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Abstract. In this paper, we study the growth of solutions of some complex linear differential equations and we

obtain some results on the (p,q)-order of these solutions. The results presented in this paper mainly improve the

corresponding results announced in the literatures.
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1. Introduction and main results

We assume that the reader is familiar with the fundamental results and the standard no-

tations of Nevanlinna’s theory (see e.g. [8,14,20]). For r ∈ [0,+∞), we define exp1 r :=

er and expp+1 r := exp(expp r), p ∈ N. For all r sufficiently large, we define log1 r = logr

and logp+1 r := log(logp r), p ∈ N. We also denote exp0 r = r = log0 r, log−1 r = exp1 r and

exp−1 r = log1 r. Furthermore, we define the linear measure of a set E ⊂ [0,+∞) by m(E)=
∫

E dt

and the logarithmic measure of a set F ⊂ [1,+∞) by ml(F) =
∫

F
dt
t . For the unity of notations,

we present here the definition of (p,q)−order where p and q are integers with p≥ q≥ 1; see,

e.g., [15,16].
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Definition 1.1. The (p,q)−order of a meromorphic function f (z) is defined by

σ(p.q)( f ) = limsup
r→+∞

logp T (r, f )
logq r

,

where T (r, f ) is the characteristic function of Nevanlinna of the function f . If f is an entire

function, then

σ(p.q)( f ) = limsup
r→+∞

logp T (r, f )
logq r

= limsup
r→+∞

logp+1 M(r, f )
logq r

,

where M(r, f ) is the maximum modulus of f in the circle |z|= r.

Definition 1.2. The lower (p,q)−order of a meromorphic function f (z) is defined by

µ(p.q)( f ) = liminf
r→+∞

logp T (r, f )
logq r

.

If f (z) is an entire function, then

µ(p.q)( f ) = liminf
r→+∞

logp+1 M(r, f )
logq r

.

Definition 1.3. The (p,q)−type of a meromorphic function f (z) with 0 < σ(p,q)( f ) < +∞ is

defined by

τ(p.q)( f ) = limsup
r→+∞

logp−1 T (r, f )

(logq−1 r)σ(p,q)( f )
.

If f (z) is an entire function, then

τ(p.q)( f ) = limsup
r→+∞

logp M(r, f )

(logq−1 r)σ(p,q)( f )
.

Definition 1.4. The (p,q)-exponent of convergence of zeros of a meromorphic function f (z)

is defined by

λ(p.q)( f ) = limsup
r→+∞

logp N(r, 1
f )

logq r

and the (p,q)−exponent of convergence of distinct zeros of a meromorphic function f (z) is

defined by

λ̄(p.q)( f ) = limsup
r→+∞

logp N(r, 1
f )

logq r
,



ON THE (p,q)-ORDER OF SOLUTIONS OF SOME COMPLEX LINEAR DIFFERENTIAL EQUATIONS 3

where N
(

r, 1
f

) (
N
(

r, 1
f

))
is the integrated counting function of zeros (distinct zeros) of f (z)

in {z : |z| ≤ r}. The lower (p,q)−exponent of convergence of zeros of a meromorphic function

f (z) is defined by

λ (p.q)( f ) = liminf
r→+∞

logp N(r, 1
f )

logq r

and the lower (p,q)−exponent of convergence of distinct zeros of a meromorphic function f (z)

is defined by

λ̄ (p.q)( f ) = liminf
r→+∞

logp N(r, 1
f )

logq r
.

The (p,q)−exponent of convergence of the sequence of poles of a meromorphic function f (z)

is defined by

λ(p.q)

(
1
f

)
= limsup

r→+∞

logp N(r, f )
logq r

.

In the past years, many authors investigated the complex linear differential equations

f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = 0 (1.1)

and

f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = F(z), (1.2)

when A j(z) ( j = 0,1, · · · ,k−1), F(z) are entire functions and obtained some valuable results,

(see e.g. [1], [9], [15−18], [21]). In 2013, Tu et al. investigated the growth of solutions of

equation (1.2) when the dominant coefficient Ad(z) (0 ≤ d ≤ k− 1) is of maximal order and

being Lacunary series.

Theorem A. ([17]) Let A j(z) ( j = 0,1, · · · ,k− 1), F(z) be entire functions of finite iterated

order satisfying

max{σp(A j) ( j 6= d) ,σp(F)}< µp(Ad) = σp(Ad) = σ < ∞ (0≤ d ≤ k−1).

Suppose that Ad =
∞

∑
n=0

cλnzλn is an entire function such that the sequence of exponents {λn}

satisfies the gap series
λn

n
> (logn)2+η (η > 0,n ∈ N). (1.3)

Then every transcendental solution f (z) of (1.2) satisfies µp+1( f ) = σp+1( f ) = σ . Further-

more if F(z) 6≡ 0, then every transcendental solution f (z) of (1.2) satisfies λ p+1( f )= λ p+1( f )=

λ̄p+1( f ) = λp+1( f ) = σ .
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Recently, Huang et al. [9] considered the equation (1.2) with different conditions on the

coefficient Ad(z) and obtained the following result.

Theorem B. ([9]) Let A j(z) ( j = 0,1, · · · ,k− 1), F(z) be entire functions. Suppose that there

exists some d ∈ {1, · · · ,k−1} such that max{σ(A j),σ(F) : j 6= d} ≤ σ(Ad)< ∞, max{τ(A j) :

σ(A j) = σ(Ad),τ(F)} < τ(Ad) and that T (r,Ad) ∼ logM(r,Ad) as r→ +∞ outside a set of r

of finite logarithmic measure. Then we have

(i) Every transcendental solution f of (1.2) satisfes σ2( f ) = σ(Ad), and (1.2) may have poly-

nomial solutions f of degree < d.

(ii) If F(z) 6≡ 0, then every transcendental solution f of (1.2) satisfies λ̄2( f )= λ2( f )=σ2( f )=

σ(Ad).

(iii) If d = 1, then every nonconstant solution f of (1.2) satisfies σ2( f ) = σ(A1). Furthermore,

if F(z) 6≡ 0, then every nonconstant solution f of (1.2) satisfies λ̄2( f ) = λ2( f ) = σ2( f ) =

σ(A1).

