PROPERTIES OF MEROMORPHIC SOLUTIONS OF A CLASS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

BENHARRAT BELAÏDI* AND HABIB HABIB

Abstract

This paper deals with the growth of meromorphic solutions of some second order linear differential equations, where it is assumed that the coefficients are meromorphic functions. Our results extend the previous results due to Chen and Shon, Xu and Zhang, Peng and Chen and others.

1. Introduction and statement of result

In this paper, we shall assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distribution theory of meromorphic functions (see [13], [20]). In addition, we will use notations $\rho(f)$, $\rho_{2}(f)$ to denote respectively the order and the hyper-order of growth of a meromorphic function $f(z)$.

For the second order linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0 \tag{1.1}
\end{equation*}
$$

where $B(z)$ is an entire function, it is well-known that each solution f of equation (1.1) is an entire function, and that if f_{1} and f_{2} are two linearly independent solutions of (1.1), then by [7], there is at least one of f_{1}, f_{2} of infinite order. Hence, "most" solutions of (1.1) will have infinite order. But equation (1.1) with $B(z)=-\left(1+e^{-z}\right)$ possesses a solution $f(z)=e^{z}$ of finite order.

A natural question arises: What conditions on $B(z)$ will guarantee that every solution $f \not \equiv 0$ of (1.1) has infinite order? Many authors, Frei [8], Ozawa [16], Amemiya-Ozawa [1] and Gundersen [10], Langley [14] have studied this problem. They proved that when $B(z)$ is a nonconstant polynomial or $B(z)$ is a transcendental entire function with order $\rho(B) \neq 1$, then every solution $f \not \equiv 0$ of (1.1) has infinite order.

In 2002, Chen [3] considered the question: What conditions on $B(z)$ when $\rho(B)$ $=1$ will guarantee that every nontrivial solution of (1.1) has infinite order? He proved the following result, which improved results of Frei, Amemiya-Ozawa, Ozawa, Langley and Gundersen.

[^0]Theorem A [3] Let $A_{j}(z)(\not \equiv 0)(j=0,1)$ be entire functions with $\max \left\{\rho\left(A_{j}\right)\right.$ $(j=0,1)\}<1$, and let a, b be complex constants that satisfy $a b \neq 0$ and $a \neq b$. Then every solution $f \not \equiv 0$ of the differential equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1}(z) e^{a z} f^{\prime}+A_{0}(z) e^{b z} f=0 \tag{1.2}
\end{equation*}
$$

is of infinite order.
In [4], Chen and Shon have considered equation (1.2) when $A_{j}(z)(j=0,1)$ are meromorphic functions and have proved the following result.

Theorem B ([4]) Let $A_{j}(z)(\not \equiv 0)(j=0,1)$ be meromorphic functions with $\rho\left(A_{j}\right)<$ $1(j=0,1)$, and let a, b be complex numbers such that $a b \neq 0$ and $\arg a \neq \arg b$ or $a=c b(0<c<1)$. Then every meromorphic solution $f(z) \not \equiv 0$ of equation (1.2) has infinite order.

In [17], Peng and Chen have investigated the order and hyper-order of solutions of some second order linear differential equations and have proved the following result.

Theorem C [17] Let $A_{j}(z)(\not \equiv 0)(j=1,2)$ be entire functions with $\rho\left(A_{j}\right)<1$, a_{1}, a_{2} be complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leq\left|a_{2}\right|$). If $\arg a_{1} \neq \pi$ or $a_{1}<-1$, then every solution $f(\not \equiv 0)$ of the differential equation

$$
f^{\prime \prime}+e^{-z} f^{\prime}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0
$$

has infinite order and $\rho_{2}(f)=1$.
Recently in [2], the authors extend and improve the results of Theorem C to some second order linear differential equations as follows.

Theorem D [2] Let $n \geq 2$ be an integer, $A_{j}(z)(\not \equiv 0)(j=1,2)$ be entire functions with $\max \left\{\rho\left(A_{j}\right): j=1,2\right\}<1, Q(z)=q_{m} z^{m}+\cdots+q_{1} z+q_{0}$ be nonconstant polynomial and a_{1}, a_{2} be complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$. If (1) $\arg a_{1} \neq \pi$ and $\arg a_{1} \neq \arg a_{2}$ or (2) $\arg a_{1} \neq \pi$, $\arg a_{1}=\arg a_{2}$ and $\left|a_{2}\right|>n\left|a_{1}\right|$ or (3) $a_{1}<0$ and $\arg a_{1} \neq \arg a_{2}$ or (4) $-\frac{1}{n}\left(\left|a_{2}\right|-m\right)<a_{1}<0,\left|a_{2}\right|>m$ and $\arg a_{1}=\arg a_{2}$, then every solution $f \not \equiv 0$ of the differential equation

$$
f^{\prime \prime}+Q\left(e^{-z}\right) f^{\prime}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right)^{n} f=0
$$

satisfies $\rho(f)=+\infty$ and $\rho_{2}(f)=1$.
Recently Xu and Zhang have investigated the order and the hyper-order of meromorphic solutions of some second order linear differential equations and have proved the following result.

Theorem E [19] Suppose that $A_{j}(z)(\not \equiv 0)(j=0,1,2)$ are meromorphic functions and $\rho\left(A_{j}\right)<1$, and a_{1}, a_{2} are two complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leq\left|a_{2}\right|$). Let a_{0} be a constant satisfying $a_{0}<0$. If $\arg a_{1} \neq \pi$ or $a_{1}<a_{0}$, then every meromorphic solution $f(\not \equiv 0)$ whose poles are of uniformly bounded multiplicities of the equation

$$
f^{\prime \prime}+A_{0} e^{a_{0} z} f^{\prime}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0
$$

has infinite order and $\rho_{2}(f)=1$.
The main purpose of this paper is to extend and improve the results of Theorems A-E to some second order linear differential equations. In fact we will prove the following result.

