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RELATION BETWEEN SMALL FUNCTIONS WITH
DIFFERENTIAL POLYNOMIALS GENERATED BY

MEROMORPHIC SOLUTIONS OF HIGHER ORDER LINEAR
DIFFERENTIAL EQUATIONS

BENHARRAT BELAÏDI1 AND ZINELÂABIDINE LATREUCH1

Abstract. This paper is devoted to studying the growth and oscillation of higher
order differential polynomial with meromorphic coefficients generated by meromor-
phic solutions of the linear differential equation

f (k) + A (z) f = 0 (k ≥ 2) ,

where A is a meromorphic function in the complex plane.

1. Introduction and main results

In this paper, we shall assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna value distribution theory of
meromorphic functions see [10, 17]. For the definition of the iterated order of a
meromorphic function, we use the same definition as in [11] , ([2], p. 317), ([12], p.
129). For all r ∈ R, we define exp1 r := er and expp+1 r := exp

(
expp r

)
, p ∈ N. We

also define for all r sufficiently large log1 r := log r and logp+1 r := log
(
logp r

)
, p ∈ N.

Moreover, we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.1. [11, 12] Let f be a meromorphic function. Then the iterated p−order
ρp (f) of f is defined as

ρp (f) = lim sup
r→+∞

logpT (r, f)

log r
(p ≥ 1 is an integer) ,
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where T (r, f) is the Nevanlinna characteristic function of f . For p = 1, this notation
is called order and for p = 2 hyper-order, see [10, 17].

Definition 1.2. [11] The finiteness degree of the order of a meromorphic function f
is defined as

i (f) =


0, for f rational,
min {j ∈ N : ρj (f) < +∞} , for f transcendental for which

some j ∈ N with ρj (f) < +∞ exists,
+∞, for f with ρj (f) = +∞ for all j ∈ N.

Definition 1.3. [4, 6] The type of a meromorphic function f of iterated p−order ρ
(0 < ρ <∞) is defined as

τp (f) = lim sup
r→+∞

logp−1 T (r, f)

rρ
(p ≥ 1 is an integer) .

Definition 1.4. [11] Let f be a meromorphic function. Then the iterated exponent
of convergence of the sequence of zeros of f (z) is defined as

λp (f) = lim sup
r→+∞

logpN
(
r, 1

f

)
log r

(p ≥ 1 is an integer) ,

where N
(
r, 1

f

)
is the counting function of zeros of f (z) in {z : |z| ≤ r}. For p = 1,

this notation is called exponent of convergence of the sequence of zeros and for p = 2
hyper-exponent of convergence of the sequence of zeros, see [9]. Similarly, the iterated
exponent of convergence of the sequence of distinct zeros of f (z) is defined as

λp (f) = lim sup
r→+∞

logpN
(
r, 1

f

)
log r

(p ≥ 1 is an integer) ,

where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in {z : |z| ≤ r}. For

p = 1, this notation is called exponent of convergence of the sequence of distinct zeros
and for p = 2 hyper-exponent of convergence of the sequence of distinct zeros, see [9].

Consider for k ≥ 2 the complex linear differential equation

(1.1) f (k) + A (z) f = 0

and the differential polynomial

(1.2) gf = dkf
(k) + dk−1f

(k−1) + · · ·+ d1f
′ + d0f,

where A and dj (j = 0, 1, . . . , k) are meromorphic functions in the complex plane.
In [9], Chen studied the fixed points and hyper-order of solutions of second order

linear differential equations with entire coefficients and obtained the following results.
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Theorem 1.1. [9] For all non-trivial solutions f of

(1.3) f ′′ + A (z) f = 0,

the following hold:

(i) If A is a polynomial with degA = n ≥ 1, then we have

λ (f − z) = ρ (f) =
n+ 2

2
.

(ii) If A is transcendental and ρ (A) <∞, then we have

λ (f − z) = ρ (f) =∞

and

λ2 (f − z) = ρ2 (f) = ρ (A) .

After him, in [16] Wang, Yi and Cai generalized the precedent theorem for the
differential polynomial gf with constant coefficients as follows.

Theorem 1.2. [16] For all non-trivial solutions f of (1.3) the following hold:

(i) If A is a polynomial with degA = n ≥ 1, then we have

λ (gf − z) = ρ (f) =
n+ 2

2
.

