Growth and oscillation related to a second order linear differential equation

Benharrat Belaïdi ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria

Received March 16, 2012; accepted January 26, 2013

Abstract

This paper is devoted to studying the growth and the oscillation of solutions of the second order non-homogeneous linear differential equation $$
f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f=F
$$

where $P(z), Q(z)$ are nonconstant polynomials such that $\operatorname{deg} P=\operatorname{deg} Q=n$ and $A_{j}(z)$ $(\not \equiv 0)(j=0,1), F(z)$ are entire functions with $\max \left\{\rho\left(A_{j}\right): j=0,1\right\}<n$. We also investigate the relationship between small functions and differential polynomials $g_{f}(z)$ $=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f$, where $d_{0}(z), d_{1}(z), d_{2}(z)$ are entire functions such that at least one of d_{0}, d_{1}, d_{2} does not vanish identically with $\rho\left(d_{j}\right)<n(j=0,1,2)$ generated by solutions of the above equation.
AMS subject classifications: 34M10, 30D35
Key words: linear differential equations, differential polynomials, entire solutions, order of growth, exponent of convergence of zeros, exponent of convergence of distinct zeros

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory (see, [9], [16]). In addition, we will use $\lambda(f)$ and $\bar{\lambda}(f)$ to denote respectively the exponents of convergence of the zero-sequence and distinct zeros of a meromorphic function $f, \rho(f)$ to denote the order of growth of f. A meromorphic function $\varphi(z)$ is called a small function with respect to $f(z)$ if $T(r, \varphi)=o(T(r, f))$ as $r \rightarrow+\infty$ except possibly a set of r of finite linear measure, where $T(r, f)$ is the Nevanlinna characteristic function of f.

To give estimates of fixed points, we define:
Definition 1 (see [4, 11, 13]). Let f be a meromorphic function and let z_{1}, z_{2}, \cdots, $\left(\left|z_{j}\right|=r_{j}, 0<r_{1} \leqslant r_{2} \leqslant \cdots\right)$ be the sequence of the fixed points of f, each point being repeated only once. The exponent of convergence of the sequence of distinct fixed points of $f(z)$ is defined by

[^0]$$
\bar{\tau}(f)=\inf \left\{\tau>0: \sum_{j=1}^{+\infty}\left|z_{j}\right|^{-\tau}<+\infty\right\}
$$

Clearly,

$$
\bar{\tau}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \bar{N}\left(r, \frac{1}{f-z}\right)}{\log r}
$$

where $\bar{N}\left(r, \frac{1}{f-z}\right)$ is the counting function of distinct fixed points of $f(z)$ in $\{z:|z|<r\}$.

In [6], Chen has investigated the second order linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f=0 \tag{1}
\end{equation*}
$$

and has obtained the following result.
Theorem 1 (see [6]). Let

$$
P(z)=\sum_{i=0}^{n} a_{i} z^{i} \text { and } Q(z)=\sum_{i=0}^{n} b_{i} z^{i}
$$

be nonconstant polynomials where $a_{i}, b_{i}(i=0,1, \cdots, n)$ are complex numbers, $a_{n} b_{n}$ $\neq 0$, let $A_{1}(z), A_{0}(z)(\not \equiv 0)$ be entire functions. Suppose that either (i) or (ii) below, holds:
(i) $\arg a_{n} \neq \arg b_{n}$ or $a_{n}=c b_{n}(0<c<1), \rho\left(A_{j}\right)<n(j=0,1)$;
(ii) $a_{n}=c b_{n}(c>1)$ and $\operatorname{deg}(P-c Q)=m \geqslant 1, \rho\left(A_{j}\right)<m(j=0,1)$.

Then every solution $f(z) \not \equiv 0$ of (1) satisfies $\rho_{2}(f)=n$.
In [1], the author and El Farissi have studied the relation between meromorphic functions of finite order and differential polynomials generated by meromorphic solutions of the second order linear differential equation (1) and have obtained the following result.

Theorem 2 (see [1]). Let

$$
P(z)=\sum_{i=0}^{n} a_{i} z^{i} \text { and } Q(z)=\sum_{i=0}^{n} b_{i} z^{i}
$$

be nonconstant polynomials where $a_{i}, b_{i}(i=0,1, \cdots, n)$ are complex numbers, $a_{n} b_{n}$ $\neq 0$ such that $\arg a_{n} \neq \arg b_{n}$ or $a_{n}=c b_{n}(0<c<1)$ and let $A_{1}(z), A_{0}(z)(\not \equiv 0)$ be meromorphic functions with $\rho\left(A_{j}\right)<n(j=0,1)$. Let $d_{0}(z), d_{1}(z), d_{2}(z)$ be polynomials that are not all equal to zero, $\varphi(z) \not \equiv 0$ is a meromorphic function with finite order. If $f(z) \not \equiv 0$ is a meromorphic solution of (1) with $\lambda(1 / f)<\infty$, then the differential polynomial $g(z)=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f$ satisfies $\bar{\lambda}(g-\varphi)=\infty$.

Recently in [14], Wang and Laine have investigated the growth of solutions of some second order linear differential equations and have obtained.

