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Department of Mathematics, Laboratory of Pure and Applied Mathematics,

University of Mostaganem (UMAB), Mostaganem, Algeria

belaidi@univ-mosta.dz

Abstract In this paper, we investigate the iterated order of meromorphic solutions of homoge-
neous and non-homogeneous to higher order linear differential equations

f (k) +

k−1∑
j=1

A j f ( j) + A0 f = 0 (k > 2) ,

f (k) +

k−1∑
j=1

A j f ( j) + A0 f = F (k > 2) ,

where A j (z) ( j = 0, 1, · · · , k − 1) and F (z) are meromorphic functions with finite iter-
ated p−order. Under some conditions on the coefficients, we show that all meromorphic
solutions f . 0 of the above equations have an infinite iterated p−order and infinite
iterated lower p−order. Furthermore, we give some estimates of iterated convergence
exponent. We improve the results due to Chen; Shen and Xu; He, Zheng and Hu and
others.

Keywords: linear differential equations, meromorphic functions, iterated order, iterated exponent of
convergence of zeros.
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1. INTRODUCTION

In this paper, we shall assume that the reader is familiar with the fundamental results
and the standard notations of the Nevanlinna’s value distribution theory of meromor-
phic functions (see [11] , [19]). For the definition of the iterated order of a meromor-
phic function, we use the same definition as in [13] ,

[
5, p. 317

]
,
[
15, p. 129

]
.

For all r ∈ R, we define exp1 r := er and expp+1 r := exp
(
expp r

)
, p ∈ N. We

also define for all r sufficiently large log1 r := log r and logp+1 r := log
(
logp r

)
,

p ∈ N. Moreover, we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and
exp−1 r := log1 r.
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Definition 1.1. (see [13] , [15]) Let f be a meromorphic function. Then the iterated
p−order ρp ( f ) of f is defined as

ρp ( f ) = lim sup
r→+∞

logpT (r, f )

log r
(p > 1 is an integer) ,

where T (r, f ) is the Nevanlinna characteristic function of f (see, [11] , [19]) . For
p = 1, this notation is called order and for p = 2 hyper-order.

Definition 1.2. (see [6]) Let f be a meromorphic function. Then the iterated lower
p−order µp ( f ) of f is defined as

µp ( f ) = lim inf
r→+∞

logpT (r, f )

log r
(p > 1 is an integer) .

Definition 1.3. (see [13]) The finiteness degree of the order of a meromorphic func-
tion f is defined as

i ( f ) =


0, for f rational,

min
{
p ∈ N : ρp ( f ) < +∞

}
, for f transcendental for which

some p ∈ N with ρp ( f ) < +∞ exists,
+∞, for f with ρp ( f ) = +∞ for all p ∈ N.

Remark 1.1. Similarly, we can define the finiteness degree of the lower order iµ ( f )
of a meromorphic function f .

Definition 1.4. (see [13]) Let f be a meromorphic function. Then the iterated expo-
nent of convergence of the sequence of zeros of f (z) is defined as

λp ( f ) = lim sup
r→+∞

logp N
(
r, 1

f

)
log r

(p > 1 is an integer) ,

where N
(
r, 1

f

)
is the integrated counting function of zeros of f (z) in {z : |z| 6 r}.

For p = 1, this notation is called exponent of convergence of the sequence of zeros
and for p = 2 hyper-exponent of convergence of the sequence of zeros. Similarly, the
iterated exponent of convergence of the sequence of distinct zeros of f (z) is defined
as

λp ( f ) = lim sup
r→+∞

logp N
(
r, 1

f

)
log r

(p > 1 is an integer) ,

where N
(
r, 1

f

)
is the integrated counting function of distinct zeros of f (z) in {z :

|z| 6 r}. For p = 1, this notation is called exponent of convergence of the sequence of



Iterated order of meromorphic solutions of homogeneous and non-homogeneous... 35

distinct zeros and for p = 2 hyper-exponent of convergence of the sequence of distinct
zeros.

