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GROWTH OF LOGARITHMIC DIFFERENCES OF
MEROMORPHIC FUNCTIONS AND THEIR

APPLICATIONS

ZINELAABIDINE LATREUCH AND BENHARRAT BELAÏDI

Abstract. In this paper, some properties about the behavior of
growth of logarithmic differences of meromorphic functions are ob-
tained, we prove also some relations between the exponent of conver-
gence of meromorphic functions and the growth of their logarithmic
differences. In addition, we give some applications in complex differ-
ence equations and uniqueness theory.

1. Introduction and main results

In this paper, by meromorphic functions we will always mean mero-
morphic functions in the complex plane. We adopt the standard nota-
tions of the Nevanlinna theory of meromorphic functions as explained
in [10, 11, 17]. For a nonconstant meromorphic function h, we denote
by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any quan-
tity satisfying S(r, h) = o(T (r, h)), as r → +∞ except possibly a set
of r of finite linear measure.
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Let f and g be two nonconstant meromorphic functions, and let a
be a value in the extended plane. We say that f and g share the value
a CM, provided that f and g have the same a-points, where each com-
mon a-point of f and g has the same multiplicities. Throughout this

paper, we denote by ρ(f), λ(f)
(
resp. λ(f)

)
and λ( 1

f
)
(
resp. λ( 1

f
)
)

the order of f and the exponent of convergence of zeros
(resp. distinct zeros) and poles (resp.distinctpoles) of f respectively,
and by ρ2(f) the hyper-order of f (see [17]). We also need the following
definition.

Definition 1.1 Let f be a nonconstant meromorphic function. We
define difference operators as ∆cf (z) = f (z + c) − f (z) , ∆n

c f (z) =
∆n−1

c (∆cf (z)) , where c is a nonzero complex number, n ≥ 2 is a
positive integer. If c = 1, we denote ∆cf(z) = ∆f(z).

The estimation of logarithmic derivatives play the key role in theory of
differential equations. In his paper Gundersen [7] proved some inter-
esting inequalities on the module of logarithmic derivatives of mero-
morphic functions. Recently Chiang and Feng [4, 5] established the
Nevanlinna characteristic function of f(z + η) in the complex plane,
Laine and Yang [12] established the value distribution of difference
polynomials, Halburd and Korhonen [9] established Nevanlinna the-
ory for difference operators, Halburd and Korhonen [8] established the
difference analogue of the lemma on the logarithmic derivative. Re-
cently in [13] , the authors have studied some properties about the
behavior of growth of logarithmic derivatives of entire and meromor-
phic functions, and have obtained some relations between the zeros
of entire functions and the growth of their logarithmic derivatives. In
fact, they have proved.

Theorem A [13] Let f be meromorphic function. If there exists an

integer k ≥ 1 such that ρ
(

f (k)

f

)
= ρ (f) and ρ (f) > ρ2 (f) , then

max

{
λ (f) , λ

(
1

f

)}
= max

{
λ (f) , λ

(
1

f

)}
= ρ (f) .

Furthermore, if f is entire function, then

λ (f) = λ (f) = ρ (f) .
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Theorem B [13] Let f be an entire function with finite number of
zeros. Then for any integer k ≥ 1

ρ

(
f (k)

f

)
= ρ2 (f) .

In this paper, some properties about the behavior of growth of
logarithmic differences of meromorphic functions are obtained, also we
give some relations between the exponent of convergence of meromor-
phic functions and the growth of their logarithmic differences. In fact,
we obtain the following results.

Theorem 1.1 Let f be meromorphic function of finite order and let
n ∈ Z\ {0}. Then

(1.1) max

{
ρ

(
f (z + n)

f (z)

)
, n ∈ Z\ {0}

}
= ρ

(
f (z + 1)

f (z)

)
.

Furthermore
(1.2)

max
n∈Z\{0}

{
ρ

(
f (z + n)

f (z)

)
, ρ

(
f (z + n+ 1)

f (z)

)}
= ρ

(
f (z + 1)

f (z)

)
.

Remark 1.1 In Theorem 1.1, the condition n ∈ Z\ {0} is necessary,
for example the function f (z) = sin (2πz) satisfies

ρ

(
f (z + n)

f (z)

)
= 0, for all n ∈ Z\ {0} .

On the other hand, we have

ρ

(
f
(
z + 1

2π

)
f (z)

)
= 1.

Example 1.1 The function f (z) = sin
(
π
2
z
)
satisfies f (z + 1) =

cos
(
π
2
z
)
and f (z + 4) = f (z) . So

ρ

(
f (z + 1)

f (z)

)
= 1, ρ

(
f (z + 4)

f (z)

)
= 0.

