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Abstract—Detecting fish in submarine environment is a chal-
lenge due to the properties of the water such as light absorption
and scattering. In this work, we present a method for pre-
processing images in submarine environment. In the first step, we
model the underwater environment as overlapp of two processes.
The first process is considered as a Poisson distribution, while
the second one is considered as a Gaussian mixture. The result-
ing distribution is called Poisson-Gaussian mixture (PGM). To
estimate the noise parameters, we propose an iterative algorithm
based on the expectation maximization approach. This allows us
to jointly estimate the scale of the Poisson parameter as well as
the standard deviation and the mean of all Gaussian distributions.
In order to facilitate the detection of objects, to correct the
illumination problem of the scene and to restore the colors,
we integrate a color correction algorithm. Finally, detection and
localization of fish complete the pre-processing in the images.
To obtain medium or small regions, the mean shift algorithm is
used with a reduced threshold. In the segmentation process, the
proposed detector scan the image region by region. This detector
allows to estimate statistically the type of the region (object or
non-object). The method is tested under different underwater
conditions. Experimental results show that the proposed approach
outperforms conventional methods.

I. INTRODUCTION

The field of detection in the marine environment is a hot
topic since many years, due to the properties of under water
and the limitation of human access in this environment.
Many technologies have been developed to monitor and track
the evolution of the marine environment such as remotely
operated vehicles (ROVs), system targeting objects (STOs),
and autonomous underwater vehicles (AUVs) [1], [2], [3].

Today, most underwater detection and monitoring systems
are based on cameras and the exploitation of the image data.
Computer vision and image processing have been particularly
studied in this context to develop robust and sophisticated
algorithms for underwater research topics. The light absorption
and scattering pose a bottleneck, because the underwater
visibility is only a few meters. In [4], where clear water is
considered, twenty meters visibility is shown.
Recent works try to enhance the underwater image quality, and
to reduce the level of noise in order to successfully detect and
localize objects. Some researchers in [5], [6], [7] propose filter-
based methods for reduction of undesirable noise. In [8] and
[9] wavelet-based methods are proposed. In [8], the authors
combine wavelet decomposition and high-pass filtering in
order to remove back-scattering noise. Homomorphic filtering,
anisotropic filtering and wavelet-based thresholding are applied

to reduce the additive noise in [9]. However, these wavelet
based methods cause unsharpness in the resulting image. In
[10], the authors use a median filter to remove the noise, RGB
color level stretching to enhance the quality of the image,
and dark channel prior to obtain the atmospheric light. This
method can only help in the case of images with minor noise.
Very noisy images were treated in [11] by utilizing a bilateral
filtering. The proposed solution presents good result but the
required processing time is high.

Statistical methods are proposed in [12], [13], [14]. These
methods are based on the modulation of noise as Poisson-
Gaussian distribution and supposing that the image is inde-
pendent from the noise. The authors show promising results at
different noise levels.

Besides noise, the absorption, and scattering of light be-
tween the camera and the object, degrade the quality of
captured images. The non-uniform absorption of colors, for
example, red color is absorbed more than blue color, that
make the underwater images dominated by the blue color.
This behavior enhances the difficulties of identification and
detection of divers, fish and other objects in underwater
images. [15], [16], [17] apply regularization methods by means
of laser technologies. Color polarization methods are proposed
in [18], [19], [20]. The authors utilize a filter (at the front of
the camera) in order to make the color proportions uniform in
captured images. The combination of the laser based technol-
ogy and color polarization are proposed in [21], [22].

The challenge now is to create an efficient tool which is able
to solve jointly the problem of noise, light absorption, and
scattering effects. Our goal is to offer the submarine biologists
a tool to explore the underwater environment and analyze the
behavior of different fish species. Several additional effects
such as rain, whirlpool, current, salinity, temperature, waves,
tides, and many other effects make the visibility more difficult
(see Fig. 1). Fig. 2 defines the skills of our approach. It
is divided on four fundamental blocks: image denoising, en-
hancement, segmentation, and detection in order to generalize
the image pre-processing solution without knowledge of the
environment.

The next sections in this paper are organized as follows.
Section II describes the theoretical principle of the model
under investigation. In this part, the denoising-enhancement
process as well as statistical estimation of the desired object
are derived. In Section III, experimental results and comparison
with other methods are shown. Section IV concludes this work.
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Figure 1. Examples of image scenes.

