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Abstract—Global Navigation Satellite Systems (GNSS) have
become an integral part of all applications where mobility plays
an important role. However, The performances of GNSS-based
positioning systems can be affected in constrained environments
(urban and indoor environments), due to masking of satellites by
buildings and multipath effects.
In this paper, a comparative investigation on classical GNSS
localization algorithms in urban areas is presented and analyzed
in terms of mean squared error.
As a result, Kalman filter estimation shows the best error
performance in good environments (all satellites are in direct
sight). Nevertheless, in constrained environments, the kalman
filter and least square method show important positioning errors
because their measurement noise model is unsuitable.

Index Terms—GNSS, Urban area, Statistical filtering algo-
rithm, Multipath, NLOS.

I. INTRODUCTION

Since the middle Ages, the urgent need of humans to

identify its position in its environment has always been a

necessity and a challenge. From the 1960s, the history of

satellite navigation has begun with the development of the

American GPS(Global Positioning System) and has since

changed significantly until today with emergence and develop-

ment of other positioning systems, such as the Russian system

GLONASS and the European Galileo system.

Since these systems are used in critical domains, i.e. maritime

transport and civil aviation, requiring high accuracy, the perfor-

mance criteria have been established to qualify these systems.

There are four criteria commonly used to qualify these per-

formances [1] namely : accuracy, availability, continuity and

integrity.

However, despite the high precision required for positioning

systems, the satellite positioning is affected by the problems

related to the signal propagation in the atmosphere, the in-

stability of clocks, the orbital error, obstacles in receiving

environment and receiver noise [2]. Therefore, the errors

caused by these phenomena lead sometimes to errors that

could reach up to ten meters, and this affects notably the

positioning accuracy.

Furthermore, the GNSS receiver uses the classical filtering

methods, such as Kalman filter [3] [4], to reduce positioning

error. Nevertheless, the performances of these methods can

be degraded in urban environments, due to Non-Line-of-Sight

(NLOS) reception and multipath interference. Hence, it is

desirable that relative performance among those algorithms

has to be studied in urban area. A comparative investigation

on classical estimation algorithms used in GNSS receiver is

presented in this paper. Mean squared error (MSE) is used as

performance measure. The data is acquired in real environment

(Toulouse, France).

This paper is organized as follows. In section II, a brief

introduction of GNSS systems is presented. Principles of

classical filtering methods used in GNSS receiver are given in

Section III. Section IV presents the urban positioning problem.

A performance analysis of position estimation algorithms is

presented in Section V. In Section VI, we will give some

recommandations to improve positioning and to adapt the

position estimation algorithms for constrained environments.

The final section concludes this paper and discusses future

work.

II. THE GNSS SYSTEMS

Global Navigation Satellite System (GNSS) is the standard

generic term for satellite navigation systems that provide

autonomous geo-spatial positioning with global coverage. A

GNSS allows small electronic receivers to determine their lo-

cation (longitude, latitude, and height) anytime and anywhere
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in the world, using the signals as transmitted by the GNSS

satellites.

A. Architecture of GNSS systems

The navigation systems share a common global architecture,

consisting of three segments (cf. figure 1) [5] :

• Space Segment : It consists of a set of satellites called

constellation.

• Control Segment : It monitors the constellation and

updates the satellite information. Each navigation satellite

system has its own control segment composed of mea-

surement and control stations spread over the globe.

• User Segment : This includes all GNSS receivers.

Fig. 1: GNSS Architecture [6].

B. The theory of the GNSS receiver functioning

The main functions of the receiver is to capture signals

transmitted by satellites in view and decode the navigation

message in order to compute the transit time of the signal.

The ranging codes broadcasted by the satellites enable a GNSS

receiver to measure the transit time of the signals and thereby

to determine the range between a satellite and the user.

Thus, from the information provided by the navigation mes-

sage, the user position coordinates and the user clock offset

are computed using trilateration method [2]. Four satellites

are normally required to be simultaneously ”in view” to the

receiver for 3-D positioning purposes. Therefore, in order to

compute the position of the receiving antenna, the receiver

must perform the following operations [7] [8]:

• Acquisition : This operation consist to identify all satel-

lites visible to the user. If a satellite is visible, the

acquisition must determine the following two properties

of the signal : Frequency and Code phase.

• Tracking : The main purpose of tracking is to refine the

coarse values of code phase and frequency and to keep

track of these as the signal properties change over time.

This step contains two parts : code tracking and carrier

frequency/phase tracking.

• Navigation Data Extraction : After a successful signals

tracking, the navigation message was extracted from the

received signal.

