B_{2} N} . \tag{3.31}
\end{equation*}
$$

Combining (3.30) and (3.31), we obtain

$$
\begin{gathered}
\frac{5}{4} \frac{B_{2}^{\prime}}{B_{2}} \frac{\left(\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}\right)^{\prime}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}} \\
+\frac{1}{6}\left(\frac{\left.\left(\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}\right)^{\prime}\right)^{\prime}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}}\right)^{\prime}-\left(\frac{1}{2} A_{1}+A_{2}\right) \frac{\left(\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}\right)^{\prime}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}}
\end{gathered}
$$

$$
\begin{aligned}
& -\frac{5}{3} \frac{h^{\prime}}{h} \frac{\left(\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}\right)^{\prime}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}}-\frac{5}{6}\left(A_{1}+A_{2}\right) \frac{h^{\prime}}{h}+\frac{23}{12} \frac{B_{2}^{\prime}}{B_{2}} \frac{h^{\prime}}{h}-\frac{5}{4}\left(\frac{h^{\prime}}{h}\right)^{2} \\
& -\frac{1}{9}\left(A_{1}+A_{2}\right) \frac{\left(\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}\right)^{\prime}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}}+\frac{1}{9} \frac{B_{2}^{\prime}}{B_{2}} \frac{\left(\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}\right)^{\prime}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}} \\
& +\frac{2}{9} \frac{B_{2}^{\prime}}{B_{2}}\left(A_{1}+A_{2}\right)-\frac{7}{9}\left(\frac{B_{2}^{\prime}}{B_{2}}\right)^{2}-\frac{19}{36}\left(\frac{\left(\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}\right)^{\prime}}{\left(A_{1}-A_{2}\right) \frac{B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}}\right)^{2} \\
& -\frac{1}{6}\left(\frac{B_{2}^{\prime}}{B_{2}}\right)^{\prime}-\frac{1}{2} A_{1}^{\prime}+\frac{1}{3}\left(A_{1}^{\prime}+A_{2}^{\prime}\right)+\frac{1}{3}\left(A_{1}+A_{2}\right) \frac{B_{2}^{\prime}}{B_{2}}+\frac{1}{2} A_{2} A_{1} \\
& =\frac{1}{9}\left(A_{1}+A_{2}\right)^{2} .
\end{aligned}
$$

Dividing both sides of the above equation by $\frac{\left(A_{1}+A_{2}\right)^{2}}{2}$ and since $\lim _{z \rightarrow \infty} \frac{R^{\prime}(z)}{R(z)}=0$ if R is a nonzero rational function, we obtain

$$
\begin{equation*}
\left|\frac{A_{2} A_{1}}{\left(A_{1}+A_{2}\right)^{2}}-\frac{2}{9}\right| \leq \frac{5}{3} \frac{\left|\frac{h^{\prime}}{h}\right|}{\left|A_{1}+A_{2}\right|}+\frac{23}{6}\left|\frac{B_{2}^{\prime}}{B_{2}}\right| \frac{\left|\frac{h^{\prime}}{h}\right|}{\left|A_{1}+A_{2}\right|^{2}}+\frac{5}{2} \frac{\left|\frac{h^{\prime}}{h}\right|^{2}}{\left|A_{1}+A_{2}\right|^{2}}+o(1) \tag{3.32}
\end{equation*}
$$

On the other hand, since $\rho(h) \leq \rho(f)-1$ and by Lemma 2.3

$$
\begin{equation*}
\left|\frac{h^{\prime}(z)}{h(z)}\right| \leq|z|^{\rho(f)-2+\varepsilon} \tag{3.33}
\end{equation*}
$$

for all z satisfying $|z| \notin E_{0} \cup[0,1]$, where $E_{0} \subset(1, \infty)$ is a set of finite logarithmic measure. By combining (3.32) and (3.33), we deduce

$$
\lim _{\substack{\left.z \rightarrow \infty \\|z| \notin E_{0} \cup 0,1\right]}} \frac{A_{2} A_{1}}{\left(A_{1}+A_{2}\right)^{2}}=\lim _{\substack{z \rightarrow \infty \\|z| \notin E_{0} \cup[0,1]}} \frac{\alpha^{\prime} \beta^{\prime}}{\left(\alpha^{\prime}+\beta^{\prime}\right)^{2}}=\frac{2}{9}
$$