(ii) If A is transcendental and ρ (A) <∞, then we have

λ (gf − z) = ρ (f) =∞

and

λ2 (gf − z) = ρ2 (f) = ρ (A) .

Theorem 1.1 has been generalized from entire to meromorphic solutions for higher
order differential equations by the author as follows, see [3].

Theorem 1.3. [3] Let k ≥ 2 and A (z) be a transcendental meromorphic function

of finite iterated order ρp (A) = ρ > 0 such that δ (∞, A) = lim inf
r→+∞

m(r,A)
T (r,A)

= δ > 0.

Suppose, moreover, that either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

If ϕ (z) 6≡ 0 is a meromorphic function with finite iterated p−order ρp (ϕ) < +∞,
then every meromorphic solution f (z) 6≡ 0 of (1.1) satisfies

λp (f − ϕ) = λp (f ′ − ϕ) = · · · = λp
(
f (k) − ϕ

)
= ρp (f) = +∞,

λp+1 (f − ϕ) = λp+1 (f ′ − ϕ) = · · · = λp+1

(
f (k) − ϕ

)
= ρp+1 (f) = ρ.
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Let L (G) denote a differential subfield of the field M (G) of meromorphic functions
in a domain G ⊂ C. If G = C, we simply denote L instead of L (C) . Special case of
such differential subfield

Lp+1,ρ = {g meromorphic: ρp+1 (g) < ρ} ,

where ρ is a positive constant. In [13], Laine and Rieppo have investigated the fixed
points and iterated order of the second order differential equation (1.3) and have
obtained the following result.

Theorem 1.4. [13] Let A (z) be a transcendental meromorphic function of finite
iterated order ρp (A) = ρ > 0 such that δ (∞, A) = δ > 0, and let f be a transcendental
meromorphic solution of equation (1.3). Suppose, moreover, that either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

Then ρp+1 (f) = ρp (A) = ρ. Moreover, let

(1.4) P [f ] = P
(
f, f ′, . . . , f (m)

)
=

m∑
j=0

pjf
(j)

be a linear differential polynomial with coefficients pj ∈ Lp+1,ρ, assuming that at least
one of the coefficients pj does vanish identically. Then for the fixed points of P [f ], we

have λp+1 (P [f ]− z) = ρ, provided that neither P [f ] nor P [f ]−z vanishes identically.

Remark 1.1. ([13], p. 904) In Theorem 1.4, in order to study P [f ] , the authors
consider m ≤ 1. Indeed, if m ≥ 2, we obtain, by repeated differentiation of (1.3), that
f (k) = qk,0f + qk,1f

′
, qk,0, qk,1 ∈ Lp+1,ρ for k = 2, . . . ,m. Substitution into (1.4) yields

the required reduction.

The present article may be understood as an extension and improvement of the
recent article of the authors [14] from usual order to iterated order. The main purpose
of this paper is to study the growth and oscillation of the differential polynomial (1.2)
generated by meromorphic solutions of equation (1.1). The method used in the proofs
of our theorems is simple and quite different from the method used in the paper of
Laine and Rieppo [13]. For some related papers in the unit disc see [7, 8, 15]. Before
we state our results, we define the sequence of functions αi,j (j = 0, . . . , k − 1) by

αi,j =

{
α′i,j−1 + αi−1,j−1, for all i = 1, . . . , k − 1,
α′0,j−1 − Aαk−1,j−1, for i = 0

and

αi,0 =

{
di, for all i = 1, . . . , k − 1,
d0 − dkA, for i = 0.
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We define also

h =

∣∣∣∣∣∣∣∣∣∣
α0,0 α1,0 . . αk−1,0
α0,1 α1,1 . . αk−1,1
. . . . .
. . . . .

α0,k−1 α1,k−1 . . αk−1,k−1

∣∣∣∣∣∣∣∣∣∣
and

ψ (z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1),

where Cj (j = 0, . . . , k − 1) are finite iterated p−order meromorphic functions de-
pending on αi,j and ϕ 6≡ 0 is a meromorphic function with ρp (ϕ) <∞.