• PVT(Position, Velocity, Time) Computation : The final

task of the receiver. It consists to compute the user

position, velocity and time.

C. GNSS Measurement Model

The GNSS positioning is based on trilateration method

(cf.figure 2) [2]: the distance between user and satellites

is measured by multiplying the travel time by the speed

of light and its expressed as functions of the satellites and

user coordinates. Travel time is measured by comparing the

time of emission (provided by the satellite) with the time of

reception (measured by the receiver). The Satellite clocks can

be synchronized with a global GNSS time using information

contained in the navigation message broadcasted by satellites.

However, the offset between user clock and GNSS time cannot

be predicted and needs to be estimated at the same time

as the position. Thus, the GNSS measurement models that

Fig. 2: Trilateration.

are effectively processed by the positioning algorithm are not

ranges but pseudoranges, which have the following structure :

ρst = dst − c(δtu − δts) + Ist + T s
t + ephs

t +ms
t + wt (1)

Where :

• dst : The geometrical distance between the satellite and

the user receiver. It equals :

dst =
√

(xt − xs
t )

2 + (yt − yst )
2 + (zt − zst )

2

• (xt,yt,zt) are the coordinates of the receiving antenna and

( xs
t ,yst , zst ) are the coordinates of satellite in the WGS84

standard.

• δts: The satellite clock offset.

• δtu : The receiver clock offset.

• c : The speed of light.

• Ist : The Ionospheric error.

• T s
t : The tropospheric error.

• ephs
t : The orbital error.

• ms
t : Error caused by signal reflections in constrained

environments.

• wt : Receiver noise.



In equation (1), the variables xt , yt , zt and δtu are unknown

and must be estimated by the receiver. The state vector Xt

includes all variables to be estimated and is expressed as

follows :

Xt = [xt, yt, zt, c ∗ δtu] (2)

III. POSITION ESTIMATION ALGORITHMS

The received signals are noisy (errors of synchronization,

propagation, thermal noise of reception). Therefore, to mini-

mize the impact of these noises, the receiver uses the statistical

filtering techniques, which aim to estimate the state of a system

from observations.

The schematization of a statistical filtering system is given by

figure 3.

Fig. 3: A filtering system.

The state and observation systems are defined by :
{
Xt = ft(Xt−1, Vt)

Zt = ht(Xt,Wt)

Where :

Xt : The hidden state vector.

Zt : The vector of observations.

Vt : The noise of state vector.

Wt : The noise of observations.

ft and ht : The evolution functions of state and observations.

At time t, the state evolves from Xt−1 to Xt . This evolution

of state is measured by a noisy measurement system. Thus, at

time t, we have a new measure Zt. The state estimator uses

the new measurement Zt and the probabilistic information to

estimate the state Xt and his uncertainty.

Therefore, we can note that the statistical filtering combines

the available observational data and the a priori knowledge of

past states for estimating the unknown state of the system.

In this section we present the classical filtering methods used

in GNSS receiver.

A. Least square method

The Least Square method is the most traditional method

that allows to solve the linear problems of type Y = HX + ε

in minimizing the criterion QMC(X) =‖ Y −HX ‖2.

This leads to the following estimator [9] [7] :

X̂ = (HTH)−1HTY (3)

For navigation systems, the observation equation is nonlinear,

so, it must be linearized for applying the Least Square tech-

nique.

B. The kalman filter

A Kalman filter is an optimal estimator that infers pa-

rameters of interest from indirect inaccurate and uncertain

observations. It is recursive so that new measurements can

be processed as they arrive [3] [4]. It is subject to certain

assumptions :

• Linearity of state model.

• Measurement and state noise must be white Gaussian and

uncorrelated.

Kalman filter works in a two-step process :

• The prediction step : In this step, the kalman filter

produces estimates of the current state variables, along

with their uncertainties.

• The correction step : In this step, Once the outcome

of the next measurement (necessarily affected by some

amount of error) is observed by algorithm, the estimates

of state variables calculated in step 1 are updated using

a weighted average, with more weight being given to

estimates with higher certainty.

The general form of state equation of kalman filter is :
{
Xt = Ft−1.Xt−1 + vt−1

Zt = Ht.Xt + wt

Where :

Xt : The state vector at time t.

Ft−1 : The state transition matrix which applies the effect of

each system state parameter at time t-1 on the system state at

time t.

vt−1 : The state noise vector.

Zt : The vector of measurement.

Ht : The transformation matrix that maps the state vector

parameters into the measurement domain.

wt : The measurement noise vector.

IV. THE URBAN POSITIONING PROBLEM

The global navigation satellite systems suffers from many

technical limitations for their use in highly degraded environ-

ments (urban environments and inside buildings) [10] [11] [12]

[13] [14].