Theorem 3 (see [14]). Let $A_{j}(z)(\not \equiv 0)(j=0,1)$ and $F(z)$ be entire functions with $\max \left\{\rho\left(A_{j}\right)(j=0,1), \rho(F)\right\}<1$, and let a, b be complex constants that satisfy ab $\neq 0$ and $a \neq b$. Then every nontrivial solution f of the equation

$$
f^{\prime \prime}+A_{1}(z) e^{a z} f^{\prime}+A_{0}(z) e^{b z} f=F
$$

is of infinite order.
The present article may be understood as an extension and improvement of the recent article of the author and El Farissi [2]. The first main purpose of this paper is to study the growth and the oscillation of solutions of the second order non-homogeneous linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f=F \tag{2}
\end{equation*}
$$

We obtain the following results.
Theorem 4. Let

$$
P(z)=\sum_{i=0}^{n} a_{i} z^{i} \text { and } Q(z)=\sum_{i=0}^{n} b_{i} z^{i}
$$

be nonconstant polynomials where $a_{i}, b_{i}(i=0,1, \cdots, n)$ are complex numbers, $a_{n} b_{n}$ $\times\left(a_{n}-b_{n}\right) \neq 0$. Let $A_{j}(z)(\not \equiv 0)(j=0,1)$ and $F(z)$ be entire functions with $\max \left\{\rho\left(A_{j}\right)(j=0,1), \rho(F)\right\}<n$. Then every solution $f \not \equiv 0$ of equation (2) is of infinite order. Furthermore, if $F \not \equiv 0$, then every solution f of equation (2) satisfies

$$
\begin{equation*}
\bar{\lambda}(f)=\lambda(f)=\rho(f)=\infty \tag{3}
\end{equation*}
$$

Remark 1. If $\rho(F) \geqslant n$, then equation (2) can possess a solution of finite order. For instance, the equation

$$
f^{\prime \prime}+e^{2 z^{n}} f^{\prime}-n z^{n-1} e^{z^{n}} f=\left(n^{2} z^{2 n-2}-n(n-1) z^{n-2}\right) e^{-z^{n}}-n z^{n-1}
$$

satisfies $\rho(F)=\rho\left(\left(n^{2} z^{n}-n(n-1)\right) z^{n-2} e^{-z^{n}}-n z^{n-1}\right)=n$ and has a finite order solution $f(z)=e^{-z^{n}}-1$.

Theorem 5. Let $P(z), Q(z), A_{0}(z), A_{1}(z)$ satisfy the hypotheses of Theorem 4, and let $F(z)$ be an entire function such that $\rho(F) \geqslant n$. Then every solution f of equation (2) satisfies (3) with at most one finite order solution f_{0}.

Many important results have been obtained on the fixed points of general transcendental meromorphic functions for almost four decades (see, [17]). However, there are a few studies on the fixed points of solutions of differential equations. It was in the year 2000 that Z. X. Chen first pointed out the relation between the exponent of convergence of distinct fixed points and the rate of growth of solutions of second order linear differential equations with entire coefficients (see, [4]). In [13], Wang
and $Y i$ investigated fixed points and hyper-order of differential polynomials generated by solutions of some second order linear differential equations. In [10], Laine and Rieppo gave an improvement of the results of [13] by considering fixed points and iterated order.

The second main purpose of this paper is to study the relation between small functions and some differential polynomials generated by solutions of second order linear differential equation (2). We obtain some estimates of their distinct fixed points.

Theorem 6. Let

$$
P(z)=\sum_{i=0}^{n} a_{i} z^{i} \text { and } Q(z)=\sum_{i=0}^{n} b_{i} z^{i}
$$

be nonconstant polynomials where $a_{i}, b_{i}(i=0,1, \cdots, n)$ are complex numbers, $a_{n} b_{n}$ $\times\left(a_{n}-b_{n}\right) \neq 0$. Let $A_{j}(z)(\not \equiv 0)(j=0,1)$ and $F(z) \not \equiv 0$ be entire functions with $\max \left\{\rho\left(A_{j}\right)(j=0,1), \rho(F)\right\}<n$. Let $d_{0}(z), d_{1}(z), d_{2}(z)$ be entire functions such that at least one of d_{0}, d_{1}, d_{2} does not vanish identically with $\rho\left(d_{j}\right)<n(j=0,1,2)$, $\varphi(z)$ is an entire function with finite order. If $f(z)$ is a solution of (2), then the differential polynomial $g_{f}(z)=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f$ satisfies $\bar{\lambda}\left(g_{f}-\varphi\right)=\lambda\left(g_{f}-\varphi\right)$ $=\rho(f)=\infty$.

Corollary 1. Let $A_{j}(z)(j=0,1), F(z), d_{j}(z)(j=0,1,2), P(z), Q(z)$ satisfy the additional hypotheses of Theorem 6. If f is a solution of (2), then the differential polynomial $g_{f}=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f$ has infinitely many fixed points and satisfies $\bar{\tau}\left(g_{f}\right)=\tau\left(g_{f}\right)=\infty$.
Theorem 7. Let $A_{j}(z)(j=0,1), F(z), P(z), Q(z), \varphi(z)$ satisfy the additional hypotheses of Theorem 6. If f is a solution of (2), then

$$
\bar{\lambda}(f-\varphi)=\bar{\lambda}\left(f^{\prime}-\varphi\right)=\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)=\rho(f)=+\infty .
$$

Let us denote by

$$
\begin{align*}
\alpha_{1} & =d_{1}-d_{2} A_{1} e^{P}, \alpha_{0}=d_{0}-d_{2} A_{0} e^{Q}, \tag{4}\\
\beta_{1} & =d_{2} A_{1}^{2} e^{2 P}-\left(\left(d_{2} A_{1}\right)^{\prime}+P^{\prime} d_{2} A_{1}+d_{1} A_{1}\right) e^{P}-d_{2} A_{0} e^{Q}+d_{0}+d_{1}^{\prime}, \tag{5}\\
\beta_{0} & =d_{2} A_{0} A_{1} e^{P+Q}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) e^{Q}+d_{0}^{\prime}, \tag{6}\\
h & =\alpha_{1} \beta_{0}-\alpha_{0} \beta_{1} \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\psi=\frac{\alpha_{1}\left(\varphi^{\prime}-\left(d_{2} F\right)^{\prime}-\alpha_{1} F\right)-\beta_{1}\left(\varphi-d_{2} F\right)}{h} . \tag{8}
\end{equation*}
$$

Theorem 8. Let $P(z), Q(z), A_{0}(z), A_{1}(z), F(z)$ satisfy the hypotheses of Theorem 5. Let $d_{0}(z), d_{1}(z), d_{2}(z)$ be entire functions such that at least one of d_{0}, d_{1}, d_{2} does not vanish identically with $\rho\left(d_{j}\right)<n(j=0,1,2), \varphi(z)$ is an entire function with finite order such that $\psi(z)$ is not a solution of equation (2). If $f(z)$ is a solution of (2), then the differential polynomial $g_{f}(z)=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f$ satisfies $\bar{\lambda}\left(g_{f}-\varphi\right)=\lambda\left(g_{f}-\varphi\right)=\infty$ with at most one finite order solution f_{0}.

