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BENHARRAT BELAÏDI∗, MOHAMMED AMIN ABDELLAOUI

Department of Mathematics, Laboratory of Pure and Applied Mathematics,

University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria

Abstract. In this paper, we investigate the relationship between small functions and non-homogeneous differ-

ential polynomials gk = dk (z) f (k)+ · · ·+ d1 (z) f ′+ d0 (z) f + b(z) , where d0 (z) , d1 (z) , · · · , dk (z) and b(z) are

finite [p,q]−order meromorphic functions in the unit disc ∆ and k ≥ 2 is an integer, which are not all equal to

zero generated by the complex higher order non-homogeneous linear differential equation f (k)+Ak−1 (z) f (k−1)+

· · ·+A1 (z) f ′+A0 (z) f = F, for (k ≥ 2) , where A0 (z) , A1 (z) , · · · , Ak−1 (z) are finite [p,q]−order meromorphic

functions in unit disc ∆.

Keywords. Non-homogeneous linear differential equations; Differential polynomials; Analytic solutions; Mero-

morphic solutions; Unit disc.

1. Introduction

The study on value distribution of differential polynomials generated by solutions of a giv-

en complex differential equation in the case of complex plane seems to have been started by

Bank [2]. Many authors have investigated the growth and oscillation of solutions of complex

linear differential equations in C, see [2, 6, 7, 19, 20, 22]. In the unit disc, there already exist

many results [3,4,5,8,9,10,11,12,15,16,23,24] but the study is more difficult than that in the
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complex plane. In [11] Fenton-Strumia obtained some results of Wiman-Valiron type for power

series in the unit disc, and Fenton-Rossi [12] obtained an asymptotic equality of Wiman-Valiron

type for the derivatives of analytic functions in the unit disc and applied to ODEs with analytic

coefficients.

Throughout this paper, we shall assume that reader is familiar with the fundamental results

and the standard notations of the Nevanlinna’s value distribution theory on the complex plane

and in the unit disc ∆ = {z : |z|< 1} (see [14] , [15] , [20] , [21] , [25]).

Firstly, we will recall some notations about the finite iterated order and the growth index to

classify generally meromorphic functions of fast growth in ∆ as those in C (see [7] , [19] , [20]) .

Let us define inductively, for r ∈ (0,+∞) , exp1 r := er and expp+1 r := exp
(
expp r

)
, p ∈N. We

also define for all r sufficiently large in (0,+∞) , log1 r := logr and logp+1 r := log
(
logp r

)
, p∈

N. Moreover, we denote by exp0 r := r, log0 r := r, exp−1 r := log1 r, log−1 r := exp1 r.

Definition 1.1. [8] The iterated p−order of a meromorphic function f in ∆ is defined by

ρp ( f ) = limsup
r→1−

log+p T (r, f )

log 1
1−r

(p≥ 1 is an integer) ,

where T (r, f ) is the characteristic function of Nevanlinna of f , and log+1 x= log+ x=max{logx,0} ,

log+p+1 x = log+
(
log+p x

)
. For p = 1, this notation is called order and for p = 2 hyper-order

(see [15,21]). For an analytic function f in ∆ we also define

ρM,p ( f ) = limsup
r→1−

log+p+1 M (r, f )

log 1
1−r

(p≥ 1 is an integer) ,

in which M (r, f ) = max
|z|=r
| f (z)| is the maximum modulus function.

Remark 1.1. It follows by M. Tsuji in [25] that if f is an analytic function in ∆, then ρ1 ( f )≤

ρM,1 ( f )≤ ρ1 ( f )+1. However, it follows by Proposition 2.2.2 in [20] , that we have ρM,p ( f ) =

ρp ( f ) , for p≥ 2.

Definition 1.2. [9] Let f be a meromorphic function. Then the iterated p−convergence exponent

of the sequence of zeros of f (z) is defined by

λp ( f ) = limsup
r→1−

log+p N
(

r, 1
f

)
log 1

1−r

(p≥ 1 is an integer) ,
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where N
(

r, 1
f

)
is the integrated counting function of zeros of f (z) in {z ∈ C : |z| ≤ r}. For

p = 1, this notation is called exponent of convergence of the sequence of zeros and for p = 2

hyper-exponent of convergence of the sequence of zeros. Similarly, the iterated p−convergence

exponent of the sequence of distinct zeros of f (z) is defined by

λ p ( f ) = limsup
r→1−

log+p N
(

r, 1
f

)
log 1

1−r

(p≥ 1 is an integer) ,

where N
(

r, 1
f

)
is the integrated counting function of distinct zeros of f (z) in {z ∈ C : |z| ≤ r}.

For p = 1, this notation is called exponent of convergence of the sequence of distinct zeros and

for p = 2 hyper-exponent of convergence of the sequence of distinct zeros.

In the following, we will give similar definitions as in [17,18] for analytic and meromorphic

functions of [p,q]-order, [p,q]-type and [p,q]-exponent of convergence of the zero-sequence in

the unit disc.

Definition 1.3. [4] Let p ≥ q ≥ 1 be integers, and let f be a meromorphic function in ∆, the

[p,q]-order of f (z) is defined by

ρ[p,q] ( f ) = limsup
r→1−

log+p T (r, f )

logq
1

1−r

.

For an analytic function f in ∆, we also define

ρM,[p,q] ( f ) = limsup
r→1−

log+p+1 M (r, f )

logq
1

1−r

.

Remark 1.2. It is easy to see that 0 ≤ ρ[p,q] ( f ) ≤ +∞ (0 ≤ ρM,[p,q] ( f ) ≤ +∞ ), for any p ≥

q≥ 1. By Definition 1.3, we have that ρ[p,1] = ρp ( f ) (ρM,[p,1] = ρM,p ( f )).

In [24] , Tu and Huang extended Proposition 1.1 in [4] with more details, as follows.

Proposition 1.1. [24] Let f be an analytic function of [p,q]-order in ∆. Then the following five

statements hold:

(i) If p = q = 1, then ρ ( f )≤ ρM ( f )≤ ρ ( f )+1.