As for the linear differential equations

Ak(z) f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = 0 (1.4)

and

Ak(z) f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f = F(z), (1.5)

where k ≥ 2, A j(z) ( j = 0,1, · · · ,k) , F(z) are entire functions with A0AkF 6≡ 0, many authors

investigated the properties of their solutions and obtained some interesting results, (see e.g. [3],

[4], [7], [19]). It well-known that if Ak(z) ≡ 1, then all solutions of (1.4) and (1.5) are entire

functions, but when Ak(z) is a nonconstant entire function, then equation (1.4) or (1.5) can

possess meromorphic solutions. For instance the equation

z f ′′′+4 f ′′+
(
−1− 1

2
z2− z

)
e−z f ′+

((
1− 1

2
z2 +2z

)
e−2z + ze−3z

)
f = 0

has a meromorphic solution f (z) =
1
z2 ee−z

and the equation

z3 f ′′′− z3 f ′′−2z2 f ′− (z3 +3z2−6) f = (z2−6)sinz

has a meromorphic solution f (z)=
cosz

z
. In 2015, Wu and Zheng have considered the equations

(1.4) and (1.5), and obtained the following result when the coefficient Ak(z) is of maximal order

and Fabry gap series.
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Theorem C. ([19]) Suppose that k ≥ 2, A j(z) ( j = 0,1, · · · ,k) are entire functions satisfying

Ak(z)A0(z) 6≡ 0 and σ(A j) < σ(Ak) < ∞ ( j = 0,1, · · · ,k−1). Suppose that Ak(z) =
∞

∑
n=0

cλnzλn

and the sequence of exponents {λn} satisfies the Fabry gap codition

λn

n
→ ∞ (n→ ∞). (1.6)

Then every rational solution f (z) of (1.4) is a polynomial with deg f ≤ k− 1 and every tran-

scendental meromorphic solution f (z), whose poles are of uniformly bounded multiplicities, of

(1.4) such that λ

(
1
f

)
< µ( f ), satisfies

λ̄ ( f −ϕ) = λ ( f −ϕ) = σ( f ) = ∞, λ̄2( f −ϕ) = λ2( f −ϕ) = σ2( f ) = σ(Ak),

where ϕ(z) is a finite order meromorphic function and doesn’t solve (1.4).

Now, these theorems leaves us with two questions : First, can we have the same properties as

in Theorem B for the solutions of equation (1.2) when the coefficients are of (p,q)−order? and

secondly, what about the growth of solutions of the equations (1.4) and (1.5) when we have the

arbitrary coefficient As(z) (0≤ s≤ k) instead of the coefficient Ak(z)? In this paper, we proceed

this way and we obtain the following results.

Theorem 1.1. Let A j(z) ( j = 0,1, · · · ,k) with Ak(z)A0(z) 6≡ 0 be entire functions such that

max{σ(p,q)(A j), j 6= s}< σ(p,q)(As)< ∞, (0≤ s≤ k).

Suppose that As(z) =
∞

∑
n=0

cλnzλn and the sequence of exponents {λn} satisfies (1.3). Then every

rational solution f (z) of (1.4) is a polynomial with deg f ≤ s− 1 and every transcendental

meromorphic solution f (z) of (1.4) such that λ(p,q)

(
1
f

)
< µ(p,q)( f ), satisfies

σ(p+1,q)( f ) = σ(p,q)(As).

Theorem 1.2. Let A j(z) ( j = 0,1, · · · ,k) with Ak(z)A0(z) 6≡ 0 be entire functions such that

max{σ(p,q)(A j), j 6= s}< µ(p,q)(As) = σ(p,q)(As) = σ < ∞, (0≤ s≤ k).

Suppose that As(z) =
∞

∑
n=0

cλnzλn and the sequence of exponents {λn} satisfies (1.3). Then every

rational solution f (z) of (1.4) is a polynomial with deg f ≤ s− 1 and every transcendental

meromorphic solution f (z) of (1.4) such that λ(p,q)

(
1
f

)
< µ(p,q)( f ), satisfies

µ(p+1,q)( f ) = σ(p+1,q)( f ) = σ(p,q)(As) = σ .
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Theorem 1.3. Let A j(z) ( j = 0,1, · · · ,k) be entire functions satisfying the hypotheses of Theo-

rem 1.1 and F(z) 6≡ 0 is an entire function.

(i) If σ(p+1,q)(F) < σ(p,q)(As), then every transcendental meromorphic solution f (z) of (1.5)

such that λ(p,q)

(
1
f

)
< µ(p,q)( f ) satisfies

σ(p+1,q)( f ) = σ(p,q)(As),

with at most one exceptional solution f0 satisfying σ(p+1,q)( f0)< σ(p,q)(As).

(ii) If σ(p+1,q)(F)> σ(p,q)(As), then every transcendental meromorphic solution f (z) of (1.5)

such that λ(p,q)

(
1
f

)
< µ(p,q)( f ) satisfies

σ(p+1,q)( f ) = σ(p+1,q)(F).

Remark 1.1 The Theorems 1.1-1.3 had been proved in [3] for the case where Ak(z) is the

dominant coefficient with (p,q)−order for the equations (1.4) and (1.5) and in this paper, we

gave similar results when the arbitrary coefficient As(z) (0≤ s≤ k) is the dominant one instead

of Ak(z).

For equation (1.2), we obtained the following result.

Theorem 1.4. Let A j(z) ( j = 0,1, · · · ,k−1), F(z) be entire functions. Suppose that there exists

some s ∈ {1,2, · · · ,k−1} such that

max{σ(p,q)(A j),σ(p,q)(F), j 6= s} ≤ σ(p,q)(As) = σ < ∞,

max{τ(p,q)(A j) : σ(p,q)(A j) = σ(p,q)(As),τ(p,q)(F)}< τ(p,q)(As)

and that T (r,As) ∼ logM(r,As) as r → +∞ outside a set of r of finite logarithmic measure.

Then

(i) Every transcendental solution f (z) of (1.2) satisfies σ(p+1,q)( f ) = σ(p,q)(As), and every

non-transcendental solution f (z) of (1.2) is a polynomial of degree deg( f ) ≤ s−1.

(ii) If F(z) 6≡ 0, then every transcendental solution f (z) of (1.2) satisfies λ̄(p+1,q)( f )= λ(p+1,q)( f )=

σ(p+1,q)( f ) = σ(p,q)(As).

(iii) If s = 1, then every nonconstant solution f (z) of (1.2) satisfies σ(p+1,q)( f ) = σ(p,q)(A1)

and if F(z) 6≡ 0, then every nonconstant solution f (z) of (1.2) satisfies λ̄(p+1,q)( f )= λ(p+1,q)( f )=

σ(p+1,q)( f ) = σ(p,q)(A1).

2. Lemmas
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Lemma 2.1. ([5]) Let f be a transcendental meromorphic function in the plane, and let α > 1

be a given constant. Then for any given constant and for any given ε > 0 :

(i) There exist a set E1 ⊂ (1,+∞) that has a finite logarithmic measure, and a constant B > 0

depending only on α such that for all z with |z|= r 6∈ [0,1]∪E1, we have∣∣∣∣∣ f (n)(z)
f (m)(z)

∣∣∣∣∣≤ B
(

T (αr, f )
r

(logα r) logT (αr, f )
)n−m

(0≤ m < n).