Theorem 1.5. Let A (z) be a meromorphic function of finite iterated p−order. Let
dj (z) (j = 0, 1, . . . , k) be finite iterated p−order meromorphic functions that are not
all vanishing identically such that h 6≡ 0. If f (z) is an infinite iterated p−order
meromorphic solution of (1.1) with ρp+1 (f) = ρ, then the differential polynomial
(1.2) satisfies

ρp (gf ) = ρp (f) =∞
and

ρp+1 (gf ) = ρp+1 (f) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution of (1.1) such that

(1.5) ρp (f) > max {ρp (A) , ρp (dj) (j = 0, 1, . . . , k)} ,
then

ρp (gf ) = ρp (f) .

Remark 1.2. In Theorem 1.5, if we do not have the condition h 6≡ 0, then the con-
clusions of Theorem 1.5 cannot hold. For example, if we take dk = 1, d0 = A and
dj ≡ 0 (j = 1, . . . , k − 1) , then h ≡ 0. It follows that gf ≡ 0 and ρp (gf ) = 0. So,
if f (z) is an infinite iterated p−order meromorphic solution of (1.1), then ρp (gf ) =
0 < ρp (f) = ∞, and if f is a finite iterated p−order meromorphic solution of (1.1)
such that (1.5) holds, then ρp (gf ) = 0 < ρp (f).

Corollary 1.1. Let A (z) be a transcendental entire function of finite iterated order
ρp (A) = ρ > 0, and let dj (z) (j = 0, 1, . . . , k) be finite iterated p− order entire
functions that are not all vanishing identically such that h 6≡ 0. If f 6≡ 0 is a solution
of (1.1), then the differential polynomial (1.2) satisfies

ρp (gf ) = ρp (f) =∞
and

ρp+1 (gf ) = ρp+1 (f) = ρp (A) = ρ.

Corollary 1.2. Let k ≥ 2 and A (z) be a transcendental meromorphic function of
finite iterated order ρp (A) = ρ > 0 such that δ (∞, A) = δ > 0, and let f 6≡ 0 be a
meromorphic solution of equation (1.1). Suppose, moreover, that either:
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(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

Let dj (z) (j = 0, 1, . . . , k) be finite iterated p−order meromorphic functions that are
not all vanishing identically such that h 6≡ 0. Then the differential polynomial (1.2)
satisfies ρp (gf ) = ρp (f) =∞ and ρp+1 (gf ) = ρp+1 (f) = ρp (A) .

Theorem 1.6. Under the hypotheses of Theorem 1.5, let ϕ (z) 6≡ 0 be a meromorphic
function with finite iterated p−order such that ψ (z) is not a solution of (1.1). If f (z)
is an infinite iterated p−order meromorphic solution of (1.1) with ρp+1 (f) = ρ, then
the differential polynomial (1.2) satisfies

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) =∞
and

λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρp+1 (f) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution of (1.1) such that

(1.6) ρp (f) > max {ρp (A) , ρp (ϕ) , ρp (dj) (j = 0, 1, lcdots, k)} ,
then

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) .

Corollary 1.3. Under the hypotheses of Corollary 1.1, let ϕ (z) 6≡ 0 be an entire func-
tion with finite iterated p−order such that ψ (z) 6≡ 0. Then the differential polynomial
(1.2) satisfies

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) =∞
and

λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρp+1 (f) = ρp (A) .

Corollary 1.4. Under the hypotheses of Corollary 1.2, let ϕ (z) 6≡ 0 be a meromor-
phic function with finite iterated p−order such that ψ (z) 6≡ 0. Then the differential
polynomial (1.2) satisfies

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) =∞
and

λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρp+1 (f) = ρp (A) .

In the following we give two applications of the above results without the additional
conditions h 6≡ 0 and ψ is not a solution of (1.1).

Theorem 1.7. Let A (z) be an entire function of finite iterated p−order satisfying
0 < ρp (A) < ∞ and 0 < τp (A) < ∞, and let dj (z) (j = 0, 1, 2, 3) be finite iterated
p−order entire functions that are not all vanishing identically such that

max {ρp (dj) (j = 0, 1, 2, 3)} < ρp (A) .

If f is a nontrivial solution of the equation

(1.7) f ′′′ + A (z) f = 0,
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then the differential polynomial

(1.8) gf = d3f
(3) + d2f

′′ + d1f
′ + d0f

satisfies

ρp (gf ) = ρp (f) =∞
and

ρp+1 (gf ) = ρp+1 (f) = ρp (A) .