First, we recall the following definitions. The linear measure of a set
E ⊂ [0,+∞) is defined as m (E) =

∫ +∞
0 χE (t) dt and the logarithmic measure of a

set F ⊂ [1,+∞) is defined by lm (F) =
∫ +∞

1
χF (t)

t dt, where χH (t) is the characteristic
function of a set H. The upper density of a set E ⊂ [0,+∞) is defined by

densE = lim sup
r−→+∞

m (E ∩ [0, r])
r

.

Proposition 1.1. For all H ⊂ [1,+∞) the following statements hold :
i) If lm (H) = ∞, then m (H) = ∞;
ii) If densH > 0, then m (H) = ∞;
iii) If log densH > 0, then lm (H) = ∞.

Proof. i) Since we have χH(t)
t 6 χH (t) for all t ∈ H ⊂ [1,+∞) , then

m (H) > lm (H) .

So, if lm (H) = ∞, then m (H) = ∞. We can easily prove the results ii) and iii) by
applying the definition of the limit and the properties m (H ∩ [0, r]) 6 m (H) and
lm (H ∩ [1, r]) 6 lm (H) .

In this paper, we consider for k > 2 the homogeneous and the non-homogeneous
linear differential equations

f (k) +

k−1∑
j=1

A j f ( j) + A0 f = 0, (1.1)

f (k) +

k−1∑
j=1

A j f ( j) + A0 f = F, (1.2)

where A j (z) ( j = 0, 1, · · · , k − 1) and F (z) (A0 . 0 and F . 0) are meromorphic
functions with finite iterated p−order. In [3] , the author extended the results of Kwon
[14] , Chen and Yang [7] from second order to higher order linear differential equa-
tions and obtained the following two results.

Theorem A [3] Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be entire functions such that for real constants α, β, µ,
where 0 6 β < α and µ > 0, we have

|A0 (z)| > eα|z|
µ
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and ∣∣∣A j (z)
∣∣∣ 6 eβ|z|

µ

, j = 1, · · · , k − 1

as z → ∞ for z ∈ H. Then every solution f . 0 of equation (1.1) has infinite order
and ρ2 ( f ) > µ.

Theorem B [3] Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be entire functions with

max{ρ
(
A j

)
: j = 1, · · · , k − 1} 6 ρ (A0) = ρ < +∞

such that for real constants α, β (0 6 β < α) , we have for any given ε > 0

|A0 (z)| > eα|z|
ρ−ε

and ∣∣∣A j (z)
∣∣∣ 6 eβ|z|

ρ−ε
, j = 1, · · · , k − 1

as z → ∞ for z ∈ H. Then every solution f . 0 of equation (1.1) has infinite order
and ρ2 ( f ) = ρ (A0) .

In [8] , Chen improved the previous results in [7, 14] by studying the zeros and the
growth of meromorphic solutions of the homogeneous and the non-homogeneous
equations f ′′ + A (z) f ′ + B (z) f = 0, f ′′ + A (z) f ′ + B (z) f = F when A (z) , B (z) ,
F (z) are meromorphic functions. In [16], Shen and Xu extended and genralized the
results of Chen [8] to higher order linear differential equations with meromorphic
coefficients. Recently, He, Zheng and Hu improved and extended the above results
from usual order to iterated order as follows.

Theorem C [12] Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0 (z) , · · · , Ak−1 (z) be meromorphic functions of finite iterated p−order such
that for real constants α2 > α1 > 0 and µ > 0, we have

|A0 (z)| > expp
{
α2 |z|µ

}
and ∣∣∣A j (z)

∣∣∣ 6 expp
{
α1 |z|µ

}
, j = 1, · · · , k − 1

as z → ∞ for z ∈ H. If the equation (1.1) have meromorphic solutions, then every
meromorphic solution f . 0 satisfies ρp+1 ( f ) > µ.