II. THEORETICAL PRINCIPLE

The goal of the proposed approach is to extremely reduce the
noise level in order to enhance the quality of the images in
the submarine environment. There are principally two sources
of noise: The first one is coming from the capture. It usually
depends on the capture settings and the power of the device.
The second is caused in the transmission, a typical example
is the information loss due to image compression. Otherwise,
without compression we would have to consume several tem-
poral and material resources for the transmission of images
(Fig. 3).

The Gaussian mixture is among the most popular models
applied in statistics [23], [24]. It is a parametric probability
density function represented as a weighted sum of Gaussian
component densities. A Gaussian mixture model is a weighted
sum of M component Gaussian densities as given by the
equation, The Gaussian mixture is among the most popular
models applied in statistics [23], [24]. It is a parametric
probability density function represented as a weighted sum of
Gaussian component densities. A Gaussian mixture model is a
weighted sum of m component Gaussian densities as given
by the equation, The Gaussian mixture is among the most
popular models applied in statistics [23], [24]. It is a parametric
probability density function represented as a weighted sum of
Gaussian component densities. A Gaussian mixture model is
a weighted sum of m component Gaussian densities as given
by

p(y) =
M∑
m=1

αm · f(y,Cm,µm), (1)

where each component density is defined as
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Figure 2. Skills of the proposed approach.

Figure 3. Sources of noise.

where y is a data vector, µm is the mean vector, Cm is the
covariance matrix, αm are the mixture weights (1 ≤ m ≤M),
where the mixture weights satisfy the constraint

M∑
m=1

αm = 1. (3)

In [25] the authors create a statistical model based on a
mixture of projected Gaussian distribution and wavelet based
algorithms, in which they use the expectation maximization
algorithm to accelerate the processing time of the algorithm.
This method implicitly segments the image into regions of
similar content.
Poisson-Gaussian distribution is a statistical model formed
by the combination of a Poisson distribution and a Gaussian
distribution. In [12] the authors show that the noise produced
in the imaging devices can be modeled as Poisson-Gaussian
distribution. This combination generates a method of noise
removal. The aim of the method is to benefit from the property
of each distribution in image denoising. The Poisson compo-
nent accounts for the signal-dependent uncertainty, while the
Gaussian mixture component accounts for the other signal-
independent noise sources. The Poisson-Gaussian can use
generalized Anscombe transform to stabilize the variance [12],
and to ensure the precision of the denoising process. The
authors use this technique to treat pictures with low intensity.

In order to improve the perception of underwater images,
we propose a new approach based on Poisson-Gaussian
model. We assume that the mean and the variance of the
noise are not constant in the whole image. By means of the
Poisson-Gaussian mixture, the denoising process is adapted to
each region in the image. Furthermore, each Gaussian in the
mixture takes a set of pixels (e.g. background or foreground
pixels), which gives additional information to the next step of
the processing.

Let X be a random process that follows a Poisson distribution
with parameter x > 0, then the probability mass function of
X is given by

pX (x) =
e−xxk

k!
, (4)



and let Y be a random variable that follows a Gaussian
distribution with variance σ2 and mean µ, then the probability
density function is given by

pY (y) =
1√
2πσ2

e
−(y−µ)2

2σ2 , (5)

where x and y are the realizations of the random variable X
and Y , respectively.
Let Z = (Z1, Z2, · · · , ZN ) be a series of observations that
form a set of random independent variables, and zn be
realizations of Z that are considered to be the measure of
noise intensity of the signal I. From [12], the Poisson-Gaussian
distribution is defined by

p(z|y, σ) =
∞∑
k=0

xk

k!
e−x

1√
2πσ2

e
−(z−k)2

2σ2 . (6)

The idea of this work is to generalize the Poisson-Gaussian
distribution by means of several Gaussian. This new distribu-
tion is called Poisson-Gaussian Mixture distribution (PGM). It
is defined as

p(z|y) =
∞∑
k=0

(
xk

k!
e−x

M∑
m=1

αm · f(y,Cm,µm)

)
, (7)

where x is a strictly positive real number, M is the number of
Gaussians, Cm is the covariance matrix of the mth Gaussian,
and µm and αm are the mth mean and mixture coefficient,
respectively.

A. Estimation of the image parameters

The estimation of the parameters (αm,µm,Cm) will be done
by means of the expectation maximization algorithm (EM).
The estimation can also be done by means of the maximum
likelihood estimation algorithm [26]. Given training vectors
and a Poisson-Gaussian mixture configuration, the goal is to
estimate the parameters (αm,µm,Cm) of this distribution,
that best match the distribution of the training feature vectors.