(ii) There exist a set H1 ⊂ [0,2π) that has linear measure zero and a constant B > 0 depending

only on α, for any θ ∈ [0,2π)�H1, there exists a constant R0 = R0(θ) > 1 such that for all z

satisfying argz = θ and |z|= r > R0, we have∣∣∣∣∣ f (n)(z)
f (m)(z)

∣∣∣∣∣≤ B
(

T (αr, f )
r

(logα r) logT (αr, f )
)n−m

(0≤ m < n).

By using the similar proof of Lemma 2.5 in [7], we easily obtain the following lemma when

σ(p,q)(g) = σ(p,q)( f ) = +∞.

Lemma 2.2. Let f (z) = g(z)
d(z) be a meromorphic function, where g(z) and d(z) are entire

functions satisfying µ(p,q)(g) = µ(p,q)( f ) = µ ≤ σ(p,q)(g) = σ(p,q)( f ) ≤ +∞ and λ(p,q)(d) =

σ(p,q)(d) = λ(p,q)

(
1
f

)
< µ. Then there exists a set E2 ⊂ (1,+∞) of finite logarithmic measure

such that for all |z|= r /∈ [0,1]∪E2 and |g(z)|= M(r,g) we have∣∣∣∣ f (z)
f (k)(z)

∣∣∣∣≤ r2k, (k ∈ N).

Lemma 2.3. ([13]) Let f (z) =
∞

∑
n=0

cλnzλn be an entire function and the sequence of exponents

{λn} satisfies the gap condition (1.3). Then for any given ε > 0,

logL(r, f )> (1− ε) logM(r, f )

holds outside a set E3 of finite logarithmic measure, where M(r, f ) = sup
|z|=r
| f (z)| , L(r, f ) =

inf
|z|=r
| f (z)| .

Lemma 2.4. ([16]) Let f (z) be an entire function of (p,q)−order satisfying 0 < σ(p,q)( f ) =

σ < ∞. Then for any given ε > 0, there exists a set E4 ⊂ (1,+∞) having infinite logarithmic

measure such that for all r ∈ E4, we have

σ = lim
r→+∞,r∈E4

logp T (r, f )
logq r

= lim
r→+∞,r∈E4

logp+1 M(r, f )
logq r

,
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and

M(r, f )> expp+1{(σ − ε) logq r}.

Lemma 2.5. ([6]) Let g : [0,+∞)→ R and h : [0,+∞)→ R be monotone nondecreasing func-

tions such that g(r)≤ h(r) for all r 6∈E5∪ [0,1], where E5⊂ (1,+∞) is a set of finite logarithmic

measure. Then for any α > 1, there exists an r0 = r0(α) > 0 such that g(r) ≤ h(αr) for al-

l r > r0.

By using the similar proof of Lemma 3.5 in [18], we easily obtain the following lemma when

σ(p,q)(g) = σ(p,q)( f ) = +∞.

Lemma 2.6. Let f (z) = g(z)
d(z) be a meromorphic function, where g(z) and d(z) are entire

functions satisfying µ(p,q)(g) = µ(p,q)( f ) = µ ≤ σ(p,q)(g) = σ(p,q)( f ) ≤ +∞ and λ(p,q)(d) =

σ(p,q)(d) = λ(p,q)

(
1
f

)
< µ. Then there exists a set E6 ⊂ (1,+∞) of finite logarithmic measure

such that for all |z|= r /∈ [0,1]∪E6 and |g(z)|= M(r,g) we have

f (n)(z)
f (z)

=

(
νg(r)

z

)n

(1+o(1)), (n ∈ N),

where νg(r) is the central index of g(z).

Lemma 2.7. Let f (z) be an entire function such that σ(p,q) ( f ) = σ < +∞. Then, there exist

entire functions β (z) and D(z) such that

f (z) = β (z)eD(z),

σ(p,q) ( f ) = max
{

σ(p,q) (β ) ,σ(p,q)

(
eD(z)

)}
and

σ(p,q) (β ) = limsup
r→+∞

logp N(r, 1
f )

logq r
.

Moreover, for any given ε > 0, we have

|β (z)| ≥ exp
{
−expp

{
(σ(p,q) (β )+ ε) logq r

}}
(r /∈ E7) ,

where E7 ⊂ (1,+∞) is a set of r of finite linear measure.

Proof. By Theorem 10.2 in [11] and Theorem 2.2 in [12], we get that f (z) can be represented

by

f (z) = β (z)eD(z),
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with

σ(p,q) ( f ) = max
{

σ(p,q) (β ) ,σ(p,q)

(
eD(z)

)}
.

By using similar proof in Lemma 6.1 in [10], for any given ε > 0, we obtain

|β (z)| ≥ exp
{
−expp

{
(σ(p,q) (β )+ ε) logq r

}}
(r /∈ E7) ,

where E7 ⊂ (1,+∞) is a set of r of finite linear measure.

Lemma 2.8. Let f (z) be an entire function such that σ(p,q) ( f ) = σ <+∞. Then, there exists a

set E8 ⊂ (1,+∞) of r of finite linear measure such that for any given ε > 0, we have

exp
{
−expp

{
(σ + ε) logq r

}}
≤ | f (z)| ≤ expp+1

{
(σ + ε) logq r

}
(r /∈ E8) .

Proof. When p = q = 1, the lemma is due to Chen [2]. Thus, we assume that p ≥ q > 1 or

p > q = 1. It is obvious that | f (z)| ≤ expp+1
{
(σ + ε) logq r

}
. By Lemma 2.7, there exist entire

functions β (z) and D(z) such that

f (z) = β (z)eD(z) and σ(p,q) ( f ) = max
{

σ(p,q) (β ) ,σ(p,q)

(
eD(z)

)}
.

Since σ(p−1,q) (D) = σ(p,q)

(
eD(z)

)
≤ σ(p,q) ( f ) and

∣∣∣eD(z)
∣∣∣≥ e−|D(z)|, for sufficiently large |z|=

r, we have ∣∣∣eD(z)
∣∣∣≥ e−|D(z)| ≥ exp

{
−expp

{
(σ +

ε

2
) logq r

}}
.

By Lemma 2.7 again, it follows that

| f (z)|= |β (z)|
∣∣∣eD(z)

∣∣∣
≥ exp

{
−expp

{
(σ(p,q) (β )+

ε

2
) logq r

}}
exp
{
−expp

{
(σ +

ε

2
) logq r

}}
≥ exp

{
−expp

{
(σ +

ε

2
) logq r

}}
exp
{
−expp

{
(σ +

ε

2
) logq r

}}
= exp

{
−2expp

{
σ +

ε

2
) logq r

}}
≥ exp

{
−expp

{
(σ + ε) logq r

}}
,

for r /∈ E8, where E8 ⊂ (1,+∞) is a set of r of finite linear measure. Thus, we complete the

proof of Lemma 2.8.