Theorem 1.2 Let f be meromorphic function of finite order. If there

exists a nonzero complex number c such that ρ
(

f(z+c)
f(z)

)
= ρ (f) , then

(1.3) max

{
λ (f) , λ

(
1

f

)}
= ρ (f) .
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Furthermore, if f is entire function, then

λ (f) = ρ (f) .

Example 1.2 The function f (z) = 1
Γ(z)

+ 1 satisfies

ρ

(
f (z + 1)

f (z)

)
= ρ

(
zΓ (z) + 1

zΓ (z) + z

)
= ρ (f) = 1

and λ (f) = λ
(

1
f

)
= ρ (f) = 1.

Example 1.3 The functions g (z) = sin z and h (z) = 1
ez−1

satisfy

ρ

(
g (z + 1)

g (z)

)
= ρ (g) = 1, ρ

(
h (z + 1)

h (z)

)
= ρ (h) = 1,

where

0 = λ

(
1

g

)
< λ (g) = ρ (g) = 1

and

0 = λ (h) < λ

(
1

h

)
= ρ (h) = 1.

Corollary 1.1 Let f be meromorphic function of finite order. If there
exists c ∈ C\ {0} such that ρ (∆cf) < ρ (f), then

(1.4) max

{
λ (f) , λ

(
1

f

)}
= ρ (f) .

Theorem 1.3 Let f be meromorphic function of finite order.

(i) If max
{
λ (f) , λ

(
1
f

)}
< ρ (f)− 1, then for any c ∈ C\ {0}

(1.5) ρ

(
f (z + c)

f (z)

)
= ρ (f)− 1.

(ii) If ρ (f) < 1, then for any c ∈ C\ {0}

(1.6) ρ

(
f (z + c)

f (z)

)
= max

{
λ (f) , λ

(
1

f

)}
.

Remark 1.2 In Theorem 1.3 (i) , the term ρ (f) − 1 is sharp (i.e.,

we can not replace the condition max
{
λ (f) , λ

(
1
f

)}
< ρ (f) − 1

by max
{
λ (f) , λ

(
1
f

)}
< ρ (f)). For example the function f (z) =

cos z
3
2 ez

2
satisfies λ (f) = 3

2
> ρ (f)− 1 = 1, on the other hand

f (z + 1)

f (z)
=

cos (z + 1)
3
2

cos z
3
2

e2z+1.
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That say

ρ

(
f (z + 1)

f (z)

)
=

3

2
̸= ρ (f)− 1 = 1.

Theorem 1.4 Let f be meromorphic function of infinite order such

that ρ2 (f) < 1 and max
{
λ (f) , λ

(
1
f

)}
< ∞. Then for any c ∈

C\ {0}

(1.7) ρ

(
f (z + c)

f (z)

)
= ρ (f) =∞.

Example 1.4 The function f (z) = exp (cos
√
z) satisfies ρ2 (f) =

1
2
<

1 and max
{
λ (f) , λ

(
1
f

)}
= 0. Therefore, for any c ∈ C\ {0} , f(z+c)

f(z)

is of infinite order.

2. Some Applications

In this section, we give simple proofs of some known results in complex
difference equations and uniqueness theory.

Theorem 2.1 [14] Let a0 (z) , a1 (z) , · · · , an (z) , F (z) ( ̸≡ 0) be finite
order entire functions. If f is entire solution of the equation

an (z) f (z + n) + an−1 (z) f (z + n− 1) + · · ·+ a1 (z) f (z + 1)

(2.1) +a0 (z) f (z) = F (z)

with

(2.2) ρ (f) > max {ρ (aj) (j = 0, · · · , n) , ρ (F )} ,
then λ (f) = ρ (f) .

Proof . Dividing both sides of (2.1) by f , we obtain

F (z)

f (z)
− a0 (z) =

n∑
i=1

ai (z)
f (z + i)

f (z)
.

By using (2.2) and Theorem 1.1, we have

ρ (f) ≤ max

{
ρ (ai) , ρ

(
f (z + i)

f (z)

)
(i = 1, · · · , n)

}
= ρ

(
f (z + 1)

f (z)

)
.

Then ρ (f) = ρ
(

f(z+1)
f(z)

)
. Hence, by Theorem 1.2 we obtain λ (f) =

ρ (f) .
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Remark 2.1 We can obtain the same result of Theorem 2.1 for the
equation

an (z) f (z + cn) + an−1 (z) f (z + cn−1) + · · ·+ a1 (z) f (z + c1)

+a0 (z) f (z) = F (z) ,

where ck (k = 1, · · · , n) are constants unequal to each other.