(ii) If p = q≥ 2 and ρ[p,q] ( f )< 1, then ρ[p,q] ( f )≤ ρM,[p,q] ( f )≤ 1.

(iii) If p = q≥ 2 and ρ[p,q] ( f )≥ 1, or p > q≥ 1, then ρ[p,q] ( f ) = ρM,[p,q] ( f ) .



4 B. BELAÏDI, M. A. ABDELLAOUI

(iv) If p ≥ 1 and ρ[p,p+1] ( f ) > 1, then D( f ) = limsup
r→1−

T (r, f )
log 1

1−r
= ∞; if ρ[p,p+1] ( f ) < 1, then

D( f ) = 0.

(v) If p≥ 1 and ρM,[p,p+1] ( f )> 1, then DM ( f ) = limsup
r→1−

log+ M(r, f )
log 1

1−r
= ∞; if ρM,[p,p+1] ( f )< 1,

then DM ( f ) = 0.

Definition 1.4. [23] Let p≥ q≥ 1 be integers. The [p,q]-type of a meromorphic function f (z)

in ∆ of [p,q]-order ρ[p,q] ( f )
(
0 < ρ[p,q] ( f )<+∞

)
is defined by

τ[p,q] ( f ) = limsup
r→1−

log+p−1 T (r, f )(
logq−1

1
1−r

)ρ[p,q]( f )
.

For an analytic function f (z) in ∆, the [p,q]-type about maximum modulus of f of [p,q]-order

ρM,[p,q] ( f )
(
0 < ρM,[p,q] ( f )<+∞

)
is defined by

τM,[p,q] ( f ) = limsup
r→1−

log+p M (r, f )(
logq−1

1
1−r

)ρM,[p,q]( f )
.

By Definition 1.4, we have that τ[p,1] = τp ( f ) (τM,[p,1] = τM,p ( f )) and τ[1,1] = τ ( f ) (τM,[1,1] =

τM ( f )).

Definition 1.5. [23] Let p ≥ q ≥ 1 be integers. The [p,q]-exponent of convergence of the

zero-sequence of f (z) in ∆ is defined by

λ[p,q] ( f ) = limsup
r→1−

log+p N
(

r, 1
f

)
logq

1
1−r

.

Similarly, the [p,q]-exponent of convergence of the sequence of distinct zeros of f (z) is

defined by

λ [p,q] ( f ) = limsup
r→1−

log+p N
(

r, 1
f

)
logq

1
1−r

.

Consider the complex nonhomogeneous linear differential equation

f ′′+A1 (z) f ′+A0 (z) f = F, (1.1)

where A0 (z) , A1 (z) and F are analytic functions in ∆ of finite order. In [22] , Laine and Rieppo

considered value distribution theory of differential polynomials generated by solutions of linear

differential equations in the complex plane. It is well-known that all solutions of equation

(1.1) are analytic functions in ∆ and that there are exactly two linearly independent solutions
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of (1.1) , see [15]. In [10] , El Farissi, Belaı̈di and Latreuch studied the complex oscillation of

differential polynomial generated by solutions of second order linear differential equation (1.1)

with analytic coefficients in ∆ and obtained the following results. Set

α0 = d0−d2A0, β0 = d2A0A1− (d2A0)
′−d1A0 +d′0,

α1 = d1−d2A1, β1 = d2A2
1− (d2A1)

′−d1A1−d2A0 +d0 +d′1,

h = α1β0−α0β1 (1.2)

and

ψ (z) =
α1
(
ϕ ′− (d2F)′−α1F

)
−β1 (ϕ−d2F)

h
.

Theorem A. [10] Let A1 (z), A0 (z) 6≡ 0 and F be analytic functions in ∆ of finite order. Let d0 (z) ,

d1 (z) , d2 (z) be analytic functions in ∆ that are not all equal to zero with ρ
(
d j
)
<∞ ( j = 0,1,2)

such that h 6≡ 0, where h is defined by (1.2) . If f is an infinite order solution of (1.1) with

ρ2 ( f ) = ρ, then the differential polynomial g f = d2 f ′′+d1 f ′+d0 f satisfies ρ
(
g f
)
= ρ ( f ) =∞

and ρ2
(
g f
)
= ρ2 ( f ) = ρ.

Theorem B. [10] Let A1 (z), A0 (z) 6≡ 0 and F be analytic functions in ∆ of finite order. Let

d0 (z) , d1 (z) , d2 (z) be analytic functions in ∆ which are not all equal to zero with ρ
(
d j
)
< ∞

( j = 0,1,2) such that h 6≡ 0, and let ϕ (z) 6≡ 0 be an analytic function in ∆ of finite order such

that ψ (z) is not a solution of (1.1) . If f is an infinite order solution of (1.1) with ρ2 ( f ) = ρ,

then the differential polynomial g f = d2 f ′′+d1 f ′+d0 f satisfies

λ
(
g f −ϕ

)
= λ

(
g f −ϕ

)
= ρ ( f ) = ∞,

λ 2
(
g f −ϕ

)
= λ2

(
g f −ϕ

)
= ρ2 ( f ) = ρ.

In 2011, Belaı̈di studied the growth, the oscillation and the relation between small functions

and some class of differential polynomials generated by non-homogeneous second order linear

differential equation (1.1) when the solutions are of finite iterated p−order (see [3]). Set

β0 = d′0−d1A0, β1 = d′1 +d0−d1A1,

h = d1β0−d0β1 (1.3)
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and

η (z) =
d1 (ϕ

′−b′−d1F)−β1 (ϕ−b)
h

.

Theorem C. [3] Let A1 (z), A0 (z) 6≡ 0, F be analytic functions of finite iterated p−order in ∆.

