Communications in Optimization Theory
 Available online at http://cot.mathres.org

ON THE (p, q)-ORDER OF SOLUTIONS OF SOME COMPLEX LINEAR DIFFERENTIAL EQUATIONS

AMINA FERRAOUN, BENHARRAT BELAIDI*

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria

Abstract

In this paper, we study the growth of solutions of some complex linear differential equations and we obtain some results on the (p, q)-order of these solutions. The results presented in this paper mainly improve the corresponding results announced in the literatures.

Keywords. Entire function; Meromorphic function; Differential equation; Lacunary series; (p, q)-order.
2010 Mathematics Subject Classification. 34M10, 30D35.

1. Introduction and main results

We assume that the reader is familiar with the fundamental results and the standard notations of Nevanlinna's theory (see e.g. $[8,14,20]$). For $r \in\left[0,+\infty\right.$), we define $\exp _{1} r:=$ e^{r} and $\exp _{p+1} r:=\exp \left(\exp _{p} r\right), p \in \mathbb{N}$. For all r sufficiently large, we define $\log _{1} r=\log r$ and $\log _{p+1} r:=\log \left(\log _{p} r\right), p \in \mathbb{N}$. We also denote $\exp _{0} r=r=\log _{0} r, \log _{-1} r=\exp _{1} r$ and $\exp _{-1} r=\log _{1} r$. Furthermore, we define the linear measure of a set $E \subset[0,+\infty)$ by $m(E)=\int_{E} d t$ and the logarithmic measure of a set $F \subset[1,+\infty)$ by $m_{l}(F)=\int_{F} \frac{d t}{t}$. For the unity of notations, we present here the definition of (p, q)-order where p and q are integers with $p \geq q \geq 1$; see, e.g., $[15,16]$.

[^0]Definition 1.1. The (p, q)-order of a meromorphic function $f(z)$ is defined by

$$
\sigma_{(p . q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log _{p} T(r, f)}{\log _{q} r}
$$

where $T(r, f)$ is the characteristic function of Nevanlinna of the function f. If f is an entire function, then

$$
\sigma_{(p . q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log _{p} T(r, f)}{\log _{q} r}=\limsup _{r \rightarrow+\infty} \frac{\log _{p+1} M(r, f)}{\log _{q} r}
$$

where $M(r, f)$ is the maximum modulus of f in the circle $|z|=r$.
Definition 1.2. The lower (p, q)-order of a meromorphic function $f(z)$ is defined by

$$
\mu_{(p . q)}(f)=\liminf _{r \rightarrow+\infty} \frac{\log _{p} T(r, f)}{\log _{q} r}
$$

If $f(z)$ is an entire function, then

$$
\mu_{(p . q)}(f)=\liminf _{r \rightarrow+\infty} \frac{\log _{p+1} M(r, f)}{\log _{q} r}
$$

Definition 1.3. The (p, q)-type of a meromorphic function $f(z)$ with $0<\sigma_{(p, q)}(f)<+\infty$ is defined by

$$
\tau_{(p, q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log _{p-1} T(r, f)}{\left(\log _{q-1} r\right)^{\sigma_{(p, q)}(f)}}
$$

If $f(z)$ is an entire function, then

$$
\tau_{(p . q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log _{p} M(r, f)}{\left(\log _{q-1} r\right)^{\sigma_{(p, q)}(f)}}
$$

Definition 1.4. The (p, q)-exponent of convergence of zeros of a meromorphic function $f(z)$ is defined by

$$
\lambda_{(p . q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log _{p} N\left(r, \frac{1}{f}\right)}{\log _{q} r}
$$

and the (p, q)-exponent of convergence of distinct zeros of a meromorphic function $f(z)$ is defined by

$$
\bar{\lambda}_{(p . q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log _{p} \bar{N}\left(r, \frac{1}{f}\right)}{\log _{q} r}
$$

where $N\left(r, \frac{1}{f}\right)\left(\bar{N}\left(r, \frac{1}{f}\right)\right)$ is the integrated counting function of zeros (distinct zeros) of $f(z)$ in $\{z:|z| \leq r\}$. The lower (p, q)-exponent of convergence of zeros of a meromorphic function $f(z)$ is defined by

$$
\underline{\lambda}_{(p . q)}(f)=\liminf _{r \rightarrow+\infty} \frac{\log _{p} N\left(r, \frac{1}{f}\right)}{\log _{q} r}
$$

and the lower (p, q)-exponent of convergence of distinct zeros of a meromorphic function $f(z)$ is defined by

$$
\underline{\bar{\lambda}}_{(p . q)}(f)=\liminf _{r \rightarrow+\infty} \frac{\log _{p} \bar{N}\left(r, \frac{1}{f}\right)}{\log _{q} r}
$$

The (p, q)-exponent of convergence of the sequence of poles of a meromorphic function $f(z)$ is defined by

$$
\lambda_{(p . q)}\left(\frac{1}{f}\right)=\limsup _{r \rightarrow+\infty} \frac{\log _{p} N(r, f)}{\log _{q} r}
$$

In the past years, many authors investigated the complex linear differential equations

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=F(z) \tag{1.2}
\end{equation*}
$$

when $A_{j}(z)(j=0,1, \cdots, k-1), F(z)$ are entire functions and obtained some valuable results, (see e.g. [1], [9], [15-18], [21]). In 2013, Tu et al. investigated the growth of solutions of equation (1.2) when the dominant coefficient $A_{d}(z)(0 \leq d \leq k-1)$ is of maximal order and being Lacunary series.

Theorem A. ([17]) Let $A_{j}(z)(j=0,1, \cdots, k-1), F(z)$ be entire functions of finite iterated order satisfying

$$
\max \left\{\sigma_{p}\left(A_{j}\right)(j \neq d), \sigma_{p}(F)\right\}<\mu_{p}\left(A_{d}\right)=\sigma_{p}\left(A_{d}\right)=\sigma<\infty(0 \leq d \leq k-1)
$$

Suppose that $A_{d}=\sum_{n=0}^{\infty} c_{\lambda_{n}} z^{\lambda_{n}}$ is an entire function such that the sequence of exponents $\left\{\lambda_{n}\right\}$ satisfies the gap series

$$
\begin{equation*}
\frac{\lambda_{n}}{n}>(\log n)^{2+\eta}(\eta>0, n \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

Then every transcendental solution $f(z)$ of (1.2) satisfies $\mu_{p+1}(f)=\sigma_{p+1}(f)=\sigma$. Furthermore if $F(z) \not \equiv 0$, then every transcendental solution $f(z)$ of (1.2) satisfies $\underline{\bar{\lambda}}_{p+1}(f)=\underline{\lambda}_{p+1}(f)=$ $\bar{\lambda}_{p+1}(f)=\lambda_{p+1}(f)=\sigma$.

Recently, Huang et al. [9] considered the equation (1.2) with different conditions on the coefficient $A_{d}(z)$ and obtained the following result.

Theorem B. ([9]) Let $A_{j}(z)(j=0,1, \cdots, k-1), F(z)$ be entire functions. Suppose that there exists some $d \in\{1, \cdots, k-1\}$ such that $\max \left\{\sigma\left(A_{j}\right), \sigma(F): j \neq d\right\} \leq \sigma\left(A_{d}\right)<\infty, \max \left\{\tau\left(A_{j}\right)\right.$: $\left.\sigma\left(A_{j}\right)=\sigma\left(A_{d}\right), \tau(F)\right\}<\tau\left(A_{d}\right)$ and that $T\left(r, A_{d}\right) \sim \log M\left(r, A_{d}\right)$ as $r \rightarrow+\infty$ outside a set of r of finite logarithmic measure. Then we have
(i) Every transcendental solution f of (1.2) satisfes $\sigma_{2}(f)=\sigma\left(A_{d}\right)$, and (1.2) may have polynomial solutions f of degree $<d$.
(ii) If $F(z) \not \equiv 0$, then every transcendental solution f of (1.2) satisfies $\bar{\lambda}_{2}(f)=\lambda_{2}(f)=\sigma_{2}(f)=$ $\sigma\left(A_{d}\right)$.
(iii) If $d=1$, then every nonconstant solution f of (1.2) satisfies $\sigma_{2}(f)=\sigma\left(A_{1}\right)$. Furthermore, if $F(z) \not \equiv 0$, then every nonconstant solution f of (1.2) satisfies $\bar{\lambda}_{2}(f)=\lambda_{2}(f)=\sigma_{2}(f)=$ $\sigma\left(A_{1}\right)$.

As for the linear differential equations

$$
\begin{equation*}
A_{k}(z) f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{k}(z) f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=F(z) \tag{1.5}
\end{equation*}
$$

where $k \geq 2, A_{j}(z)(j=0,1, \cdots, k), F(z)$ are entire functions with $A_{0} A_{k} F \not \equiv 0$, many authors investigated the properties of their solutions and obtained some interesting results, (see e.g. [3], [4], [7], [19]). It well-known that if $A_{k}(z) \equiv 1$, then all solutions of (1.4) and (1.5) are entire functions, but when $A_{k}(z)$ is a nonconstant entire function, then equation (1.4) or (1.5) can possess meromorphic solutions. For instance the equation

$$
z f^{\prime \prime \prime}+4 f^{\prime \prime}+\left(-1-\frac{1}{2} z^{2}-z\right) e^{-z} f^{\prime}+\left(\left(1-\frac{1}{2} z^{2}+2 z\right) e^{-2 z}+z e^{-3 z}\right) f=0
$$

has a meromorphic solution $f(z)=\frac{1}{z^{2}} e^{e^{-z}}$ and the equation

$$
z^{3} f^{\prime \prime \prime}-z^{3} f^{\prime \prime}-2 z^{2} f^{\prime}-\left(z^{3}+3 z^{2}-6\right) f=\left(z^{2}-6\right) \sin z
$$

has a meromorphic solution $f(z)=\frac{\cos z}{z}$. In 2015, Wu and Zheng have considered the equations (1.4) and (1.5), and obtained the following result when the coefficient $A_{k}(z)$ is of maximal order and Fabry gap series.