Theorem 1.8. Under the hypotheses of Theorem 1.7, let ϕ (z) 6≡ 0 be an entire
function with finite iterated p−order. If f is a nontrivial solution of (1.7), then the
differential polynomial gf = d3f

(3) + d2f
′′ + d1f

′ + d0f such that d3 6≡ 0 satisfies

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) =∞
and

λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρp+1 (f) = ρp (A) .

2. Auxiliary lemmas

Here, we give a special case of the result due to T. B. Cao, Z. X. Chen, X. M.
Zheng and J. Tu in [5].

Lemma 2.1. [3] Let p ≥ 1 be an integer and let A0, A1, . . . , Ak−1, F 6≡ 0 be finite
iterated p−order meromorphic functions. If f is a meromorphic solution with ρp (f) =
+∞ and ρp+1 (f) = ρ < +∞ of the differential equation

(2.1) f (k) + Ak−1 (z) f (k−1) + · · ·+ A1 (z) f ′ + A0 (z) f = F,

then λp (f) = λp (f) = ρp (f) =∞ and λp+1 (f) = λp+1 (f) = ρp+1 (f) = ρ.

Lemma 2.2. [5] Let p ≥ 1 be an integer and let A0, A1, . . . , Ak−1, F 6≡ 0 be mero-
morphic functions. If f is a meromorphic solution of equation (2.1) such that

(i) max {i (F ) , i (Aj) (j = 0, . . . , k − 1)} < i (f) = p or that
(ii) max {ρp (F ) , ρp (Aj) (j = 0, . . . , k − 1)} < ρp (f) < +∞,

then iλ (f) = iλ (f) = i (f) = p and λp (f) = λp (f) = ρp (f).

The following lemma is a corollary of Theorem 2.3 in [11].

Lemma 2.3. Assume A is an entire function with i (A) = p, and assume 1 ≤ p <
+∞. Then, for all non-trivial solutions f of (1.1), we have

ρp (f) =∞ and ρp+1 (f) = ρp (A) .

Lemma 2.4. [3] Let k ≥ 2 and A (z) be a transcendental meromorphic function of
finite iterated order ρp (A) = ρ > 0 such that δ (∞, A) = δ > 0, and let f 6≡ 0 be a
meromorphic solution of equation (1.1). Suppose, moreover, that either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
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Then ρp (f) = +∞ and ρp+1 (f) = ρp (A) = ρ.

Remark 2.1. For k = 2, Lemma 2.4 was obtained by Laine and Rieppo in [13].

Lemma 2.5. [4] Let f, g be meromorphic functions with iterated p−order 0 < ρp (f) ,
ρp (g) < ∞ and iterated p−type 0 < τp (f) , τp (g) < ∞ (1 ≤ p < ∞). Then the
following statements hold:

(i) If ρp (g) < ρp (f) , then

τp (f + g) = τp (fg) = τp (f) .

(ii) If ρp (f) = ρp (g) and τp (g) 6= τp (f) , then

ρp (f + g) = ρp (fg) = ρp (f) .

Lemma 2.6. [11] Let f be a meromorphic function for which i (f) = p ≥ 1 and
ρp (f) = ρ, and let k ≥ 1 be an integer. Then for any ε > 0,

m

(
r,
f (k)

f

)
= O

(
expp−2

{
rρ+ε

})
,

outside of a possible exceptional set E1 of finite linear measure.

Lemma 2.7. [1] Let g : [0,+∞) → R and h : [0,+∞) → R be monotone non-
decreasing functions such that g (r) ≤ h (r) outside of an exceptional set E2 of finite
linear measure. Then for any λ > 1, there exists r0 > 0 such that g (r) ≤ h (λr) for
all r > r0.

Lemma 2.8. [14] Assume f 6≡ 0 is a solution of equation (1.1). Then the differential
polynomial gf defined in (1.2) satisfies the system of equations

gf = α0,0f + α1,0f
′ + · · ·+ αk−1,0f

(k−1),
g′f = α0,1f + α1,1f

′ + · · ·+ αk−1,1f
(k−1),

g′′f = α0,2f + α1,2f
′ + · · ·+ αk−1,2f

(k−1),
· · ·

g
(k−1)
f = α0,k−1f + α1,k−1f

′ + · · ·+ αk−1,k−1f
(k−1),

where

αi,j =

{
α′i,j−1 + αi−1,j−1, for all i = 1, . . . , k − 1,
α′0,j−1 − Aαk−1,j−1, for i = 0

and

αi,0 =

{
di, for all i = 1, . . . , k − 1,
d0 − dkA, for i = 0.
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3. Proofs of the Theorems and the Corollaries