Let d0 (z) , d1 (z) , b(z) be analytic functions of finite iterated p− order in ∆ such that at least

one of d0, d1 does not vanish identically and that h 6≡ 0, where h is defined by (1.3). If f is a

finite iterated p−order solution of (1.1) such that

max
{

ρp
(
A j
)
, ρp

(
d j
)
( j = 0,1), ρp (b) , ρp (F)

}
< ρp ( f ) , (1.4)

then the differential polynomial g f = d1 f ′+d0 f +b satisfies ρp
(
g f
)
= ρp ( f ) = ρ.

Theorem D. [3] Assume that the assumptions of Theorem C hold, and let ϕ (z) be an analytic

function in ∆ with ρp (ϕ) < ρp ( f ) such that η (z) is not a solution of (1.1) . If f is a finite

iterated p−order solution of (1.1) such that (1.4) holds, then the differential polynomial g f =

d1 f ′+d0 f +b satisfies λ
(
g f −ϕ

)
= λ

(
g f −ϕ

)
= ρp ( f ) .

The remainder of the paper is organized as follows. In Section 2, we shall show our main

results which improve and extend many results in the above-mentioned papers. Section 3 is for

some lemmas and basic theorems. The last section is for the proofs of our main results.

2. Main results

In this paper, we continue to consider this subject and investigate the complex oscillation

theory of differential polynomials generated by meromorphic solutions of non-homogeneous

linear differential equations in the unit disc. The main purpose of this paper is to study the

controllability of solutions of the non-homogeneous higher order linear differential equation

f (k)+Ak−1 (z) f (k−1)+ · · ·+A1 (z) f ′+A0 (z) f = F, k ≥ 2 (2.1)

and the differential polynomial

gk = dk (z) f (k)+dk−1 (z) f (k−1)+ · · ·+d0 (z) f +b(z) , (2.2)

where Ai (z) (i = 0,1, · · · ,k−1) , F (z) and d0 (z) ,d1 (z) , · · · ,dk (z) , b(z) are meromorphic func-

tions in ∆ of finite [p,q]−order.



ON THE VALUE DISTRIBUTION THEORY 7

There exists a natural question: How about the growth and oscillation of the differential

polynomial (2.2) with meromorphic coefficients of finite [p,q]-order generated by solutions of

equation (2.1) in the unit disc?

The main purpose of this paper is to consider the above question. Before we state our re-

sults, we define the sequence of meromorphic functions αi, j, β j, (i = 0, · · · ,k−1; j = 0, · · · ,k−1)

in ∆ by

αi, j =

 α ′i, j−1 +αi−1, j−1−Aiαk−1, j−1, for all i = 1, · · · ,k−1,

α ′0, j−1−A0αk−1, j−1, for i = 0,
(2.3)

αi,0 = di−dkAi, for i = 0, · · · ,k−1 (2.4)

and

β j =

 β ′j−1 +αk−1, j−1F for all j = 1, · · · ,k−1,

dkF +b for j = 0,
(2.5)

we define also hk by

hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α0,0 α1,0 . . αk−1,0

α0,1 α1,1 . . αk−1,1

. . . . .

. . . . .

α0,k−1 α1,k−1 . . αk−1,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and ψk (z) by

ψk (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ−β0 α1,0 . . αk−1,0

ϕ ′−β1 α1,1 . . αk−1,1

. . . . .

. . . . .

ϕ(k−1)−βk−1 α1,k−1 . . αk−1,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
hk (z)

,

where hk 6≡ 0 and αi, j, β j (i = 0, ..,k−1; j = 0, · · · ,k−1) are defined in (2.3)−(2.5) , and ϕ (z)

is a meromorphic function in ∆ with ρ[p,q] (ϕ)< ∞.

The main results of this paper state as follows.
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Theorem 2.1. Let Ai (z) (i = 0,1, · · · ,k−1) , F (z) be meromorphic functions in ∆ of finite

[p,q]−order. Let d j (z) ( j = 0,1, · · · ,k) , b(z) be finite [p,q]−order meromorphic functions in

∆ that are not all vanishing identically such that hk 6≡ 0. If f (z) is an infinite [p,q]−order

meromorphic solution in ∆ of (2.1) with ρ[p+1,q] ( f ) = ρ, then the differential polynomial (2.2)

satisfies

ρ[p,q] (gk) = ρ[p,q] ( f ) = ∞

and

ρ[p+1,q] (gk) = ρ[p+1,q] ( f ) = ρ.

Furthermore, if f is a finite [p,q]−order meromorphic solution of (2.1) in ∆ such that

ρ[p,q] ( f )> max
{

max
0≤i≤k−1

ρ[p,q] (Ai) , max
0≤ j≤k−1

ρ[p,q]
(
d j
)
,ρ[p,q] (F) , ρ[p,q] (b)

}
, (2.6)

then

ρ[p,q] (gk) = ρ[p,q] ( f ) .

Remark 2.1. In Theorem 2.1, if we do not have the condition hk 6≡ 0, then the conclusions of

Theorem 2.1 cannot hold. For example, if we take di = dkAi (i = 0, · · · ,k−1) , then hk ≡ 0. It

follows that gk ≡ dkF+b and ρ[p,q] (gk) = ρ[p,q] (dkF +b) . So, if f (z) is an infinite [p,q]−order

meromorphic solution of (2.1) , then ρ[p,q] (gk) = ρ[p,q] (dkF +b)< ρ[p,q] ( f ) = ∞, and if f is a

finite [p,q]−order meromorphic solution of (2.1) such that (2.6) holds, then

ρ[p,q] (gk) = ρ[p,q] (dkF +b)≤max
{

ρ[p,q] (dk) ,ρ[p,q] (F) , ρ[p,q] (b)
}
< ρ[p,q] ( f ) .