Theorem 1.1 Let $A_{j}(z)(\not \equiv 0)\left(j=1, \cdots, l_{1}\right)\left(l_{1} \geq 3\right)$ and $B_{j}(z)(\not \equiv 0)\left(j=1, \cdots, l_{2}\right)$ $\left(l_{2} \geq 1\right)$ be meromorphic functions with

$$
\max \left\{\rho\left(A_{j}\right) \quad\left(j=1, \cdots, l_{1}\right), \rho\left(B_{j}\right) \quad\left(j=1, \cdots, l_{2}\right)\right\}<1
$$

and $a_{j} \neq 0\left(j=1, \cdots, l_{1}\right)$ be distinct complex numbers and $b_{j}\left(j=1, \cdots, l_{2}\right)$ be distinct real numbers such that $b_{j}<0$. Suppose that there exist $\alpha_{j}, \beta_{j}\left(j=3, \cdots, l_{1}\right)$ where $0<\alpha_{j}<1,0<\beta_{j}<1$ and $a_{j}=\alpha_{j} a_{1}+\beta_{j} a_{2}$. Set $\alpha=\max \left\{\alpha_{j}: j=\right.$ $\left.3, \cdots, l_{1}\right\}, \beta=\max \left\{\beta_{j}: j=3, \cdots, l_{1}\right\}$ and $b=\min \left\{b_{j}: j=1, \cdots, l_{2}\right\}$. If
(1) $\arg a_{1} \neq \pi$ and $\arg a_{1} \neq \arg a_{2}$
or
(2) $\arg a_{1} \neq \pi, \arg a_{1}=\arg a_{2}$ and (i) $\left|a_{2}\right|>\frac{\left|a_{1}\right|}{1-\beta}$ or (ii) $\left|a_{2}\right|<(1-\alpha)\left|a_{1}\right|$
or
(3) $a_{1}<0$ and $\arg a_{1} \neq \arg a_{2}$
or
(4) (i) $(1-\beta) a_{2}-b<a_{1}<0, a_{2}<\frac{b}{1-\beta}$ or (ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$, then every meromorphic solution $f(\not \equiv 0)$ whose poles are of uniformly bounded multiplicities of the differential equation

$$
\begin{equation*}
f^{\prime \prime}+\left(\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right) f^{\prime}+\left(\sum_{j=1}^{l_{1}} A_{j} e^{a_{j} z}\right) f=0 \tag{1.3}
\end{equation*}
$$

satisfies $\rho(f)=+\infty$ and $\rho_{2}(f)=1$.

2. Preliminary lemmas

We define the linear measure of a set $E \subset[0,+\infty)$ by $m(E)=\int_{0}^{+\infty} \chi_{E}(t) d t$ and the logarithmic measure of a set $F \subset(1,+\infty)$ by $\operatorname{lm}(F)=\int_{1}^{+\infty} \frac{\chi_{F}(t)}{t} d t$, where χ_{H} is the characteristic function of a set H.

Lemma 2.1 [11] Let f be a transcendental meromorphic function with $\rho(f)=\rho<$ $+\infty$. Let $\varepsilon>0$ be a given constant, and let k, j be integers satisfying $k>j \geq 0$. Then, there exists a set $E_{1} \subset\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ with linear measure zero, such that, if $\psi \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash E_{1}$, then there is a constant $R_{0}=R_{0}(\psi)>1$, such that for all z satisfying $\arg z=\psi$ and $|z| \geq R_{0}$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\rho-1+\varepsilon)} \tag{2.1}
\end{equation*}
$$

Lemma 2.2 ([4], [15]) Consider $g(z)=A(z) e^{a z}$, where $A(z) \not \equiv 0$ is a meromorphic function with order $\rho(A)=\alpha<1$, a is a complex constant, $a=|a| e^{i \varphi}$ $(\varphi \in[0,2 \pi))$. Set $E_{2}=\{\theta \in[0,2 \pi): \cos (\varphi+\theta)=0\}$, then E_{2} is a finite set. Then for any given $\varepsilon(0<\varepsilon<1-\alpha)$ there is a set $E_{3} \subset[0,2 \pi)$ that has linear measure zero such that if $z=r e^{i \theta}, \theta \in[0,2 \pi) \backslash\left(E_{2} \cup E_{3}\right)$, then we have when r is sufficiently large:
(i) If $\cos (\varphi+\theta)>0$, then

$$
\begin{equation*}
\exp \{(1-\varepsilon) r \delta(a z, \theta)\} \leq|g(z)| \leq \exp \{(1+\varepsilon) r \delta(a z, \theta)\} \tag{2.2}
\end{equation*}
$$

(ii) If $\cos (\varphi+\theta)<0$, then

$$
\begin{equation*}
\exp \{(1+\varepsilon) r \delta(a z, \theta)\} \leq|g(z)| \leq \exp \{(1-\varepsilon) r \delta(a z, \theta)\} \tag{2.3}
\end{equation*}
$$

where $\delta(a z, \theta)=|a| \cos (\varphi+\theta)$.
Lemma 2.3 [17] Suppose that $n \geq 1$ is a natural number. Let $P_{j}(z)=a_{j n} z^{n}+$ $\cdots(j=1,2)$ be nonconstant polynomials, where $a_{j q}(q=1, \cdots, n)$ are complex numbers and $a_{1 n} a_{2 n} \neq 0$. Set $z=r e^{i \theta}, a_{j n}=\left|a_{j n}\right| e^{i \theta_{j}}, \theta_{j} \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right), \delta\left(P_{j}, \theta\right)=$ $\left|a_{j n}\right| \cos \left(\theta_{j}+n \theta\right)$, then there is a set $E_{4} \subset\left[-\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right)$ that has linear measure zero such that if $\theta_{1} \neq \theta_{2}$, then there exists a ray $\arg z=\theta$ with $\theta \in\left(-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right) \backslash\left(E_{4} \cup E_{5}\right)$ satisfying either

$$
\begin{equation*}
\delta\left(P_{1}, \theta\right)>0, \delta\left(P_{2}, \theta\right)<0 \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta\left(P_{1}, \theta\right)<0, \delta\left(P_{2}, \theta\right)>0 \tag{2.5}
\end{equation*}
$$

where $E_{5}=\left\{\theta \in\left[-\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right): \delta\left(P_{j}, \theta\right)=0\right\}$ is a finite set, which has linear measure zero.

Remark 2.1 [17] We can obtain, in Lemma 2.3, if $\theta \in\left(-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right) \backslash\left(E_{4} \cup E_{5}\right)$ is replaced by $\theta \in\left(\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right) \backslash\left(E_{4} \cup E_{5}\right)$, then it has the same result.