The aim of the EM-algorithm is to maximize the likelihood
function with respect to the parameters under investigation.
This estimation can be divided into four steps:

1. Initialization step: µm, Cm, αm and log-likelihood
are initialized.

2. Expectation step: Evaluation of the posterior probabilities
using the current parameter values:

γ(znm) =
αmp(xn|µm,Cm)∑M
j=1 αjp(xn|µj ,Cj)

, (8)

where γ(znm) defines the posterior probabilities for the nth
observation, and M is the total number of Gaussians in the
mixture.

3. Maximization step: Computation of the parameters
using the current posterior probabilities

αm
new =

Nm
N

, (9)

µnewm =
1

Nm

N∑
n=1

γ(znm)xn, (10)

Cnewm =
1

Ni

N∑
n=1

γ(znm)(xn − µnewm )(xn − µnewm )T , (11)

where Nm denotes the effective number of pixels assigned to
the cluster m, where

Nm =
N∑
n=1

γ(znm)

.

4. Evaluation step: Evaluation of the log-likelihood function:

ln(p(x|y)) =
N∑
n=1

ln

(
M∑
m=1

αmp(xn|µm,Cm)

)
, (12)

where M is the total number of Gaussians.
The last iteration of the algorithm is achieved when the
log-likelihood function and the parameters converge to a
constant value.

Finally the resulting filter model will be convolved with
the original image, in order to reduce the noise.

B. Segmentation

Several methods have been developed for segmenting images.
The choice of an adequate technique depends on many factors
(segmentation of medical images is different from underwater
images). In this work, we chose to use the so-called mean-shift
algorithm in the segmentation.
The mean-shift algorithm was introduced by Fukunaga and
Hostetler in [27], and has been extended to be applicable
in other fields like computer vision [28]. It is a powerful
non-parametric iterative algorithm that can be used for many
purposes (segmentation, clustering,· · · ). Mean-shift associates
segments with the nearby pixels of the dataset probability
density function. For each segment, mean-shift defines a
window around it and computes the mean of the data points,
then it shifts the center of the window to the mean and
repeats the algorithm until it converges. After each iteration,
the window shifts to a denser region of the image.

At the highest level, the mean-shift algorithm is specified
as follows:

1. Fix a window around each data point.
2. Compute the mean of data within the window.
3. Shift the window to the mean, and repeat until the algorithm
converges.

In this phase, we obtain the segmented image that include
several regions (see Fig. 4). Each region is isolated, and then
treated separately in order to make a statistical test on it.



Figure 4. Image segmentation via the mean-shift algorithm.

Fig. 5 shows this isolation applied on the segmented image.
In the remainder of this section, the log-likelihood ratio test is
carried out in order to measure the reliability of the estimation
that the object exists. Then, the obtained value is verified and
compared with the original data.

C. The log-likelihood ratio test

The likelihood ratio method expresses how many times a
test result is likely to be found in true compared with false
hypothesis. This method always gives a feasible equation, and
it can be used when we have truncated data. The likelihood
ratio (LR) is written by

LR =
P (Testtrue)
P (Testfalse)

. (13)

Let s = [s1, · · · sN ]T denote regions of a given image.
We suppose these regions follow a Poisson-Gaussian mixture
distribution, furthermore we assume that the segments are
statistically independent. With this assumption, the proposed
method takes the following forms as a log-likelihood ratio test:

LLR =
p(s|H0)

p(s|H1)
, (14)

where H0 and H1 be two hypotheses. H0 is the hypothesis of
existing object, and H1 of non-existing one.

In the case of color images, the result is the addition of
each LLR associated to each color component. For example,
in the RGB space, it is recommended to use the following
equation:

LLR = LLRRed + LLRGreen + LLRBlue

III. EXPERIMENTAL RESULTS:

In this section, the proposed approach is compared with con-
ventional methods. The system is implemented on a standard
PC. Different images of different sizes have been used in the
experiment.

Figure 5. Image decomposition via the mean shift algorithm

Figure 6. Denoising process for our approach: (a) Original image, (b) Noisy
image, (c) Denoised with the proposed approach, (d) Correction by means of
color filtering.

Fig. 6 shows the different steps of pre-processing images.
Fig. 6b is corrupted with additive Gaussian white noise at
eight different power levels σ = 15dB. Fig. 6c and Fig. 6d
show the denoised and enhanced image respectively. In
Fig. 6d, we obtained a more clear image than the original
image. The numerical results for different levels of noise is
shown in the Tables I and II.