Furthermore, if max
{∣∣∣A j (z)

∣∣∣ : j = 0, · · · , k − 1
}
6 expp {β |z|µ}as z → 0, where

β > 0 is a constant, then every meromorphic solution f . 0 with λp
(

1
f

)
< µp ( f )

satisfies i( f ) = p + 1 and ρp+1 ( f ) = µ.
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Theorem D [12] Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and F (z) . 0 be a meromorphic function with |F (z)| 6 expq{α |z|µ} as z → ∞ or
ρq (F) ≤ µ (0 < q 6 p < ∞). Let A0 (z) , · · · , Ak−1 (z) be meromorphic functions of
finite iterated p−order satisfying the following conditions:
(i) for real constants α2 > α1 > 0 and µ > 0, we have

|A0 (z)| > expp
{
α2 |z|µ

}
and ∣∣∣A j (z)

∣∣∣ 6 expp
{
α1 |z|µ

}
, j = 1, · · · , k − 1

as z→ ∞ for z ∈ H;
(ii) max

{∣∣∣A j (z)
∣∣∣ : j = 0, · · · , k − 1

}
6 expp {β |z|µ} as z → ∞, where β > 0 is a con-

stant.
If the equation (1.2) have meromorphic solutions, then every meromorphic solution
f . 0 with λp

(
1
f

)
< µp ( f ) satisfies i( f ) = p + 1 and ρp+1 ( f ) = µ, with at most one

exceptional solution f0 (z) with i( f0) < p + 1 or ρp+1 ( f0) < µ.

The remainder of the paper is organized as follows. In Section 2, we shall show our
main results which improve and extend many results in the above-mentioned papers.
Section 3 is for some lemmas and basic theorems. The last sections are for the proofs
of our main results.

2. MAIN RESULTS

In the present paper, we investigate the zeros and growth of meromorphic solutions
of equations (1.1) and (1.2). We improve the results due to Chen; Shen and Xu; He,
Zheng and Hu. The present article may be understood as an extension and improve-
ment of the recent article of Andasmas and the author [1] from usual order to iterated
p−order. In fact we will prove the following results.

Theorem 2.1. Let H ⊂ [0,+∞) be a set with a positive upper density, and let
A j (z) ( j = 0, 1, · · · , k − 1) be meromorphic functions with finite iterated p−order.
If there exist positive constants σ > 0, α > 0 such that ρ = max{ρp

(
A j

)
: j =

1, 2, · · · , k − 1} < σ and |A0 (z)| > expp {αrσ} as |z| = r ∈ H, r → +∞, then every
meromorphic solution f . 0 of equation (1.1) satisfies

µp ( f ) = ρp ( f ) = ∞, ρp+1 ( f ) > σ.

Furthermore, if λp
(

1
f

)
< ∞, then i( f ) = p + 1 and

σ 6 ρp+1 ( f ) 6 ρp (A0) .



38 Benharrat Beläıdi

Theorem 2.2. Let H ⊂ [0,+∞) be a set with a positive upper density, and let
A j (z) ( j = 0, 1, · · · , k − 1) and F (z) . 0 be meromorphic functions with finite it-
erated p−order. If there exist positive constants σ > 0, α > 0 such that ρ =
max

{
ρp

(
A j

)
( j = 1, 2, · · · , k − 1) , ρp (F)

}
< σ and |A0 (z)| > expp {αrσ} as |z| = r ∈

H, r → +∞, then every meromorphic solution f with λp
(

1
f

)
< σ of equation (1.2)

satisfies

λp ( f ) = λp ( f ) = ρp ( f ) = ∞, λp+1 ( f ) = λp+1 ( f ) = ρp+1 ( f ) .

Furthermore, if λp
(

1
f

)
< min

{
µp ( f ) , σ

}
, then i( f ) = p + 1 and

λp+1 ( f ) = λp+1 ( f ) = ρp+1 ( f ) 6 ρp (A0) .