By setting $\alpha(z)=a_{m} z^{m}+\cdots+a_{0}$ and $\beta(z)=b_{m} z^{m}+\cdots+b_{0}$, we deduce

$$
\lim _{\substack{\left.z \rightarrow \infty \\|z| \nmid \notin E_{0} \cup 0,1\right]}} \frac{\alpha^{\prime} \beta^{\prime}}{\left(\alpha^{\prime}+\beta^{\prime}\right)^{2}}=\frac{a_{m} b_{m}}{\left(a_{m}+b_{m}\right)^{2}}=\frac{2}{9}
$$

which implies that $\frac{a_{m}}{b_{m}}=2$ or $\frac{1}{2}$. We consider first the case $\frac{a_{m}}{b_{m}}=\frac{1}{2}$, we get from (3.1) and (3.17)

$$
\begin{equation*}
\varphi f^{2}+\psi f^{\prime} f-q=A e^{\frac{1}{2} b_{m} z^{m}} \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
M f^{2}+N f^{\prime} f-q=B e^{b_{m} z^{m}} \tag{3.35}
\end{equation*}
$$

where $A=p_{1} e^{a_{m-1} z^{m-1}+\cdots+a_{0}}$ and $B=p_{2} e^{b_{m-1} z^{m-1}+\cdots+b_{0}}$. From (3.34) and (3.35), we get

$$
\varphi f^{2}+\psi f^{\prime} f=q+A\left(\frac{M f^{2}+N f^{\prime} f-q}{B}\right)^{\frac{1}{2}}
$$

Hence

$$
\varphi f+\psi f^{\prime}=\frac{q}{f}+A\left(\frac{M f^{2}+N f^{\prime} f-q}{B f^{2}}\right)^{\frac{1}{2}}
$$

Therefore

$$
\begin{gathered}
T\left(r, \varphi f+\psi f^{\prime}\right)=m\left(r, \varphi f+\psi f^{\prime}\right)+S(r, f) \\
=\frac{1}{2 \pi} \int_{E_{1}} \log ^{+}\left|\varphi\left(r e^{i \theta}\right) f\left(r e^{i \theta}\right)+\psi\left(r e^{i \theta}\right) f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \\
+\frac{1}{2 \pi} \int_{E_{2}} \log ^{+}\left|\varphi\left(r e^{i \theta}\right) f\left(r e^{i \theta}\right)+\psi\left(r e^{i \theta}\right) f^{\prime}\left(r e^{i \theta}\right)\right| d \theta+S(r, f),
\end{gathered}
$$

where $E_{1}=\left\{\theta:\left|f\left(r e^{i \theta}\right)\right| \leq 1\right\}$ and $E_{2}=\left\{\theta:\left|f\left(r e^{i \theta}\right)\right|>1\right\}$. Now

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{E_{1}} \log ^{+}\left|\varphi\left(r e^{i \theta}\right) f\left(r e^{i \theta}\right)+\psi\left(r e^{i \theta}\right) f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \\
& \quad \leq \frac{1}{2 \pi} \int_{E_{1}} \log ^{+}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta+S(r, f) \\
& \leq \frac{1}{2 \pi} \int_{E_{1}} \log ^{+}\left|\frac{f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right| d \theta+S(r, f)=S(r, f)
\end{aligned}
$$