Theorem C. ([19]) Suppose that $k \geq 2, A_{j}(z)(j=0,1, \cdots, k)$ are entire functions satisfying $A_{k}(z) A_{0}(z) \not \equiv 0$ and $\sigma\left(A_{j}\right)<\sigma\left(A_{k}\right)<\infty(j=0,1, \cdots, k-1)$. Suppose that $A_{k}(z)=\sum_{n=0}^{\infty} c_{\lambda_{n}} z^{\lambda_{n}}$ and the sequence of exponents $\left\{\lambda_{n}\right\}$ satisfies the Fabry gap codition

$$
\begin{equation*}
\frac{\lambda_{n}}{n} \rightarrow \infty(n \rightarrow \infty) \tag{1.6}
\end{equation*}
$$

Then every rational solution $f(z)$ of (1.4) is a polynomial with $\operatorname{deg} f \leq k-1$ and every transcendental meromorphic solution $f(z)$, whose poles are of uniformly bounded multiplicities, of (1.4) such that $\lambda\left(\frac{1}{f}\right)<\mu(f)$, satisfies

$$
\bar{\lambda}(f-\varphi)=\lambda(f-\varphi)=\sigma(f)=\infty, \bar{\lambda}_{2}(f-\varphi)=\lambda_{2}(f-\varphi)=\sigma_{2}(f)=\sigma\left(A_{k}\right)
$$

where $\varphi(z)$ is a finite order meromorphic function and doesn't solve (1.4).
Now, these theorems leaves us with two questions: First, can we have the same properties as in Theorem B for the solutions of equation (1.2) when the coefficients are of $(p, q)-$ order? and secondly, what about the growth of solutions of the equations (1.4) and (1.5) when we have the arbitrary coefficient $A_{s}(z)(0 \leq s \leq k)$ instead of the coefficient $A_{k}(z)$? In this paper, we proceed this way and we obtain the following results.

Theorem 1.1. Let $A_{j}(z)(j=0,1, \cdots, k)$ with $A_{k}(z) A_{0}(z) \not \equiv 0$ be entire functions such that

$$
\max \left\{\sigma_{(p, q)}\left(A_{j}\right), j \neq s\right\}<\sigma_{(p, q)}\left(A_{s}\right)<\infty,(0 \leq s \leq k)
$$

Suppose that $A_{s}(z)=\sum_{n=0}^{\infty} c_{\lambda_{n}} z^{\lambda_{n}}$ and the sequence of exponents $\left\{\lambda_{n}\right\}$ satisfies (1.3). Then every rational solution $f(z)$ of (1.4) is a polynomial with $\operatorname{deg} f \leq s-1$ and every transcendental meromorphic solution $f(z)$ of (1.4) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$, satisfies

$$
\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)
$$

Theorem 1.2. Let $A_{j}(z)(j=0,1, \cdots, k)$ with $A_{k}(z) A_{0}(z) \not \equiv 0$ be entire functions such that

$$
\max \left\{\sigma_{(p, q)}\left(A_{j}\right), j \neq s\right\}<\mu_{(p, q)}\left(A_{s}\right)=\sigma_{(p, q)}\left(A_{s}\right)=\sigma<\infty,(0 \leq s \leq k)
$$

Suppose that $A_{s}(z)=\sum_{n=0}^{\infty} c_{\lambda_{n}} z^{\lambda_{n}}$ and the sequence of exponents $\left\{\lambda_{n}\right\}$ satisfies (1.3). Then every rational solution $f(z)$ of (1.4) is a polynomial with $\operatorname{deg} f \leq s-1$ and every transcendental meromorphic solution $f(z)$ of (1.4) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$, satisfies

$$
\mu_{(p+1, q)}(f)=\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)=\sigma
$$

Theorem 1.3. Let $A_{j}(z)(j=0,1, \cdots, k)$ be entire functions satisfying the hypotheses of Theorem 1.1 and $F(z) \not \equiv 0$ is an entire function.
(i) If $\sigma_{(p+1, q)}(F)<\sigma_{(p, q)}\left(A_{s}\right)$, then every transcendental meromorphic solution $f(z)$ of (1.5) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$ satisfies

$$
\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)
$$

with at most one exceptional solution f_{0} satisfying $\sigma_{(p+1, q)}\left(f_{0}\right)<\sigma_{(p, q)}\left(A_{s}\right)$.
(ii) If $\sigma_{(p+1, q)}(F)>\sigma_{(p, q)}\left(A_{s}\right)$, then every transcendental meromorphic solution $f(z)$ of (1.5) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$ satisfies

$$
\sigma_{(p+1, q)}(f)=\sigma_{(p+1, q)}(F)
$$

Remark 1.1 The Theorems 1.1-1.3 had been proved in [3] for the case where $A_{k}(z)$ is the dominant coefficient with (p, q)-order for the equations (1.4) and (1.5) and in this paper, we gave similar results when the arbitrary coefficient $A_{s}(z)(0 \leq s \leq k)$ is the dominant one instead of $A_{k}(z)$.

For equation (1.2), we obtained the following result.
Theorem 1.4. Let $A_{j}(z)(j=0,1, \cdots, k-1), F(z)$ be entire functions. Suppose that there exists some $s \in\{1,2, \cdots, k-1\}$ such that

$$
\begin{gathered}
\max \left\{\sigma_{(p, q)}\left(A_{j}\right), \sigma_{(p, q)}(F), j \neq s\right\} \leq \sigma_{(p, q)}\left(A_{s}\right)=\sigma<\infty, \\
\max \left\{\tau_{(p, q)}\left(A_{j}\right): \sigma_{(p, q)}\left(A_{j}\right)=\sigma_{(p, q)}\left(A_{s}\right), \tau_{(p, q)}(F)\right\}<\tau_{(p, q)}\left(A_{s}\right)
\end{gathered}
$$

and that $T\left(r, A_{s}\right) \sim \log M\left(r, A_{s}\right)$ as $r \rightarrow+\infty$ outside a set of r of finite logarithmic measure. Then
(i) Every transcendental solution $f(z)$ of (1.2) satisfies $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)$, and every non-transcendental solution $f(z)$ of (1.2) is a polynomial of degree $\operatorname{deg}(f) \leq s-1$.
(ii) If $F(z) \not \equiv 0$, then every transcendental solution $f(z)$ of (1.2) satisfies $\bar{\lambda}_{(p+1, q)}(f)=\lambda_{(p+1, q)}(f)=$ $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)$.
(iii) If $s=1$, then every nonconstant solution $f(z)$ of (1.2) satisfies $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{1}\right)$ and if $F(z) \not \equiv 0$, then every nonconstant solution $f(z)$ of (1.2) satisfies $\bar{\lambda}_{(p+1, q)}(f)=\lambda_{(p+1, q)}(f)=$ $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{1}\right)$.

2. Lemmas

Lemma 2.1. ([5]) Let f be a transcendental meromorphic function in the plane, and let $\alpha>1$ be a given constant. Then for any given constant and for any given $\varepsilon>0$:
(i) There exist a set $E_{1} \subset(1,+\infty)$ that has a finite logarithmic measure, and a constant $B>0$ depending only on α such that for all z with $|z|=r \notin[0,1] \cup E_{1}$, we have

$$
\left|\frac{f^{(n)}(z)}{f^{(m)}(z)}\right| \leq B\left(\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right)^{n-m} \quad(0 \leq m<n)
$$

(ii) There exist a set $H_{1} \subset[0,2 \pi)$ that has linear measure zero and a constant $B>0$ depending only on α, for any $\theta \in[0,2 \pi) \backslash H_{1}$, there exists a constant $R_{0}=R_{0}(\theta)>1$ such that for all z satisfying $\arg z=\theta$ and $|z|=r>R_{0}$, we have

$$
\left|\frac{f^{(n)}(z)}{f^{(m)}(z)}\right| \leq B\left(\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right)^{n-m} \quad(0 \leq m<n)
$$