Remark 2.1. It is clear that ρp (A0) = β > σ in Theorems 2.1 and 2.2. Indeed,
suppose that ρp (A0) = β < σ. Then, by using Lemma 3.4 of this paper, there exists a
set E3 ⊂ (1,+∞) that has finite linear measure such that when |z| = r < E3, we have
for any given ε (0 < ε < σ − β)

|A0 (z)| 6 expp

{
rβ+ε

}
. (2.1)

On the other hand, by the hypotheses of Theorems 2.1 and 2.2, there exist positive
constants σ > 0, α > 0 such that

|A0 (z)| > expp
{
αrσ

}
(2.2)

as |z| = r ∈ H, r → +∞, where H ⊂ [0,+∞) is a set with a positive upper density
(and so with infinite linear measure m (H) = ∞). From (2.1) and (2.2) , we obtain for
|z| = r ∈ H\E3, r → +∞

expp
{
αrσ

}
6 |A0 (z)| 6 expp

{
rβ+ε

}
and by ε (0 < ε < σ − β) this is a contradiction as r → +∞. Hence ρp (A0) = β > σ.

3. LEMMAS FOR THE PROOFS OF THE
THEOREMS

Lemma 3.1. ([9]) Let f (z) be a transcendental meromorphic function, and let α > 1,
ε > 0 be given constants. Then there exists a set E1 ⊂ [0,∞) that has finite linear
measure and there exists a constant c > 0, such that for all z satisfying |z| = r < E1,
we have ∣∣∣∣∣∣ f ( j) (z)

f (z)

∣∣∣∣∣∣ 6 c
[
T (αr, f ) rε log T (αr, f )

] j ( j ∈ N) .

Let g (z) =
∞∑

n=0
an zn be an entire function. We define by µ (r) = max{|an| rn; n =

0, 1, · · · } the maximum term of g, and define by νg (r) = max{m; µ (r) = |am| rm} the
central index of g.
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Lemma 3.2. [6] Let p, q > 1 be integers and let f (z) be an entire function with
i ( f ) = p + 1, ρp+1 ( f ) = ρ, iµ ( f ) = q + 1 and µq+1 ( f ) = µ. Let ν f (r) be the central
index of f (z) . Then

lim sup
r→+∞

logp+1 ν f (r)

log r
= ρ

and

lim inf
r→+∞

logq+1 ν f (r)

log r
= µ.

By using similar proof of Lemma 3.5 in [17] , we can easily extend it to the case
ρp (g) = ρp ( f ) = +∞.

Lemma 3.3. Let p > 1 be an integer and let f (z) = g(z)
d(z) be a meromorphic function,

where g (z) and d (z) are entire function satisfying µp (g) = µp ( f ) 6 ρp (g) = ρp ( f ) 6
+∞, i (d) < p or i (d) = p and ρp (d) = β < µp ( f ). Let νg (r) be the central index of
g. Then there exists a set E2 of finite logarithmic measure such that the estimation

f ( j)(z)
f (z)

=

(
νg (r)

z

) j

(1 + o (1)) ( j ∈ N)

holds for all |z| = r < E2 and |g (z)| = M (r, g) .

Lemma 3.4. [18] Let p > 1 be an integer. Suppose that f (z) is a meromorphic
function such that i ( f ) = p, ρp ( f ) = ρ < +∞. Then, there exist entire functions
π1 (z) , π2 (z) and D (z) such that

f (z) =
π1 (z) eD(z)

π2 (z)
and ρp ( f ) = max

{
ρp (π1) , ρp (π2) , ρp

(
eD(z)

)}
.

Moreover, for any given ε > 0, we have

exp
{
− expp−1

{
rρ+ε

}}
6 | f (z)| 6 expp

{
rρ+ε

}
(r < E3) ,

where E3 ⊂ (1,+∞) is a set of r of finite linear measure.

To avoid some problems caused by the exceptional set, we recall the following
lemmas.

Lemma 3.5. [2] Let g : [0,+∞) → R and h : [0,+∞) → R be monotone non-
decreasing functions such that g (r) 6 h (r) outside of an exceptional set E4 of finite
linear measure. Then for any λ > 1, there exists r0 > 0 such that g (r) 6 h (λr) for all
r > r0.
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Lemma 3.6. [10] Let φ : [0,+∞) → R and ψ : [0,+∞) → R be monotone non-
decreasing functions such that φ (r) 6 ψ (r) for all r < E5∪[0, 1], where E5 ⊂ (1,+∞)
is a set of finite logarithmic measure. Let α > 1 be a given constant. Then there exists
an r1 = r1 (α) > 0 such that φ (r) 6 ψ (αr) for all r > r1.