Theorem 2.2. Under the hypotheses of Theorem 2.1, let ϕ (z) be a meromorphic function in

∆ with finite [p,q]−order such that ψk (z) is not a solution of (2.1) . If f (z) is an infinite

[p,q]−order meromorphic solution in ∆ of (2.1) with ρ[p+1,q] ( f ) = ρ, then the differential

polynomial (2.2) satisfies

λ [p,q] (gk−ϕ) = λ[p,q] (gk−ϕ) = ρ[p,q] ( f ) = ∞

and

λ [p+1,q] (gk−ϕ) = λ[p+1,q] (gk−ϕ) = ρ[p+1,q] ( f ) = ρ.
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Furthermore, if f is a finite [p,q]−order meromorphic solution of (2.1) in ∆ such that

ρ[p,q] ( f )> max
{

max
0≤i≤k−1

ρ[p,q] (Ai) , max
0≤ j≤k−1

ρ[p,q]
(
d j
)
,ρ[p,q] (F) , ρ[p,q] (b) ,ρ[p,q] (ϕ)

}
,

(2.7)

then

λ [p,q] (gk−ϕ) = λ[p,q] (gk−ϕ) = ρ[p,q] ( f ) .

Remark 2.2. Obviously, Theorems 2.1 and 2.2 are a generalization of Theorems A, B, C and

D.

Remark 2.3. By setting b(z)≡ 0, ϕ (z)≡ 0 and k = 2 in Theorem 2.2 we obtain Theorem 1.1

in [13].

We consider now the differential equation

f ′′+A1 (z) f +A0 (z) f = 0, (2.8)

where A0 (z) , A1 (z) are finite [p,q]−order analytic functions in the unit disc ∆. In the following

we will give sufficient conditions on A0, A1 which satisfied the results of Theorem 2.1 and

Theorem 2.2 without the conditions ” hk 6≡ 0 ” and ” ψk (z) is not a solution of (2.8) ” where

k = 2.

Corollary 2.1. Let p ≥ q ≥ 1 be integers, and let A0 (z) , A1 (z) be analytic functions in ∆.

Assume that ρ[p,q] (A1) < ρ[p,q] (A0) = ρ (0 < ρ <+∞) and τ[p,q] (A0) = τ (0 < τ <+∞). Let

d0 (z) , d1 (z) , d2 (z) and b(z) be analytic functions in ∆ that are not all vanishing identically

such that

max
{

ρ[p,q] (b) , ρ[p,q]
(
d j
)

: j = 0,1,2
}
< ρ[p,q] (A0) .

If f (z) 6≡ 0 is a solution of the differential equation (2.8) , then the differential polynomial

g2 = d2 f ′′+d1 f ′+d0 f +b satisfies ρ[p,q] (g2) = ρ[p,q] ( f ) = ∞ and

ρ[p,q] (A0)≤ ρ[p+1,q] (g2) = ρ[p+1,q] ( f )≤max
{

ρM,[p,q] (Ai) (i = 0,1)
}
.

Furthermore, if p > q then

ρ[p+1,q] (g2) = ρ[p+1,q] ( f ) = ρ[p,q] (A0) .
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Corollary 2.2. Let p ≥ q ≥ 1 be integers, and let A0 (z) , A1 (z) be analytic functions in ∆.

Assume that ρ[p,q] (A1) < ρ[p,q] (A0) = ρ (0 < ρ <+∞) and τ[p,q] (A0) = τ (0 < τ <+∞). Let

d0 (z) , d1 (z) , d2 (z) and b(z) be analytic functions in ∆ that are not all vanishing identically

such that

max
{

ρ[p,q] (b) , ρ[p,q]
(
d j
)

: j = 0,1,2
}
< ρ[p,q] (A1) .

Let ϕ (z) be an analytic function in ∆ of finite [p,q]−order such that ϕ−b 6≡ 0. If f (z) 6≡ 0 is a

solution of the differential equation (2.8) , then the differential polynomial g2 = d2 f ′′+d1 f ′+

d0 f +b satisfies λ [p,q] (g2−ϕ) = λ[p,q] (g2−ϕ) = ρ[p,q] ( f ) = ∞ and

ρ[p,q] (A0) ≤ λ [p+1,q] (g2−ϕ) = λ[p+1,q] (g2−ϕ) = ρ[p+1,q] (g2)

= ρ[p+1,q] ( f )≤max
{

ρM,[p,q] (A0) , ρM,[p,q] (A1)
}
.

Furthermore, if p > q then

λ [p+1,q] (g2−ϕ) = λ[p+1,q] (g2−ϕ) = ρ[p+1,q] ( f ) = ρ[p,q] (A0) .

Remark 2.4 By setting b(z)≡ 0 in Corollaries 2.1 and 2.2 we obtain Theorems 1.3 and 1.4 in

[23].

3. Auxiliary lemmas

Lemma 3.1. [4] Let p≥ q≥ 1 be integers. Let f be a meromorphic function in the unit disc ∆

such that ρ[p,q] ( f ) = ρ < ∞, and let k ≥ 1 be an integer. Then for any ε > 0,

m

(
r,

f (k)

f

)
= O

(
expp−1

{
(ρ + ε) logq

(
1

1− r

)})
holds for all r outside a set E1 ⊂ [0,1) with

∫
E1

dr
1−r < ∞.

Lemma 3.2. [1,15] Let g : (0,1)→ R and h : (0,1)→ R be monotone increasing functions

such that g(r) ≤ h(r) holds outside of an exceptional set E2 ⊂ [0,1) for which
∫

E2
dr

1−r < ∞.

Then there exists a constant d ∈ (0,1) such that if s(r) = 1−d (1− r) , then g(r)≤ h(s(r)) for

all r ∈ [0,1).



ON THE VALUE DISTRIBUTION THEORY 11

By using similar proof of Lemma 3.5 in [16] , we easily obtain the following lemma when

ρ[p,q] ( f ) = +∞.

Lemma 3.3. Let p ≥ q ≥ 1 be integers. Let Ai (z) (i = 0, · · · ,k−1) , F 6≡ 0 be meromorphic

functions in ∆, and let f (z) be a solution of the differential equation

f (k)+Ak−1 (z) f (k−1)+ · · ·+A1 (z) f ′+A0 (z) f = F

satisfying max
{

ρ[p,q] (Ai) (i = 0, · · · ,k−1) ,ρ[p,q] (F)
}
< ρ[p,q] ( f ) = ρ ≤+∞. Then we have

λ [p,q] ( f ) = λ[p,q] ( f ) = ρ[p,q] ( f )

and

λ [p+1,q] ( f ) = λ[p+1,q] ( f ) = ρ[p+1,q] ( f ) .