Proof of Theorem 1.5. Suppose that f is an infinite iterated p−order meromorphic
solution of (1.1) with ρp+1 (f) = ρ. By Lemma 2.8, gf satisfies the system of equations

(3.1)


gf = α0,0f + α1,0f

′ + · · ·+ αk−1,0f
(k−1),

g′f = α0,1f + α1,1f
′ + · · ·+ αk−1,1f

(k−1),

g′′f = α0,2f + α1,2f
′ + · · ·+ αk−1,2f

(k−1),
· · ·

g
(k−1)
f = α0,k−1f + α1,k−1f

′ + · · ·+ αk−1,k−1f
(k−1),

where

(3.2) αi,j =

{
α′i,j−1 + αi−1,j−1, for all i = 1, . . . , k − 1,
α′0,j−1 − Aαk−1,j−1, for i = 0

and

(3.3) αi,0 =

{
di, for all i = 1, . . . , k − 1,
d0 − dkA, for i = 0.

By Cramer’s rule, since h 6≡ 0 we have

(3.4) f =

∣∣∣∣∣∣∣∣∣∣
gf α1,0 . . αk−1,0
g′f α1,1 . . αk−1,1
. . . . .
. . . . .

g
(k−1)
f α1,k−1 . . αk−1,k−1

∣∣∣∣∣∣∣∣∣∣
h

.

Then

(3.5) f = C0gf + C1g
′
f + · · ·+ Ck−1g

(k−1)
f ,

where Cj are finite iterated p−order meromorphic functions depending on αi,j, where
αi,j are defined in (3.2).

If ρp (gf ) < +∞, then by (3.5) we obtain ρp (f) < +∞, and this is a contradiction.
Hence ρp (gf ) = ρp (f) = +∞.

Now, we prove that ρp+1 (gf ) = ρp+1 (f) = ρ. By (1.2), we get ρp+1 (gf ) ≤ ρp+1 (f)
and by (3.5) we have ρp+1 (f) ≤ ρp+1 (gf ). This yield ρp+1 (gf ) = ρp+1 (f) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution of equation
(1.1) such that

(3.6) ρp (f) > max {ρp (A) , ρp (dj) (j = 0, 1, . . . , k)} ,
then

(3.7) ρp (f) > max {ρp (αi,j) : i = 0, . . . , k − 1, j = 0, . . . , k − 1} .
By (1.2) and (3.6) we have ρp (gf ) ≤ ρp (f) . Now, we prove ρp (gf ) = ρp (f) . If
ρp (gf ) < ρp (f) , then by (3.5) and (3.7) we get

ρp (f) ≤ max {ρp (Cj) (j = 0, . . . , k − 1) , ρp (gf )} < ρp (f)
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and this is a contradiction. Hence ρp (gf ) = ρp (f) . �

Remark 3.1. From (3.5), it follows that the condition h 6≡ 0 is equivalent to the

condition gf , g
′
f , g
′′
f , . . . , g

(k−1)
f are linearly independent over the field of meromorphic

functions of finite iterated p−order.

Proof of Corollary 1.1. Suppose that f 6≡ 0 is a solution of (1.1). Since A is an entire
function with i (A) = p, then by Lemma 2.3, we have ρp (f) = ∞ and ρp+1 (f) =
ρp (A) . Thus, by Theorem 1.5 we obtain ρp (gf ) = ρp (f) = ∞ and ρp+1 (gf ) =
ρp+1 (f) = ρp (A) . �

Proof of Corollary 1.2. Suppose that f 6≡ 0 is a meromorphic solution of (1.1) such
that

(i) all poles of f are uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

Then by Lemma 2.4, we have ρp (f) = ∞ and ρp+1 (f) = ρp (A) . Now, by using
Theorem 1.5, we obtain ρp (gf ) = ρp (f) =∞ and ρp+1 (gf ) = ρp+1 (f) = ρp (A) . �

Proof of Theorem 1.6. Suppose that f is an infinite iterated p−order meromorphic
solution of equation (1.1) with ρp+1 (f) = ρ. Set w (z) = gf − ϕ. Since ρp (ϕ) < ∞,
then by Theorem 1.5 we have ρp (w) = ρp (gf ) =∞ and ρp+1 (w) = ρp+1 (gf ) = ρ. To

prove λp (gf − ϕ) = λp (gf − ϕ) =∞ and λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρ we need

to prove λp (w) = λp (w) =∞ and λp+1 (w) = λp+1 (w) = ρ. By gf = w+ϕ and (3.5),
we get

(3.8) f = C0w + C1w
′ + · · ·+ Ck−1w

(k−1) + ψ (z) ,

where

ψ (z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1).