By using the similar proof of Lemma 2.5 in [7], we easily obtain the following lemma when $\sigma_{(p, q)}(g)=\sigma_{(p, q)}(f)=+\infty$.
Lemma 2.2. Let $f(z)=\frac{g(z)}{d(z)}$ be a meromorphic function, where $g(z)$ and $d(z)$ are entire functions satisfying $\mu_{(p, q)}(g)=\mu_{(p, q)}(f)=\mu \leq \sigma_{(p, q)}(g)=\sigma_{(p, q)}(f) \leq+\infty$ and $\lambda_{(p, q)}(d)=$ $\sigma_{(p, q)}(d)=\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu$. Then there exists a set $E_{2} \subset(1,+\infty)$ of finite logarithmic measure such that for all $|z|=r \notin[0,1] \cup E_{2}$ and $|g(z)|=M(r, g)$ we have

$$
\left|\frac{f(z)}{f^{(k)}(z)}\right| \leq r^{2 k},(k \in \mathbb{N})
$$

Lemma 2.3. ([13]) Let $f(z)=\sum_{n=0}^{\infty} c_{\lambda_{n}} z^{\lambda_{n}}$ be an entire function and the sequence of exponents $\left\{\lambda_{n}\right\}$ satisfies the gap condition (1.3). Then for any given $\varepsilon>0$,

$$
\log L(r, f)>(1-\varepsilon) \log M(r, f)
$$

holds outside a set E_{3} of finite logarithmic measure, where $M(r, f)=\sup _{|z|=r}|f(z)|, L(r, f)=$ $\inf _{|z|=r}|f(z)|$.
Lemma 2.4. ([16]) Let $f(z)$ be an entire function of (p, q)-order satisfying $0<\sigma_{(p, q)}(f)=$ $\sigma<\infty$. Then for any given $\varepsilon>0$, there exists a set $E_{4} \subset(1,+\infty)$ having infinite logarithmic measure such that for all $r \in E_{4}$, we have

$$
\sigma=\lim _{r \rightarrow+\infty, r \in E_{4}} \frac{\log _{p} T(r, f)}{\log _{q} r}=\lim _{r \rightarrow+\infty, r \in E_{4}} \frac{\log _{p+1} M(r, f)}{\log _{q} r}
$$

and

$$
M(r, f)>\exp _{p+1}\left\{(\sigma-\varepsilon) \log _{q} r\right\}
$$

Lemma 2.5. ([6]) Let $g:[0,+\infty) \rightarrow \mathbb{R}$ and $h:[0,+\infty) \rightarrow \mathbb{R}$ be monotone nondecreasing functions such that $g(r) \leq h(r)$ for all $r \notin E_{5} \cup[0,1]$, where $E_{5} \subset(1,+\infty)$ is a set of finite logarithmic measure. Then for any $\alpha>1$, there exists an $r_{0}=r_{0}(\alpha)>0$ such that $g(r) \leq h(\alpha r)$ for al$l r>r_{0}$.

By using the similar proof of Lemma 3.5 in [18], we easily obtain the following lemma when $\sigma_{(p, q)}(g)=\sigma_{(p, q)}(f)=+\infty$.
Lemma 2.6. Let $f(z)=\frac{g(z)}{d(z)}$ be a meromorphic function, where $g(z)$ and $d(z)$ are entire functions satisfying $\mu_{(p, q)}(g)=\mu_{(p, q)}(f)=\mu \leq \sigma_{(p, q)}(g)=\sigma_{(p, q)}(f) \leq+\infty$ and $\lambda_{(p, q)}(d)=$ $\sigma_{(p, q)}(d)=\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu$. Then there exists a set $E_{6} \subset(1,+\infty)$ of finite logarithmic measure such that for all $|z|=r \notin[0,1] \cup E_{6}$ and $|g(z)|=M(r, g)$ we have

$$
\frac{f^{(n)}(z)}{f(z)}=\left(\frac{v_{g}(r)}{z}\right)^{n}(1+o(1)), \quad(n \in \mathbb{N})
$$

where $v_{g}(r)$ is the central index of $g(z)$.
Lemma 2.7. Let $f(z)$ be an entire function such that $\sigma_{(p, q)}(f)=\sigma<+\infty$. Then, there exist entire functions $\beta(z)$ and $D(z)$ such that

$$
\begin{gathered}
f(z)=\beta(z) e^{D(z)} \\
\sigma_{(p, q)}(f)=\max \left\{\sigma_{(p, q)}(\beta), \sigma_{(p, q)}\left(e^{D(z)}\right)\right\}
\end{gathered}
$$

and

$$
\sigma_{(p, q)}(\beta)=\limsup _{r \rightarrow+\infty} \frac{\log _{p} N\left(r, \frac{1}{f}\right)}{\log _{q} r}
$$

Moreover, for any given $\varepsilon>0$, we have

$$
|\beta(z)| \geq \exp \left\{-\exp _{p}\left\{\left(\sigma_{(p, q)}(\beta)+\varepsilon\right) \log _{q} r\right\}\right\} \quad\left(r \notin E_{7}\right)
$$

where $E_{7} \subset(1,+\infty)$ is a set of r of finite linear measure.
Proof. By Theorem 10.2 in [11] and Theorem 2.2 in [12], we get that $f(z)$ can be represented by

$$
f(z)=\beta(z) e^{D(z)}
$$

with

$$
\sigma_{(p, q)}(f)=\max \left\{\sigma_{(p, q)}(\beta), \sigma_{(p, q)}\left(e^{D(z)}\right)\right\}
$$

By using similar proof in Lemma 6.1 in [10], for any given $\varepsilon>0$, we obtain

$$
|\beta(z)| \geq \exp \left\{-\exp _{p}\left\{\left(\sigma_{(p, q)}(\beta)+\varepsilon\right) \log _{q} r\right\}\right\} \quad\left(r \notin E_{7}\right),
$$

where $E_{7} \subset(1,+\infty)$ is a set of r of finite linear measure.
Lemma 2.8. Let $f(z)$ be an entire function such that $\sigma_{(p, q)}(f)=\sigma<+\infty$. Then, there exists a set $E_{8} \subset(1,+\infty)$ of r of finite linear measure such that for any given $\varepsilon>0$, we have

$$
\exp \left\{-\exp _{p}\left\{(\sigma+\varepsilon) \log _{q} r\right\}\right\} \leq|f(z)| \leq \exp _{p+1}\left\{(\sigma+\varepsilon) \log _{q} r\right\} \quad\left(r \notin E_{8}\right)
$$

Proof. When $p=q=1$, the lemma is due to Chen [2]. Thus, we assume that $p \geq q>1$ or $p>q=1$. It is obvious that $|f(z)| \leq \exp _{p+1}\left\{(\sigma+\varepsilon) \log _{q} r\right\}$. By Lemma 2.7, there exist entire functions $\beta(z)$ and $D(z)$ such that

$$
f(z)=\beta(z) e^{D(z)} \text { and } \sigma_{(p, q)}(f)=\max \left\{\sigma_{(p, q)}(\beta), \sigma_{(p, q)}\left(e^{D(z)}\right)\right\}
$$

Since $\sigma_{(p-1, q)}(D)=\sigma_{(p, q)}\left(e^{D(z)}\right) \leq \sigma_{(p, q)}(f)$ and $\left|e^{D(z)}\right| \geq e^{-|D(z)|}$, for sufficiently large $|z|=$ r, we have

$$
\left|e^{D(z)}\right| \geq e^{-|D(z)|} \geq \exp \left\{-\exp _{p}\left\{\left(\sigma+\frac{\varepsilon}{2}\right) \log _{q} r\right\}\right\}
$$

By Lemma 2.7 again, it follows that

$$
\begin{gathered}
|f(z)|=|\beta(z)|\left|e^{D(z)}\right| \\
\geq \exp \left\{-\exp _{p}\left\{\left(\sigma_{(p, q)}(\beta)+\frac{\varepsilon}{2}\right) \log _{q} r\right\}\right\} \exp \left\{-\exp _{p}\left\{\left(\sigma+\frac{\varepsilon}{2}\right) \log _{q} r\right\}\right\} \\
\geq \exp \left\{-\exp _{p}\left\{\left(\sigma+\frac{\varepsilon}{2}\right) \log _{q} r\right\}\right\} \exp \left\{-\exp _{p}\left\{\left(\sigma+\frac{\varepsilon}{2}\right) \log _{q} r\right\}\right\} \\
\left.=\exp \left\{-2 \exp _{p}\left\{\sigma+\frac{\varepsilon}{2}\right) \log _{q} r\right\}\right\} \geq \exp \left\{-\exp _{p}\left\{(\sigma+\varepsilon) \log _{q} r\right\}\right\}
\end{gathered}
$$

for $r \notin E_{8}$, where $E_{8} \subset(1,+\infty)$ is a set of r of finite linear measure. Thus, we complete the proof of Lemma 2.8.

Lemma 2.9. ([16]) Let $f(z)$ be an entire function of (p, q)-order, and let $v_{f}(r)$ be a central index of $f(z)$. Then

$$
\sigma_{(p, q)}(f)=\limsup _{r \rightarrow+\infty} \frac{\log _{p} v_{f}(r)}{\log _{q} r}
$$

Lemma 2.10. Let $f(z)$ be an entire function with $\sigma_{(p, q)}(f)=\sigma, 0<\sigma<\infty$. Then for any given $\beta<\sigma$, there exists a set E_{9} having infinite logarithmic measure such that for all $|z|=r \in E_{9}$, we have

$$
\log _{p+1} M(r, f)>\beta \log _{q} r
$$

where $M(r, f)=\sup _{|z|=r}|f(z)|$.
Proof. By the definition of the (p, q)-order, for any given $\varepsilon>0$, there exists a sequence $\left\{r_{n}\right\}$ tending to ∞ satisfying $\left(1+\frac{1}{n}\right) r_{n}<r_{n+1}$ and

$$
\lim _{n \rightarrow \infty} \frac{\log _{p+1} M\left(r_{n}, f\right)}{\log _{q} r_{n}}=\sigma
$$

Then, there exists a positive integer n_{0} such that for all $n \geq n_{0}$ and for any given $\varepsilon>0$, we have

$$
\begin{equation*}
M\left(r_{n}, f\right)>\exp _{p+1}\left\{(\sigma-\varepsilon) \log _{q} r_{n}\right\} \tag{2.1}
\end{equation*}
$$

When $q \geq 1$, we have

$$
\lim _{n \rightarrow \infty} \frac{\log _{q}\left(\frac{n}{n+1}\right) r}{\log _{q} r}=1
$$