Lemma 2.9. ([16]) Let f (z) be an entire function of (p,q)−order, and let ν f (r) be a central

index of f (z). Then

σ(p,q)( f ) = limsup
r→+∞

logp ν f (r)
logq r

.
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Lemma 2.10. Let f (z) be an entire function with σ(p,q)( f ) = σ , 0 < σ < ∞. Then for any given

β < σ , there exists a set E9 having infinite logarithmic measure such that for all |z| = r ∈ E9,

we have

logp+1 M(r, f )> β logq r,

where M(r, f ) = sup
|z|=r
| f (z)| .

Proof. By the definition of the (p,q)−order, for any given ε > 0, there exists a sequence {rn}

tending to ∞ satisfying (1+ 1
n)rn < rn+1 and

lim
n→∞

logp+1 M(rn, f )
logq rn

= σ .

Then, there exists a positive integer n0 such that for all n≥ n0 and for any given ε > 0, we have

M(rn, f )> expp+1{(σ − ε) logq rn}. (2.1)

When q≥ 1, we have

lim
n→∞

logq
( n

n+1

)
r

logq r
= 1.

Since β < σ , then we can choose sufficiently small ε > 0 to satisfy 0 < ε < σ −β . Therefore,

there exists a positive integer n1 such that for all n≥ n1, we have

logq
( n

n+1

)
r

logq r
>

β

σ − ε
. (2.2)

Take n2 = max
{

n0,n1
}
. Then, by (2.1) and (2.2) we get for r ∈ [rn,

(
1+ 1

n

)
rn]

logp+1 M(r, f )≥ logp+1 M(rn, f )> (σ − ε) logq rn

≥ (σ − ε) logq

(
n

n+1

)
r > β logq r.

Setting E9 =
∞⋃

n=n2

[rn,(1+ 1
n)rn], we have

ml (E9) =
∞

∑
n=n2

(1+ 1
n )rn∫

rn

dt
t
=

∞

∑
n=n2

log(1+
1
n
) = ∞.

Lemma 2.11. Let f (z) =
∞

∑
n=0

cλnzλn be an entire function with σ(p,q)( f ) = σ , 0 < σ < ∞. If the

sequence of exponent {λn} satisfies (1.3), then for any given β <σ , there exists a set E10 having
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infinite logarithmic measure such that for all |z|= r ∈ E10, we have

| f (z)|> expp+1{β logq r}.

Proof. By Lemma 2.3, for any given ε > 0, there exists a set E3 of finite logarithmic measure

such that for all r /∈ E3, we have

logL(r, f )> (1− ε) logM(r, f ).

For any given β < σ , we can choose δ > 0 such that β < δ < σ and sufficiently small ε

satisfying 0 < ε < δ−β

δ
. Then, by Lemma 2.10, there exists a set E9 having infinite logarithmic

measure such that for all r ∈ E9, we have

| f (z)|> L(r, f )> [M(r, f )]1−ε >
(
expp+1{δ logq r}

)1−ε
> expp+1{β logq r},

where E10 = E9�E3 is a set with infinite logarithmic measure.

Lemma 2.12. Let f (z) be an entire function with µ(p,q)( f ) = µ < ∞. Then for any given

ε > 0, there exists a set E11 ⊂ (1,+∞) having infinite logarithmic measure such that for all

|z|= r ∈ E11, we have

µ(p,q)( f ) = lim
r→+∞,r∈E11

logp+1 M(r, f )
logq r

and

M(r, f )< expp+1{(µ + ε) logq r}.

Proof. By the definition of the lower (p,q)-order, there exists a sequence {rn}∞
n=1 tending to ∞

satisfying (1+ 1
n)rn < rn+1, and

lim
rn→+∞

logp+1 M(rn, f )
logq rn

= µ(p,q)( f ).

Then for any given ε > 0, there exists an n2 such that for n ≥ n2 and any r ∈ [ n
n+1rn,rn], we

have
logp+1 M( n

n+1rn, f )
logq rn

≤
logp+1 M(r, f )

logq r
≤

logp+1 M(rn, f )
logq

n
n+1rn

.

Letting E11 =
∞⋃

n=n2

[ n
n+1rn,rn], then for any r ∈ E11, we have

lim
r→+∞,r∈E11

logp+1 M(r, f )
logq r

= lim
rn→+∞

logp+1 M(rn, f )
logq rn

= µ(p,q)( f ),
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and

ml (E11) =
∞

∑
n=n2

rn∫
n

n+1 rn

dt
t
=

∞

∑
n=n2

log(1+
1
n
) = ∞.

Lemma 2.13. ([15]) If f (z) is a meromorphic function, then σ(p,q)( f ′) = σ(p,q)( f ).

Lemma 2.14. ([17]) Let f (z) be a transcendental entire function, and let zr = reiθr be a point

satisfying | f (zr)| = M(r, f ). Then, there exists a constant δr > 0 such that for all z satisfying

|z|= r /∈ E12 and argz = θ ∈ [θr−δr,θr +δr], we have∣∣∣∣ f (z)
f ( j)(z)

∣∣∣∣≤ 2r j, ( j ∈ N).

Lemma 2.15. ([16]) Let f (z) be an entire function of (p,q)−order satisfying 0 < σ(p,q)( f ) =

σ < ∞ and 0 < τ(p,q)( f ) = τ < ∞. Then for any given β < τ, there exists a set E13 ⊂ [1,+∞)

that has an infinite logarithmic measure such that for all |z|= r ∈ E13, we have

logp M(r, f )> β (logq−1 r)σ (r ∈ E13).

Lemma 2.16. Let f (z) be a transcendental entire function satisfying 0 < σ(p,q)( f ) = σ < ∞,

0< τ(p,q)( f )= τ <∞ and T (r, f )∼ logM(r, f ) as r→+∞ outside a set of r of finite logarithmic

measure. Then for any β < τ , there exists a set E14 ⊂ (0,+∞) having infinite logarithmic

measure and a set H2 ⊂ [0,2π) that has linear measure zero such that for all z satisfying |z|=

r ∈ E14 and argz = θ ∈ [0,2π)�H2, we have∣∣∣ f (reiθ )
∣∣∣> expp{β (logq−1 r)σ}.