Theorem 2.2 Let f be a transcendental entire function of finite or-
der, ci (i = 0, ..., n) be constants, unequal to each other and let di
(i = 0, ...n) be the entire coefficients of the difference polynomial

(2.3) g (z) = dnf (z + cn) + dn−1f (z + cn−1) + · · ·+ d0f (z + c0)

such that

(2.4) max
0≤i≤n

ρ (di) < ρ (f) .

If f has a Borel exceptional value a such that g (z)− a
n∑

i=0

di ̸≡ 0, then

ρ (g) = ρ (f) .
Proof . By (2.3) and (2.4) , we have ρ (g) ≤ ρ (f) . We need to prove
only ρ (g) ≥ ρ (f) . We prove this by contraposition. Suppose that
ρ (g) < ρ (f) . Then, dividing both sides of (2.3) by f − a we have

(2.5)

g (z)− a
n∑

i=0

di

f (z)− a
=

n∑
i=0

di
f (z + ci)− a
f (z)− a

.

Set F (z) = f (z)− a in (2.5) , we get

(2.6)

g (z)− a
n∑

i=0

di

F (z)
=

n∑
i=0

di
F (z + ci)

F (z)
.

Since g (z)− a
n∑

i=0

di ̸≡ 0, then by (2.4) and (2.6)

ρ (f) = ρ (F ) ≤ max
0≤i≤n

ρ

(
F (z + ci)

F (z)

)
≤ ρ (F ) ,

which means that there exist at least a constant c ∈ C\ {0} such that

ρ

(
F (z + c)

F (z)

)
= ρ (F ) .
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Applying Theorem 1.2 to the equation above, we deduce that λ (F ) =
ρ (F ) , so λ (f − a) = ρ (f) (i.e., a is not a Borel exceptional value of
f). Hence, ρ (g) ≥ ρ (f).

The Pielou logistic equation

(2.7) y (z + 1) =
R (z) y (z)

Q (z) + P (z) y (z)
,

where P (z) , Q (z) , R (z) are nonzero polynomials, is an important
difference equation because it is obtained by transform form the well-
known Verhulst-Pearl equation (see [6] , p. 99)

x′ (t) = x (t) [a− bx (t)] (a, b > 0) ,

which is the most popular continuous model of growth of a population.
In [3] , Chen obtained the following theorem.

Theorem C [3] Let P (z) , Q (z) , R (z) be polynomials with

P (z)Q (z)R (z) ̸≡ 0,

and y (z) be a finite order transcendental meromorphic solution of the
equation (2.7). Then

λ

(
1

y

)
= ρ (y) ≥ 1.

In this paper, we obtain the following result.

Theorem 2.3 Let P (z) , Q (z) , R (z) be meromorphic functions with

P (z)Q (z)R (z) ̸≡ 0,

and y (z) be a finite order meromorphic solution of the equation

(2.8) y (z + c) =
R (z) y (z)

Q (z) + P (z) y (z)
, (c ∈ C\ {0})

such that

(2.9) ρ (y) > max {ρ (P ) , ρ (Q) , ρ (R)} .
Then

max

{
λ

(
1

y

)
, λ (y)

}
= ρ (y) .

Proof . Dividing both sides of equation (2.8) by y (z) , we obtain

(2.10)
y (z + c)

y (z)
=

R (z)

Q (z) + P (z) y (z)
.
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From (2.9) and (2.10) , we get

ρ

(
y (z + c)

y (z)

)
= ρ (y) .

So, by Theorem 1.2 we obtain max
{
λ
(

1
y

)
, λ (y)

}
= ρ (y) .

Recently, the difference analogue of the lemma on the logarithmic de-
rivative and Nevanlinna theory for the difference operator have been
founded, which bring about a number of papers focusing on the unique-
ness study of meromorphic functions sharing a small function with
their difference operators. Furthermore, people obtained lots of re-
sults expressly for the meromorphic function whose order is less than
1 because if ρ (f) < 1, then we have g (z + η) = g (z) (1 + o (1)) as
z → ∞ (see [2]) possibly outside of a small set. For example, the
authors in [16] obtained the following result.

Theorem D Let f be a transcendental entire function such that
ρ (f) < 1. If f and ∆nf share a finite value a CM, then

∆nf − a = c (f − a)
holds for some nonzero complex number c.

In [18], Zhang, Kang and Liao find that such probability ∆nf − a =
c (f − a) in the conclusion of Theorem D does not exist. That is to
say if transcendental entire function f and ∆nf share a finite value a
CM, then ρ (f) ≥ 1. In the following we give a simple proof for this
result.