The reception of GNSS signals is disturbed by the surrounding

environment of the antenna (vehicles, constructions, vegeta-

tion, etc). These disturbances can be due to three phenomena

: masking, multipath and NLOS reception (cf. figure 4).

• Masking : One of the major problems using the navi-

gation satellite systems in urban areas. Thus, they occur

when the signal is blocked by various obstacles.

• Multipath : This phenomenon occurs when the signals

incoming from satellites can undergo reflections by ob-

stacles near the antenna (buildings, walls, vehicles, and

the ground). The reflected signals can interfere with the



directly received signals and take more time to reach the

receiver than the direct signal.

• NLOS reception : This phenomenon occurs where the

direct signal (Line-of-sight propagation) is blocked and

the signal is received only via reflection.

Fig. 4: Masking , Multipath and NLOS reception [12].

The multipath and NLOS phenomena disturb signal reception,

notably, adding a delay to the propagation time. Consequently,

such as the pseudorange measurements being deduced of time

propagation, an additional error on pseudorange estimation

will be added.

V. SIMULATIONS AND PERFORMANCE ANALYSIS

Simulation has been carried out to compare and evaluate

performance of classical GNSS localization algorithms. Two

different scenarios are considered. The first scenario aims to

estimate a trajectory for a vehicle moving in a good environ-

ment using the Kalman filter and the Least Square method,

and compare these two methods in terms of mean squared

error. The second scenario aims to demonstrate the limits of

classical filtering methods in constrained environments.

For our simulations, we acquired the experimental data with

a low-end receiver that shows very important pseudorange

errors, since no smoothing on measure is performed and no

processing to filter received signals is applied. This receiver

allows as to have the raw measurements required for posi-

tioning in the output files, such as satellite positions, Doppler

measurements, etc. The acquisitions were taken in Toulouse

for two vehicle moving respectively over a period of 3500

and 1000 seconds (cf. figure 5) along two different path,

but in the same environment. The data is computed out in

collaboration with ISAE/SUPAERO University of Toulouse.

Pseudorange measurements are obtained from approximately

seven satellites.

(a) Trajectory over a period of 3500
seconds

(b) Trajectory over a period of 1000
seconds

Fig. 5: Reference trajectories.

A. Scenario 1:

The simulation environment is good (all satellites are in

direct sight). From the pseudorange measurements computed

from the receiver output file, we have implemented Kalman

filter and Least Square method to estimate the reference

trajectory presented in figure 5a, and we compared those

estimate with the real trajectory by tracing the real trajectory

in red and the estimated trajectory in green. Estimation results

are presented below.

1) Trajectory estimation by Least Square method : Figure

6 shows the estimated trajectory by Least Square method.

Figure 7 shows the variation of the positioning error during

4.8385 4.839 4.8395 4.84 4.8405 4.841 4.8415 4.842 4.8425

x 10
6

1.184

1.186

1.188

1.19

1.192

1.194

1.196

1.198
x 10

5

X (meters)

Y
 (

m
e
te

rs
)

Real and estimated trajectory 

 

 

least squares trajectory

real trajectory

Fig. 6: Estimated trajectory by Least Square method for

scenario 1.

simulation time; ie, the difference between real and esti-

mated trajectory. We obtained a mean squared error equals

to :EQM = 5.5928 m. We can conclude that the estimated

trajectory is shifted an average to the real trajectory by 5.5928

m. So, the Least Square method provides a good trajectory

estimation, except for the estimated starting point, which is

too offset from the real point (3113.8 m).

2) Trajectory estimation by Kalman filter : Figure 8 shows

the estimated trajectory by kalman filter.

Figure 9 shows the variation of the positioning error during

simulation time. We obtained a mean squared error equals

to : EQM = 4.6975 m. We can conclude that the estimated

trajectory is shifted an average to the real trajectory by 4.6975
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Fig. 7: Positioning error vs time for scenario 1 using the least

squares method.
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Fig. 8: Estimated trajectory by Kalman filter for scenario 1.

m. So, the Kalman filter provides a good trajectory estimation.
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Fig. 9: Positioning error vs time for scenario 1 using kalman

filter.

3) Comparison : In order to compare the Kalman filter and

the Least Square method, we computed the squared error of

position averaged over two trajectory (cf. table II).

From table II, we noted an improvement of positioning about

Mean squared error of posi-
tion (meter)

Squared errors of po-
sition averaged over
two trajectory (meter)

Trajectory
1(cf.
figure5a)

Trajectory
2(cf.
figure5b)

Least
Square
method

5.5928 6.6591 6.12595

Kalman
filter

4.6975 6.2373 5.4674

TABLE I: Squared errors of position averaged over two

trajectory.