Since $\beta<\sigma$, then we can choose sufficiently small $\varepsilon>0$ to satisfy $0<\varepsilon<\sigma-\beta$. Therefore, there exists a positive integer n_{1} such that for all $n \geq n_{1}$, we have

$$
\begin{equation*}
\frac{\log _{q}\left(\frac{n}{n+1}\right) r}{\log _{q} r}>\frac{\beta}{\sigma-\varepsilon} \tag{2.2}
\end{equation*}
$$

Take $n_{2}=\max \left\{n_{0}, n_{1}\right\}$. Then, by (2.1) and (2.2) we get for $r \in\left[r_{n},\left(1+\frac{1}{n}\right) r_{n}\right]$

$$
\begin{gathered}
\log _{p+1} M(r, f) \geq \log _{p+1} M\left(r_{n}, f\right)>(\sigma-\varepsilon) \log _{q} r_{n} \\
\geq(\sigma-\varepsilon) \log _{q}\left(\frac{n}{n+1}\right) r>\beta \log _{q} r .
\end{gathered}
$$

Setting $E_{9}=\bigcup_{n=n_{2}}^{\infty}\left[r_{n},\left(1+\frac{1}{n}\right) r_{n}\right]$, we have

$$
m_{l}\left(E_{9}\right)=\sum_{n=n_{2}}^{\infty} \int_{r_{n}}^{\left(1+\frac{1}{n}\right) r_{n}} \frac{d t}{t}=\sum_{n=n_{2}}^{\infty} \log \left(1+\frac{1}{n}\right)=\infty
$$

Lemma 2.11. Let $f(z)=\sum_{n=0}^{\infty} c_{\lambda_{n}} z^{\lambda_{n}}$ be an entire function with $\sigma_{(p, q)}(f)=\sigma, 0<\sigma<\infty$. If the sequence of exponent $\left\{\lambda_{n}\right\}$ satisfies (1.3), then for any given $\beta<\sigma$, there exists a set E_{10} having
infinite logarithmic measure such that for all $|z|=r \in E_{10}$, we have

$$
|f(z)|>\exp _{p+1}\left\{\beta \log _{q} r\right\}
$$

Proof. By Lemma 2.3, for any given $\varepsilon>0$, there exists a set E_{3} of finite logarithmic measure such that for all $r \notin E_{3}$, we have

$$
\log L(r, f)>(1-\varepsilon) \log M(r, f)
$$

For any given $\beta<\sigma$, we can choose $\delta>0$ such that $\beta<\delta<\sigma$ and sufficiently small ε satisfying $0<\varepsilon<\frac{\delta-\beta}{\delta}$. Then, by Lemma 2.10, there exists a set E_{9} having infinite logarithmic measure such that for all $r \in E_{9}$, we have

$$
|f(z)|>L(r, f)>[M(r, f)]^{1-\varepsilon}>\left(\exp _{p+1}\left\{\delta \log _{q} r\right\}\right)^{1-\varepsilon}>\exp _{p+1}\left\{\beta \log _{q} r\right\}
$$

where $E_{10}=E_{9} \backslash E_{3}$ is a set with infinite logarithmic measure.
Lemma 2.12. Let $f(z)$ be an entire function with $\mu_{(p, q)}(f)=\mu<\infty$. Then for any given $\varepsilon>0$, there exists a set $E_{11} \subset(1,+\infty)$ having infinite logarithmic measure such that for all $|z|=r \in E_{11}$, we have

$$
\mu_{(p, q)}(f)=\lim _{r \rightarrow+\infty, r \in E_{11}} \frac{\log _{p+1} M(r, f)}{\log _{q} r}
$$

and

$$
M(r, f)<\exp _{p+1}\left\{(\mu+\varepsilon) \log _{q} r\right\}
$$

Proof. By the definition of the lower (p, q)-order, there exists a sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$ tending to ∞ satisfying $\left(1+\frac{1}{n}\right) r_{n}<r_{n+1}$, and

$$
\lim _{r_{n} \rightarrow+\infty} \frac{\log _{p+1} M\left(r_{n}, f\right)}{\log _{q} r_{n}}=\mu_{(p, q)}(f)
$$

Then for any given $\varepsilon>0$, there exists an n_{2} such that for $n \geq n_{2}$ and any $r \in\left[\frac{n}{n+1} r_{n}, r_{n}\right]$, we have

$$
\frac{\log _{p+1} M\left(\frac{n}{n+1} r_{n}, f\right)}{\log _{q} r_{n}} \leq \frac{\log _{p+1} M(r, f)}{\log _{q} r} \leq \frac{\log _{p+1} M\left(r_{n}, f\right)}{\log _{q} \frac{n}{n+1} r_{n}}
$$

Letting $E_{11}=\bigcup_{n=n_{2}}^{\infty}\left[\frac{n}{n+1} r_{n}, r_{n}\right]$, then for any $r \in E_{11}$, we have

$$
\lim _{r \rightarrow+\infty, r \in E_{11}} \frac{\log _{p+1} M(r, f)}{\log _{q} r}=\lim _{r_{n} \rightarrow+\infty} \frac{\log _{p+1} M\left(r_{n}, f\right)}{\log _{q} r_{n}}=\mu_{(p, q)}(f)
$$

and

$$
m_{l}\left(E_{11}\right)=\sum_{n=n_{2}}^{\infty} \int_{\frac{n}{n+1} r_{n}}^{r_{n}} \frac{d t}{t}=\sum_{n=n_{2}}^{\infty} \log \left(1+\frac{1}{n}\right)=\infty .
$$

Lemma 2.13. ([15]) If $f(z)$ is a meromorphic function, then $\sigma_{(p, q)}\left(f^{\prime}\right)=\sigma_{(p, q)}(f)$.
Lemma 2.14. ([17]) Let $f(z)$ be a transcendental entire function, and let $z_{r}=r e^{i \theta_{r}}$ be a point satisfying $\left|f\left(z_{r}\right)\right|=M(r, f)$. Then, there exists a constant $\delta_{r}>0$ such that for all z satisfying $|z|=r \notin E_{12}$ and $\arg z=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\left|\frac{f(z)}{f^{(j)}(z)}\right| \leq 2 r^{j},(j \in \mathbb{N})
$$

Lemma 2.15. ([16]) Let $f(z)$ be an entire function of (p, q)-order satisfying $0<\sigma_{(p, q)}(f)=$ $\sigma<\infty$ and $0<\tau_{(p, q)}(f)=\tau<\infty$. Then for any given $\beta<\tau$, there exists a set $E_{13} \subset[1,+\infty)$ that has an infinite logarithmic measure such that for all $|z|=r \in E_{13}$, we have

$$
\log _{p} M(r, f)>\beta\left(\log _{q-1} r\right)^{\sigma} \quad\left(r \in E_{13}\right) .
$$

Lemma 2.16. Let $f(z)$ be a transcendental entire function satisfying $0<\sigma_{(p, q)}(f)=\sigma<\infty$, $0<\tau_{(p, q)}(f)=\tau<\infty$ and $T(r, f) \sim \log M(r, f)$ as $r \rightarrow+\infty$ outside a set of r offinite logarithmic measure. Then for any $\beta<\tau$, there exists a set $E_{14} \subset(0,+\infty)$ having infinite logarithmic measure and a set $H_{2} \subset[0,2 \pi)$ that has linear measure zero such that for all z satisfying $|z|=$ $r \in E_{14}$ and $\arg z=\theta \in[0,2 \pi) \backslash H_{2}$, we have

$$
\left|f\left(r e^{i \theta}\right)\right|>\exp _{p}\left\{\beta\left(\log _{q-1} r\right)^{\sigma}\right\} .
$$

Proof. Since $m(r, f) \sim \log M(r, f)$ as $r \rightarrow+\infty$ and $r \notin F \subset(0,+\infty)$, where F is a set of r of finite logarithmic measure, by the definition of $m(r, f)$, we see that there exists a set $H_{2} \subset[0,2 \pi)$ with linear measure zero such that for all z satisfying $\arg z=\theta \in[0,2 \pi) \backslash H_{2}$ and for any $\varepsilon>0$, we have

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right|>[M(r, f)]^{1-\varepsilon} . \tag{2.3}
\end{equation*}
$$

Otherwise, we find that there exists a set $H \subset[0,2 \pi)$ with positive linear measure, i.e., $m(H)>0$ such that, for all z satisfying $\arg z=\theta \in H$ and for any $\varepsilon>0$, we have

$$
\left|f\left(r e^{i \theta}\right)\right| \leq[M(r, f)]^{1-\varepsilon}
$$ Then, for all $r \notin F$, we get

$$
\begin{gather*}
m(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta \\
=\frac{1}{2 \pi} \int_{H} \ln ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta+\frac{1}{2 \pi} \int_{[0,2 \pi) \backslash H} \ln ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta \\
\leq \frac{(1-\varepsilon) m(H)}{2 \pi} \log M(r, f)+\frac{2 \pi-m(H)}{2 \pi} \log M(r, f) \\
=\frac{2 \pi-\varepsilon m(H)}{2 \pi} \log M(r, f) \tag{2.4}
\end{gather*}
$$

Since $\varepsilon>0$ and $m(H)>0$, then (2.4) is a contradiction with $m(r, f) \sim \log M(r, f)$. For any $\beta<\tau$, we choose $\xi(>0)$ satisfying $\beta<\xi<\tau$. By Lemma 2.15, there exists a set $E_{13} \subset[1,+\infty)$ that has an infinite logarithmic measure such that for all $|z|=r \in E_{13}$, we have

$$
\begin{equation*}
\log _{p} M(r, f)>\xi\left(\log _{q-1} r\right)^{\sigma} \tag{2.5}
\end{equation*}
$$