Lemma 3.7. Assume that k > 2 and A0, A1, · · · , Ak−1 (A0 . 0), F are meromorphic
functions. Let ρ = max{ρp

(
A j

)
( j = 0, 1, · · · , k − 1) , ρp (F)} < ∞ and let f be a

meromorphic solution of infinite iterated p−order of equation (1.2) with λp
(

1
f

)
<

µp ( f ). Then ρp+1 ( f ) 6 ρ.

Proof. We assume that f is a meromorphic solution of infinite iterated p−order
ρp ( f ) = ∞ of equation (1.2). We can rewrite (1.2) as∣∣∣∣∣∣ f (k)

f

∣∣∣∣∣∣ 6 |A0| +
k−1∑
j=1

∣∣∣A j
∣∣∣ ∣∣∣∣∣∣ f ( j)

f

∣∣∣∣∣∣ +
∣∣∣∣∣Ff

∣∣∣∣∣ . (3.1)

By Hadamard factorization theorem, we can write f as f (z) = g(z)
d(z) , where g(z) and

d(z) are entire functions such that µp (g) = µp ( f ) 6 ρp (g) = ρp ( f ) = +∞, i (d) < p
or i (d) = p and ρp (d) = λp (d) = λp

(
1
f

)
< µp ( f ). By Lemma 3.3, there exists

a set E2 ⊂ (1,+∞) with finite logarithmic measure, such that for all z satisfying
|z| = r < [0, 1] ∪ E2 at which |g(z)| = M(r, g), we have

f ( j)(z)
f (z)

=

(
νg(r)

z

) j

(1 + o(1)) ( j > 1). (3.2)

By Lemma 3.4, for any given ε
(
0 < ε <

µp( f )−ρp(d)
2

)
, there exists a set E3 ⊂ (1,+∞)

with finite linear measure (and so with finite logarithmic measure) such that for all z
satisfying |z| = r < E3, we have∣∣∣A j (z)

∣∣∣ 6 expp
{
rρ+ε

}
( j = 0, · · · , k − 1) , |F (z)| 6 expp

{
rρ+ε

}
. (3.3)

It follows that for all z satisfying |z| = r < E3 at which |g (z)| = M (r, g) , we have for

any given ε
(
0 < ε <

µp( f )−ρp(d)
2

)
∣∣∣∣∣F (z)

f (z)

∣∣∣∣∣ = ∣∣∣∣∣d (z) F (z)
g (z)

∣∣∣∣∣ 6 expp

{
rρp(d)+ε

}
expp

{
rρ+ε

}
expp

{
rµp( f )−ε

} 6 expp
{
rρ+ε

}
. (3.4)

Substituting (3.2) , (3.3) and (3.4) into (3.1), we obtain for all z satisfying |z| = r <
[0, 1] ∪ E2 ∪ E3 at which |g(z)| = M(r, g),∣∣∣∣∣∣νg(r)

z

∣∣∣∣∣∣k |1 + o(1)| 6 expp
{
rρ+ε

}



Iterated order of meromorphic solutions of homogeneous and non-homogeneous... 41

+

k−1∑
j=1

expp
{
rρ+ε

} ∣∣∣∣∣∣νg(r)
z

∣∣∣∣∣∣ j

|1 + o(1)| + expp
{
rρ+ε

}
.

So, we get ∣∣∣νg(r)
∣∣∣k |1 + o(1)| 6 (k + 1) rk expp

{
rρ+ε

} ∣∣∣νg(r)
∣∣∣k−1 |1 + o(1)| . (3.5)

Then, by Lemma 3.6 and Lemma 3.2, we obtain from (3.5) that ρp+1(g) = ρp+1( f ) 6

ρ + ε. Since ε
(
0 < ε <

µp( f )−ρp(d)
2

)
being arbitrary, then we get ρp+1( f ) 6 ρ.