Next, we investigate the relation between infinite order solutions of a pair of non-homogeneous linear differential equations and obtain the following result.

Theorem 9. Let $P(z), Q(z), A_{0}(z), A_{1}(z), d_{j}(z)(j=0,1,2)$ satisfy the hypotheses of Theorem 6. Let $F_{1} \not \equiv 0$ and $F_{2} \not \equiv 0$ be entire functions such that $\max \left\{\rho\left(F_{j}\right): j=1,2\right\}<n$ and $F_{1}-C F_{2} \not \equiv 0$ for any constant $C, \varphi(z)$ is an entire function with finite order. If f_{1} is a solution of the equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f=F_{1} \tag{9}
\end{equation*}
$$

and f_{2} is a solution of the equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f=F_{2} \tag{10}
\end{equation*}
$$

then the differential polynomial

$$
g_{f_{1}-C f_{2}}(z)=d_{2}\left(f_{1}^{\prime \prime}-C f_{2}^{\prime \prime}\right)+d_{1}\left(f_{1}^{\prime}-C f_{2}^{\prime}\right)+d_{0}\left(f_{1}-C f_{2}\right)
$$

satisfies $\bar{\lambda}\left(g_{f_{1}-C f_{2}}-\varphi\right)=\lambda\left(g_{f_{1}-C f_{2}}-\varphi\right)=\infty$ for any constant C.

2. Preliminary lemmas

We need the following lemmas in the proofs of our theorems.
Lemma 1 (see [8]). Let f be a transcendental meromorphic function of finite order ρ, let $\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \cdots,\left(k_{m}, j_{m}\right)\right\}$ denote a finite set of distinct pairs of integers that satisfy $k_{i}>j_{i} \geqslant 0$ for $i=1, \cdots, m$ and let $\varepsilon>0$ be a given constant. Then, there exists a set $E_{1} \subset[0,2 \pi)$ that has linear measure zero, such that if $\psi \in[0,2 \pi)-E_{1}$, then there is a constant $R_{1}=R_{1}(\psi)>1$ such that for all z satisfying $\arg z=\psi$ and $|z| \geqslant R_{1}$ and for all $(k, j) \in \Gamma$, we have

$$
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leqslant|z|^{(k-j)(\rho-1+\varepsilon)} .
$$

Lemma 2 (see $[12,5])$. Let $P(z)=a_{n} z^{n}+\cdots+a_{0},\left(a_{n}=\alpha+i \beta \neq 0\right)$ be a polynomial with degree $n \geqslant 1$ and $A(z)(\not \equiv 0)$ be an entire function with $\rho(A)<n$. Set $f(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=\alpha \cos n \theta-\beta \sin n \theta$. Then for any given $\varepsilon>0$, there exists a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero, such that if $\theta \in[0,2 \pi) \backslash\left(E_{2} \cup E_{3}\right)$, where $E_{3}=\{\theta \in[0,2 \pi): \delta(P, \theta)=0\}$ is a finite set, then for sufficiently large $|z|=r$, we have
(i) If $\delta(P, \theta)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \leqslant|f(z)| \leqslant \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{11}
\end{equation*}
$$

(ii) If $\delta(P, \theta)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \leqslant|f(z)| \leqslant \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{12}
\end{equation*}
$$

Lemma 3 (see [15]). Let $f(z)$ be an entire function and suppose that

$$
G(z):=\frac{\log ^{+}\left|f^{(s)}(z)\right|}{|z|^{\rho}}
$$

is unbounded on some ray $\arg z=\theta$ with constant $\rho>0$. Then there exists an infinite sequence of points $z_{n}=r_{n} e^{i \theta} \quad(n=1,2, \cdots)$ tending to infinity such that $G\left(z_{n}\right) \rightarrow \infty$ and

$$
\left|\frac{f^{(j)}\left(z_{n}\right)}{f^{(s)}\left(z_{n}\right)}\right| \leqslant \frac{1}{(s-j)!}(1+o(1))\left|z_{n}\right|^{s-j} \quad(j=0, \cdots, s-1) \quad \text { as } n \rightarrow \infty
$$

Lemma 4 (see [15]). Let $f(z)$ be an entire function with $\rho(f)<\infty$. Suppose that there exists a set $E_{4} \subset[0,2 \pi)$ which has linear measure zero, such that $\log ^{+}\left|f\left(r e^{i \theta}\right)\right|$ $\leqslant M r^{\sigma}$ for any ray $\arg z=\theta \in[0,2 \pi) \backslash E_{4}$, where M is a positive constant depending on θ, while σ is a positive constant independent of θ. Then $\rho(f) \leqslant \sigma$.

Lemma 5 (see $[7,16])$). Suppose that $f_{1}(z), f_{2}(z), \cdots, f_{n}(z)(n \geqslant 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \cdots, g_{n}(z)$ are entire functions satisfying the following conditions:
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$.
(ii) $g_{j}(z)-g_{k}(z)$ are not constants for $1 \leqslant j<k \leqslant n$.
(iii) For $1 \leqslant j \leqslant n, 1 \leqslant h<k \leqslant n$,

$$
T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}(z)-g_{k}(z)}\right)\right\} \quad\left(r \rightarrow \infty, r \notin E_{5}\right)
$$

where E_{5} is a set with finite linear measure.
Then $f_{j}(z) \equiv 0(j=1, \cdots, n)$.
Lemma 6. Let

$$
P(z)=\sum_{i=0}^{n} a_{i} z^{i} \text { and } Q(z)=\sum_{i=0}^{n} b_{i} z^{i}
$$

be nonconstant polynomials where $a_{i}, b_{i}(i=0,1, \cdots, n)$ are complex numbers, $a_{n} b_{n}\left(a_{n}-b_{n}\right) \neq 0$. Suppose that $A_{j}(z) \not \equiv 0(j=0,1)$ are entire functions with $\max \left\{\rho\left(A_{j}\right): j=0,1\right\}<n$. We denote

$$
\begin{equation*}
L_{f}=f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f \tag{13}
\end{equation*}
$$