By (2.3) and (2.5), for any given $\varepsilon\left(0<\varepsilon<1-\frac{\beta}{\xi}\right)$ and for all $|z|=r \in E_{14}=E_{13} \backslash F$ and $\arg z=\theta \in[0,2 \pi) \backslash H_{2}$, we have

$$
\left|f\left(r e^{i \theta}\right)\right|>[M(r, f)]^{1-\varepsilon}>\left(\exp _{p}\left\{\xi\left(\log _{q-1} r\right)^{\sigma}\right\}\right)^{1-\varepsilon}>\exp _{p}\left\{\beta\left(\log _{q-1} r\right)^{\sigma}\right\}
$$

Thus, the proof of Lemma 2.16 is complete.
Lemma 2.17. ([15]) Let $A_{0}(z), A_{1}(z), \cdots, A_{k-1}(z)$ and $F(z) \not \equiv 0$ be meromorphic functions. If $f(z)$ is a meromorphic solution to (1.2) satisfying

$$
\max \left\{\sigma_{(p+1, q)}(F), \sigma_{(p+1, q)}\left(A_{j}\right): j=0,1, \cdots, k-1\right\}<\sigma_{(p+1, q)}(f)
$$

then we have

$$
\bar{\lambda}_{(p+1, q)}(f)=\lambda_{(p+1, q)}(f)=\sigma_{(p+1, q)}(f)
$$

3. Proof of Theorem 1.1

Assume that $f(z)$ is a rational solution of (1.4). If either $f(z)$ is a rational function, which has a pole at z_{0} of degree $m \geq 1$, or $f(z)$ is a polynomial with $\operatorname{deg} f \geq s$, then $f^{(s)}(z) \not \equiv 0$. Since $\max \left\{\sigma_{(p, q)}\left(A_{j}\right), j \neq s\right\}<\sigma_{(p, q)}\left(A_{s}\right)<\infty$, then

$$
\sigma_{(p, q)}(0)=\sigma_{(p, q)}\left(A_{k}(z) f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f\right)
$$

$$
=\sigma_{(p, q)}\left(A_{s}\right)>0
$$

which is a contradiction. Therefore, $f(z)$ must be a polynomial with $\operatorname{deg} f \leq s-1$.
Now, we assume that $f(z)$ is a transcendental meromorphic solution of (1.4) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$. By Lemma 2.1, there exists a constant $B>0$ and a set $E_{1} \subset(1,+\infty)$ of finite logarithmic measure such that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq B(T(2 r, f))^{k+1}, \quad 1 \leq j \leq k \tag{3.1}
\end{equation*}
$$

Since $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$, then by Hadamard's factorization theorem, we can write f as $f(z)=\frac{g(z)}{d(z)}$, where $g(z)$ and $d(z)$ are entire functions satisfying

$$
\begin{gathered}
\mu_{(p, q)}(g)=\mu_{(p, q)}(f)=\mu \leq \sigma_{(p, q)}(g)=\sigma_{(p, q)}(f) \\
\lambda_{(p, q)}(d)=\sigma_{(p, q)}(d)=\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu
\end{gathered}
$$

Then by Lemma 2.2, there exists a set E_{2} of finite logarithmic measure such that for all $|z|=$ $r \notin E_{2}$ and $|g(z)|=M(r, g)$ and for r sufficiently large, we have

$$
\begin{equation*}
\left|\frac{f(z)}{f^{(s)}(z)}\right| \leq r^{2 s}, \quad(s \in \mathbb{N}) \tag{3.2}
\end{equation*}
$$

Set $\alpha=\max \left\{\sigma_{(p, q)}\left(A_{j}\right): j \neq s\right\}<\sigma_{(p, q)}\left(A_{s}\right)=\sigma<\infty$. Then, for any given $\varepsilon(0<2 \varepsilon<\sigma-\alpha)$, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp _{p+1}\left\{(\alpha+\varepsilon) \log _{q} r\right\}, \quad j \neq s \tag{3.3}
\end{equation*}
$$

By Lemma 2.3 and Lemma 2.4, there exists a set $E_{15} \subset(1,+\infty)$ of infinite logarithmic measure such that for all $|z|=r \in E_{15}$, we have

$$
\begin{align*}
\left|A_{s}(z)\right| \geq L\left(r, A_{s}\right)> & \left(M\left(r, A_{s}\right)\right)^{1-\varepsilon} \geq\left(\exp _{p+1}\left\{\left(\sigma-\frac{\varepsilon}{2}\right) \log _{q} r\right\}\right)^{1-\varepsilon} \\
& \geq \exp _{p+1}\left\{(\sigma-\varepsilon) \log _{q} r\right\} \tag{3.4}
\end{align*}
$$

By (1.4), we have

$$
\begin{align*}
&\left|A_{s}(z)\right| \leq\left|\frac{f}{f^{(s)}}\right|\left[\left|A_{k}(z)\right|\left|\frac{f^{(k)}}{f}\right|+\left|A_{k-1}(z)\right|\left|\frac{f^{(k-1)}}{f}\right|+\cdots+\left|A_{s+1}(z)\right|\left|\frac{f^{(s+1)}}{f}\right|\right. \\
&\left.+\left|A_{s-1}(z)\right|\left|\frac{f^{(s-1)}}{f}\right|+\cdots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}}{f}\right|+\left|A_{0}(z)\right|\right] \tag{3.5}
\end{align*}
$$

Hence, by substituting (3.1) - (3.4) into (3.5), we obtain for all z satisfying $r \in E_{15} \backslash\left(E_{1} \cup\right.$ $\left.E_{2} \cup[0,1]\right)$

$$
\begin{equation*}
\exp _{p+1}\left\{(\sigma-\varepsilon) \log _{q} r\right\} \leq r^{2 s} \exp _{p+1}\left\{(\alpha+\varepsilon) \log _{q} r\right\} k B(T(2 r, f))^{k+1} \tag{3.6}
\end{equation*}
$$

By (3.6) and Lemma 2.5, we have

$$
\sigma_{(p+1, q)}(f) \geq \sigma_{(p, q)}\left(A_{s}\right)
$$

Now, we prove that $\sigma_{(p+1, q)}(f) \leq \sigma_{(p, q)}\left(A_{s}\right)$. We can rewrite (1.4) as

$$
\begin{align*}
& -A_{k}(z) \frac{f^{(k)}}{f}=A_{k-1}(z) \frac{f^{(k-1)}}{f}+\cdots+A_{s+1}(z) \frac{f^{(s+1)}}{f} \\
& +A_{s}(z) \frac{f^{(s)}}{f}+A_{s-1}(z) \frac{f^{(s-1)}}{f}+\cdots+A_{1}(z) \frac{f^{\prime}}{f}+A_{0}(z) \tag{3.7}
\end{align*}
$$

By Lemma 2.6, there exists a set $E_{6} \subset(1,+\infty)$ of finite logarithmic measure such that for all $|z|=r \notin[0,1] \cup E_{6}$ and $|g(z)|=M(r, g)$, we have

$$
\begin{equation*}
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{v_{g}(r)}{z}\right)^{j}(1+o(1)), \quad(j=0, \cdots, k) \tag{3.8}
\end{equation*}
$$

Since $\max \left\{\sigma_{(p, q)}\left(A_{j}\right), j \neq s\right\}<\sigma_{(p, q)}\left(A_{s}\right)<\infty$, then for sufficiently large r, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp _{p}\left\{\left(\sigma_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}, \quad(j=0, \cdots, k) \tag{3.9}
\end{equation*}
$$

By Lemma 2.8, there exists a set $E_{8} \subset(1,+\infty)$ of finite linear measure (and so of finite logarithmic measure) such that for all $|z|=r \notin E_{8}$, we have

$$
\begin{align*}
& \left|A_{k}(z)\right| \geq \exp \left\{-\exp _{p}\left\{\left(\sigma_{(p, q)}\left(A_{k}\right)+\varepsilon\right) \log _{q} r\right\}\right\} \\
& \quad \geq \exp \left\{-\exp _{p}\left\{\left(\sigma_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\right\} \tag{3.10}
\end{align*}
$$

From (3.7) and (3.8), for all z satisfying $|z|=r \notin[0,1] \cup E_{6}$ and $|g(z)|=M(r, g)$, we have

$$
\begin{gathered}
-A_{k}(z)\left(\frac{v_{g}(r)}{z}\right)^{k}(1+o(1))=A_{k-1}(z)\left(\frac{\nu_{g}(r)}{z}\right)^{k-1}(1+o(1)) \\
+\cdots+A_{s+1}(z)\left(\frac{v_{g}(r)}{z}\right)^{s+1}(1+o(1))+A_{s}(z)\left(\frac{v_{g}(r)}{z}\right)^{s}(1+o(1)) \\
+A_{s-1}(z)\left(\frac{v_{g}(r)}{z}\right)^{s-1}(1+o(1))+\cdots+A_{1}(z)\left(\frac{v_{g}(r)}{z}\right)(1+o(1))+A_{0}(z) .
\end{gathered}
$$