Proof. Since m(r, f )∼ logM(r, f ) as r→+∞ and r /∈F ⊂ (0,+∞), where F is a set of r of finite

logarithmic measure, by the definition of m(r, f ), we see that there exists a set H2 ⊂ [0,2π) with

linear measure zero such that for all z satisfying argz = θ ∈ [0,2π)�H2 and for any ε > 0, we

have ∣∣∣ f (reiθ )
∣∣∣> [M(r, f )]1−ε . (2.3)

Otherwise, we find that there exists a set H ⊂ [0,2π) with positive linear measure, i.e., m(H)> 0

such that, for all z satisfying argz = θ ∈ H and for any ε > 0, we have∣∣∣ f (reiθ )
∣∣∣≤ [M(r, f )]1−ε .
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Then, for all r /∈ F, we get

m(r, f ) =
1

2π

2π∫
0

ln+
∣∣∣ f (reiθ )

∣∣∣dθ

=
1

2π

∫
H

ln+
∣∣∣ f (reiθ )

∣∣∣dθ +
1

2π

∫
[0,2π)�H

ln+
∣∣∣ f (reiθ )

∣∣∣dθ

≤ (1− ε)m(H)

2π
logM(r, f )+

2π−m(H)

2π
logM(r, f )

=
2π− εm(H)

2π
logM(r, f ). (2.4)

Since ε > 0 and m(H) > 0, then (2.4) is a contradiction with m(r, f ) ∼ logM(r, f ). For any

β < τ, we choose ξ (> 0) satisfying β < ξ < τ. By Lemma 2.15, there exists a set E13⊂ [1,+∞)

that has an infinite logarithmic measure such that for all |z|= r ∈ E13, we have

logp M(r, f )> ξ (logq−1 r)σ . (2.5)

By (2.3) and (2.5), for any given ε (0 < ε < 1− β

ξ
) and for all |z| = r ∈ E14 = E13�F and

argz = θ ∈ [0,2π)�H2, we have∣∣∣ f (reiθ )
∣∣∣> [M(r, f )]1−ε >

(
expp{ξ (logq−1 r)σ}

)1−ε
> expp{β (logq−1 r)σ}.

Thus, the proof of Lemma 2.16 is complete.

Lemma 2.17. ([15]) Let A0(z),A1(z), · · · ,Ak−1(z) and F(z) 6≡ 0 be meromorphic functions. If

f (z) is a meromorphic solution to (1.2) satisfying

max{σ(p+1,q)(F),σ(p+1,q)(A j) : j = 0,1, · · · ,k−1}< σ(p+1,q)( f ),

then we have

λ̄(p+1,q)( f ) = λ(p+1,q)( f ) = σ(p+1,q)( f ).

3. Proof of Theorem 1.1

Assume that f (z) is a rational solution of (1.4). If either f (z) is a rational function, which

has a pole at z0 of degree m≥ 1, or f (z) is a polynomial with deg f ≥ s, then f (s)(z) 6≡ 0. Since

max{σ(p,q)(A j), j 6= s}< σ(p,q)(As)< ∞, then

σ(p,q)(0) = σ(p,q)(Ak(z) f (k)+Ak−1(z) f (k−1)+ · · ·+A1(z) f ′+A0(z) f )
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= σ(p,q)(As)> 0,

which is a contradiction. Therefore, f (z) must be a polynomial with deg f ≤ s−1.

Now, we assume that f (z) is a transcendental meromorphic solution of (1.4) such that

λ(p,q)

(
1
f

)
< µ(p,q)( f ). By Lemma 2.1, there exists a constant B > 0 and a set E1 ⊂ (1,+∞) of

finite logarithmic measure such that for all z satisfying |z|= r /∈ [0,1]∪E1, we have∣∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣∣≤ B(T (2r, f ))k+1 , 1≤ j ≤ k. (3.1)

Since λ(p,q)

(
1
f

)
< µ(p,q)( f ), then by Hadamard’s factorization theorem, we can write f as

f (z) = g(z)
d(z) , where g(z) and d(z) are entire functions satisfying

µ(p,q)(g) = µ(p,q)( f ) = µ ≤ σ(p,q)(g) = σ(p,q)( f ),

λ(p,q)(d) = σ(p,q)(d) = λ(p,q)

(
1
f

)
< µ.

Then by Lemma 2.2, there exists a set E2 of finite logarithmic measure such that for all |z| =

r /∈ E2 and |g(z)|= M(r,g) and for r sufficiently large, we have∣∣∣∣ f (z)
f (s)(z)

∣∣∣∣≤ r2s, (s ∈ N). (3.2)

Set α =max{σ(p,q)(A j) : j 6= s}< σ(p,q)(As) = σ <∞. Then, for any given ε (0< 2ε < σ−α),

we have ∣∣A j(z)
∣∣≤ expp+1{(α + ε) logq r}, j 6= s. (3.3)

By Lemma 2.3 and Lemma 2.4, there exists a set E15 ⊂ (1,+∞) of infinite logarithmic measure

such that for all |z|= r ∈ E15, we have

|As(z)| ≥ L(r,As)> (M(r,As))
1−ε ≥ (expp+1{(σ −

ε

2
) logq r})1−ε

≥ expp+1{(σ − ε) logq r}. (3.4)

By (1.4), we have

|As(z)| ≤
∣∣∣∣ f

f (s)

∣∣∣∣
[
|Ak(z)|

∣∣∣∣∣ f (k)

f

∣∣∣∣∣+ |Ak−1(z)|

∣∣∣∣∣ f (k−1)

f

∣∣∣∣∣+ · · ·+ |As+1(z)|

∣∣∣∣∣ f (s+1)

f

∣∣∣∣∣
+ |As−1(z)|

∣∣∣∣∣ f (s−1)

f

∣∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣ f ′

f

∣∣∣∣+ |A0(z)|
]
. (3.5)



ON THE (p,q)-ORDER OF SOLUTIONS OF SOME COMPLEX LINEAR DIFFERENTIAL EQUATIONS 15

Hence, by substituting (3.1)− (3.4) into (3.5), we obtain for all z satisfying r ∈ E15�(E1 ∪

E2∪ [0,1])

expp+1{(σ − ε) logq r} ≤ r2s expp+1{(α + ε) logq r}kB(T (2r, f ))k+1 . (3.6)

By (3.6) and Lemma 2.5, we have

σ(p+1,q)( f )≥ σ(p,q)(As).