If $f \not \equiv 0$ is a finite order entire function, then we have $\rho\left(L_{f}\right) \geqslant n$.
Proof. First, if $f(z) \equiv C$, where C is a nonzero constant, then

$$
L_{f}=A_{0}(z) e^{Q(z)} C
$$

Hence $\rho\left(L_{f}\right)=n$ and Lemma 6 holds. If f is a nonconstant entire function, we suppose that $\rho\left(L_{f}\right)<n$ and then we obtain a contradiction.
(i) If $\rho(f)=\rho<n$, then

$$
\begin{aligned}
& f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f-L_{f} \\
& \quad=f^{\prime \prime}-L_{f}+A_{1}(z) f^{\prime} e^{P(z)}+A_{0}(z) f e^{Q(z)}=0
\end{aligned}
$$

By Lemma 5, we have $A_{j}(z) \equiv 0(j=0,1)$, and this is a contradiction. Hence $\rho\left(L_{f}\right) \geqslant n$.
(ii) If $\rho(f)=\rho \geqslant n$, we rewrite (13) as

$$
\begin{equation*}
A_{0}(z) e^{Q(z)}=\frac{L_{f}}{f}-\left(\frac{f^{\prime \prime}}{f}+A_{1}(z) e^{P(z)} \frac{f^{\prime}}{f}\right) \tag{14}
\end{equation*}
$$

Set

$$
\max \left\{\rho\left(A_{j}\right)(j=0,1), \rho\left(L_{f}\right)\right\}=\sigma<n
$$

By Lemma 1, there exists a set $E_{1} \subset[0,2 \pi)$ of linear measure zero, such that if $\theta \in[0,2 \pi) \backslash E_{1}$, then there is a constant $R_{1}=R_{1}(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z|=r \geqslant R_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leqslant|z|^{2 \rho}, \quad 0 \leqslant i<j \leqslant 2 \tag{15}
\end{equation*}
$$

By Lemma 2, there is a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero, such that if $\theta \in[0,2 \pi) \backslash\left(E_{1} \cup E_{2} \cup E_{3}\right)$, where $E_{3}=\{\theta \in[0,2 \pi): \delta(P, \theta)=0, \delta(Q, \theta)$ $=0\} \cup\{\theta \in[0,2 \pi): \delta(P, \theta)=\delta(Q, \theta)\}$ is a finite set, then for sufficiently large $|z|$ $=r$, we have $\delta(P, \theta) \neq 0, \delta(Q, \theta) \neq 0, \delta(P, \theta) \neq \delta(Q, \theta)$ and $A_{1}(z) e^{P(z)}, A_{0}(z) e^{Q(z)}$ satisfies either inequality (11) or (12). Since $a_{n} \neq b_{n}$, then a_{n}, b_{n} satisfy either inequality $\delta(P, \theta)<\delta(Q, \theta)$ or $\delta(P, \theta)>\delta(Q, \theta)$.
Case 1: $\delta(P, \theta)<\delta(Q, \theta)$ and $\delta(Q, \theta)>0$. Hence, there exists a positive number $\delta_{1}>0$ such that $\delta(P, \theta) \leqslant \delta_{1}<\delta(Q, \theta)$. By Lemma 2 , for any given ε

$$
\left(0<\varepsilon<\min \left\{\frac{\delta(Q, \theta)-\delta_{1}}{\delta(Q, \theta)+\delta_{1}}, n-\sigma\right\}\right)
$$

we have

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta(Q, \theta) r^{n}\right\} & \leqslant\left|A_{0}(z) e^{Q(z)}\right| \tag{16}\\
\left|A_{1}(z) e^{P(z)}\right| & \leqslant \exp \left\{(1+\varepsilon) \delta_{1} r^{n}\right\} \tag{17}
\end{align*}
$$

provided that r is sufficiently large. We now proceed to show that

$$
\frac{\log ^{+}|f(z)|}{|z|^{\sigma+\varepsilon}}
$$

is bounded on the ray $\arg z=\theta$. Supposing that this is not the case, then by Lemma 3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \cdots)$ tending to infinity such that

$$
\begin{equation*}
\frac{\log ^{+}\left|f\left(z_{m}\right)\right|}{\left|z_{m}\right|^{\sigma+\varepsilon}} \rightarrow \infty \tag{18}
\end{equation*}
$$

From (18) and the definition of the order, we get

$$
\begin{equation*}
\left|\frac{L_{f}\left(z_{m}\right)}{f\left(z_{m}\right)}\right| \rightarrow 0 \tag{19}
\end{equation*}
$$

as $r_{m} \rightarrow \infty$. From equation (14), we obtain

$$
\begin{equation*}
\left|A_{0}\left(z_{m}\right) e^{Q\left(z_{m}\right)}\right| \leqslant\left|\frac{L_{f}\left(z_{m}\right)}{f\left(z_{m}\right)}\right|+\left|\frac{f^{\prime \prime}\left(z_{m}\right)}{f\left(z_{m}\right)}\right|+\left|A_{1}\left(z_{m}\right) e^{P\left(z_{m}\right)}\right|\left|\frac{f^{\prime}\left(z_{m}\right)}{f\left(z_{m}\right)}\right| \tag{20}
\end{equation*}
$$

Using inequalities (15) -(17) and the limit (19), we conclude from inequality (20) that

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(Q, \theta) r_{m}^{n}\right\} \leqslant r_{m}^{2 \rho}+r_{m}^{2 \rho} \exp \left\{(1+\varepsilon) \delta_{1} r_{m}^{n}\right\}+o(1) \tag{21}
\end{equation*}
$$