It follows that

$$
\left|A_{k}(z)\right|\left|\left(\frac{v_{g}(r)}{z}\right)^{k}\right||1+o(1)| \leq\left|A_{k-1}(z)\right|\left|\left(\frac{v_{g}(r)}{z}\right)^{k-1}\right||1+o(1)|
$$

$$
\begin{array}{r}
+\cdots+\left|A_{s+1}(z)\right|\left|\left(\frac{v_{g}(r)}{z}\right)^{s+1}\right||1+o(1)|+\left|A_{s}(z)\right|\left|\left(\frac{v_{g}(r)}{z}\right)^{s}\right||1+o(1)| \\
+\left|A_{s-1}(z)\right|\left(\frac{v_{g}(r)}{z}\right)^{s-1}|1+o(1)|+\cdots+\left|A_{1}(z)\right|\left(\frac{v_{g}(r)}{z}\right)|1+o(1)|+\left|A_{0}(z)\right| \tag{3.11}
\end{array}
$$

and by (3.9) - (3.11) for all z satisfying $|z|=r \notin\left([0,1] \cup E_{6} \cup E_{8}\right)$ and $|g(z)|=M(r, g)$, we have

$$
\begin{aligned}
\exp \{ & \left.-\exp _{p}\left\{\left(\sigma_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\right\}\left(\frac{\nu_{g}(r)}{r}\right)|1+o(1)| \\
& \leq k \exp _{p+1}\left\{\left(\sigma_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}|1+o(1)|
\end{aligned}
$$

So, we have

$$
\begin{equation*}
\limsup _{r \rightarrow+\infty} \frac{\log _{p+1} v_{g}(r)}{\log _{q} r} \leq \sigma_{(p, q)}\left(A_{s}\right)+\varepsilon \tag{3.12}
\end{equation*}
$$

Since $\varepsilon>0$ is arbitrary, then by (3.12), Lemma 2.5 and Lemma 2.9, we have $\sigma_{(p+1, q)}(g) \leq$ $\sigma_{(p, q)}\left(A_{s}\right)$, that is $\sigma_{(p+1, q)}(f) \leq \sigma_{(p, q)}\left(A_{s}\right)$. Therefore, we get $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)$.

4. Proof of Theorem 1.2

Assume that $f(z)$ is a rational solution of (1.4). By the same reasoning as in the proof of Theorem 1.1, it is clear that $f(z)$ is a polynomial with $\operatorname{deg} f \leq s-1$. Now, we assume that $f(z)$ is a transcendental meromorphic solution of (1.4) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$. By Theorem 1.1, we have $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)=\sigma$. Then, we only need to prove that $\mu_{(p+1, q)}(f)=$ $\mu_{(p, q)}\left(A_{s}\right)=\sigma$. Since $\max \left\{\sigma_{(p, q)}\left(A_{j}\right)(j \neq s)\right\}<\sigma$, then there exist constants α_{1}, β_{1} satisfying $\max \left\{\sigma_{(p, q)}\left(A_{j}\right)(j \neq s)\right\}<\alpha_{1}<\beta_{1}<\sigma$. Then

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp _{p+1}\left\{\alpha_{1} \log _{q} r\right\}, j \neq s \tag{4.1}
\end{equation*}
$$

Also, we have that $A_{s}(z)=\sum_{n=0}^{\infty} c_{\lambda_{n}} z^{\lambda_{n}}$ such that the sequence of exponents $\left\{\lambda_{n}\right\}$ satisfies (1.3) and $\mu_{(p, q)}\left(A_{s}\right)=\sigma_{(p, q)}\left(A_{s}\right)=\sigma$. Then, by Lemma 2.11, there exists a set E_{10} having infinite logarithmic measure such that for all z satisfying

$$
|z|=r \in E_{10}
$$

we have

$$
\begin{equation*}
\left|A_{s}(z)\right|>\exp _{p+1}\left\{\beta_{1} \log _{q} r\right\} \tag{4.2}
\end{equation*}
$$

Hence, by substituting (4.1), (4.2), (3.1), (3.2) into (3.5), for all z satisfying

$$
|z|=r \in E_{10} \backslash\left([0,1] \cup E_{1} \cup E_{2}\right),
$$

we have

$$
\begin{equation*}
\exp _{p+1}\left\{\beta_{1} \log _{q} r\right\} \leq B \exp _{p+1}\left\{\alpha_{1} \log _{q} r\right\} r^{2 s} k[T(2 r, f)]^{k+1} \tag{4.3}
\end{equation*}
$$

Since β_{1} is arbitrarily close to σ, then by (4.3) and Lemma 2.5, we obtain

$$
\mu_{(p+1, q)}(f) \geq \sigma=\mu_{(p, q)}\left(A_{s}\right)
$$

On the other hand, by (1.4), we have

$$
\begin{align*}
\left|A_{k}(z)\right|\left|\frac{f^{(k)}}{f}\right| & \leq\left|A_{k-1}(z)\right|\left|\frac{f^{(k-1)}}{f}\right|+\cdots+\left|A_{s+1}(z)\right|\left|\frac{f^{(s+1)}}{f}\right|+\left|A_{s}(z)\right|\left|\frac{f^{(s)}}{f}\right| \\
& +\left|A_{s-1}(z)\right|\left|\frac{f^{(s-1)}}{f}\right|+\cdots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}}{f}\right|+\left|A_{0}(z)\right| \tag{4.4}
\end{align*}
$$

By Lemma 2.12, for any given $\varepsilon>0$, there exists a set $E_{11} \subset(1,+\infty)$ having infinite logarithmic measure such that for all $|z|=r \in E_{11}$, one has

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp _{p+1}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}, j=0, \cdots, k \tag{4.5}
\end{equation*}
$$

By Lemma 2.8, there exists a set $E_{8} \subset(1,+\infty)$ of finite logarithmic measure such that for all $|z|=r \notin E_{8}$, we have

$$
\begin{gather*}
\left|A_{k}(z)\right| \geq \exp \left\{-\exp _{p}\left\{\left(\sigma_{(p, q)}\left(A_{k}\right)+\varepsilon\right) \log _{q} r\right\}\right\} \\
\geq \exp \left\{-\exp _{p}\left\{\left(\sigma_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\right\}=\exp \left\{-\exp _{p}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\right\} \tag{4.6}
\end{gather*}
$$

From (3.8), (4.4) - (4.6), for all z satisfying $|z|=r \in E_{11} \backslash\left(E_{6} \cup E_{8}\right)$ and $|g(z)|=M(r, g)$, we have

$$
\begin{aligned}
& \exp \left\{-\exp _{p}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\right\}\left(\frac{\nu_{g}(r)}{r}\right)^{k}|1+o(1)| \leq \\
& \exp _{p+1}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\left(\frac{\nu_{g}(r)}{r}\right)^{k-1}|1+o(1)| \\
& +\cdots+\exp _{p+1}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\left(\frac{\nu_{g}(r)}{r}\right)^{s+1}|1+o(1)| \\
& +\exp _{p+1}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\left(\frac{v_{g}(r)}{r}\right)^{s}|1+o(1)| \\
& +\exp _{p+1}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\left(\frac{\nu_{g}(r)}{r}\right)^{s-1}|1+o(1)| \\
& +\cdots+\exp _{p+1}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\left(\frac{v_{g}(r)}{r}\right)|1+o(1)| \\
& \quad+\exp _{p+1}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\},
\end{aligned}
$$

that is, for all z satisfying $|z|=r \in E_{11} \backslash\left(E_{6} \cup E_{8}\right)$ and $|g(z)|=M(r, g)$, we obtain

$$
\begin{align*}
\exp \{ & \left.-\exp _{p}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\}\right\}\left(\frac{v_{g}(r)}{r}\right)|1+o(1)| \\
& \leq k|1+o(1)| \exp _{p+1}\left\{\left(\mu_{(p, q)}\left(A_{s}\right)+\varepsilon\right) \log _{q} r\right\} \tag{4.7}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\log _{p+1} v_{g}(r)}{\log _{q} r} \leq \mu_{(p, q)}\left(A_{s}\right)+\varepsilon \tag{4.8}
\end{equation*}
$$

Since $\varepsilon>0$ is arbitrary, by (4.8), Lemma 2.5 and Lemma 2.9, we have

$$
\mu_{(p+1, q)}(g) \leq \mu_{(p, q)}\left(A_{s}\right)
$$

that is,

$$
\mu_{(p+1, q)}(f) \leq \mu_{(p, q)}\left(A_{s}\right)
$$

Therefore, we get

$$
\mu_{(p+1, q)}(f)=\mu_{(p, q)}\left(A_{s}\right)=\sigma
$$

5. Proof of Theorem 1.3

(i) We assume that $f(z)$ is a transcendental meromorphic solution of (1.5) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<$ $\mu_{(p, q)}(f)$, and $\left\{f_{1}, f_{2}, \cdots, f_{k}\right\}$ is a meromorphic solution base of the corresponding homogeneous equation (1.4) of (1.5). By Theorem 1.1, we get that

$$
\sigma_{(p+1, q)}\left(f_{j}\right)=\sigma_{(p, q)}\left(A_{s}\right),(j=1,2, \cdots, k)
$$

By the elementary theory of differential equations, all solutions of (1.5) can be represented in the form

$$
\begin{equation*}
f(z)=f_{0}(z)+B_{1} f_{1}(z)+B_{2} f_{2}(z)+\cdots+B_{k} f_{k}(z) \tag{5.1}
\end{equation*}
$$

where $B_{1}, \cdots, B_{k} \in \mathbb{C}$ and the function f_{0} has the form

$$
\begin{equation*}
f_{0}(z)=C_{1}(z) f_{1}(z)+C_{2}(z) f_{2}(z)+\cdots+C_{k}(z) f_{k}(z) \tag{5.2}
\end{equation*}
$$

where $C_{1}(z), \cdots, C_{k}(z)$ are suitable meromorphic functions satisfying

$$
\begin{equation*}
C_{j}^{\prime}=F . G_{j}\left(f_{1}, \cdots, f_{k}\right) \cdot\left[W\left(f_{1}, \cdots, f_{k}\right)\right]^{-1}, j=1,2, \cdots, k \tag{5.3}
\end{equation*}
$$

where $G_{j}\left(f_{1}, \cdots, f_{k}\right)$ are differential polynomials in f_{1}, \cdots, f_{k} and their derivatives with constant coefficients, and $W\left(f_{1}, \cdots, f_{k}\right)$ is the Wronskian of f_{1}, \cdots, f_{k}. Since the Wronskian $W\left(f_{1}, \cdots, f_{k}\right)$ is a differential polynomial in f_{1}, \cdots, f_{k}, it is easy to obtain

$$
\begin{equation*}
\sigma_{(p+1, q)}(W) \leq \max \left\{\sigma_{(p+1, q)}\left(f_{j}\right): j=1,2, \cdots, k\right\}=\sigma_{(p, q)}\left(A_{s}\right) \tag{5.4}
\end{equation*}
$$