Lemma 3.4. [23] Let p≥ q≥ 1 be integers, and let Ai (z) (i = 0, · · · ,k−1) be analytic functions

in ∆ satisfying

max
{

ρ[p,q] (Ai) (i = 1, · · · ,k−1)
}
< ρ[p,q] (A0) .

If f (z) 6≡ 0 is a solution of the differential equation

f (k)+Ak−1 (z) f (k−1)+ · · ·+A1 (z) f ′+A0 (z) f = 0,

then ρ[p,q] ( f ) = +∞ and

ρ[p,q] (A0)≤ ρ[p+1,q] ( f )≤max
{

ρM,[p,q] (Ai) (i = 0, · · · ,k−1)
}
.

Furthermore, if p > q then

ρ[p+1,q] ( f ) = ρ[p,q] (A0) .

Lemma 3.5. [5] Let p≥ q≥ 1 be integers, and let f be a meromorphic function of [p,q]−order

in ∆. Then ρ[p,q] ( f ′) = ρ[p,q] ( f ).

Lemma 3.6. [5] Let p ≥ q ≥ 1 be integers, and let f and g be non-constant meromorphic

functions of [p,q]-order in ∆. Then we have

ρ[p,q] ( f +g)≤max
{

ρ[p,q] ( f ) ,ρ[p,q] (g)
}
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and

ρ[p,q] ( f g)≤max
{

ρ[p,q] ( f ) ,ρ[p,q] (g)
}
.

Furthermore, if ρ[p,q] ( f )> ρ[p,q] (g) , then we obtain

ρ[p,q] ( f +g) = ρ[p,q] ( f g) = ρ[p,q] ( f ) .

Lemma 3.7. [23] Let p ≥ q ≥ 1 be integers, and let f and g be meromorphic functions of

[p,q]-order in ∆ such that 0 < ρ[p,q] ( f ) ,ρ[p,q] (g)< ∞ and 0 < τ[p,q] ( f ) ,τ[p,q] (g)< ∞. We have

(i) If ρ[p,q] ( f )> ρ[p,q] (g) , then

τ[p,q] ( f +g) = τ[p,q] ( f g) = τ[p,q] ( f ) .

(ii) If ρ[p,q] ( f ) = ρ[p,q] (g) and τ[p,q] ( f ) 6= τ[p,q] (g) , then

ρ[p,q] ( f +g) = ρ[p,q] ( f g) = ρ[p,q] ( f ) = ρ[p,q] (g) .

Lemma 3.8. Assume that f (z) is a solution of equation (2.1). Then the differential polynomial

gk defined in (2.2) satisfies the system of equations

gk−β0 = α0,0 f +α1,0 f ′+ · · ·+αk−1,0 f (k−1),

g′k−β1 = α0,1 f +α1,1 f ′+ · · ·+αk−1,1 f (k−1),

g′′k −β2 = α0,2 f +α1,2 f ′+ · · ·+αk−1,2 f (k−1),

· · ·

g(k−1)
k −βk−1 = α0,k−1 f +α1,k−1 f ′+ · · ·+αk−1,k−1 f (k−1),

where

αi, j =

 α ′i, j−1 +αi−1, j−1−Aiαk−1, j−1, for all i = 1, · · · ,k−1,

α ′0, j−1−A0αk−1, j−1, for i = 0,

αi,0 = di−dkAi, for i = 0, · · · ,k−1

and

β j =

 β ′j−1 +αk−1, j−1F, for all j = 1,2, · · · ,k−1,

dkF +b, for j = 0.
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Proof. Suppose that f is a solution of (2.1) . We can rewrite (2.1) as

f (k) = F−
k−1

∑
i=0

Ai f (i), (3.1)

which implies

gk = dk f (k)+dk−1 f (k−1)+ · · ·+d1 f ′+d0 f +b =
k−1

∑
i=0

(di−dkAi) f (i)+dkF +b. (3.2)

We can rewrite (3.2) as

gk−β0 =
k−1

∑
i=0

αi,0 f (i), (3.3)

where αi,0 are defined in (2.4) and β0 = dkF + b. Differentiating both sides of equation (3.3)

and replacing f (k) with f (k) = F−
k−1
∑

i=0
Ai f (i), we obtain

g′k−β
′
0 =

k−1

∑
i=0

α
′
i,0 f (i)+

k−1

∑
i=0

αi,0 f (i+1) =
k−1

∑
i=0

α
′
i,0 f (i)+

k

∑
i=1

αi−1,0 f (i)

= α
′
0,0 f +

k−1

∑
i=1

α
′
i,0 f (i)+

k−1

∑
i=1

αi−1,0 f (i)+αk−1,0 f (k)

= α
′
0,0 f +

k−1

∑
i=1

α
′
i,0 f (i)+

k−1

∑
i=1

αi−1,0 f (i)−
k−1

∑
i=0

αk−1,0Ai f (i)+αk−1,0F

=
(
α
′
0,0−αk−1,0A0

)
f +

k−1

∑
i=1

(
α
′
i,0 +αi−1,0−αk−1,0Ai

)
f (i)+αk−1,0F. (3.4)

We can rewrite (3.4) as

g′k−β1 =
k−1

∑
i=0

αi,1 f (i), (3.5)

where

αi,1 =

 α ′i,0 +αi−1,0−Aiαk−1,0, for all i = 1, · · · ,k−1,

α ′0,0−A0αk−1,0, for i = 0
(3.6)

and

β1 = β
′
0 +αk−1,0F.