By $\varepsilon\left(0<\varepsilon<\min \left\{\frac{\delta(Q, \theta)-\delta_{1}}{\delta(Q, \theta)+\delta_{1}}, n-\sigma\right\}\right)$, we have as $r_{m} \rightarrow+\infty$

$$
\begin{align*}
\frac{r_{m}^{2 \rho}}{\exp \left\{(1-\varepsilon) \delta(Q, \theta) r_{m}^{n}\right\}} & \rightarrow 0 \tag{22}\\
\frac{r_{m}^{2 \rho} \exp \left\{(1+\varepsilon) \delta_{1} r_{m}^{n}\right\}+o(1)}{\exp \left\{(1-\varepsilon) \delta(Q, \theta) r_{m}^{n}\right\}} & \rightarrow 0 \tag{23}
\end{align*}
$$

By (22) and (23), we get from (21) that $1 \leqslant 0$. This is a contradiction. Therefore, $\frac{\log ^{+}|f(z)|}{|z|^{\sigma+\varepsilon}}$ is bounded on the ray $\arg z=\theta$, then there exists a bounded constant $M_{1}>0$ such that

$$
|f(z)| \leqslant e^{M_{1}|z|^{\sigma+\varepsilon}}
$$

on the ray $\arg z=\theta$.
Case 2: $\delta(P, \theta)<0$ and $\delta(Q, \theta)<0$. From (13), we get

$$
\begin{equation*}
1 \leqslant\left|A_{1}(z) e^{P(z)}\right|\left|\frac{f^{\prime}(z)}{f^{\prime \prime}(z)}\right|+\left|A_{0}(z) e^{Q(z)}\right|\left|\frac{f(z)}{f^{\prime \prime}(z)}\right|+\left|\frac{L_{f}(z)}{f^{\prime \prime}(z)}\right| \tag{24}
\end{equation*}
$$

By Lemma 2, for any given $\varepsilon(0<\varepsilon<\min \{1, n-\sigma\})$ we have

$$
\begin{align*}
& \left|A_{0}(z) e^{Q(z)}\right| \leqslant \exp \left\{(1-\varepsilon) \delta(Q, \theta) r^{n}\right\} \tag{25}\\
& \left|A_{1}(z) e^{P(z)}\right| \leqslant \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{26}
\end{align*}
$$

We prove that

$$
\frac{\log ^{+}\left|f^{\prime \prime}(z)\right|}{|z|^{\sigma+\varepsilon}}
$$

is bounded on the ray $\arg z=\theta$. Supposing that this is not the case, then by Lemma 3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \cdots)$ tending to infinity such that

$$
\begin{equation*}
\frac{\log ^{+}\left|f^{\prime \prime}\left(z_{m}\right)\right|}{\left|z_{m}\right|^{\sigma+\varepsilon}} \rightarrow \infty \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{f^{\prime}\left(z_{m}\right)}{f^{\prime \prime}\left(z_{m}\right)}\right| \leqslant(1+o(1))\left|z_{m}\right|,\left|\frac{f\left(z_{m}\right)}{f^{\prime \prime}\left(z_{m}\right)}\right| \leqslant \frac{1}{2}(1+o(1))\left|z_{m}\right|^{2} \text { as } m \rightarrow \infty . \tag{28}
\end{equation*}
$$

From (27) and the definition of the order, we get

$$
\begin{equation*}
\left|\frac{L_{f}\left(z_{m}\right)}{f^{\prime \prime}\left(z_{m}\right)}\right| \rightarrow 0 \tag{29}
\end{equation*}
$$

as $r_{m} \rightarrow \infty$. Using inequalities (25), (26), (28) and the limit (29), we conclude from inequality (24) that

$$
\begin{aligned}
1 \leqslant & \exp \left\{(1-\varepsilon) \delta(P, \theta) r_{m}^{n}\right\} r_{m}(1+o(1)) \\
& +\frac{1}{2} \exp \left\{(1-\varepsilon) \delta(Q, \theta) r_{m}^{n}\right\} r_{m}^{2}(1+o(1))+o(1) .
\end{aligned}
$$

By $0<\varepsilon<\min \{1, n-\sigma\}$, this is a contradiction, provided that r_{m} is sufficiently large enough. Therefore,

$$
\frac{\log ^{+}\left|f^{\prime \prime}(z)\right|}{|z|^{\sigma+\varepsilon}}
$$

is bounded on the ray $\arg z=\theta$, then there exists a bounded constant $M_{2}>0$ such that

$$
\begin{equation*}
\left|f^{\prime \prime}(z)\right| \leqslant e^{M_{2}|z|^{\sigma+\varepsilon}} \tag{30}
\end{equation*}
$$

on the ray $\arg z=\theta$. Hence, by two-fold iterated integration, along the line segment $[0, z]$, we conclude that

$$
f(z)=f(0)+f^{\prime}(0) \frac{z}{1!}+\int_{0}^{z} \int_{0}^{t} f^{\prime \prime}(u) d u d t
$$