Lemma 2.4 [4] Let $f(z)$ be a transcendental meromorphic function of order $\rho(f)=\alpha<+\infty$. Then for any given $\varepsilon>0$, there is a set $E_{6} \subset\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ that has linear measure zero such that if $\theta \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash E_{6}$, then there is a constant $R_{1}=R_{1}(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z| \geq R_{1}$, we have

$$
\begin{equation*}
\exp \left\{-r^{\alpha+\varepsilon}\right\} \leq|f(z)| \leq \exp \left\{r^{\alpha+\varepsilon}\right\} \tag{2.6}
\end{equation*}
$$

Lemma 2.5 [11] Let $f(z)$ be a transcendental meromorphic function, and let $\alpha>1$ be a given constant. Then there exist a set $E_{7} \subset(1, \infty)$ with finite logarithmic measure and a constant $B>0$ that depends only on α and $i, j(0 \leq i<j \leq k)$, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{7}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leq B\left\{\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right\}^{j-i} \tag{2.7}
\end{equation*}
$$

Lemma $2.6[12]$ Let $\varphi:[0,+\infty) \rightarrow \mathbb{R}$ and $\psi:[0,+\infty) \rightarrow \mathbb{R}$ be monotone nondecreasing functions such that $\varphi(r) \leq \psi(r)$ for all $r \notin E_{8} \cup[0,1]$, where $E_{8} \subset$ $(1,+\infty)$ is a set of finite logarithmic measure. Let $\gamma>1$ be a given constant. Then there exists an $r_{1}=r_{1}(\gamma)>0$ such that $\varphi(r) \leq \psi(\gamma r)$ for all $r>r_{1}$.

Lemma 2.7 [5] Let $k \geq 2$ and $A_{0}, A_{1}, \cdots, A_{k-1}$ be meromorphic functions. Let $\rho=\max \left\{\rho\left(A_{j}\right): j=0, \cdots, k-1\right\}$ and all poles of f are of uniformly bounded multiplicities. Then every transcendental meromorphic solution f of the differential equation

$$
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{1} f^{\prime}+A_{0} f=0
$$

satisfies $\rho_{2}(f) \leq \rho$.

Lemma $2.8([9],[20])$ Suppose that $f_{1}(z), f_{2}(z), \cdots, f_{n}(z)(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \cdots, g_{n}(z)$ are entire functions satisfying the following conditions:
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$;
(ii) $g_{j}(z)-g_{k}(z)$ are not constants for $1 \leq j<k \leq n$;
(iii) For $1 \leq j \leq n, 1 \leq h<k \leq n, T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}(z)-g_{k}(z)}\right)\right\}(r \rightarrow \infty$, $\left.r \notin E_{9}\right)$, where E_{9} is a set with finite linear measure.
Then $f_{j}(z) \equiv 0(j=1, \cdots, n)$.
Lemma 2.9 [18] Suppose that $f_{1}(z), f_{2}(z), \cdots, f_{n}(z)(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \cdots, g_{n}(z)$ are entire functions satisfying the following conditions:
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv f_{n+1}$;
(ii) If $1 \leq j \leq n+1,1 \leq k \leq n$, the order of f_{j} is less than the order of $e^{g_{k}(z)}$. If $n \geq 2,1 \leq j \leq n+1,1 \leq h<k \leq n$, and the order of f_{j} is less than the order of $e^{g_{h}-g_{k}}$.
Then $f_{j}(z) \equiv 0(j=1,2, \cdots, n+1)$.

3. Proof of Theorem 1.1

First of all we prove that equation (1.3) can't have a meromorphic solution $f \not \equiv 0$ with $\rho(f)<1$. Assume a meromorphic solution $f \not \equiv 0$ with $\rho(f)<1$. We can rewrite (1.3) in the following form

$$
\begin{equation*}
\sum_{j=1}^{l_{2}} B_{j} f^{\prime} e^{b_{j} z}+\sum_{j=1}^{l_{1}} A_{j} f e^{a_{j} z}=-f^{\prime \prime} . \tag{3.1}
\end{equation*}
$$

Obviously, $\rho\left(B_{j} f^{\prime}\right)<1\left(j=1, \cdots, l_{2}\right)$ and $\rho\left(A_{j} f\right)<1\left(j=1, \cdots, l_{1}\right)$. Set $I=$ $\left\{a_{j}\left(j=1, \cdots, l_{1}\right), b_{j}\left(j=1, \cdots, l_{2}\right)\right\}$.

1) By the conditions (1) or (2) or (4) (ii) of Theorem 1.1, we can see that $a_{1} \neq$ $a_{2}, a_{3}, \cdots, a_{l_{1}}, b_{1}, \cdots, b_{l_{2}}$. Then, we can rewrite (3.1) in the following form

$$
\begin{equation*}
A_{1} f e^{a_{1} z}+\sum_{\lambda \in \Gamma_{1}} f_{\lambda} e^{\lambda z}=-f^{\prime \prime} \tag{3.2}
\end{equation*}
$$

where $\Gamma_{1} \subseteq I \backslash\left\{a_{1}\right\}$ and $f_{\lambda}\left(\lambda \in \Gamma_{1}\right)$ are meromorphic functions with order less than 1 and $a_{1}, \lambda\left(\lambda \in \Gamma_{1}\right)$ are distinct numbers. By Lemma 2.8 and Lemma 2.9, we get $A_{1} \equiv 0$, which is a contradiction.
2) By the conditions (3) or (4) (i) of Theorem 1.1, we can see that $a_{2} \neq a_{1}, a_{3}, \cdots, a_{l_{1}}$, $b_{1}, \cdots, b_{l_{2}}$. Then, we can rewrite (3.1) in the following form

$$
\begin{equation*}
A_{2} f e^{a_{2} z}+\sum_{\lambda \in \Gamma_{2}} f_{\lambda} e^{\lambda z}=-f^{\prime \prime} \tag{3.3}
\end{equation*}
$$

where $\Gamma_{2} \subseteq I \backslash\left\{a_{2}\right\}$ and $f_{\lambda}\left(\lambda \in \Gamma_{2}\right)$ are meromorphic functions with order less than 1 and $a_{2}, \lambda\left(\lambda \in \Gamma_{2}\right)$ are distinct numbers. By Lemma 2.8 and Lemma 2.9, we get $A_{2} \equiv 0$, which is a contradiction. Therefore $\rho(f) \geq 1$.