Now, we prove that σ(p+1,q)( f )≤ σ(p,q)(As). We can rewrite (1.4) as

−Ak(z)
f (k)

f
= Ak−1(z)

f (k−1)

f
+ · · ·+As+1(z)

f (s+1)

f

+As(z)
f (s)

f
+As−1(z)

f (s−1)

f
+ · · ·+A1(z)

f ′

f
+A0(z). (3.7)

By Lemma 2.6, there exists a set E6 ⊂ (1,+∞) of finite logarithmic measure such that for all

|z|= r /∈ [0,1]∪E6 and |g(z)|= M(r,g), we have

f ( j)(z)
f (z)

=

(
νg(r)

z

) j

(1+o(1)), ( j = 0, · · · ,k) . (3.8)

Since max{σ(p,q)(A j), j 6= s}< σ(p,q)(As)< ∞, then for sufficiently large r, we have∣∣A j(z)
∣∣≤ expp{(σ(p,q)(As)+ ε) logq r}, ( j = 0, · · · ,k) . (3.9)

By Lemma 2.8, there exists a set E8 ⊂ (1,+∞) of finite linear measure (and so of finite loga-

rithmic measure) such that for all |z|= r /∈ E8, we have

|Ak(z)| ≥ exp
{
−expp{(σ(p,q)(Ak)+ ε) logq r}

}
≥ exp

{
−expp{(σ(p,q)(As)+ ε) logq r}

}
. (3.10)

From (3.7) and (3.8), for all z satisfying |z|= r /∈ [0,1]∪E6 and |g(z)|= M(r,g), we have

−Ak(z)
(

νg(r)
z

)k

(1+o(1)) = Ak−1(z)
(

νg(r)
z

)k−1

(1+o(1))

+ · · ·+As+1(z)
(

νg(r)
z

)s+1

(1+o(1))+As(z)
(

νg(r)
z

)s

(1+o(1))

+As−1(z)
(

νg(r)
z

)s−1

(1+o(1))+ · · ·+A1(z)
(

νg(r)
z

)
(1+o(1))+A0(z).

It follows that

|Ak(z)|

∣∣∣∣∣
(

νg(r)
z

)k
∣∣∣∣∣ |1+o(1)| ≤ |Ak−1(z)|

∣∣∣∣∣
(

νg(r)
z

)k−1
∣∣∣∣∣ |1+o(1)|
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+ · · ·+ |As+1(z)|

∣∣∣∣∣
(

νg(r)
z

)s+1
∣∣∣∣∣ |1+o(1)|+ |As(z)|

∣∣∣∣(νg(r)
z

)s∣∣∣∣ |1+o(1)|

+ |As−1(z)|
(

νg(r)
z

)s−1

|1+o(1)|+ · · ·+ |A1(z)|
(

νg(r)
z

)
|1+o(1)|+ |A0(z)| (3.11)

and by (3.9)−(3.11) for all z satisfying |z|= r /∈ ([0,1]∪E6∪E8) and |g(z)|=M(r,g), we have

exp
{
−expp{(σ(p,q)(As)+ ε) logq r}

}(νg(r)
r

)
|1+o(1)|

≤ k expp+1{(σ(p,q)(As)+ ε) logq r}|1+o(1)| .

So, we have

limsup
r→+∞

logp+1 νg(r)
logq r

≤ σ(p,q)(As)+ ε. (3.12)

Since ε > 0 is arbitrary, then by (3.12), Lemma 2.5 and Lemma 2.9, we have σ(p+1,q)(g) ≤

σ(p,q)(As), that is σ(p+1,q)( f )≤ σ(p,q)(As). Therefore, we get σ(p+1,q)( f ) = σ(p,q)(As).

4. Proof of Theorem 1.2

Assume that f (z) is a rational solution of (1.4). By the same reasoning as in the proof of

Theorem 1.1, it is clear that f (z) is a polynomial with deg f ≤ s−1. Now, we assume that f (z) is

a transcendental meromorphic solution of (1.4) such that λ(p,q)

(
1
f

)
< µ(p,q)( f ). By Theorem

1.1, we have σ(p+1,q)( f ) = σ(p,q)(As) = σ . Then, we only need to prove that µ(p+1,q)( f ) =

µ(p,q)(As) = σ . Since max{σ(p,q)(A j) ( j 6= s)}< σ , then there exist constants α1,β1 satisfying

max{σ(p,q)(A j) ( j 6= s)}< α1 < β1 < σ . Then∣∣A j(z)
∣∣≤ expp+1{α1 logq r}, j 6= s. (4.1)

Also, we have that As(z) =
∞

∑
n=0

cλnzλn such that the sequence of exponents {λn} satisfies (1.3)

and µ(p,q)(As) = σ(p,q)(As) = σ . Then, by Lemma 2.11, there exists a set E10 having infinite

logarithmic measure such that for all z satisfying

|z|= r ∈ E10,

we have

|As(z)|> expp+1{β1 logq r}. (4.2)

Hence, by substituting (4.1), (4.2), (3.1), (3.2) into (3.5), for all z satisfying

|z|= r ∈ E10�([0,1]∪E1∪E2),
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we have

expp+1{β1 logq r} ≤ Bexpp+1{α1 logq r}r2sk [T (2r, f )]k+1 . (4.3)

Since β1 is arbitrarily close to σ , then by (4.3) and Lemma 2.5, we obtain

µ(p+1,q)( f )≥ σ = µ(p,q)(As).

On the other hand, by (1.4), we have

|Ak(z)|

∣∣∣∣∣ f (k)

f

∣∣∣∣∣≤ |Ak−1(z)|

∣∣∣∣∣ f (k−1)

f

∣∣∣∣∣+ · · ·+ |As+1(z)|

∣∣∣∣∣ f (s+1)

f

∣∣∣∣∣+ |As(z)|

∣∣∣∣∣ f (s)

f

∣∣∣∣∣
+ |As−1(z)|

∣∣∣∣∣ f (s−1)

f

∣∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣ f ′

f

∣∣∣∣+ |A0(z)| . (4.4)

By Lemma 2.12, for any given ε > 0, there exists a set E11⊂ (1,+∞) having infinite logarithmic

measure such that for all |z|= r ∈ E11, one has∣∣A j(z)
∣∣≤ expp+1{(µ(p,q)(As)+ ε) logq r}, j = 0, · · · ,k. (4.5)

By Lemma 2.8, there exists a set E8 ⊂ (1,+∞) of finite logarithmic measure such that for all

|z|= r /∈ E8, we have

|Ak(z)| ≥ exp
{
−expp{(σ(p,q)(Ak)+ ε) logq r}

}
≥ exp

{
−expp{(σ(p,q)(As)+ ε) logq r}

}
= exp

{
−expp{(µ(p,q)(As)+ ε) logq r}

}
. (4.6)