So, we get for a sufficiently large r

$$
\begin{aligned}
|f(z)| & \leqslant|f(0)|+\left|f^{\prime}(0)\right| \frac{|z|}{1!}+\left|\int_{0}^{z} \int_{0}^{t} f^{\prime \prime}(u) d u d t\right| \\
& \leqslant|f(0)|+\left|f^{\prime}(0)\right| \frac{|z|}{1!}+\left|f^{\prime \prime}(z)\right| \frac{|z|^{2}}{2!}=\frac{1}{2}(1+o(1)) r^{2}\left|f^{\prime \prime}(z)\right|
\end{aligned}
$$

on the ray $\arg z=\theta$. Then by using (30) we obtain

$$
|f(z)| \leqslant \frac{1}{2}(1+o(1)) r^{2} e^{M_{2}|z|^{\sigma+\varepsilon}} \leqslant e^{M_{2} r^{\sigma+2 \varepsilon}}
$$

on the ray $\arg z=\theta$.
Case $3: \delta(P, \theta)>\delta(Q, \theta)$ and $\delta(P, \theta)>0$. Hence, there exists a positive number $\delta_{1}>0$ such that $\delta(Q, \theta) \leqslant \delta_{1}<\delta(P, \theta)$. By Lemma 2 , for any given

$$
0<\varepsilon<\min \left\{\frac{\delta(P, \theta)-\delta_{1}}{\delta(P, \theta)+\delta_{1}}, n-\sigma\right\}
$$

we have

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} & \leqslant\left|A_{1}(z) e^{P(z)}\right| \tag{31}\\
\left|A_{0}(z) e^{Q(z)}\right| & \leqslant \exp \left\{(1+\varepsilon) \delta_{1} r^{n}\right\} \tag{32}
\end{align*}
$$

provided that r is sufficiently large. From (13), we get

$$
\begin{equation*}
\left|A_{1}(z) e^{P(z)}\right| \leqslant\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\left|A_{0}(z) e^{Q(z)}\right|\left|\frac{f(z)}{f^{\prime}(z)}\right|+\left|\frac{L_{f}(z)}{f^{\prime}(z)}\right| \tag{33}
\end{equation*}
$$

By the same reasoning as in Case 2, we prove that

$$
\frac{\log ^{+}\left|f^{\prime}(z)\right|}{|z|^{\sigma+\varepsilon}}
$$

is bounded on the ray $\arg z=\theta$. Supposing that this is not the case, then by Lemma 3 , there exists an infinite sequence of points $z_{m}=r_{m} e^{i \theta}(m=1,2, \cdots)$ tending to infinity such that

$$
\begin{equation*}
\left|\frac{f\left(z_{m}\right)}{f^{\prime}\left(z_{m}\right)}\right| \leqslant(1+o(1))\left|z_{m}\right| \text { as } m \rightarrow \infty \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{L_{f}\left(z_{m}\right)}{f^{\prime}\left(z_{m}\right)}\right| \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{35}
\end{equation*}
$$

Using inequalities (15), (31), (32), (34) and the limit (35), we conclude from inequality (33) that

$$
\exp \left\{(1-\varepsilon) \delta(P, \theta) r_{m}^{n}\right\} \leqslant r_{m}^{2 \rho}+(1+o(1)) r_{m} \exp \left\{(1+\varepsilon) \delta_{1} r_{m}^{n}\right\}+o(1)
$$

Since

$$
0<\varepsilon<\min \left\{\frac{\delta(P, \theta)-\delta_{1}}{\delta(P, \theta)+\delta_{1}}, n-\sigma\right\}
$$

this is a contradiction, provided that r_{m} is sufficiently large enough. Therefore,

$$
\frac{\log ^{+}\left|f^{\prime}(z)\right|}{|z|^{\sigma+\varepsilon}}
$$

is bounded on the ray $\arg z=\theta$, then there exists a bounded constant $M_{3}>0$ such that

$$
\left|f^{\prime}(z)\right| \leqslant e^{M_{3}|z|^{\sigma+\varepsilon}}
$$

on the ray $\arg z=\theta$. Then, we get for a sufficiently large r

$$
\begin{aligned}
|f(z)| & =\left|f(0)+\int_{0}^{z} f^{\prime}(u) d u\right| \leqslant|f(0)|+\left|\int_{0}^{z} f^{\prime}(u) d u\right| \leqslant|f(0)|+|z|\left|f^{\prime}(z)\right| \\
& =(1+o(1)) r\left|f^{\prime}(z)\right| \leqslant e^{M_{3} r^{\sigma+2 \varepsilon}}
\end{aligned}
$$

on the ray $\arg z=\theta$. Hence, in all cases, there exists a bounded positive constant $M>0$ such that

$$
\begin{equation*}
|f(z)| \leqslant e^{M r^{\sigma+2 \varepsilon}} \tag{36}
\end{equation*}
$$

on the ray $\arg z=\theta$. Therefore, for any given $\theta \in[0,2 \pi) \backslash\left(E_{1} \cup E_{2} \cup E_{3}\right)$, where $\left(E_{1} \cup E_{2} \cup E_{3}\right) \subset[0,2 \pi)$ is a set of linear measure zero, we have (36), on the ray $\arg z=\theta$ for sufficiently large $|z|=r$. Then by Lemma 4 we have $\rho(f) \leqslant \sigma+2 \varepsilon<n$ for a small positive ε, a contradiction with $\rho(f) \geqslant n$. Hence $\rho\left(L_{f}\right) \geqslant n$.

Lemma 7 (see [3]). Let $A_{0}, A_{1}, \cdots, A_{k-1}, F \not \equiv 0$ be finite order meromorphic functions. If f is a meromorphic solution with $\rho(f)=\infty$ of the equation

$$
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{1} f^{\prime}+A_{0} f=F
$$

then $\bar{\lambda}(f)=\lambda(f)=\rho(f)=\infty$.

3. Proof of Theorems

Proof of Theorem 4. Assume that $f \not \equiv 0$ is a solution of equation (2). We prove that f is of infinite order. We suppose the contrary $\rho(f)<\infty$. By Lemma 6 , we have $n \leqslant \rho\left(L_{f}\right)=\rho(F)<n$ and this is a contradiction. Hence, every solution $f \not \equiv 0$ of equation (2) is of infinite order. Furthermore, if $F \not \equiv 0$, then by f is an infinite order solution of equation (2) and by using Lemma 7, every solution f satisfies (3).

Proof of Theorem 5. Assume that f_{0} is a solution of (2) with $\rho\left(f_{0}\right)=\rho<\infty$. If f_{1} is a second finite order solution of (2), then $\rho\left(f_{1}-f_{0}\right)<\infty$, and $f_{1}-f_{0}$ is a solution of the corresponding homogeneous equation

$$
f^{\prime \prime}+A_{1}(z) e^{P(z)} f^{\prime}+A_{0}(z) e^{Q(z)} f=0
$$

but $\rho\left(f_{1}-f_{0}\right)=\infty$ from Theorem 4, this is a contradiction. Hence (2) has at most one finite order solution f_{0} and all other solutions f_{1} of (2) satisfy (3) by Lemma 7.