Substituting (3.8) into (1.1), we obtain

Ck−1w
(2k−1) +

2k−2∑
i=0

φiw
(i) = −

(
ψ(k) + A (z)ψ

)
= H,

where φi (i = 0, . . . , 2k − 2) are meromorphic functions with finite iterated p−order.
Since ψ (z) is not a solution of (1.1), it follows that H 6≡ 0. Then by Lemma 2.1,
we obtain λp (w) = λp (w) = ∞ and λp+1 (w) = λp+1 (w) = ρ, i. e., λp (gf − ϕ) =

λp (gf − ϕ) =∞ and λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρ.
Suppose that f is a finite iterated p−order meromorphic solution of equation (1.1)

such that (1.6) holds. Set w (z) = gf − ϕ. Since ρp (ϕ) < ρp (f) , then by Theorem

1.5 we have ρp (w) = ρp (gf ) = ρp (f) . To prove λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) we

need to prove λp (w) = λp (w) = ρp (f) . Using the same reasoning as above, we get

Ck−1w
(2k−1) +

2k−2∑
i=0

φiw
(i) = −

(
ψ(k) + A (z)ψ

)
= F,
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where Ck−1, φi (i = 0, . . . , 2k − 2) are meromorphic functions with finite iterated
p−order ρp (Ck−1) < ρp (f) = ρp (w) , ρp (φi) < ρp (f) = ρp (w) (i = 0, . . . , 2k − 2)
and

ψ (z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1), ρp (F ) < ρp (w) .

Since ψ (z) is not a solution of (1.1), it follows that F 6≡ 0. Then by Lemma 2.2, we
obtain λp (w) = λp (w) = ρp (f) , i. e., λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) . �

Proof of Corollary 1.3. Suppose that f 6≡ 0 is a solution of (1.1). Then by Lemma
2.3, we have ρp (f) =∞ and ρp+1 (f) = ρp (A) . Since ψ 6≡ 0 and ρp (ψ) <∞, then ψ
cannot be a solution of equation (1.1). Thus, by Theorem 1.6 we obtain

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) =∞

and

λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρp+1 (f) = ρp (A) .

�

Proof of Corollary 1.4. Suppose that f 6≡ 0 is a meromorphic solution of (1.1).
Then by Lemma 2.4, we have ρp (f) = ∞ and ρp+1 (f) = ρp (A) . Since ψ 6≡ 0 and
ρp (ψ) < ∞, then ψ cannot be a solution of equation (1.1). Now, by using Theorem
1.6, we obtain

λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) =∞
and

λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρp+1 (f) = ρp (A) .

�

Proof of Theorem 1.7. Suppose that f is a nontrivial solution of (1.7). Then by
Lemma 2.3, we have

ρp (f) =∞, ρp+1 (f) = ρp (A) .

We have by Lemma 2.8

(3.9)


gf = α0,0f + α1,0f

′ + α2,0f
′′,

g′f = α0,1f + α1,1f
′ + α2,1f

′′,
g′′f = α0,2f + α1,2f

′ + α2,2f
′′.

By (3.3) we obtain

(3.10) αi,0 =

{
di, for all i = 1, 2,
d0 − d3A, for i = 0.

Now, by (3.2) we get

αi,1 =

{
α′i,0 + αi−1,0, for all i = 1, 2,
α′0,0 − Aα2,0, for i = 0.
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Hence

(3.11)

 α0,1 = α′0,0 − Aα2,0 = (d0 − d3A)′ − Ad2 = d′0 − (d2 + d′3)A− d3A′,
α1,1 = α′1,0 + α0,0 = d0 + d′1 − d3A,
α2,1 = α′2,0 + α1,0 = d1 + d′2.

Finally, by (3.2) we have

αi,2 =

{
α′i,1 + αi−1,1, for all i = 1, 2,
α′0,1 − Aα2,1, for i = 0.