Differentiating both sides of equation (3.5) and replacing f (k) with f (k) = F −
k−1
∑

i=0
Ai f (i), we

obtain

g′′k −β
′
1 =

k−1

∑
i=0

α
′
i,1 f (i)+

k−1

∑
i=0

αi,1 f (i+1) =
k−1

∑
i=0

α
′
i,1 f (i)+

k

∑
i=1

αi−1,1 f (i)

= α
′
0,1 f +

k−1

∑
i=1

α
′
i,1 f (i)+

k−1

∑
i=1

αi−1,1 f (i)+αk−1,1 f (k)
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= α
′
0,1 f +

k−1

∑
i=1

α
′
i,1 f (i)+

k−1

∑
i=1

αi−1,1 f (i)−
k−1

∑
i=0

Aiαk−1,1 f (i)+αk−1,1F

=
(
α
′
0,1−αk−1,1A0

)
f +

k−1

∑
i=1

(
α
′
i,1 +αi−1,1−Aiαk−1,1

)
f (i)+αk−1,1F, (3.7)

which implies that

g′′k −β2 =
k−1

∑
i=0

αi,2 f (i), (3.8)

where

αi,2 =

 α ′i,1 +αi−1,1−Aiαk−1,1, for all i = 1, · · · ,k−1,

α ′0,1−A0αk−1,1, for i = 0
(3.9)

and

β2 = β
′
1 +αk−1,1F.

By using the same method as above we can easily deduce that

g( j)
k −β j =

k−1

∑
i=0

αi, j f (i), j = 0,1, · · · ,k−1, (3.10)

where

αi, j =

 α ′i, j−1 +αi−1, j−1−Aiαk−1, j−1, for all i = 1, · · · ,k−1,

α ′0, j−1−A0αk−1, j−1, for i = 0,
(3.11)

αi,0 = di−dkAi, for all i = 0,1, · · · ,k−1

and

β j =

 β ′j−1 +αk−1, j−1F, for all j = 1,2, · · · ,k−1,

dkF +b, for j = 0.
(3.12)

By (3.3)− (3.12) we obtain the system of equations

gk−β0 = α0,0 f +α1,0 f ′+ · · ·+αk−1,0 f (k−1),

g′k−β1 = α0,1 f +α1,1 f ′+ · · ·+αk−1,1 f (k−1),

g′′k −β2 = α0,2 f +α1,2 f ′+ · · ·+αk−1,2 f (k−1),

· · ·

g(k−1)
k −βk−1 = α0,k−1 f +α1,k−1 f ′+ · · ·+αk−1,k−1 f (k−1).

(3.13)

This completes the proof of Lemma 3.8.

4. Proof of the theorems and corollaries
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Proof of Theorem 2.1. Suppose that f (z) is an infinite [p,q]−order meromorphic solution of

(2.1) with ρ[p+1,q] ( f ) = ρ. By Lemma 3.8, gk satisfies the system of equations

gk−β0 = α0,0 f +α1,0 f ′+ · · ·+αk−1,0 f (k−1),

g′k−β1 = α0,1 f +α1,1 f ′+ · · ·+αk−1,1 f (k−1),

g′′k −β2 = α0,2 f +α1,2 f ′+ · · ·+αk−1,2 f (k−1),

· · ·

g(k−1)
k −βk−1 = α0,k−1 f +α1,k−1 f ′+ · · ·+αk−1,k−1 f (k−1),

(4.1)

where

αi, j =

 α ′i, j−1 +αi−1, j−1−Aiαk−1, j−1, for all i = 1, · · · ,k−1,

α ′0, j−1−A0αk−1, j−1, for i = 0,
(4.2)

αi,0 = di−dkAi, for all i = 0,1, · · · ,k−1 (4.3)

and

β j =

 β ′j−1 +αk−1, j−1F, for all j = 1,2, · · · ,k−1,

dkF +b, for j = 0.
(4.4)

By Cramer’s rule, and since hk 6≡ 0, then we have

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gk−β0 α1,0 . . αk−1,0

g′k−β1 α1,1 . . αk−1,1

. . . . .

. . . . .

g(k−1)
k −βk−1 α1,k−1 . . αk−1,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
hk

.

It follows that

f =C0 (gk−β0)+C1
(
g′k−β1

)
+ · · ·+Ck−1

(
g(k−1)

k −βk−1

)
=C0gk +C1g′k + · · ·+Ck−1g(k−1)

k −
k−1

∑
k=0

C jβ j, (4.5)

where C j are finite [p,q]−order meromorphic functions in ∆ depending on αi, j, where αi, j are

defined in (4.2), (4.3) and β j are defined in (4.4) .

If ρ[p,q] (gk) < +∞, then by (4.5) we obtain ρ[p,q] ( f ) < +∞, which is a contradiction.

Hence ρ[p,q] (gk) = ρ[p,q] ( f ) = +∞.
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Now, we prove that ρ[p+1,q] (gk)= ρ[p+1,q] ( f )= ρ. By (2.2), we get ρ[p+1,q] (gk)≤ ρ[p+1,q] ( f )

and by (4.5) we have ρ[p+1,q] ( f )≤ ρ[p+1,q] (gk). This yield ρ[p+1,q] (gk) = ρ[p+1,q] ( f ) = ρ.

Furthermore, if f (z) is a finite [p,q]−order meromorphic solution of equation (2.1) such

that

ρ[p,q] ( f )> max
{

max
0≤i≤k−1

ρ[p,q] (Ai) , max
0≤ j≤k−1

ρ[p,q]
(
d j
)
,ρ[p,q] (F) , ρ[p,q] (b)

}
, (4.6)

then

ρ[p,q] ( f )> max
{

ρ[p,q]
(
αi, j
)
,ρ[p,q]

(
C jβ j

)
: i = 0, · · · ,k−1; j = 0, · · · ,k−1

}
. (4.7)

By (2.2) and (4.6) we have ρ[p,q] (gk) ≤ ρ[p,q] ( f ) . Now, we prove ρ[p,q]
(
g f
)
= ρ[p,q] ( f ) . If

ρ[p,q] (gk)< ρ[p,q] ( f ) , then by (4.5) and (4.7) we get

ρ[p,q] ( f )≤max
{

ρ[p,q]
(
C jβ j

)
( j = 0, · · · ,k−1) ,ρ[p,q] (gk)

}
< ρ[p,q] ( f )

which is a contradiction. Hence ρ[p,q] (gk) = ρ[p,q] ( f ) .