Proof of Theorem 6. Suppose that f is a solution of equation (2). Then by Theorem 4, we have $\rho(f)=\infty$. We prove $\rho\left(g_{f}\right)=\rho\left(d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f\right)=\infty$.

First we suppose that $d_{2} \not \equiv 0$. Substituting $f^{\prime \prime}=F-A_{1} e^{P} f^{\prime}-A_{0} e^{Q} f$ into g_{f}, we get

$$
\begin{equation*}
g_{f}-d_{2} F=\left(d_{1}-d_{2} A_{1} e^{P}\right) f^{\prime}+\left(d_{0}-d_{2} A_{0} e^{Q}\right) f \tag{37}
\end{equation*}
$$

Differentiating both sides of equation (37) and replacing $f^{\prime \prime}$ with $f^{\prime \prime}=F-A_{1} e^{P} f^{\prime}-$ $A_{0} e^{Q} f$, we obtain

$$
\begin{align*}
g_{f}^{\prime}- & \left(d_{2} F\right)^{\prime}-\left(d_{1}-d_{2} A_{1} e^{P}\right) F \\
= & {\left[d_{2} A_{1}^{2} e^{2 P}-\left(\left(d_{2} A_{1}\right)^{\prime}+P^{\prime} d_{2} A_{1}+d_{1} A_{1}\right) e^{P}-d_{2} A_{0} e^{Q}+d_{0}+d_{1}^{\prime}\right] f^{\prime} } \\
& +\left[d_{2} A_{0} A_{1} e^{P+Q}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) e^{Q}+d_{0}^{\prime}\right] f \tag{38}
\end{align*}
$$

Then, by (4)-(6), (37) and (38), we have

$$
\begin{align*}
\alpha_{1} f^{\prime}+\alpha_{0} f & =g_{f}-d_{2} F \tag{39}\\
\beta_{1} f^{\prime}+\beta_{0} f & =g_{f}^{\prime}-\left(d_{2} F\right)^{\prime}-\left(d_{1}-d_{2} A_{1} e^{P}\right) F \tag{40}
\end{align*}
$$

Set

$$
\begin{align*}
h= & \alpha_{1} \beta_{0}-\alpha_{0} \beta_{1}=\left(d_{1}-d_{2} A_{1} e^{P}\right)\left[d_{2} A_{0} A_{1} e^{P+Q}-\left(\left(d_{2} A_{0}\right)^{\prime}+Q^{\prime} d_{2} A_{0}+d_{1} A_{0}\right) e^{Q}+d_{0}^{\prime}\right] \\
& -\left(d_{0}-d_{2} A_{0} e^{Q}\right)\left[d_{2} A_{1}^{2} e^{2 P}-\left(\left(d_{2} A_{1}\right)^{\prime}+P^{\prime} d_{2} A_{1}+d_{1} A_{1}\right) e^{P}-d_{2} A_{0} e^{Q}+d_{0}+d_{1}^{\prime}\right] \\
= & H_{0}+H_{P} e^{P(z)}+H_{Q} e^{Q(z)}+H_{P+Q} e^{P(z)+Q(z)}+H_{2 P} e^{2 P(z)}-d_{2}^{2} A_{0}^{2} e^{2 Q(z)} \tag{41}
\end{align*}
$$

where $H_{i}(z)(i \in \Lambda=\{0, P(z), Q(z), P(z)+Q(z), 2 P(z)\})$ are entire functions formed by $A_{0}, A_{1}, d_{0}, d_{1}, d_{2}$ and their derivatives, with order less than n, and Λ is a index set. Since any one of $P(z), Q(z), P(z)+Q(z), 2 P(z)$ is not equal to $2 Q(z)$, then by Lemma 5 we have $d_{2}^{2} A_{0}^{2} \equiv 0$. This is a contradiction. Thus, $h \not \equiv 0$.

Now suppose $d_{2} \equiv 0, d_{1} \not \equiv 0$. Using a similar reasoning as above we get $h \not \equiv 0$.
Finally, if $d_{2} \equiv 0, d_{1} \equiv 0, d_{0} \not \equiv 0$, then we have $h=-d_{0}^{2} \not \equiv 0$. Hence $h \not \equiv 0$. By (39), (40) and (41), we obtain

$$
\begin{equation*}
f=\frac{\alpha_{1}\left(g_{f}^{\prime}-\left(d_{2} F\right)^{\prime}-\alpha_{1} F\right)-\beta_{1}\left(g_{f}-d_{2} F\right)}{h} \tag{42}
\end{equation*}
$$

If $\rho\left(g_{f}\right)<\infty$, then by (42) we get $\rho(f)<\infty$ and this is a contradiction. Hence $\rho\left(g_{f}\right)=\infty$.

Set $w(z)=d_{2} f^{\prime \prime}+d_{1} f^{\prime}+d_{0} f-\varphi$. Then, by $\rho(\varphi)<\infty$, we have $\rho(w)=\rho\left(g_{f}\right)$ $=\rho(f)=\infty$. In order to prove $\bar{\lambda}\left(g_{f}-\varphi\right)=\lambda\left(g_{f}-\varphi\right)=\infty$, we need to prove only $\bar{\lambda}(w)=\lambda(w)=\infty$. Using $g_{f}=w+\varphi$, we get from (42)

$$
\begin{equation*}
f=\frac{\alpha_{1}\left(w^{\prime}+\varphi^{\prime}-\left(d_{2} F\right)^{\prime}-\alpha_{1} F\right)-\beta_{1}\left(w+\varphi-d_{2} F\right)}{h} \tag{43}
\end{equation*}
$$