Lemma 3.8. Let H ⊂ [0,+∞) be a set with a positive upper density (or of infinite
linear measure), and let A j (z) ( j = 0, 1, · · · , k − 1) (A0 . 0), F (z) be meromorphic
functions with finite iterated p− order.

If there exist positive constants σ > 0, α > 0 such that |A0 (z)| > expp {αrσ} as
|z| = r ∈ H, r → +∞, and ρ = max

{
ρp

(
A j

)
( j = 1, 2, · · · , k − 1) , ρp (F)

}
< σ, then

every meromorphic solution f . 0 of equation (1.2) is transcendental and satisfies
ρp ( f ) > σ.

Proof. Assume that f . 0 is a meromorphic solution of (1.2) with ρp ( f ) < σ. It
follows from (1.2) that

F
f
− f (k)

f
−

k−1∑
j=1

A j
f ( j)

f
= A0. (3.6)

Since ρp

(
A j

)
< σ ( j = 1, 2, · · · , k − 1) , ρp (F) < σ and ρp ( f ) < σ, then from (3.6)

we obtain that the iterated p−order of A0 is ρ1 = ρp (A0) 6 max
{
ρ, ρp ( f )

}
< σ. By

Lemma 3.4, for any ε
(
0 < ε < σ − ρ1

)
there exists a set E3 ⊂ (1,+∞) with a finite

linear measure such that
|A0 (z)| 6 expp

{
rρ1+ε

}
(3.7)

holds for all z satisfying |z| = r < E3. From the hypotheses of Lemma 3.8, there exists
a set H with densH > 0 (or m (H) = ∞), and there exist positive constants σ > 0,
α > 0 such that

|A0 (z)| > expp
{
αrσ

}
(3.8)

holds for all z satisfying |z| = r ∈ H, r → +∞. By (3.7) and (3.8), we conclude that
for all z satisfying |z| = r ∈ H\E3, r → +∞, we have

expp
{
αrσ

}
6 expp

{
rρ1+ε

}
and by ε

(
0 < ε < σ − ρ1

)
this is a contradiction as r → +∞. Consequently, any

meromorphic solution f . 0 of equation (1.2) is transcendental and satisfies ρp ( f ) >
σ.
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Lemma 3.9. Let g (z) be a nonconstant entire function of finite iterated p−order.
Then for any given ε > 0, there exists a set H1 ⊂ [0,+∞) with densH1 = 1 such that

M (r, g) > expp

{
rρp(g)−ε}

for all z satisfying |z| = r ∈ H1.

Proof. When p = 1, the lemma is due to Kwon in [14] . Thus we assume that p > 2.
Set α = ρp (g) − ε and β = ρp (g) − ε

2 . Then there is a sequence {rn} of real numbers
for which we have (rn)

ε
2 > nα and

M (rn, g) > expp

{
rβn

}
.

Therefore

M (rn, g) > expp

{
rβn

}
= expp

{
(rn)

ε
2 r

β− ε2
n

}
> expp

{
(nrn)α

}
(3.9)

for all n ∈ N. By (3.9) for any r ∈ [rn, nrn] , we obtain

M (r, g) > M (rn, g) > M
( r
n
, g

)
> expp

{
rα

}
.

Set H1 =
∞
∪

n=1
[rn, nrn] . Now, we take a sequence {Rn} such that nrn

2 6 Rn 6 nrn, then

densH1 = lim sup
r−→+∞

m (H1 ∩ [0, r])
r

> lim sup
n−→+∞

m ([rn, nrn] ∩ [0,Rn])
Rn

> lim sup
n−→+∞

Rn − 2Rn
n

Rn
= lim sup

n−→+∞

(
1 − 2

n

)
= 1.

By definition we have 0 6 densH1 6 1. Hence densH1 = 1.