First step. We prove that $\rho(f)=+\infty$. Assume that $f \not \equiv 0$ is a meromorphic solution whose poles are of uniformly bounded multiplicities of equation (1.3) with $1 \leq \rho(f)=\sigma_{1}<+\infty$. From equation (1.3), we know that the poles of $f(z)$ can occur only at the poles of $A_{j}\left(j=1, \cdots ., l_{1}\right)$ and $B_{j}\left(j=1, \cdots, l_{2}\right)$. Note that the multiplicities of poles of f are uniformly bounded, and thus we have [6]

$$
\begin{aligned}
& N(r, f) \leq M_{1} \bar{N}(r, f) \leq M_{1}\left(\sum_{j=1}^{l_{1}} \bar{N}\left(r, A_{j}\right)+\sum_{j=1}^{l_{2}} \bar{N}\left(r, B_{j}\right)\right) \\
& \leq M \max \left\{N\left(r, A_{j}\right)\left(j=1, \cdots, l_{1}\right), N\left(r, B_{j}\right)\left(j=1, \cdots, l_{2}\right)\right\},
\end{aligned}
$$

where M_{1} and M are some suitable positive constants. This gives

$$
\lambda\left(\frac{1}{f}\right) \leq \gamma=\max \left\{\rho\left(A_{j}\right) \quad\left(j=1, \cdots, l_{1}\right), \rho\left(B_{j}\right) \quad\left(j=1, \cdots, l_{2}\right)\right\}<1
$$

Let $f=g / d, d$ be the canonical product formed with the nonzero poles of $f(z)$, with $\rho(d)=\lambda(d)=\lambda\left(\frac{1}{f}\right)=\sigma_{2} \leq \gamma<1, g$ is an entire function and $1 \leq \rho(g)=$ $\rho(f)=\sigma_{1}<\infty$. Substituting $f=g / d$ into (1.3), we can get

$$
\begin{gathered}
\frac{g^{\prime \prime}}{g}+\left[\left(\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right)-2 \frac{d^{\prime}}{d}\right] \frac{g^{\prime}}{g}+2\left(\frac{d^{\prime}}{d}\right)^{2}-\frac{d^{\prime \prime}}{d}-\left(\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right) \frac{d^{\prime}}{d} \\
+A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}+\sum_{j=3}^{l_{1}} A_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}=0
\end{gathered}
$$

By Lemma 2.4, for any given $\varepsilon(0<\varepsilon<1-\gamma)$, there is a set $E_{6} \subset\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ that has linear measure zero such that if $\theta \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash E_{6}$, then there is a constant $R_{1}=R_{1}(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z| \geq R_{1}$, we have

$$
\begin{equation*}
\left|B_{j}(z)\right| \leq \exp \left\{r^{\gamma+\varepsilon}\right\} \quad\left(j=1, \cdots, l_{2}\right) \tag{3.5}
\end{equation*}
$$

By Lemma 2.1, for any given $\varepsilon(0<\varepsilon<1-\gamma)$, there exists a set $E_{1} \subset\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ of linear measure zero, such that if $\theta \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash E_{1}$, then there is a constant $R_{0}=R_{0}(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z|=r \geq R_{0}$, we have

$$
\begin{align*}
& \left|\frac{g^{(j)}(z)}{g(z)}\right| \leq r^{j\left(\sigma_{1}-1+\varepsilon\right)} \quad(j=1,2) \tag{3.6}\\
& \left|\frac{d^{(j)}(z)}{d(z)}\right| \leq r^{j\left(\sigma_{2}-1+\varepsilon\right)} \quad(j=1,2) \tag{3.7}
\end{align*}
$$

Let $z=r e^{i \theta}, a_{1}=\left|a_{1}\right| e^{i \theta_{1}}, a_{2}=\left|a_{2}\right| e^{i \theta_{2}}, \theta_{1}, \theta_{2} \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. We know that $\delta\left(\alpha_{j} a_{1} z, \theta\right)=\alpha_{j} \delta\left(a_{1} z, \theta\right), \delta\left(\beta_{j} a_{2} z, \theta\right)=\beta_{j} \delta\left(a_{2} z, \theta\right)\left(j=3, \cdots, l_{1}\right)$ and $\alpha<1$, $\beta<1$.

Case 1. Assume that $\arg a_{1} \neq \pi$ and $\arg a_{1} \neq \arg a_{2}$, which is $\theta_{1} \neq \pi$ and $\theta_{1} \neq \theta_{2}$. By Lemma 2.2 and Lemma 2.3, for any given ε

$$
0<\varepsilon<\min \left\{1-\gamma, \frac{1-\alpha}{2(1+\alpha)}, \frac{1-\beta}{2(1+\beta)}\right\}
$$

there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$ (where E_{4} and E_{5} are defined as in Lemma 2.3, $E_{1} \cup E_{4} \cup E_{5} \cup E_{6}$ is of linear measure zero), and satisfying

$$
\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0
$$

or

$$
\delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0
$$

(a) When $\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0$, for sufficiently large r, we get by Lemma 2.2

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}, \tag{3.8}\\
\left|A_{2} e^{a_{2} z}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\}<1, \tag{3.11}\\
\left|A_{j} e^{\alpha_{j} a_{1} z}\right| \leq \exp \left\{(1+\varepsilon) \alpha_{j} \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.9}\\
\leq \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\}\left(j=3, \cdots, l_{1}\right), \\
\left|e^{\beta_{j} a_{2} z}\right| \leq \exp \left\{(1-\varepsilon) \beta_{j} \delta\left(a_{2} z, \theta\right) r\right\}<1 \quad\left(j=3, \cdots, l_{1}\right) \tag{3.10}
\end{gather*}
$$

By (3.10) and (3.11), we get

$$
\begin{gather*}
\left|\sum_{j=3}^{l_{1}} A_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right| \leq \sum_{j=3}^{l_{1}}\left|A_{j} e^{\alpha_{j} a_{1} z}\right|\left|e^{\beta_{j} a_{2} z}\right| \\
\leq\left(l_{1}-2\right) \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.12}
\end{gather*}
$$