So,

$$
\begin{equation*}
f=\frac{\alpha_{1} w^{\prime}-\beta_{1} w}{h}+\psi \tag{44}
\end{equation*}
$$

where ψ is defined in (8). Substituting (44) into equation (2), we obtain

$$
\begin{equation*}
\frac{\alpha_{1}}{h} w^{\prime \prime \prime}+\phi_{2} w^{\prime \prime}+\phi_{1} w^{\prime}+\phi_{0} w=F-\left(\psi^{\prime \prime}+A_{1}(z) e^{P(z)} \psi^{\prime}+A_{0}(z) e^{Q(z)} \psi\right)=A \tag{45}
\end{equation*}
$$

where $\phi_{j}(j=0,1,2)$ are meromorphic functions with $\rho\left(\phi_{j}\right)<\infty(j=0,1,2)$. Since $\rho(\psi)<\infty$, it follows that $A \not \equiv 0$ by Theorem 4 . By $\alpha_{1} \not \equiv 0, h \not \equiv 0$ and Lemma 7, we obtain $\bar{\lambda}(w)=\lambda(w)=\rho(w)=\infty$, i.e., $\bar{\lambda}\left(g_{f}-\varphi\right)=\lambda\left(g_{f}-\varphi\right)=\infty$.

Proof of Theorem 7. Suppose that $f(z)$ is a solution of equation (2). Then, by Theorem 4, we have $\rho(f)=\rho\left(f^{\prime}\right)=\rho\left(f^{\prime \prime}\right)=\infty$. Since $\rho(\varphi)<\infty$, then $\rho(f-\varphi)=\rho\left(f^{\prime}-\varphi\right)=\rho\left(f^{\prime \prime}-\varphi\right)=\infty$. By using a similar reasoning to that in the proof of Theorem 6, the proof of Theorem 7 can be completed.

Proof of Theorem 8. By Theorem 5, we know that equation (2) has at most one finite order solution f_{0} and all other solutions f_{1} of (2) satisfy $\rho\left(f_{1}\right)=\infty$. By hypothesis of Theorem $8, \psi(z)$ is not a solution of equation (2). Then

$$
\begin{equation*}
F-\left(\psi^{\prime \prime}+A_{1}(z) e^{P(z)} \psi^{\prime}+A_{0}(z) e^{Q(z)} \psi\right) \not \equiv 0 \tag{46}
\end{equation*}
$$

By reasoning similar to that in the proof of Theorem 6 , we can prove Theorem 8.
Proof of Theorem 9. Suppose that f_{1} is a solution of equation (9) and f_{2} is a solution of equation (10). Set $w=f_{1}-C f_{2}$. Then w is a solution of the equation

$$
\begin{equation*}
w^{\prime \prime}+A_{1}(z) e^{P(z)} w^{\prime}+A_{0}(z) e^{Q(z)} w=F_{1}-C F_{2} \tag{47}
\end{equation*}
$$

By $\rho\left(F_{1}-C F_{2}\right)<n, F_{1}-C F_{2} \not \equiv 0$ and Theorem 4, we have $\rho(w)=\infty$. Thus, by Theorem 6, we obtain that

$$
\bar{\lambda}\left(g_{f_{1}-C f_{2}}-\varphi\right)=\lambda\left(g_{f_{1}-C f_{2}}-\varphi\right)=\infty
$$

Acknowledgement

The author would like to thank the referees for their helpful remarks and suggestions to improve the paper. This research is supported by ANDRU (Agence Nationale pour le Développement de la Recherche Universitaire) and University of Mostaganem (UMAB), (PNR Project Code 8/u27/3144).

References

[1] B. Belaïdi, A. El Farissi, Relation between differential polynomials of certain complex linear differential equations and meromorphic functions of finite order, Tsukuba J. Math. 32(2008), 291-305.
[2] B. Belaїdi, A. El Farissi, Relation between differential polynomials and small functions, Kyoto J. Math. 50(2010), 453-468.
[3] Z. X. Chen, Zeros of meromorphic solutions of higher order linear differential equations, Analysis 14(1994), 425-438.
[4] Z. X. Chen, The fixed points and hyper-order of solutions of second order complex differential equations, Acta Math. Sci. Ser. A Chin. Ed. 20(2000), 425-432.
[5] Z. X. Chen, The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the order $(Q)=1$, Science China Ser. A 45(2002), 290-300.
[6] Z. X. Chen, On the hyper-order of solutions of some second order linear differential equations, Acta Math. Sinica Engl. Ser. 18(2002), 79-88.
[7] F. Gross, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc. 131(1968), 199-214.
[8] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. 37(1988), 88-104.
[9] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[10] I. Laine, J. Rieppo, Differential polynomials generated by linear differential equations, Complex Var. Theory Appl. 49(2004), 897-911.
[11] M. S. Liu, X. M. Zhang, Fixed points of meromorphic solutions of higher order linear differential equations, Ann. Acad. Sci. Fenn. Math. 31(2006), 191-211.
[12] A. I. Markushevich, Theory of functions of a complex variable, Vol. II, Englewood Cliffs, New Jersey, 1965.
[13] J. Wang, H. X. Yi, Fixed points and hyper-order of differential polynomials generated by solutions of differential equation, Complex Var. Theory Appl. 48(2003), 83-94.
[14] J. Wang, I. Laine, Growth of solutions of second order linear differential equations, J. Math. Anal. Appl. 342(2008), 39-51.
[15] J. Wang, I. Laine, Growth of solutions of nonhomogeneous linear differential equations, Abstr. Appl. Anal. 2009, 1-11, Art. ID 363927.
[16] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 2003.
[17] Q. T. Zhang, C. C. Yang, The Fixed Points and Resolution Theory of Meromorphic Functions, Beijing University Press, Beijing, 1988, in Chinese.

[^0]: *Corresponding author. Email address: belaidi@univ-mosta.dz (B. Belaïdi)
 http://www.mathos.hr/mc © 2013 Department of Mathematics, University of Osijek