Lemma 3.10. ([4]) Let A0, A1, · · · , Ak−1, F . 0 be finite iterated p−order meromor-
phic functions.

If f is a meromorphic solution with ρp ( f ) = +∞ and ρp+1 ( f ) = ρ < +∞ of
equation (1.2) , then λp ( f ) = λp ( f ) = ρp ( f ) = +∞ and λp+1 ( f ) = λp+1 ( f ) =
ρp+1 ( f ) = ρ.

4. PROOF OF THEOREM 2.1

Let f . 0 be a meromorphic solution of (1.1). It follows from (1.1) that

|A0| 6
∣∣∣∣∣∣ f (k)

f

∣∣∣∣∣∣ + k−1∑
j=1

∣∣∣A j
∣∣∣ ∣∣∣∣∣∣ f ( j)

f

∣∣∣∣∣∣ . (4.1)



Iterated order of meromorphic solutions of homogeneous and non-homogeneous... 43

By Lemma 3.8, we know that f is transcendental. By using Lemma 3.1, there is a set
E1 ⊂ (0,+∞) having finite linear measure such that for all z satisfying |z| = r < E1,
we have ∣∣∣∣∣∣ f ( j) (z)

f (z)

∣∣∣∣∣∣ 6 r
[
T (2r, f )

]2k ( j = 1, 2, · · · , k) . (4.2)

By Lemma 3.4, for any given ε (0 < ε < σ − ρ) there exists a set E3 ⊂ (1,+∞) with
finite linear measure such that∣∣∣A j (z)

∣∣∣ 6 expp
{
rρ+ε

}
, j = 1, 2, · · · , k − 1 (4.3)

holds for all z satisfying |z| = r < E3. Also, by the hypotheses of Theorem 2.1, there
exists a set H ⊂ [0,+∞) with m (H) = ∞, such that for all z satisfying |z| = r ∈ H,
r → +∞, we have

|A0 (z)| > expp
{
αrσ

}
. (4.4)

Hence it follows from (4.1), (4.2), (4.3) and (4.4) that for all z satisfying
|z| = r ∈ H\ (E1 ∪ E3) , r → +∞, we have

expp
{
αrσ

}
6 r

[
T (2r, f )

]2k
+

k−1∑
j=1

expp
{
rρ+ε

}
r
[
T (2r, f )

]2k

6 kr expp
{
rρ+ε

} [
T (2r, f )

]2k . (4.5)

By 0 < ε < σ − ρ, it follows from Lemma 3.5 and (4.5) that

µp ( f ) = ρp ( f ) = ∞ and ρp+1 ( f ) > σ. (4.6)

Furthermore, if λp(1/ f ) < ∞, then f is a meromorphic solution of (1.1) with
ρp ( f ) = µp ( f ) = ∞, λp

(
1
f

)
< µp ( f ) and by Remark 2.1, we have

max{ρp

(
A j

)
: j = 0, · · · , k − 1} = ρp (A0) = β < ∞. Thus, by Lemma 3.7, we get

ρp+1( f ) 6 ρp (A0) . (4.7)

By (4.6) and (4.7), we conclude that µp ( f ) = ρp ( f ) = ∞ andσ 6 ρp+1 ( f ) 6 ρp (A0) .

5. PROOF OF THEOREM 2.2

Let f be a meromorphic solution of (1.2). Assume that ρp ( f ) < ∞. It follows from
(1.2) that

|A0| 6
∣∣∣∣∣∣ f (k)

f

∣∣∣∣∣∣ + k−1∑
j=1

∣∣∣A j
∣∣∣ ∣∣∣∣∣∣ f ( j)

f

∣∣∣∣∣∣ +
∣∣∣∣∣Ff

∣∣∣∣∣ . (5.1)

By Lemma 3.8, we know that f is transcendental with ρp ( f ) > σ. By the hypothesis
λp

(
1
f

)
< σ and Hadamard factorization theorem, we can write f as f (z) = g(z)

d(z) , where
g(z) and d(z) are entire functions with

λp(d) = ρp(d) = λp(1/ f ) < σ,
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ρp( f ) = ρp(g) > σ. By Lemma 3.9, for any given ε
(
0 < ε < ρp (g)

)
, there exists a

set H1 ⊂ [0,+∞) with densH1 = 1 such that

M (r, g) > expp

{
rρp(g)−ε} (5.2)

holds for all z satisfying |z| = r ∈ H1. We have

ρ = max{ρp

(
A j

)
( j = 1, 2, · · · , k − 1), ρp (F)} < σ.