For $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ by (3.5) we have

$$
\begin{gathered}
\left|\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right| \leq \sum_{j=1}^{l_{2}}\left|B_{j}\right|\left|e^{b_{j} z}\right| \leq \exp \left\{r^{\gamma+\varepsilon}\right\} \sum_{j=1}^{l_{2}}\left|e^{b_{j} z}\right| \\
=\exp \left\{r^{\gamma+\varepsilon}\right\} \sum_{j=1}^{l_{2}} e^{b_{j} r \cos \theta} \leq l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\}
\end{gathered}
$$

because $b_{j}<0$ and $\cos \theta>0$. By (3.4), we obtain

$$
\begin{align*}
& \left|A_{1} e^{a_{1} z}\right| \leq\left|\frac{g^{\prime \prime}}{g}\right|+\left[\left|\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right|+2\left|\frac{d^{\prime}}{d}\right|\right]\left|\frac{g^{\prime}}{g}\right|+2\left|\frac{d^{\prime}}{d}\right|^{2}+\left|\frac{d^{\prime \prime}}{d}\right| \\
& \quad+\left|\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right|\left|\frac{d^{\prime}}{d}\right|+\left|A_{2} e^{a_{2} z}\right|+\left|\sum_{j=3}^{l_{1}} A_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right| \tag{3.14}
\end{align*}
$$

Substituting (3.6) - (3.9), (3.12) and (3.13) into (3.14), we have

$$
\begin{gathered}
\exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \leq\left|A_{1} e^{a_{1} z}\right| \\
\leq r^{2\left(\sigma_{1}-1+\varepsilon\right)}+\left[l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\}+2 r^{\sigma_{2}-1+\varepsilon}\right] r^{\sigma_{1}-1+\varepsilon}+3 r^{2\left(\sigma_{2}-1+\varepsilon\right)} \\
+l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\} r^{\sigma_{2}-1+\varepsilon}+1+\left(l_{1}-2\right) \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \\
\leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\},
\end{gathered}
$$

where $M_{1}>0$ and $M_{2}>0$ are some constants. By $0<\varepsilon<\frac{1-\alpha}{2(1+\alpha)}$ and (3.15), we have

$$
\begin{equation*}
\exp \left\{\frac{1-\alpha}{2} \delta\left(a_{1} z, \theta\right) r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.16}
\end{equation*}
$$

By $\delta\left(a_{1} z, \theta\right)>0$ and $\gamma+\varepsilon<1$ we know that (3.16) is a contradiction.
(b) When $\delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0$, for sufficiently large r, we get

$$
\begin{gather*}
\left|A_{2} e^{a_{2} z}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\}, \tag{3.17}\\
\left|A_{1} e^{a_{1} z}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}<1, \tag{3.18}\\
\left|A_{j} e^{\alpha_{j} a_{1} z}\right| \leq \exp \left\{(1-\varepsilon) \alpha_{j} \delta\left(a_{1} z, \theta\right) r\right\}<1 \quad\left(j=3, \cdots, l_{1}\right), \tag{3.19}\\
\left|e^{\beta_{j} a_{2} z}\right| \leq \exp \left\{(1+\varepsilon) \beta_{j} \delta\left(a_{2} z, \theta\right) r\right\} \\
\leq \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \quad\left(j=3, \cdots, l_{1}\right) \tag{3.20}
\end{gather*}
$$

By (3.19) and (3.20), we get

$$
\begin{gather*}
\left|\sum_{j=3}^{l_{1}} A_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right| \leq \sum_{j=3}^{l_{1}}\left|A_{j} e^{\alpha_{j} a_{1} z}\right|\left|e^{\beta_{j} a_{2} z}\right| \\
\leq\left(l_{1}-2\right) \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.21}
\end{gather*}
$$

By (3.4), we obtain

$$
\begin{align*}
& \left|A_{2} e^{a_{2} z}\right| \leq\left|\frac{g^{\prime \prime}}{g}\right|+\left[\left|\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right|+2\left|\frac{d^{\prime}}{d}\right|\right]\left|\frac{g^{\prime}}{g}\right|+2\left|\frac{d^{\prime}}{d}\right|^{2}+\left|\frac{d^{\prime \prime}}{d}\right| \\
& \quad+\left|\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right|\left|\frac{d^{\prime}}{d}\right|+\left|A_{1} e^{a_{1} z}\right|+\left|\sum_{j=3}^{l_{1}} A_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right| \tag{3.22}
\end{align*}
$$

Substituting (3.6), (3.7), (3.13), (3.17), (3.18) and (3.21) into (3.22), we have

$$
\begin{gather*}
\exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leq\left|A_{2} e^{a_{2} z}\right| \\
\leq r^{2\left(\sigma_{1}-1+\varepsilon\right)}+\left[l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\}+2 r^{\sigma_{2}-1+\varepsilon}\right] r^{\sigma_{1}-1+\varepsilon}+3 r^{2\left(\sigma_{2}-1+\varepsilon\right)} \\
+l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\} r^{\sigma_{2}-1+\varepsilon}+1+\left(l_{1}-2\right) \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \\
\leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} . \tag{3.23}
\end{gather*}
$$

$$
\frac{-\beta}{+\beta)} \text { and (3.23), we obtain }
$$

$$
\begin{equation*}
\exp \left\{\frac{1-\beta}{2} \delta\left(a_{2} z, \theta\right) r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.24}
\end{equation*}
$$

By $\delta\left(a_{2} z, \theta\right)>0$ and $\gamma+\varepsilon<1$ we know that (3.24) is a contradiction.
Case 2. Assume that $\arg a_{1} \neq \pi, \arg a_{1}=\arg a_{2}$, which is $\theta_{1} \neq \pi, \theta_{1}=\theta_{2}$. By Lemma 2.3, for any given ε

$$
0<\varepsilon<\min \left\{1-\gamma, \frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}, \frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}\right\}
$$

there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$ and $\delta\left(a_{1} z, \theta\right)>$ 0 . Since $\theta_{1}=\theta_{2}$, then $\delta\left(a_{2} z, \theta\right)>0$.
(i) $\left|a_{2}\right|>\frac{\left|a_{1}\right|}{1-\beta}$. For sufficiently large r, we have (3.10), (3.17), (3.20) hold and we get

$$
\begin{equation*}
\left|A_{1} e^{a_{1} z}\right| \leq \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.25}
\end{equation*}
$$

By (3.10) and (3.20), we obtain

$$
\begin{gather*}
\left|\sum_{j=3}^{l_{1}} A_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right| \leq \sum_{j=3}^{l_{1}}\left|A_{j} e^{\alpha_{j} a_{1} z}\right|\left|e^{\beta_{j} a_{2} z}\right| \\
\leq\left(l_{1}-2\right) \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} . \tag{3.26}
\end{gather*}
$$