From (3.8), (4.4)− (4.6), for all z satisfying |z|= r ∈ E11�(E6∪E8) and |g(z)|= M(r,g), we

have

exp
{
−expp{(µ(p,q)(As)+ ε) logq r}

}(νg(r)
r

)k

|1+o(1)| ≤

expp+1{(µ(p,q)(As)+ ε) logq r}
(

νg(r)
r

)k−1

|1+o(1)|

+ · · ·+ expp+1{(µ(p,q)(As)+ ε) logq r}
(

νg(r)
r

)s+1

|1+o(1)|

+expp+1{(µ(p,q)(As)+ ε) logq r}
(

νg(r)
r

)s

|1+o(1)|

+expp+1{(µ(p,q)(As)+ ε) logq r}
(

νg(r)
r

)s−1

|1+o(1)|

+ · · ·+ expp+1{(µ(p,q)(As)+ ε) logq r}
(

νg(r)
r

)
|1+o(1)|

+expp+1{(µ(p,q)(As)+ ε) logq r},
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that is, for all z satisfying |z|= r ∈ E11�(E6∪E8) and |g(z)|= M(r,g), we obtain

exp
{
−expp{(µ(p,q)(As)+ ε) logq r}

}(νg(r)
r

)
|1+o(1)|

≤ k |1+o(1)|expp+1{(µ(p,q)(As)+ ε) logq r}. (4.7)

It follows that

lim
r→+∞

logp+1 νg(r)
logq r

≤ µ(p,q)(As)+ ε. (4.8)

Since ε > 0 is arbitrary, by (4.8), Lemma 2.5 and Lemma 2.9, we have

µ(p+1,q)(g)≤ µ(p,q)(As),

that is,

µ(p+1,q)( f )≤ µ(p,q)(As).

Therefore, we get

µ(p+1,q)( f ) = µ(p,q)(As) = σ .

5. Proof of Theorem 1.3

(i) We assume that f (z) is a transcendental meromorphic solution of (1.5) such that λ(p,q)

(
1
f

)
<

µ(p,q)( f ), and { f1, f2, · · · , fk} is a meromorphic solution base of the corresponding homoge-

neous equation (1.4) of (1.5). By Theorem 1.1, we get that

σ(p+1,q)( f j) = σ(p,q)(As),( j = 1,2, · · · ,k) .

By the elementary theory of differential equations, all solutions of (1.5) can be represented in

the form

f (z) = f0(z)+B1 f1(z)+B2 f2(z)+ · · ·+Bk fk(z), (5.1)

where B1, · · · ,Bk ∈ C and the function f0 has the form

f0(z) =C1(z) f1(z)+C2(z) f2(z)+ · · ·+Ck(z) fk(z), (5.2)

where C1 (z) , · · · ,Ck (z) are suitable meromorphic functions satisfying

C′j = F.G j( f1, · · · , fk). [W ( f1, · · · , fk)]
−1 , j = 1,2, · · · ,k, (5.3)
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where G j( f1, · · · , fk) are differential polynomials in f1, · · · , fk and their derivatives with con-

stant coefficients, and W ( f1, · · · , fk) is the Wronskian of f1, · · · , fk. Since the Wronskian

W ( f1, · · · , fk) is a differential polynomial in f1, · · · , fk, it is easy to obtain

σ(p+1,q)(W )≤max{σ(p+1,q)( f j) : j = 1,2, · · · ,k}= σ(p,q)(As). (5.4)

Also, we have that G j( f1, · · · , fk) are differential polynomials in f1, · · · , fk and their derivatives

with constant coefficients. Then, we have

σ(p+1,q)(G j)≤max{σ(p+1,q)( f j) : j = 1,2, · · · ,k}= σ(p,q)(As), ( j = 1,2, · · · ,k). (5.5)

By Lemma 2.13 and (5.5), for j = 1, · · · ,k, we have

σ(p+1,q)(C j) = σ(p+1,q)(C
′
j)≤max{σ(p+1,q)(F),σ(p,q)(As)}= σ(p,q)(As). (5.6)

Hence, from (5.1), (5.2) and (5.6), we obtain

σ(p+1,q)( f )≤max{σ(p+1,q)(C j),σ(p+1,q)( f j) : j = 1,2, · · · ,k}= σ(p,q)(As).

Now we assert that all meromorphic solutions f of equation (1.5) such that λ(p,q)

(
1
f

)
<

µ(p,q)( f ), satisfy σ(p+1,q)( f ) = σ(p,q)(As), with at most one exceptional solution f0 with

σ(p+1,q)( f0)< σ(p,q)(As).

In fact, if there exists another meromorphic solution f1 of (1.5) satisfying σ(p+1,q)( f1) <

σ(p,q)(As), then f0− f1 is a nonzero meromorphic solution of (1.4) and satisfies σ(p+1,q)( f0−

f1) < σ(p,q)(As). But by Theorem 1.1 we have any meromorphic solution f of (1.4) such that

λ(p,q)

(
1
f

)
< µ(p,q)( f ), satisfies σ(p+1,q)( f ) = σ(p,q)(As). This is a contradiction. Therefore,

we have that all meromorphic solutions f of equation (1.5) such that λ(p,q)

(
1
f

)
< µ(p,q)( f ),

satisfy σ(p+1,q)( f ) = σ(p,q)(As), with at most one exceptional solution f0 with σ(p+1,q)( f0) <

σ(p,q)(As).

(ii) From (1.5), by a simple consideration of order, we get σ(p+1,q)( f ) ≥ σ(p+1,q)(F). By

Lemma 2.13 and (5.3)− (5.5), for j = 1, · · · ,k, we have

σ(p+1,q)(C j) = σ(p+1,q)(C
′
j)≤max{σ(p+1,q)(F),σ(p,q)(As)} ≤ σ(p+1,q)(F). (5.7)

By (5.1), (5.2) and (5.7), we have

σ(p+1,q)( f )≤max{σ(p+1,q)(C j),σ(p+1,q)( f j) : j = 1,2, · · · ,k} ≤ σ(p+1,q)(F).
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Therefore, we have σ(p+1,q)( f ) = σ(p+1,q)(F).