So, we obtain

(3.12)


α0,2 = α′0,1 − Aα2,1 = d′′0 − (d1 + 2d′2 + d′′3)A− (d2 + 2d′3)A

′ − d3A′′,
α1,2 = α′1,1 + α0,1 = 2d′0 + d′′1 − (d2 + 2d′3)A− 2d3A

′,
α2,2 = α′2,1 + α1,1 = d0 + 2d′1 + d′′2 − d3A.

Hence
(3.13)

gf = (d0 − d3A) f + d1f
′ + d2f

′′,
g′f = (d′0 − (d2 + d′3)A− d3A′) f + (d0 + d′1 − d3A) f ′ + (d1 + d′2) f

′′,
g′′f = (d′′0 − (d1 + 2d′2 + d′′3)A− (d2 + 2d′3)A

′ − d3A′′) f
+ (2d′0 + d′′1 − (d2 + 2d′3)A− 2d3A

′) f ′ + (d0 + 2d′1 + d′′2 − d3A) f ′′.

First, we suppose that d3 6≡ 0. By (3.13), we have

h =

∣∣∣∣∣∣
H0 H1 H2

H3 H4 H5

H6 H7 H8

∣∣∣∣∣∣ ,
where H0 = d0 − d3A, H1 = d1, H2 = d2, H3 = d′0 − (d2 + d′3)A − d3A

′, H4 =
d0 + d′1 − d3A, H5 = d1 + d′2, H6 = d′′0 − (d1 + 2d′2 + d′′3)A − (d2 + 2d′3)A

′ − d3A
′′,

H7 = 2d′0 + d′′1 − (d2 + 2d′3)A− 2d3A
′, H8 = d0 + 2d′1 + d′′2 − d3A. Then

h = (3d0d1d2 + 3d0d1d
′
3 + 3d0d2d

′
2 − 6d0d3d

′
1 + 3d1d2d

′
1 + 3d1d3d

′
0

+d0d2d
′′
3 − 2d0d3d

′′
2 + d1d2d

′′
2 + d1d3d

′′
1 + d2d3d

′′
0 + 2d0d

′
2d
′
3 + 2d1d

′
1d
′
3 − 4d2d

′
0d
′
3

+2d2d
′
1d
′
2 + 2d3d

′
0d
′
2 − d1d′2d′′3 + d1d

′
3d
′′
2 + d2d

′
1d
′′
3 − d2d′′1d′3 − d3d′1d′′2

+d3d
′
2d
′′
1 − d31 − 3d20d3 − 2d1(d

′
2)

2 − 3d21d
′
2 −2d3(d

′
1)

2 − d22d′′1 − d21d′′3 − 3d22d
′
0

)
A

+ (2d0d2d
′
3 + 2d0d3d

′
2 − d1d2d′2 + 2d1d3d

′
1 − 4d2d3d

′
0 + d1d3d

′′
2

−d2d3d′′1 − 2d1d
′
2d
′
3 + 2d2d

′
1d
′
3 + 3d0d1d3 + d0d

2
2 − d21d2 + d22d

′
1 − 2d21d

′
3

)
A′

+ (d2d3d
′
1 + d0d2d3 − d1d3d′2 − d21d3)A′′ + (2d2d3d

′
3 − 3d1d

2
3 + 2d22d3 − 2d23d

′
2)AA

′
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+
(
d32 − 3d1d2d3 − 3d1d3d

′
3 − 3d2d3d

′
2 − d2d3d′′3 − 2d3d

′
2d
′
3

+3d0d
2
3 + 3d23d

′
1 + 2d2(d

′
3)

2 + 3d22d
′
3 + d23d

′′
2

)
A2

− d33A3 + 2d2d
2
3(A

′)2 − d2d23AA′′ − 3d0d1d
′
0 − d0d1d′′1 − d0d2d′′0 − 2d0d

′
0d
′
2

+ d1d
′′
0d
′
2 + d2d

′
0d
′′
1 − d2d′1d′′0 + d30 + 2d0(d

′
1)

2 + 3d20d
′
1 + 2d2(d

′
0)

2

+ d21d
′′
0 + d20d

′′
2 − 2d1d

′
0d
′
1 + d0d

′
1d
′′
2 − d0d′2d′′1 − d1d′0d′′2.