Substituting (3.6), (3.7), (3.13), (3.17), (3.25) and (3.26) into (3.22), we have

$$
\begin{gather*}
\exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leq\left|A_{2} e^{a_{2} z}\right| \\
\leq r^{2\left(\sigma_{1}-1+\varepsilon\right)}+\left[l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\}+2 r^{\sigma_{2}-1+\varepsilon}\right] r^{\sigma_{1}-1+\varepsilon}+3 r^{2\left(\sigma_{2}-1+\varepsilon\right)} \\
+l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\} r^{\sigma_{2}-1+\varepsilon}+\exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \\
+\left(l_{1}-2\right) \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \\
\leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.27}
\end{gather*}
$$

From (3.27), we obtain

$$
\begin{equation*}
\exp \left\{\eta_{1} r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.28}
\end{equation*}
$$

where

$$
\eta_{1}=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right)
$$

Since $0<\varepsilon<\frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}, \theta_{1}=\theta_{2}$ and $\cos \left(\theta_{1}+\theta\right)>0$, then

$$
\begin{gathered}
\eta_{1}=[1-\beta-\varepsilon(1+\beta)] \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right) \\
=[1-\beta-\varepsilon(1+\beta)]\left|a_{2}\right| \cos \left(\theta_{1}+\theta\right)-(1+\varepsilon)\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right) \\
=\left\{[1-\beta-\varepsilon(1+\beta)]\left|a_{2}\right|-(1+\varepsilon)\left|a_{1}\right|\right\} \cos \left(\theta_{1}+\theta\right) \\
=\left\{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|-\varepsilon\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]\right\} \cos \left(\theta_{1}+\theta\right) \\
\quad>\frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|}{2} \cos \left(\theta_{1}+\theta\right)>0 .
\end{gathered}
$$

By $\eta_{1}>0$ and $\gamma+\varepsilon<1$ we know that (3.28) is a contradiction.
(ii) $\left|a_{2}\right|<(1-\alpha)\left|a_{1}\right|$. For sufficiently large r, we have (3.8), (3.10), (3.20), (3.26) hold and we obtain

$$
\begin{equation*}
\left|A_{2} e^{a_{2} z}\right| \leq \exp \left\{(1+\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.29}
\end{equation*}
$$

Substituting (3.6), (3.7), (3.8), (3.13), (3.26) and (3.29) into (3.14), we have

$$
\begin{gathered}
\exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \leq\left|A_{1} e^{a_{1} z}\right| \\
\leq r^{2\left(\sigma_{1}-1+\varepsilon\right)}+\left[l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\}+2 r^{\sigma_{2}-1+\varepsilon}\right] r^{\sigma_{1}-1+\varepsilon}+3 r^{2\left(\sigma_{2}-1+\varepsilon\right)} \\
+l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\} r^{\sigma_{2}-1+\varepsilon}+\exp \left\{(1+\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \\
+\left(l_{1}-2\right) \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\}
\end{gathered}
$$

$$
\begin{equation*}
\leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.30}
\end{equation*}
$$

From (3.30), we obtain

$$
\begin{equation*}
\exp \left\{\eta_{2} r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.31}
\end{equation*}
$$

where

$$
\eta_{2}=(1-\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \delta\left(a_{2} z, \theta\right)
$$

Since $0<\varepsilon<\frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}, \theta_{1}=\theta_{2}$ and $\cos \left(\theta_{1}+\theta\right)>0$, then we get

$$
\begin{gathered}
\eta_{2}=\left\{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|-\varepsilon\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]\right\} \cos \left(\theta_{1}+\theta\right) \\
> \\
>\frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|}{2} \cos \left(\theta_{1}+\theta\right)>0 .
\end{gathered}
$$

By $\eta_{2}>0$ and $\gamma+\varepsilon<1$ we know that (3.31) is a contradiction.
Case 3. Assume that $a_{1}<0$ and $\arg a_{1} \neq \arg a_{2}$, which is $\theta_{1}=\pi$ and $\theta_{2} \neq \pi$. By Lemma 2.2, for the above ε, there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash$ $\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$ and $\delta\left(a_{2} z, \theta\right)>0$. Because $\cos \theta>0$, we have $\delta\left(a_{1} z, \theta\right)=$ $\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right)=-\left|a_{1}\right| \cos \theta<0$. Using the same reasoning as in Case 1(b), we can get a contradiction.

Case 4. Assume that (i) $(1-\beta) a_{2}-b<a_{1}<0$ and $a_{2}<\frac{b}{1-\beta}$ or (ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$, which is $\theta_{1}=\theta_{2}=\pi$. By Lemma 2.2, for any given ε

$$
0<\varepsilon<\min \left\{1-\gamma, \frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}, \frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}\right\}
$$

there is a ray $\arg z=\theta$ such that $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$, then $\cos \theta<$ $0, \delta\left(a_{1} z, \theta\right)=\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right)=-\left|a_{1}\right| \cos \theta>0, \delta\left(a_{2} z, \theta\right)=\left|a_{2}\right| \cos \left(\theta_{2}+\theta\right)=$ $-\left|a_{2}\right| \cos \theta>0$.
(i) $(1-\beta) a_{2}-b<a_{1}<0$ and $a_{2}<\frac{b}{1-\beta}$. For sufficiently large r, we get (3.10) , (3.17) , (3.20), (3.25) and (3.26) hold. For $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ by (3.5) we have

$$
\begin{align*}
& \left|\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right| \leq \sum_{j=1}^{l_{2}}\left|B_{j}\right|\left|e^{b_{j} z}\right| \leq \exp \left\{r^{\gamma+\varepsilon}\right\} \sum_{j=1}^{l_{2}}\left|e^{b_{j} z}\right| \\
& =\exp \left\{r^{\gamma+\varepsilon}\right\} \sum_{j=1}^{l_{2}} e^{b_{j} r \cos \theta} \leq l_{2} \exp \left\{r^{\gamma+\varepsilon}\right\} e^{b r \cos \theta} \tag{3.32}
\end{align*}
$$

because $b \leq b_{j}<0$ and $\cos \theta<0$. Substituting (3.6), (3.7), (3.17), (3.25), (3.26) and (3.32) into (3.22), we obtain

$$
\exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leq\left|A_{2} e^{a_{2} z}\right|
$$

$$
\begin{equation*}
\leq M_{1} r^{M_{2}} e^{b r \cos \theta} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.33}
\end{equation*}
$$