Fig. 7 represents the results of estimation by log-likelihood
ratio test. It shows the objects estimated in the image. In
Fig. 7a several small regions are obtained, that include the
estimated objects. After thresholding, the number of false
regions is reduced, then we obtain the new estimation of the
object (see Fig. 7b).

Before presenting the results, we review some terminologies,
which will be used in the following numerical analysis. Mean
squared error (MSE) and pixel signal-to-noise ratio (PSNR)
are used to determine the reconstructed image quality. MSE
is defined by the following equation

MSE =

H∑
j=1

(
W∑
i=1

(Si,j − Sri,j)2
)

HW
, (15)

where Si,j and Sri,j represent pixels of the original and the
reconstructed (HxW ) image, respectively. The pixel signal to
noise ratio (PSNR) (in dB) is calculated using the following
equation:

PSNR = 10 · log

{
(255)2

MSE

}
. (16)

The proposed approach is tested in different images. Table I
and II present the PSNR value for each denoising method,
and thereafter, we resume these results in Fig. 8.



Figure 7. Segmentation and fish estimation process: (a) Enhanced image
(b) Automatic segmentation and statistical estimation (c) Segmentation and
statistical estimation with threshold regularization.

Table I. PSNR FOR TEST IMAGES UNDER INVESTIGATION

σ/PSNR(input) PSNR (output, proposed approach)
5 / 34.55 34.82
10 / 28.34 30.99
15 / 24.92 29.31
20 / 22.53 28.23
30 / 19.20 26.71
50 / 15.19 24.31

Table I and II present the PSNR value calculated by the
proposed approach after the denoising process. Each line is
corrupted with additive Gaussian white noise at six different
noise levels (σ = {5, 10, 15, 20, 30, 50}). Different algorithms
are applied to the same noise realizations.

Table II. COMPARISON OF FILTER OUTPUT PSNR USING THE FIRST
IMAGE (FISH)

σ Gaussian Filter Median Filter Bilateral Filter NLM Filter1

5 25.91 27.75 33.57 32.69
10 25.85 27.25 32.05 29.50
15 25.76 26.54 29.38 28.34
20 25.61 25.72 26.23 27.62
30 25.17 24.07 21.18 26.38
50 23.77 21.17 15.79 23.79

The graph in Fig. 8 shows the output PSNR values compar-
ing with different levels of noise throughout pre-processing by
median filter, bilateral filter and the proposed approach. The
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Figure 8. Performance comparison.

output PSNR values of the proposed approach are relatively
higher at values of σ less than 15 comparing with median filter.
We can see that the Bilateral Filter and our approach has an
output PSNR more than 30 dB. Also, we can see that between
σ = 8 and σ = 15 bilateral filter has a small advantage over
our method. However, from σ = 15 the percentage declined
to a peak around 30 dB. and from σ = 20 the median filter
offers more quality than bilateral filter. On the other hand,
when we see all graphs, it declines gradually with respect
to noise enhancement σ. From σ = 15 the output PSNR
of the proposed approach is relatively higher than the other
approaches. This implies that the greater is the noise, the less
sensitive is our approach compared with conventional methods.

The log-likelihood ratio test results :

Table III. LLR TEST RESULTS

Case Fig. 8a Fig. 8d
Total regions 5 29
object regions 1 28

log-likelihood ratio -334 403
decision No Yes

Table III illustrates the log-likelihood ratio before and after
applying the pre-processing process. We can see in Table III
that before the pre-processing, the log-likelihood ratio test
value is unable to detect enough objects regions, in order to
predict the existence of the object. The image input is noisy
and the system rejects the possibility of the existence of the
object in the image. However, after pre-processing, the system
can detect more regions, that help the system to give the right
decision. In conclusion, our approach has a good performance
in terms of denoising and enhancement, which permit to the
log-likelihood ratio test to make decisions by estimating the
existence of objects.

IV. CONCLUSION

In this work, we have proposed a new method for underwater
image pre-processing. Than we proposed a Poisson-Gaussian
mixture distribution for the modulation and filtering of the
noise. We strengthen the method by applying a statistical
process based on the calculation of the log-likelihood ratio
and their use as a test for detecting object or non-object in un-
derwater images. The obtained results show that the proposed
method outperforms conventional pre-processing methods.
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