By d3 6≡ 0, A 6≡ 0, 0 < ρp (A) < ∞, 0 < τp (A) < ∞ and Lemma 2.5, we have
ρp (h) = ρp (A), hence h 6≡ 0. For the cases (i) d3 ≡ 0, d2 6≡ 0; (ii) d3 ≡ 0, d2 ≡ 0 and
d1 6≡ 0 by using a similar reasoning as above we get h 6≡ 0. Finally, if d3 ≡ 0, d2 ≡ 0,
d1 ≡ 0 and d0 6≡ 0, we have h = d30 6≡ 0. Hence h 6≡ 0. By h 6≡ 0, we obtain

f =
1

h

∣∣∣∣∣∣
gf d1 d2
g′f d0 + d′1 − d3A d1 + d′2
g′′f 2d′0 + d′′1 − (d2 + 2d′3)A− 2d3A

′ d0 + 2d′1 + d′′2 − d3A

∣∣∣∣∣∣ ,
which we can write

(3.14) f =
1

h

(
D0gf +D1g

′
f +D2g

′′
f

)
,

where

D0 = (d1d2 − 2d0d3 + 2d1d
′
3 + d2d

′
2 − 3d3d

′
1 − d3d′′2 + 2d′2d

′
3)A

+ (2d1d3 + 2d3d
′
2)A

′ + A2d23 + 3d0d
′
1 − 2d1d

′
0 + d0d

′′
2 − d1d′′1

− 2d′0d
′
2 + d′1d

′′
2 − d′2d′′1 + d20 + 2(d′1)

2,

D1 =
(
d1d3 − 2d2d

′
3 − d22

)
A+ d2d

′′
1 − d0d1 − 2d1d

′
1 + 2d2d

′
0 − d1d′′2,

D2 = d2d3A+ d21 − d2d′1 + d1d
′
2 − d0d2.

If ρp (gf ) < +∞, then by (3.14) we obtain ρp (f) < +∞, and this is a contradiction.
Hence ρp (gf ) = ρp (f) = +∞.

Now, we prove that ρp+1 (gf ) = ρp+1 (f) = ρp (A) . By (1.8), we get ρp+1 (gf ) ≤
ρp+1 (f) and by (3.14) we have ρp+1 (f) ≤ ρp+1 (gf ). This yield ρp+1 (gf ) = ρp+1 (f) =
ρp (A) . �

Proof of Theorem 1.8. Suppose that f is a nontrivial solution of (1.7). By setting
w = gf − ϕ in (3.14), we have

(3.15) f =
1

h
(D0w +D1w

′ +D2w
′′) + ψ,

where

(3.16) ψ =
D2ϕ

′′ +D1ϕ
′ +D0ϕ

h
.
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Since d3 6≡ 0, then h 6≡ 0. It follows from Theorem 1.7 that gf is of infinite iterated
p−order and ρp+1 (gf ) = ρp (A) . Substituting (3.15) into (1.7), we obtain

D2

h
w(5) +

4∑
i=0

φiw
(i) = −

(
ψ(3) + A (z)ψ

)
,

where φi (i = 0, . . . , 4) are meromorphic functions with finite iterated p−order. First,
we prove that ψ 6≡ 0. Suppose that ψ ≡ 0, then by (3.16) we obtain

(3.17) D2ϕ
′′ +D1ϕ

′ +D0ϕ = 0

and by Lemma 2.5, we have

(3.18) ρp (D0) > max {ρp (D1) , ρp (D2)} .
By (3.17) we can write

D0 = −
(
D2

ϕ′′

ϕ
+D1

ϕ′

ϕ

)
.

Since ρp (ϕ) = β <∞, then by Lemma 2.6 we obtain

T (r,D0) ≤ T (r,D1) + T (r,D2) +O
(
expp−2

{
rβ+ε

})
, r /∈ E,

where E is a set of finite linear measure. Then, by Lemma 2.7 we have

ρp (D0) ≤ max {ρp (D1) , ρp (D2)} ,
which is a contradiction with (3.18). Hence ψ 6≡ 0. It is clear now that ψ 6≡ 0 cannot
be a solution of (1.7) because ρp (ψ) <∞. Then, by Lemma 2.1 we obtain

λp (w) = λp (w) = λp (gf − ϕ) = λp (gf − ϕ) = ρp (f) =∞
and

λp+1 (w) = λp+1 (w) = λp+1 (gf − ϕ) = λp+1 (gf − ϕ) = ρp+1 (f) = ρp (A) .

�
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