6. Proof of Theorem 1.4

(i) Suppose that f (z) is a transcendental solution of (1.2). On one hand, by (1.2), we get∣∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣∣≤ |Ak−1(z)|

∣∣∣∣∣ f (k−1)

f

∣∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣ f ′

f

∣∣∣∣+ |A0(z)|+
∣∣∣∣Ff
∣∣∣∣ . (6.1)

By Wiman-Valiron theory [11, p. 187-199], there exists a set E16⊂ (1,+∞) of finite logarithmic

measure such that for all |z|= r /∈ [0,1]∪E16 and | f (z)|= M(r, f )> 1, we have

f ( j)(z)
f (z)

=

(
ν f (r)

z

) j

(1+o(1)), ( j = 0, · · · ,k) . (6.2)

By the definition of the (p,q)−order, for any given ε > 0 and for sufficiently large r, we have∣∣A j(z)
∣∣≤ expp+1{(σ + ε) logq r}, j 6= s (6.3)

and

|F(z)| ≤ expp+1{(σ + ε) logq r}. (6.4)

Since | f (z)|= M (r, f )> 1, then for sufficiently large r we have∣∣∣∣F (z)
f (z)

∣∣∣∣= |F (z)|
M (r, f )

≤ expp+1{(σ + ε) logq r}. (6.5)

By substituting (6.2) , (6.3) and (6.5) into (6.1), for sufficiently large r /∈ [0,1]∪E16, we obtain(
ν f (r)

r

)
|1+o(1)| ≤ (k+1)expp+1{(σ + ε) logq r}. (6.6)

By (6.6), Lemma 2.5 and Lemma 2.9, we obtain σ(p+1,q)( f ) ≤ σ(p,q)(As)+ ε. Since ε > 0 is

arbitrary, we get σ(p+1,q)( f )≤ σ(p,q)(As). On the other hand, by (1.2), we obtain

|As(z)| ≤
∣∣∣∣ f

f (s)

∣∣∣∣
[∣∣∣∣∣ f (k)

f

∣∣∣∣∣+ |Ak−1(z)|

∣∣∣∣∣ f (k−1)

f

∣∣∣∣∣+ · · ·+ |As+1(z)|

∣∣∣∣∣ f (s+1)

f

∣∣∣∣∣
+ |As−1(z)|

∣∣∣∣∣ f (s−1)

f

∣∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣ f ′

f

∣∣∣∣+ |A0(z)|+
∣∣∣∣Ff
∣∣∣∣
]
. (6.7)

For each sufficiently large circle |z| = r, we take zr = reiθr satisfying | f (zr)| = M(r, f ) > 1.

Then, by Lemma 2.14, there exists a constant δr > 0 and a set E12 such that for all z satisfying
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|z|= r /∈ E12 and argz = θ ∈ [θr−δr,θr +δr], we have∣∣∣∣ f (z)
f (s)(z)

∣∣∣∣≤ 2rs. (6.8)

By Lemma 2.1, there exist a set H1 ⊂ [0,2π) that has linear measure zero and a constant B > 0

such that for all z satisfying argz = θ ∈ [θr−δr,θr +δr] and for sufficiently large r, we have∣∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣∣≤ B(T (2r, f ))k+1 , 1≤ j ≤ k. (6.9)

We choose α2,β2 satisfying max{τ(p,q)(A j) : σ(p,q)(A j) = σ(p,q)(As),τ(p,q)(F)} < α2 < β2 <

τ(p,q)(As). Since | f (z)− f (zr)| < ε and | f (zr)| → ∞ as r→ +∞, for all sufficiently large |z| =

r /∈ E12 and argz = θ ∈ [θr−δr,θr +δr], we have∣∣A j(z)
∣∣≤ expp{α2(logq−1 r)σ(p,q)(As)}, j 6= s (6.10)

and ∣∣∣∣F(z)
f (z)

∣∣∣∣≤ |F(z)| ≤ expp{α2(logq−1 r)σ(p,q)(As)}. (6.11)

Since T (r,As) ∼ logM(r,As) as r→ +∞ (r /∈ E12), by Lemma 2.16, for any β2 < τ(p,q)(As),

there exists a set E14 ⊂ (0,+∞) having infinite logarithmic measure and a set H2 ⊂ [0,2π) that

has linear measure zero such that for all z satisfying |z|= r ∈ E14 and argz = θ ∈ [0,2π)�H2,

we have

|As(z)|> expp{β2(logq−1 r)σ(p,q)(As)}. (6.12)

Substituting (6.8)-(6.12) into (6.7), for all z satisfying |z| = r ∈ E14�E12 and argz = θ ∈

[0,2π)�(H1∪H2), we get

expp{β2(logq−1 r)σ(p,q)(As)} ≤ 2rs expp{α2(logq−1 r)σ(p,q)(As)}(k+1)B(T (2r, f ))k+1 . (6.13)

By (6.13) and Lemma 2.5, we obtain σ(p+1,q)( f ) ≥ σ(p,q)(As). Thus, we have σ(p+1,q)( f ) =

σ(p,q)(As).

Now, if f (z) is a polynomial solution of (1.2) with deg( f )≥ s, then f (s)(z) 6≡ 0. If

max{σ(p,q)(A j),σ(p,q)(F), j 6= s}< σ(p,q)(As)< ∞,

then

σ(p,q)(As) = σ(p,q)(−As(z) f (s)) = σ(p,q)( f (k)+Ak−1(z) f (k−1)

+ · · ·+As+1(z) f (s+1)+As−1(z) f (s−1)+ · · ·+A1(z) f ′+A0(z) f −F(z))
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≤max{σ(p,q)(A j),σ(p,q)(F), j 6= s}< σ(p,q)(As),

which is a contradiction. If max{σ(p,q)(A j),σ(p,q)(F), j 6= s}=σ(p,q)(As)=σ and max{τ(p,q)(A j) :

σ(p,q)(A j)=σ(p,q)(As),τ(p,q)(F)}< τ(p,q)(As), then we choose α2,β2 satisfying max{τ(p,q)(A j) :

σ(p,q)(A j) = σ(p,q)(As),τ(p,q)(F)} < α2 < β2 < τ(p,q)(As). By Lemma 2.15, there exists a set

E13 having infinite logarithmic measure such that for all z satisfying |z|= r ∈ E13, we have

|As(z)|> expp{β2(logq−1 r)σ} (6.14)

and for sufficiently large r

|F(z)|< expp{α2(logq−1 r)σ},
∣∣A j(z)

∣∣< expp{α2(logq−1 r)σ}, j 6= s. (6.15)

Hence, from (6.7), (6.14) and (6.15), for all z satisfying |z|= r ∈ E13, we have

expp{β2(logq−1 r)σ} ≤ (k+1)rM expp{α2(logq−1 r)σ},

where M is a constant. This is a contradiction. Therefore, f (z) must be a polynomial with

deg f ≤ s−1.

(ii) If F(z) 6≡ 0, then we find from Lemma 2.17 that every transcendental solution f (z) of

(1.2) satisfies λ̄(p+1,q)( f ) = λ(p+1,q)( f ) = σ(p+1,q)( f ) = σ(p,q)(As).

(iii) If s = 1 and f (z) is a polynomial solution of (1.2), then by (ii), we get that deg f ≤ s−1.

Thus f (z) must be a constant. By (i) and (ii), every nonconstant solution f (z) of (1.2) satisfies

σ(p+1,q)( f ) = σ(p,q)(A1) and λ̄(p+1,q)( f ) = λ(p+1,q)( f ) = σ(p+1,q)( f ) = σ(p,q)(A1) if F(z) 6≡ 0.
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