Remark 4.1. From (4.5) , it follows that the condition hk 6≡ 0 is equivalent to the condition gk−

β0,g′k−β1, · · · ,g
(k−1)
k −βk−1 are linearly independent over the field of meromorphic functions

of finite [p,q]−order. As it was noted in the paper by Laine and Rieppo [22], one may assume

that dk ≡ 0. Note that the linear dependence of gk−β0,g′k−β1, · · · ,g
(k−1)
k −βk−1 implies that f

satisfies a linear differential equation of order smaller than k with appropriate coefficients, and

vise versa (e.g. Theorem 2.3 in the paper of Laine and Rieppo [22]).

Proof of Theorem 2.2. Suppose that f (z) is an infinite [p,q]−order meromorphic solution of

equation (2.1) with ρ[p+1,q] ( f ) = ρ. Set w(z) = gk−ϕ. Since ρ[p,q] (ϕ) < ∞, then by Lemma

3.6 and Theorem 2.1 we have ρ[p,q] (w) = ρ[p,q] (gk) = ∞ and ρ[p+1,q] (w) = ρ[p+1,q] (gk) = ρ.

To prove λ [p,q] (gk−ϕ) = λ[p,q] (gk−ϕ) = ∞ and λ [p+1,q] (gk−ϕ) = λ[p+1,q] (gk−ϕ) = ρ we

need to prove λ [p,q] (w) = λ[p,q] (w) = ∞ and λ [p+1,q] (w) = λ[p+1,q] (w) = ρ. By gk = w+ϕ,

and using (4.5) , we get

f =C0w+C1w′+ · · ·+Ck−1w(k−1)+ψk (z) , (4.8)

where

ψk (z) =C0 (ϕ−β0)+C1
(
ϕ
′−β1

)
+ · · ·+Ck−1

(
ϕ
(k−1)−βk−1

)
.
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Substituting (4.8) into (2.1) , we obtain

Ck−1w(2k−1)+
2k−2

∑
j=0

φ jw( j) = F−
(

ψ
(k)
k +Ak−1 (z)ψ

(k−1)
k + · · ·+A0 (z)ψk

)
= H,

where φ j ( j = 0, · · · ,2k− 2) are meromorphic functions of finite [p,q]-order. Since ψk (z) is

not a solution of (2.1) , it follows that H 6≡ 0. Then by Lemma 3.3, we obtain λ [p,q] (w) =

λ[p,q] (w) = ∞ and λ [p+1,q] (w) = λ[p+1,q] (w) = ρ, i. e.,

λ [p,q] (gk−ϕ) = λ[p,q] (gk−ϕ) = ∞

and

λ [p+1,q] (gk−ϕ) = λ[p+1,q] (gk−ϕ) = ρ.

Suppose that f (z) is a finite [p,q]−order meromorphic solution of equation (2.1) such

that (2.7) holds. Set w(z) = gk−ϕ. Since ρ[p,q] (ϕ)< ρ[p,q] ( f ) , then by Lemma 3.6 and Theo-

rem 2.1 we have ρ[p,q] (w) = ρ[p,q] (gk) = ρ[p,q] ( f ) . To prove λ [p,q] (gk−ϕ) = λ[p,q] (gk−ϕ) =

ρ[p,q] ( f ) we need to prove λ [p,q] (w) = λ[p,q] (w) = ρ[p,q] ( f ) . Using the same reasoning as

above, we get

Ck−1w(2k−1)+
2k−2

∑
j=0

φ jw( j) = F−
(

ψ
(k)
k +Ak−1 (z)ψ

(k−1)
k + · · ·+A0 (z)ψk

)
= H,

where φ j ( j = 0, · · · ,2k−2) are meromorphic functions in ∆ with [p,q]−order such that ρ[p,q]
(
φ j
)

< ρ[p,q] ( f ) ( j = 0, · · · ,2k−2) and

ψk (z) =C0 (ϕ−β0)+C1
(
ϕ
′−β1

)
+ · · ·+Ck−1

(
ϕ
(k−1)−βk−1

)
,

ρ[p,q] (H)< ρ[p,q] ( f ) .

Since ψk (z) is not a solution of (2.1) , it follows that H 6≡ 0. Then by Lemma 3.3, we obtain

λ [p,q] (w) = λ[p,q] (w) = ρ[p,q] ( f ) , i. e., λ [p,q] (gk−ϕ) = λ[p,q] (gk−ϕ) = ρ[p,q] ( f ) .

Proof of Corollary 2.1. Suppose that f 6≡ 0 is a solution of (2.8). Then by Lemma 3.4, we

have ρ[p,q] ( f ) = ∞ and

ρ[p,q] (A0)≤ ρ[p+1,q] ( f ) = ρM,[p+1,q] ( f )≤max
{

ρM,[p,q] (Ai) (i = 0,1)
}
.
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Furthermore, if p > q, then

ρ[p+1,q] ( f ) = ρM,[p+1,q] ( f ) = ρ[p,q] (A0) .

On the other hand, we have

g2 = d2 f ′′+d1 f ′+d0 f +b. (4.9)

It follows by Lemma 3.8 that  g2−β0 = α0,0 f +α1,0 f ′,

g′2−β1 = α0,1 f +α1,1 f ′.
(4.10)

By (2.4) , we obtain

αi,0 =

 d1−d2A1, for i = 1,

d0−d2A0, for i = 0.
(4.11)

Now, by (2.3) , we get

αi,1 =

 α ′1,0 +α0,0−A1α1,0, for i = 1,

α ′0,0−A0α1,0, for i = 0,

and by (2.5) we get

β0 = d2F +b = b, β1 = β
′
0 +α1,0F = b′ (F ≡ 0).