On the other hand

$$
\frac{1}{2 \pi} \int_{E_{2}} \log ^{+}\left|\varphi\left(r e^{i \theta}\right) f\left(r e^{i \theta}\right)+\psi\left(r e^{i \theta}\right) f^{\prime}\left(r e^{i \theta}\right)\right| d \theta
$$

$$
\begin{gathered}
=\frac{1}{2 \pi} \int_{E_{2}} \log ^{+}\left|\frac{q\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right| d \theta \\
+\frac{1}{4 \pi} \int_{E_{2}} \log ^{+}\left|\frac{M\left(r e^{i \theta}\right)}{B\left(r e^{i \theta}\right)}+\frac{N\left(r e^{i \theta}\right)}{B\left(r e^{i \theta}\right)} \frac{f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}-\frac{q\left(r e^{i \theta}\right)}{f^{2}\left(r e^{i \theta}\right)}\right| d \theta+S(r, f)=S(r, f) .
\end{gathered}
$$

Hence

$$
T\left(r, f_{c_{1}}\right)=T\left(r, \varphi f+\psi f^{\prime}\right)=S(r, f)
$$

which is a contradiction. If $\frac{a_{m}}{b_{m}}=2$, then by the same argument we have

$$
M f^{2}+N f^{\prime} f=q+B\left(\frac{\varphi f^{2}+\psi f^{\prime} f-q}{A}\right)^{\frac{1}{2}}
$$

which implies the contradiction

$$
T\left(r, f_{c_{2}}\right)=T\left(r, M f+N f^{\prime}\right)=S(r, f)
$$

Case 2. $B_{2} f_{c_{1}}-B_{1} f_{c_{2}} \equiv 0$, by using the same arguments as in the proof of (3.14), we obtain that

$$
\frac{A_{1} B_{1}}{B_{2}}-\left(\frac{B_{1}}{B_{2}}\right)^{\prime}-\frac{B_{1} A_{2}}{B_{2}} \equiv 0
$$

which leads to

$$
\begin{equation*}
\frac{p_{1}}{p_{2}} e^{\alpha-\beta}=k \frac{B_{1}}{B_{2}}=k \frac{f_{c_{1}}}{f_{c_{2}}}, \tag{3.36}
\end{equation*}
$$

where k is a nonzero complex constant. By this (3.1) and (3.2), we have

$$
\begin{equation*}
(1-c) f f_{c_{1}} f_{c_{2}}=q\left(f_{c_{2}}-k f_{c_{1}}\right) \tag{3.37}
\end{equation*}
$$

If $k \neq 1$, then by applying Clunie lemma to (3.37), we deduce the contradiction $T\left(r, f_{c_{i}}\right)=S(r, f)$. Hence, $k=1$ and from the equation (3.36), we conclude that $f_{c_{1}} \equiv f_{c_{2}}$ which exclude the hypothesis of our theorem. This shows that at least one of $f(z) f\left(z+c_{1}\right)-q(z)$ and $f(z) f\left(z+c_{2}\right)-q(z)$ has infinitely many zeros.

Acknowledgements. The authors are grateful to the anonymous referee for his/her valuable comments and suggestions which lead to the improvement of this paper.

References

[1] W. Bergweiler, On the product of a meromorphic function and its derivative, Bull. Hong Kong Math. Soc. 1 (1997), 97-101.
[2] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373.
[3] H. H. Chen and M. L. Fang, The value distribution of $f^{n} f^{\prime}$, China Ser. A 38 (1995), no. 7, 789-798.
[4] Z. X. Chen, Complex differences and difference equations, Mathematics Monograph series 29, Science Press, Beijing, 2014.
[5] Z. X. Chen, On value distribution of difference polynomials of meromorphic functions. Abstr. Appl. Anal. 2011, Art. ID 239853, 9 pp.
[6] Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129.
[7] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88-104.
[8] R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487.
[9] R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
[10] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
[11] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9-42.
[12] W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967.
[13] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter \& Co., Berlin, 1993.
[14] I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148-151.
[15] K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, 270-278.
[16] N. Li and L. Yang, Value distribution of certain type of difference polynomials, Abstr. Appl. Anal. 2014, Art. ID 278786, 6 pp.
[17] W. Lü, N. Liu, C. Yang and C. Zhuo, Notes on value distributions of $f f^{(k)}-b$, Kodai Math. J. 39 (2016), no. 3, 500-509.
[18] E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), no. 3, 239-259. (in German).

[^0]: ${ }^{1}$ Corresponding author