Also, we have that $G_{j}\left(f_{1}, \cdots, f_{k}\right)$ are differential polynomials in f_{1}, \cdots, f_{k} and their derivatives with constant coefficients. Then, we have

$$
\begin{equation*}
\sigma_{(p+1, q)}\left(G_{j}\right) \leq \max \left\{\sigma_{(p+1, q)}\left(f_{j}\right): j=1,2, \cdots, k\right\}=\sigma_{(p, q)}\left(A_{s}\right),(j=1,2, \cdots, k) \tag{5.5}
\end{equation*}
$$

By Lemma 2.13 and (5.5), for $j=1, \cdots, k$, we have

$$
\begin{equation*}
\sigma_{(p+1, q)}\left(C_{j}\right)=\sigma_{(p+1, q)}\left(C_{j}^{\prime}\right) \leq \max \left\{\sigma_{(p+1, q)}(F), \sigma_{(p, q)}\left(A_{s}\right)\right\}=\sigma_{(p, q)}\left(A_{s}\right) \tag{5.6}
\end{equation*}
$$

Hence, from (5.1), (5.2) and (5.6), we obtain

$$
\sigma_{(p+1, q)}(f) \leq \max \left\{\sigma_{(p+1, q)}\left(C_{j}\right), \sigma_{(p+1, q)}\left(f_{j}\right): j=1,2, \cdots, k\right\}=\sigma_{(p, q)}\left(A_{s}\right)
$$

Now we assert that all meromorphic solutions f of equation (1.5) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<$ $\mu_{(p, q)}(f)$, satisfy $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)$, with at most one exceptional solution f_{0} with

$$
\sigma_{(p+1, q)}\left(f_{0}\right)<\sigma_{(p, q)}\left(A_{s}\right)
$$

In fact, if there exists another meromorphic solution f_{1} of (1.5) satisfying $\sigma_{(p+1, q)}\left(f_{1}\right)<$ $\sigma_{(p, q)}\left(A_{s}\right)$, then $f_{0}-f_{1}$ is a nonzero meromorphic solution of (1.4) and satisfies $\sigma_{(p+1, q)}\left(f_{0}-\right.$ $\left.f_{1}\right)<\sigma_{(p, q)}\left(A_{s}\right)$. But by Theorem 1.1 we have any meromorphic solution f of (1.4) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$, satisfies $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)$. This is a contradiction. Therefore, we have that all meromorphic solutions f of equation (1.5) such that $\lambda_{(p, q)}\left(\frac{1}{f}\right)<\mu_{(p, q)}(f)$, satisfy $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)$, with at most one exceptional solution f_{0} with $\sigma_{(p+1, q)}\left(f_{0}\right)<$ $\sigma_{(p, q)}\left(A_{s}\right)$.
(ii) From (1.5), by a simple consideration of order, we get $\sigma_{(p+1, q)}(f) \geq \sigma_{(p+1, q)}(F)$. By Lemma 2.13 and (5.3) - (5.5), for $j=1, \cdots, k$, we have

$$
\begin{equation*}
\sigma_{(p+1, q)}\left(C_{j}\right)=\sigma_{(p+1, q)}\left(C_{j}^{\prime}\right) \leq \max \left\{\sigma_{(p+1, q)}(F), \sigma_{(p, q)}\left(A_{s}\right)\right\} \leq \sigma_{(p+1, q)}(F) \tag{5.7}
\end{equation*}
$$

By (5.1), (5.2) and (5.7), we have

$$
\sigma_{(p+1, q)}(f) \leq \max \left\{\sigma_{(p+1, q)}\left(C_{j}\right), \sigma_{(p+1, q)}\left(f_{j}\right): j=1,2, \cdots, k\right\} \leq \sigma_{(p+1, q)}(F)
$$

Therefore, we have $\sigma_{(p+1, q)}(f)=\sigma_{(p+1, q)}(F)$.

6. Proof of Theorem 1.4

(i) Suppose that $f(z)$ is a transcendental solution of (1.2). On one hand, by (1.2), we get

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq\left|A_{k-1}(z)\right|\left|\frac{f^{(k-1)}}{f}\right|+\cdots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}}{f}\right|+\left|A_{0}(z)\right|+\left|\frac{F}{f}\right| \tag{6.1}
\end{equation*}
$$

By Wiman-Valiron theory [11, p. 187-199], there exists a set $E_{16} \subset(1,+\infty)$ of finite logarithmic measure such that for all $|z|=r \notin[0,1] \cup E_{16}$ and $|f(z)|=M(r, f)>1$, we have

$$
\begin{equation*}
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{v_{f}(r)}{z}\right)^{j}(1+o(1)), \quad(j=0, \cdots, k) \tag{6.2}
\end{equation*}
$$

By the definition of the (p, q)-order, for any given $\varepsilon>0$ and for sufficiently large r, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp _{p+1}\left\{(\sigma+\varepsilon) \log _{q} r\right\}, j \neq s \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|F(z)| \leq \exp _{p+1}\left\{(\sigma+\varepsilon) \log _{q} r\right\} \tag{6.4}
\end{equation*}
$$

Since $|f(z)|=M(r, f)>1$, then for sufficiently large r we have

$$
\begin{equation*}
\left|\frac{F(z)}{f(z)}\right|=\frac{|F(z)|}{M(r, f)} \leq \exp _{p+1}\left\{(\sigma+\varepsilon) \log _{q} r\right\} . \tag{6.5}
\end{equation*}
$$

By substituting (6.2), (6.3) and (6.5) into (6.1), for sufficiently large $r \notin[0,1] \cup E_{16}$, we obtain

$$
\begin{equation*}
\left(\frac{v_{f}(r)}{r}\right)|1+o(1)| \leq(k+1) \exp _{p+1}\left\{(\sigma+\varepsilon) \log _{q} r\right\} \tag{6.6}
\end{equation*}
$$

By (6.6), Lemma 2.5 and Lemma 2.9, we obtain $\sigma_{(p+1, q)}(f) \leq \sigma_{(p, q)}\left(A_{s}\right)+\varepsilon$. Since $\varepsilon>0$ is arbitrary, we get $\sigma_{(p+1, q)}(f) \leq \sigma_{(p, q)}\left(A_{s}\right)$. On the other hand, by (1.2), we obtain

$$
\begin{align*}
\left|A_{s}(z)\right| & \leq\left|\frac{f}{f^{(s)}}\right|\left[\left|\frac{f^{(k)}}{f}\right|+\left|A_{k-1}(z)\right|\left|\frac{f^{(k-1)}}{f}\right|+\cdots+\left|A_{s+1}(z)\right|\left|\frac{f^{(s+1)}}{f}\right|\right. \\
& \left.+\left|A_{s-1}(z)\right|\left|\frac{f^{(s-1)}}{f}\right|+\cdots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}}{f}\right|+\left|A_{0}(z)\right|+\left|\frac{F}{f}\right|\right] \tag{6.7}
\end{align*}
$$

For each sufficiently large circle $|z|=r$, we take $z_{r}=r e^{i \theta_{r}}$ satisfying $\left|f\left(z_{r}\right)\right|=M(r, f)>1$. Then, by Lemma 2.14, there exists a constant $\delta_{r}>0$ and a set E_{12} such that for all z satisfying $|z|=r \notin E_{12}$ and $\arg z=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\begin{equation*}
\left|\frac{f(z)}{f^{(s)}(z)}\right| \leq 2 r^{s} \tag{6.8}
\end{equation*}
$$

By Lemma 2.1, there exist a set $H_{1} \subset[0,2 \pi)$ that has linear measure zero and a constant $B>0$ such that for all z satisfying $\arg z=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$ and for sufficiently large r, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq B(T(2 r, f))^{k+1}, \quad 1 \leq j \leq k \tag{6.9}
\end{equation*}
$$

We choose α_{2}, β_{2} satisfying $\max \left\{\tau_{(p, q)}\left(A_{j}\right): \sigma_{(p, q)}\left(A_{j}\right)=\sigma_{(p, q)}\left(A_{s}\right), \tau_{(p, q)}(F)\right\}<\alpha_{2}<\beta_{2}<$ $\tau_{(p, q)}\left(A_{s}\right)$. Since $\left|f(z)-f\left(z_{r}\right)\right|<\varepsilon$ and $\left|f\left(z_{r}\right)\right| \rightarrow \infty$ as $r \rightarrow+\infty$, for all sufficiently large $|z|=$ $r \notin E_{12}$ and $\arg z=\theta \in\left[\theta_{r}-\delta_{r}, \theta_{r}+\delta_{r}\right]$, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp _{p}\left\{\alpha_{2}\left(\log _{q-1} r\right)^{\sigma_{(p, q)}\left(A_{s}\right)}\right\}, j \neq s \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{F(z)}{f(z)}\right| \leq|F(z)| \leq \exp _{p}\left\{\alpha_{2}\left(\log _{q-1} r\right)^{\sigma_{(p, q)}\left(A_{s}\right)}\right\} \tag{6.11}
\end{equation*}
$$