Hence  α0,1 = d2A0A1− (d2A0)
′−d1A0 +d′0,

α1,1 = d2A2
1− (d2A1)

′−d1A1−d2A0 +d0 +d′1
(4.12)

and

h2 =

∣∣∣∣∣∣α0,0 α1,0

α0,1 α1,1

∣∣∣∣∣∣= d2
2A2

0 +d0d2A2
1−
(
−d′2d1 +d′1d2 +2d0d2−d2

1
)

A0

−
(
d′2d0−d2d′0 +d0d1

)
A1−d1d2A1A0 +d1d2A′0−d0d2A′1

−d2
2A′0A1 +d2

2A0A′1−d′0d1 +d0d′1 +d2
0 . (4.13)

First we suppose that d2 6≡ 0. By d2 6≡ 0, A0 6≡ 0 and Lemmas 3.6-3.7 we have ρ[p,q] (h) =

ρ[p,q] (A0)> 0. Hence h 6≡ 0. Now suppose d2 ≡ 0, d1 6≡ 0 or d2 ≡ 0, d1 ≡ 0 and d0 6≡ 0. Then,

by using a similar reasoning as above we get h2 6≡ 0. By h2 6≡ 0 and (4.10) , we obtain

f =
α1,1 (g2−β0)−α1,0 (g′2−β1)

h2
=

α1,1 (g2−b)−α1,0 (g′2−b′)
h2

. (4.14)
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By (4.9), Lemma 3.5 and Lemma 3.6, we have ρ[p,q] (g2)≤ ρ[p,q] ( f ) (ρ[p+1,q] (g2)≤ ρ[p+1,q] ( f ))

and by (4.14) we have ρ[p,q] ( f )≤ ρ[p,q] (g2) (ρ[p+1,q] ( f )≤ ρ[p+1,q] (g2)). Hence

ρ[p,q] (g2) = ρ[p,q] ( f ) (ρ[p+1,q] (g2) = ρ[p+1,q] ( f )).

Proof of Corollary 2.2. Set w(z) = d2 f ′′+ d1 f ′+ d0 f + b−ϕ. Then, by ρ[p,q] (ϕ) < ∞, we

have ρ[p,q] (w) = ρ[p,q] (g2) = ρ[p,q] ( f ) and ρ[p+1,q] (w) = ρ[p+1,q] (g2) = ρ[p+1,q] ( f ) . In order

to prove λ [p,q] (g2−ϕ) = λ[p,q] (g2−ϕ) = ρ[p,q] ( f ) and λ [p+1,q] (g2−ϕ) = λ[p+1,q] (g2−ϕ) =

ρ[p+1,q] ( f ), we need to prove only λ [p,q] (w)= λ[p,q] (w)= ρ[p,q] ( f ) and λ [p+1,q] (w)= λ[p+1,q] (w)

= ρ[p+1,q] ( f ) . Using g2 = w+ϕ , we get from (4.14)

f =
−α1,0w′+α1,1w

h2
+ψ2, (4.15)

where

ψ2 (z) =
α1,1 (ϕ−b)−α1,0 (ϕ

′−b′)
h2

. (4.16)

Substituting (4.15) into equation (2.8) , we obtain

−α1,0

h2
w′′′+φ2w′′+φ1w′+φ0w =−

(
ψ
′′
2 +A1 (z)ψ

′
2 +A0 (z)ψ2

)
= G, (4.17)

where φ j ( j = 0,1,2) are meromorphic functions in ∆ with ρ[p,q]
(
φ j
)
< ∞ ( j = 0,1,2). First,

we prove that ψ2 6≡ 0. Suppose that ψ2 ≡ 0. By ϕ−b 6≡ 0 and (4.16) we obtain

α1,1 = α1,0
ϕ ′−b′

ϕ−b
. (4.18)

Since ρ[p,q] (ϕ−b)≤max
{

ρ[p,q] (ϕ) ,ρ[p,q] (b)
}
= α < ∞, then it follows that by using Lemma

3.1, we have

m(r,α1,1)≤ m(r,α1,0)+O
(

expp−1

{
(α + ε)

(
logq

1
1− r

)})
,

holds for all r outside a set E1 ⊂ [0,1) with
∫

E1
dr

1−r < ∞, that is,

m(r,d2A2
1− (d2A1)

′−d1A1−d2A0 +d0 +d′1)≤ m(r,d1−d2A1)

+O
(

expp−1

{
(α + ε)

(
logq

1
1− r

)})
, r /∈ E1. (4.19)

(i) If d2 6≡ 0, then by Lemma 3.2 and (4.19) we obtain

ρ[p,q] (A0)≤ ρ[p,q] (A1) ,
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this is a contradiction.

(ii) If d2 ≡ 0 and d1 6≡ 0, by Lemma 3.2 and (4.19) we obtain

ρ[p,q] (A1)≤ ρ[p,q] (d1) ,

this is a contradiction.

(iii) If d2 = d1 ≡ 0 and d0 6≡ 0, then we have by (4.18)

d0 = 0× ϕ ′−b′

ϕ−b
≡ 0,

which is a contradiction. It is clear now that ψ2 6≡ 0 cannot be a solution of (2.8) because

ρ[p,q] (ψ2) < ∞. Hence G 6≡ 0. By Lemma 3.3, we obtain λ [p,q] (w) = λ[p,q] (w) = ∞ and

λ [p+1,q] (w) = λ[p+1,q] (w) = ρ[p+1,q] ( f ) , i.e., λ [p,q] (g2−ϕ) = λ[p,q] (g2−ϕ) = ρ[p,q] ( f ) = ∞

and

ρ[p,q] (A0)≤ λ [p+1,q] (g2−ϕ) = λ[p+1,q] (g2−ϕ)

= ρ[p+1,q] ( f )≤max
{

ρM,[p,q] (Ai) : i = 0,1
}
.

Furthermore, if p > q, we have λ [p+1,q] (g2−ϕ) = λ[p+1,q] (g2−ϕ) = ρ[p+1,q] ( f ) = ρ[p,q] (A0) .

This completes the proof.
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22 B. BELAÏDI, M. A. ABDELLAOUI

[25] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea, New York, (1975), reprint of the 1959

edition.