From (3.33) we have

$$
\begin{equation*}
\exp \left\{\eta_{3} r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.34}
\end{equation*}
$$

where

$$
\eta_{3}=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right)-b \cos \theta
$$

Since $(1-\beta) a_{2}-b<a_{1}, a_{2}=-\left|a_{2}\right|$ and $a_{1}=-\left|a_{1}\right|$, then we get $(1-\beta)\left|a_{2}\right|-$ $\left|a_{1}\right|+b>0$. We can see that $0<(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b<(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|<$ $2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]$. Therefore

$$
0<\frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}<1
$$

By $0<\varepsilon<\frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}, \theta_{1}=\theta_{2}=\pi$ and $\cos \theta<0$, we obtain

$$
\begin{gathered}
\eta_{3}=[1-\beta-\varepsilon(1+\beta)] \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-b \cos \theta \\
=-[1-\beta-\varepsilon(1+\beta)]\left|a_{2}\right| \cos \theta+(1+\varepsilon)\left|a_{1}\right| \cos \theta-b \cos \theta \\
=(-\cos \theta)\left\{[1-\beta-\varepsilon(1+\beta)]\left|a_{2}\right|-(1+\varepsilon)\left|a_{1}\right|+b\right\} \\
=(-\cos \theta)\left\{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b-\varepsilon\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]\right\} \\
\quad \quad \frac{-1}{2}\left[(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b\right] \cos \theta>0 .
\end{gathered}
$$

By $\eta_{3}>0$ and $\gamma+\varepsilon<1$ we know that (3.34) is a contradiction.
(ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$. For sufficiently large r, we get (3.8), (3.10), (3.20), (3.26) and (3.29) hold. Substituting (3.6), (3.7), (3.8), (3.26), (3.29) and (3.32) into (3.14), we obtain

$$
\exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \leq\left|A_{1} e^{a_{1} z}\right|
$$

$$
\begin{equation*}
\leq M_{1} r^{M_{2}} e^{b r \cos \theta} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.35}
\end{equation*}
$$

From (3.35) we have

$$
\begin{equation*}
\exp \left\{\eta_{4} r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.36}
\end{equation*}
$$

where

$$
\eta_{4}=(1-\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \delta\left(a_{2} z, \theta\right)-b \cos \theta
$$

Since $a_{1}<\frac{a_{2}+b}{1-\alpha}, a_{2}=-\left|a_{2}\right|$ and $a_{1}=-\left|a_{1}\right|$, then we get $(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+$ $b>0$. We can see that $0<(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b<(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|<$ $2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]$. Therefore

$$
0<\frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}<1 .
$$

By $0<\varepsilon<\frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}, \theta_{1}=\theta_{2}=\pi$ and $\cos \theta<0$, we get

$$
\begin{gathered}
\eta_{4}=(-\cos \theta)\left\{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b-\varepsilon\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]\right\} \\
>\frac{-1}{2}\left[(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b\right] \cos \theta>0
\end{gathered}
$$

By $\eta_{4}>0$ and $\gamma+\varepsilon<1$ we know that (3.36) is a contradiction. Concluding the above proof, we obtain $\rho(f)=\rho(g)=+\infty$.

Second step. We prove that $\rho_{2}(f)=1$. By

$$
\max \left\{\rho\left(\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right), \rho\left(\sum_{j=1}^{l_{1}} A_{j} e^{a_{j} z}\right)\right\}=1
$$

and Lemma 2.7, we obtain $\rho_{2}(f) \leq 1$. By Lemma 2.5, we know that there exists a set $E_{7} \subset(1,+\infty)$ with finite logarithmic measure and a constant $C>0$, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{7}$, we get

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq C[T(2 r, f)]^{j+1} \quad(j=1,2) \tag{3.37}
\end{equation*}
$$

By (1.3), we have

$$
\begin{align*}
& \left|A_{1} e^{a_{1} z}\right| \leq\left|\frac{f^{\prime \prime}}{f}\right|+\left|\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right|\left|\frac{f^{\prime}}{f}\right|+\left|A_{2} e^{a_{2} z}\right|+\left|\sum_{j=3}^{l_{1}} A_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right| \tag{3.38}\\
& \left|A_{2} e^{a_{2} z}\right| \leq\left|\frac{f^{\prime \prime}}{f}\right|+\left|\sum_{j=1}^{l_{2}} B_{j} e^{b_{j} z}\right|\left|\frac{f^{\prime}}{f}\right|+\left|A_{1} e^{a_{1} z}\right|+\left|\sum_{j=3}^{l_{1}} A_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right| \tag{3.39}
\end{align*}
$$

Case 1. $\arg a_{1} \neq \pi$ and $\arg a_{1} \neq \arg a_{2}$. In the first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$, satisfying

$$
\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0 \text { or } \delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0
$$

(a) When $\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0$, for sufficiently large r, we get (3.8) - (3.12) hold. Substituting (3.8), (3.9), (3.12), (3.13) and (3.37) into (3.38), we obtain for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{7}, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$

$$
\begin{gather*}
\exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \leq\left|A_{1} e^{a_{1} z}\right| \\
\leq M \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\}[T(2 r, f)]^{3} \tag{3.40}
\end{gather*}
$$

where $M>0$ is a some constant. From (3.40) and $0<\varepsilon<\frac{1-\alpha}{2(1+\alpha)}$, we get

$$
\begin{equation*}
\exp \left\{\frac{1-\alpha}{2} \delta\left(a_{1} z, \theta\right) r\right\} \leq M \exp \left\{r^{\gamma+\varepsilon}\right\}[T(2 r, f)]^{3} \tag{3.41}
\end{equation*}
$$

Since $\delta\left(a_{1} z, \theta\right)>0$ and $\gamma+\varepsilon<1$, then by using Lemma 2.6 and (3.41), we obtain $\rho_{2}(f) \geq 1$. Hence $\rho_{2}(f)=1$.
(b) When $\delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0$, for sufficiently large r, we get (3.17) - (3.21) hold. By using the same reasoning as above, we can get $\rho_{2}(f)=1$.