Since $T\left(r, A_{s}\right) \sim \log M\left(r, A_{s}\right)$ as $r \rightarrow+\infty\left(r \notin E_{12}\right)$, by Lemma 2.16, for any $\beta_{2}<\tau_{(p, q)}\left(A_{s}\right)$, there exists a set $E_{14} \subset(0,+\infty)$ having infinite logarithmic measure and a set $H_{2} \subset[0,2 \pi)$ that has linear measure zero such that for all z satisfying $|z|=r \in E_{14}$ and $\arg z=\theta \in[0,2 \pi) \backslash H_{2}$, we have

$$
\begin{equation*}
\left|A_{s}(z)\right|>\exp _{p}\left\{\beta_{2}\left(\log _{q-1} r\right)^{\sigma_{(p, q)}\left(A_{s}\right)}\right\} \tag{6.12}
\end{equation*}
$$

Substituting (6.8)-(6.12) into (6.7), for all z satisfying $|z|=r \in E_{14} \backslash E_{12}$ and $\arg z=\theta \in$ $[0,2 \pi) \backslash\left(H_{1} \cup H_{2}\right)$, we get

$$
\begin{equation*}
\exp _{p}\left\{\beta_{2}\left(\log _{q-1} r\right)^{\sigma_{(p, q)}\left(A_{s}\right)}\right\} \leq 2 r^{s} \exp _{p}\left\{\alpha_{2}\left(\log _{q-1} r\right)^{\sigma_{(p, q)}\left(A_{s}\right)}\right\}(k+1) B(T(2 r, f))^{k+1} \tag{6.13}
\end{equation*}
$$

By (6.13) and Lemma 2.5, we obtain $\sigma_{(p+1, q)}(f) \geq \sigma_{(p, q)}\left(A_{s}\right)$. Thus, we have $\sigma_{(p+1, q)}(f)=$ $\sigma_{(p, q)}\left(A_{s}\right)$.

Now, if $f(z)$ is a polynomial solution of (1.2) with $\operatorname{deg}(f) \geq s$, then $f^{(s)}(z) \not \equiv 0$. If

$$
\max \left\{\sigma_{(p, q)}\left(A_{j}\right), \sigma_{(p, q)}(F), j \neq s\right\}<\sigma_{(p, q)}\left(A_{s}\right)<\infty
$$

then

$$
\begin{gathered}
\sigma_{(p, q)}\left(A_{s}\right)=\sigma_{(p, q)}\left(-A_{s}(z) f^{(s)}\right)=\sigma_{(p, q)}\left(f^{(k)}+A_{k-1}(z) f^{(k-1)}\right. \\
\left.+\cdots+A_{s+1}(z) f^{(s+1)}+A_{s-1}(z) f^{(s-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f-F(z)\right)
\end{gathered}
$$

$$
\leq \max \left\{\sigma_{(p, q)}\left(A_{j}\right), \sigma_{(p, q)}(F), j \neq s\right\}<\sigma_{(p, q)}\left(A_{s}\right)
$$

which is a contradiction. If $\max \left\{\sigma_{(p, q)}\left(A_{j}\right), \sigma_{(p, q)}(F), j \neq s\right\}=\sigma_{(p, q)}\left(A_{s}\right)=\sigma$ and $\max \left\{\tau_{(p, q)}\left(A_{j}\right)\right.$: $\left.\sigma_{(p, q)}\left(A_{j}\right)=\sigma_{(p, q)}\left(A_{s}\right), \tau_{(p, q)}(F)\right\}<\tau_{(p, q)}\left(A_{s}\right)$, then we choose α_{2}, β_{2} satisfying max $\left\{\tau_{(p, q)}\left(A_{j}\right):\right.$ $\left.\sigma_{(p, q)}\left(A_{j}\right)=\sigma_{(p, q)}\left(A_{s}\right), \tau_{(p, q)}(F)\right\}<\alpha_{2}<\beta_{2}<\tau_{(p, q)}\left(A_{s}\right)$. By Lemma 2.15, there exists a set E_{13} having infinite logarithmic measure such that for all z satisfying $|z|=r \in E_{13}$, we have

$$
\begin{equation*}
\left|A_{s}(z)\right|>\exp _{p}\left\{\beta_{2}\left(\log _{q-1} r\right)^{\sigma}\right\} \tag{6.14}
\end{equation*}
$$

and for sufficiently large r

$$
\begin{equation*}
|F(z)|<\exp _{p}\left\{\alpha_{2}\left(\log _{q-1} r\right)^{\sigma}\right\},\left|A_{j}(z)\right|<\exp _{p}\left\{\alpha_{2}\left(\log _{q-1} r\right)^{\sigma}\right\}, j \neq s \tag{6.15}
\end{equation*}
$$

Hence, from (6.7), (6.14) and (6.15), for all z satisfying $|z|=r \in E_{13}$, we have

$$
\exp _{p}\left\{\beta_{2}\left(\log _{q-1} r\right)^{\sigma}\right\} \leq(k+1) r^{M} \exp _{p}\left\{\alpha_{2}\left(\log _{q-1} r\right)^{\sigma}\right\}
$$

where M is a constant. This is a contradiction. Therefore, $f(z)$ must be a polynomial with $\operatorname{deg} f \leq s-1$.
(ii) If $F(z) \not \equiv 0$, then we find from Lemma 2.17 that every transcendental solution $f(z)$ of (1.2) satisfies $\bar{\lambda}_{(p+1, q)}(f)=\lambda_{(p+1, q)}(f)=\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{s}\right)$.
(iii) If $s=1$ and $f(z)$ is a polynomial solution of (1.2), then by (ii), we get that $\operatorname{deg} f \leq s-1$. Thus $f(z)$ must be a constant. By (i) and (ii), every nonconstant solution $f(z)$ of (1.2) satisfies $\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{1}\right)$ and $\bar{\lambda}_{(p+1, q)}(f)=\lambda_{(p+1, q)}(f)=\sigma_{(p+1, q)}(f)=\sigma_{(p, q)}\left(A_{1}\right)$ if $F(z) \not \equiv 0$.

REFERENCES

[1] B. Belaïdi, Growth and oscillation of solutions to linear differential equations with entire coefficients having the same order, Electron. J. Differential Equations 2009 (2009), Article ID 70.
[2] Z. X. Chen, On the hyper order of solutions of some second order linear differential equations, Acta Math. Sin. (Engl. Ser.) 18 (2002), 79-88.
[3] A. Ferraoun, B. Belaïdi, The growth of solutions of some linear differential equations with coefficients being Lacunary series of (p, q)-order, Facta Universitatis, Ser. Math. Inform. 30 (2015), 607-622.
[4] A. Ferraoun, B. Belaïdi, Growth of solutions of complex differential equations with coefficients being Lacunary series of finite iterated order, Nonlinear Stud. 23 (2016), 237-252.
[5] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. 37 (1988), 88-104.
[6] G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), 415-429.
[7] K. Hamani, B. Belaïdi, Growth of solutions of complex linear differential equations with entire coefficients of finite iterated order, Acta Univ. Apulensis Math. Inform. 27 (2011), 203-216.
[8] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[9] W. P. Huang, J. L. Zhou, J. Tu, J. H. Ning, On the hyper-order of solutions of two class of complex linear differential equations, Adv. Difference Equ. 2015 (2015), Article ID 234.
[10] G. Jank, L. Volkmann, Untersuchungen ganzer und meromorpher Funktionen unendlicher Ordnung, Arch. Math. (Basel) 39 (1982), 32-45.
[11] J. Jank, L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Verlag, Basel, 1985.
[12] G. Jank, H. Wallner, Über das Wachstum gewisser Klassen kanonischer Produkte, Arch. Math. (Basel) 28 (1977), 274-280.
[13] T. Kövari, A gap-theorem for entire functions of infinite order, Michigan Math. J. 12 (1965), 133-140.
[14] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter \& Co., Berlin, 1993.
[15] L. M. Li, T. B. Cao, Solutions for linear differential equations with meromorphic coefficients of [p, q]-order in the plane, Electron. J. Differential Equations 2012 (2012), Article ID 195.
[16] J. Liu, J. Tu, L. Z. Shi, Linear differential equations with entire coefficients of [p, q]-order in the complex plane, J. Math. Anal. Appl. 372 (2010), 55-67.
[17] J. Tu, H. Y. Xu, H. M. Liu, Y. Liu, Complex oscillation of higher-order linear differential equations with coefficients being Lacunary series of finite iterated order, Abstr. Appl. Anal. 2013 (2013), Art. ID 634739.
[18] J. Tu, Z. X. Chen, Growth of solutions of complex differential equations with meromorphic coefficients of finite iterated order, Southeast Asian Bull. Math. 33 (2009), 153-164.
[19] S. Z. Wu, X. M. Zheng, On meromorphic solutions of some linear differential equations with entire coefficients being Fabry gap series, Adv. Difference Equ. 2015 (2015), Article ID 32.
[20] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.
[21] M. L. Zhan, X. M. Zheng, Solutions to linear differential equations with some coefficient being lacunary series of (p, q)-order in the complex plane, Ann. Differential Equations 30 (2014), 364-372.

[^0]: *Corresponding author.
 E-mail addresses: aferraoun@yahoo.fr (A. Ferraoun), benharrat.belaidi@univ-mosta.dz (B. Belaidi).
 Received September 19, 2016; Accepted February 20, 2017.