Then by Lemma 3.4, we have by using (5.2) for any given ε
(0 < ε < min{σ − ρ, ρp(g)−ρp(d)

2 }), there exists a set E3 ⊂ (1,+∞) with finite linear
measure such that for all z satisfying |z| = r ∈ H1\E3 at which |g (z)| = M (r, g) ,∣∣∣∣∣F (z)

f (z)

∣∣∣∣∣ = ∣∣∣∣∣d (z) F (z)
g (z)

∣∣∣∣∣ 6 expp

{
rρp(d)+ε

}
expp

{
rρ+ε

}
expp

{
rρp(g)−ε

} 6 expp
{
rρ+ε

}
. (5.3)

By using similar arguments as in the proof of Theorem 2.1, for any given ε(
0 < ε < min

{
σ − ρ, ρp(g)−ρp(d)

2

})
, there exists a set H2 = H ∩ H1 ⊂ [0,+∞) with

positive upper density such that for all z satisfying |z| = r ∈ H2\(E1 ∪ E3), r → +∞,
at which |g (z)| = M (r, g) , we have∣∣∣∣∣∣ f ( j) (z)

f (z)

∣∣∣∣∣∣ 6 r
[
T (2r, f )

]2k ( j = 1, 2, · · · , k) , (5.4)

∣∣∣∣∣F (z)
f (z)

∣∣∣∣∣ 6 expp
{
rρ+ε

}
, (5.5)∣∣∣A j (z)

∣∣∣ 6 expp
{
rρ+ε

}
( j = 1, 2, · · · , k − 1) , (5.6)

|A0 (z)| > expp
{
αrσ

}
. (5.7)

Substituting (5.4), (5.5), (5.6) and (5.7) into (5.1) , we obtain for all z satisfying
|z| = r ∈ H2\ (E1 ∪ E3) , r → +∞, at which |g (z)| = M (r, g) , that for any given

ε
(
0 < ε < min

{
σ − ρ, ρp(g)−ρp(d)

2

})
expp

{
αrσ

}
6 r

[
T (2r, f )

]2k
+

k−1∑
j=1

expp
{
rρ+ε

}
r
[
T (2r, f )

]2k
+ expp

{
rρ+ε

}
6 (k + 1) r

[
T (2r, f )

]2k expp
{
rρ+ε

}
. (5.8)

Hence by (5.8), we have ρp ( f ) = ∞. This is a contradiction which means that the
assumption of ρp ( f ) < ∞ is not true. Hence, we conclude that ρp ( f ) = ∞. Since
F . 0, then by Lemma 3.10, we obtain

λp ( f ) = λp ( f ) = ρp ( f ) = +∞ and λp+1 ( f ) = λp+1 ( f ) = ρp+1 ( f ) . (5.9)
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Furthermore, if λp
(

1
f

)
< min

{
µp ( f ) , σ

}
, then f is a meromorphic solution of (1.2)

with ρp ( f ) = ∞, λp
(

1
f

)
< µp ( f ) and by Remark 2.1, we have

max{ρp

(
A j

)
( j = 0, 1, · · · , k − 1), ρp (F)} = ρp (A0) = β < ∞.

Therefore, by Lemma 3.7, we get

ρp+1( f ) 6 ρp (A0) . (5.10)

By (5.9) and (5.10), we conclude that

λp ( f ) = λp ( f ) = ρp ( f ) = +∞ and λp+1 ( f ) = λp+1 ( f ) = ρp+1 ( f ) 6 ρp (A0) .
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