Case 2. $\arg a_{1} \neq \pi, \arg a_{1}=\arg a_{2}$. In the first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$, satisfying $\delta\left(a_{1} z, \theta\right)>0$ and $\delta\left(a_{2} z, \theta\right)>0$.
(i) $\left|a_{2}\right|>\frac{\left|a_{1}\right|}{1-\beta}$. For sufficiently large r, we have (3.10), (3.17), (3.20), (3.25) and (3.26) hold. Substituting (3.13), (3.17), (3.25), (3.26) and (3.37) into (3.39), we obtain for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{7}, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$

$$
\exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leq\left|A_{2} e^{a_{2} z}\right|
$$

$$
\begin{equation*}
\leq M \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\}[T(2 r, f)]^{3} \tag{3.42}
\end{equation*}
$$

From (3.42), we obtain

$$
\begin{equation*}
\exp \left\{\eta_{1} r\right\} \leq M \exp \left\{r^{\gamma+\varepsilon}\right\}[T(2 r, f)]^{3} \tag{3.43}
\end{equation*}
$$

where

$$
\eta_{1}=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right)
$$

Since $\eta_{1}>0$ and $\gamma+\varepsilon<1$, then by using Lemma 2.6 and (3.43), we obtain $\rho_{2}(f) \geq 1$. Hence $\rho_{2}(f)=1$.
(ii) $\left|a_{2}\right|<(1-\alpha)\left|a_{1}\right|$. For sufficiently large r, we have (3.8), (3.10), (3.20), (3.26) and (3.29) hold. By using the same reasoning as above, we can get $\rho_{2}(f)=1$.

Case 3. $a_{1}<0$ and $\arg a_{1} \neq \arg a_{2}$. In the first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$, satisfying $\delta\left(a_{2} z, \theta\right)>0$ and $\delta\left(a_{1} z, \theta\right)<0$. Using the same reasoning as in the second step (Case 1 (b)), we can get $\rho_{2}(f)=1$.

Case 4. (i) $(1-\beta) a_{2}-b<a_{1}<0$ and $a_{2}<\frac{b}{1-\beta}$ or (ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$. In the first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash$ $\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$, satisfying $\delta\left(a_{2} z, \theta\right)>0$ and $\delta\left(a_{1} z, \theta\right)>0$.
(i) $(1-\beta) a_{2}-b<a_{1}<0$ and $a_{2}<\frac{b}{1-\beta}$. For sufficiently large r, we get (3.10), (3.17), (3.20), (3.25) and (3.26) hold. Substituting (3.17), (3.25), (3.26), (3.32) and (3.37) into (3.39), we obtain for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{7}$, $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5} \cup E_{6}\right)$

$$
\begin{gather*}
\exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leq\left|A_{2} e^{a_{2} z}\right| \\
\leq M e^{b r \cos \theta} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \\
\times \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\}[T(2 r, f)]^{3} \tag{3.44}
\end{gather*}
$$

$$
\begin{equation*}
\exp \left\{\eta_{3} r\right\} \leq M \exp \left\{r^{\gamma+\varepsilon}\right\}[T(2 r, f)]^{3} \tag{3.45}
\end{equation*}
$$

where

$$
\eta_{3}=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right)-b \cos \theta
$$

Since $\eta_{3}>0$ and $\gamma+\varepsilon<1$, then by using Lemma 2.6 and (3.45), we obtain $\rho_{2}(f) \geq 1$. Hence $\rho_{2}(f)=1$.
(ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$. For sufficiently large r, we get (3.8), (3.10), (3.20), (3.26) and (3.29) hold. By using the same reasoning as above, we can get $\rho_{2}(f)=1$. Concluding the above proof, we obtain that every meromorphic solution $f(\not \equiv 0)$ whose poles are of uniformly bounded multiplicities of (1.3) satisfies $\rho(f)=\infty$ and $\rho_{2}(f)=1$. The proof of Theorem 1.1 is complete.

References

[1] I. Amemiya and M. Ozawa, Non-existence of finite order solutions of $w^{\prime \prime}+e^{-z} w^{\prime}+Q(z) w=$ 0, Hokkaido Math. J. 10 (1981), Special Issue, 1-17.
[2] B. Belaïdi and H. Habib, On the growth of solutions of some second order linear differential equations with entire coefficients, An. Şt. Univ. Ovidius Constanţa, Vol. 21(2), (2013), 35-52.
[3] Z. X. Chen, The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the order $(Q)=1$, Sci. China Ser. A 45 (2002), no. 3, 290-300.
[4] Z. X. Chen and K. H. Shon, On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 753-764.
[5] W. J. Chen and J. F. Xu, Growth order of meromorphic solutions of higher-order linear differential equations, Electron. J. Qual. Theory Differ. Equ., (2009), no. 1, 1-13.
[6] Y. M. Chiang and W. K. Hayman, Estimates on the growth of meromorphic solutions of linear differential equations, Comment. Math. Helv. 79 (2004), no. 3, 451-470.
[7] M. Frei, Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten, Comment. Math. Helv. 35 (1961), 201-222.
[8] M. Frei, Über die Subnormalen Lösungen der Differentialgleichung $w^{\prime \prime}+e^{-z} w^{\prime}+$ (Konst.) $w=0$, Comment. Math. Helv. 36 (1961), 1-8.
[9] F. Gross, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc. 131(1968), 199-214.
[10] G. G. Gundersen, On the question of whether $f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0$ can admit a solution $f \not \equiv 0$ of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 9-17.
[11] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37(1988), no. 1, 88-104.
[12] G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.
[13] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
[14] J. K. Langley, On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986), no. 3, 430-439.
[15] A. I. Markushevich, Theory of functions of a complex variable, Vol. II, translated by R. A. Silverman, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
[16] M. Ozawa, On a solution of $w^{\prime \prime}+e^{-z} w^{\prime}+(a z+b) w=0$, Kodai Math. J. 3 (1980), no. 2, 295-309.
[17] F. Peng and Z. X. Chen, On the growth of solutions of some second-order linear differential equations, J. Inequal. Appl. 2011, Art. ID 635604, 1-9.
[18] J. F. Xu and H. X. Yi, The relations between solutions of higher order differential equations with functions of small growth, Acta Math. Sinica, Chinese Series, 53 (2010), 291-296.
[19] J. F. Xu and X. B. Zhang, Some results of meromorphic solutions of second-order linear differential equations, J. Inequal. Appl. 2013, 2013:304, 14 pp.
[20] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem-(Algeria)
*CORresponding author

[^0]: 2010 Mathematics Subject Classification. 34M10, 30D35.
 Key words and phrases. Linear differential equations, meromorphic solutions, order of growth, hyper-order.