66 centimeter with the Kalman filter compared to the Least

Square method.

B. Scenario 2:

In this scenario we used the same data of trajectory 1 (cf.

figure 5a) used in scenario 1, except that between period of

100 to 200 seconds, we created disturbances in the signals

coming from two satellites, in order to simulate that the

signals have been under reflections before being received

by the receiver. This disturbance is created by adding a

delay of 120 to 200 meters at the pseudorange measurements

provided by the receiver (we remind that the reflected signals

take more time to reach the receiver than the direct signal,

so an additional distance will be added to the pseudorange

measurements).

From the simulation results (cf. figures 10 and 11),

we note that the estimated trajectory is shifted an average

to the real trajectory by more than 30 meter. We can justify

this important error that in constrained environments, the

assumption made by the classical estimation methods (the

observation noises are Gaussian) becomes not valid, because

reflected signals add an additional error on pseudorange

estimation, and several studies in literature have shown that

the pseudorange error distribution becomes non-Gaussian

[15] [16].

We can conclude, that in degraded environments, the classical

positioning algorithms used in GNSS receiver show an

important positioning errors because their measurement noise

model is unsuitable.

VI. RECOMMANDATIONS

For adapting the measuremennt noise model of least square

method and the kalman filter method in constrained environ-

ment, we will propose an approach to model the multipath

errors. The approach aims firstly to propose a technique to

compute the multipath errors in real environment, secondly,

in order to propose a statistical model and to search the

distribution law of computed multipath errors, we propose to

plot the probability density functions for some satellites in
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(a) Trajectory estimation by kalman filter
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Fig. 10: Biased trajectory estimation by Kalman filter and

Least Square method for scenario 2.

indirect visibility and to see their behavior. We can also test the

adequacy of computed multipath errors with the most common

laws that describe the noise output of a telecommunications

transmission chain and that modelize the signals delay, such

as Normal and Rayleigh laws, using for example a visual

validation with the Q-Q Plot Diagram.

Using the measurement model previously expressed (cf. equa-

tion (1)), the pseudorange error is expressed as follows :

εst = ms
t + wt + δts + Ist + T s

t + ephs
t

We consider that δts, I
s
t , eph

s
t and T s

t are modeled and

corrected, and the receiver noise wt is a Gaussian white

noise. Thus, According to signal reception state, ms
t can be

modeled in two different ways (cf. table II). If the signal

Signal receiving state ms

t

Direct(Line-of-sight reception) ms

t
= 0

Reflexive (Multipath interference and NLOS reception) ms

t
≁ N(µ, σ)

TABLE II: Modeling multipath errors according to signal

reception conditions

propagation is on line of sight (direct), ms
t is null. In the

opposite case (Multipath interference and NLOS reception),
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(a) Positioning error vs time using Kalman filter
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Fig. 11: Positioning error vs time for scenario 2.

ms
t is not null and cannot be modeled by a gaussian noise.

Therefore, a model for multipath errors must be defined.

Our approach aims to compute the residues of pseudorange

which exhibit in our case the multipath errors. This residue

will be computed by subtracting pseudorange, real geometric

distance, different errors affecting signal during its propagation

and the receiver noise (cf. equation 4 which illustrates the

calculation of multipath error for satellite m at time t).

ms
t = ρst − [dst + c ∗ δts + Ist + T s

t +wt + ephs
t ] +X(4) (4)

Where :

• dst , δts, I
s
t , T

s
t , eph

s
t and wt are already defined in equa-

tion 1.

• ρst : Is the pseudo range measurement obtained by mul-

tiplying signal travel time by the speed of light.

• X(4) : Is the fourth element of state vector presented in

equation (2), which equals to c ∗ δtu.

To search the probability distribution of multipath errors, we

propose to compute ms
t for a vehicle moving in urban areas.

VII. CONCLUSION AND FUTURE WORK

In this paper, we gave a general presentation about GNSS

systems and the major problems that disrupt the positioning



in urban areas.

Therefore, the performance of classical estimation methods

used in GNSS receiver is analyzed in terms of mean squared

error (MSE). Though the kalman filter estimation shows the

best positioning accuracy in a good environment (Line-of-sight

propagation), the use of classical filtering methods remain

limited in constrained environments, because, the assumption

made by these methods becomes not valid.

In order to improve positioning in constrained environments,

our future works will be focused on applying the technique

proposed in this article to compute the multipath errors in a

realistic scenario, in order to search their statistical model, and

to adapt the measurement noise model of the kalman filter and

the least square method with the multipath error model found.
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