Theorem 2.4 Let f be a transcendental entire function of finite order
and let c be a nonzero complex number such that f (z + c) ̸≡ f (z).
If f (z) and f (z + c) shared a finite value a CM, then ρ (f) ≥ 1.
Furthermore, if

f (z + c)− a = eP (z) (f (z)− a) ,
where P is nonconstant polynomial and λ (f − a) < ρ (f)− 1, then

(2.11) ρ (f) = degP + 1.

Proof . Suppose that ρ (f) < 1. Since f (z) and f (z + c) shared a
value a CM, then

(2.12)
f (z + c)− a
f (z)− a

= eP (z),
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which implies

1 > ρ (f) ≥ ρ

(
f (z + c)− a
f (z)− a

)
= ρ

(
eP (z)

)
= degP.

Hence degP = 0 and eP (z) = K. We can rewrite (2.12) as

(2.13) f (z + c)−Kf (z) = a (1−K) .

It’s clear that K can not be equal 1 because f (z + c) ̸≡ f (z) . Differ-
entiating both sides of (2.13) , we have

f ′ (z + c)−Kf ′ (z) = 0,

which implies

∆cf
′ (z) + (1−K) f ′ (z) = 0.

By using Lemma 3.8 in Section 3 of this paper, we obtain the con-
tradiction ρ (f ′) ≥ 1. Hence ρ (f) ≥ 1. Set G (z) = f (z) − a. Then,
by using the hypothesis λ (G) = λ (f − a) < ρ (f) − 1 = ρ (G) − 1,
Theorem 1.3 (i) and (2.12) , we obtain

ρ (f)− 1 = ρ (G)− 1 = ρ

(
G (z + c)

G (z)

)
= degP,

and the proof of Theorem 2.4 is complete.

Remark 2.2 By the same reasoning, we can find the same conclusion
of Theorem 2.4 if we replace f (z + c) by ∆nf.

Remark 2.3 In fact, (2.11) was proved by Li, Yang and Yi in [15] ,
with weaker condition λ (f − a) < ρ (f) instead of λ (f − a) < ρ (f)−
1.

3. Some Lemmas

Lemma 3.1 ([4]) Let f be a transcendental meromorphic function
with finite order σ and η be a nonzero complex number. Then for
each ε > 0, we have

T (r, f (z + η)) = T (r, f) +O
(
rσ−1+ε

)
+O (log r) ,

(3.1) i.e., T (r, f (z + η)) = T (r, f) + S (r, f) .

Lemma 3.2 ([4]) Let η1, η2 be two arbitrary complex numbers such
that η1 ̸= η2 and let f (z) be a finite order meromorphic function. Let
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σ be the order of f (z). Then for each ε > 0, we have

(3.2) m

(
r,
f (z + η1)

f (z + η2)

)
= O

(
rσ−1+ε

)
.

Lemma 3.3 ([4]) Let f be a meromorphic function with exponent of

convergence of poles λ
(

1
f

)
= λ < +∞, η ̸= 0 be fixed. Then for each

ε > 0,

N (r, f (z + η)) = N (r, f) +O
(
rλ−1+ε

)
+O (log r) ,

i.e., N (r, f (z + η)) = N (r, f) + S (r, f) .

Lemma 3.4 ([5]) Let f be a meromorphic function of order ρ (f) =
σ < 1, and let η be a fixed, non-zero number. Then for any ε > 0, there
exists a set E ⊂ (1,∞) that depends on f and has finite logarithmic
measure, such that for all z satisfying |z| = r /∈ E ∪ [0, 1]

(3.3)
∆cf (z)

f (z)
= c

f ′ (z)

f (z)
+O

(
r2ρ−2+ε

)
.

Lemma 3.5 ([3]) Let f be a transcendental meromorphic function of
order σ (f) = σ < 1, and let g1 (z) and g2 (z) ( ̸≡ 0) be polynomials,
c1, c2 (̸= c1) be constants. Then

h (z) = g1 (z) f (z + c1) + g2 (z) f (z + c2)

is transcendental.

Lemma 3.6 [10] Let f be a meromorphic function and let k ∈ N.
Then

m

(
r,
f (k)

f

)
= S (r, f) ,

where S (r, f) = O (log T (r, f) + log r) , possibly outside a set E1 ⊂
[0,∞) of a finite linear measure. If f is a finite order of growth, then

m

(
r,
f (k)

f

)
= O (log r) .

To avoid some problems caused by the exceptional set we recall
the following lemma.

Lemma 3.7 ([1]) Let g : [0,+∞) → R and h : [0,+∞) → R be
monotone non-decreasing functions such that g (r) ≤ h (r) outside of
an exceptional set E2 of finite linear measure. Then for any λ > 1,
there exists r0 > 0 such that g (r) ≤ h (λr) for all r > r0.
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Lemma 3.8 ([5]) Let P0 (z) , · · · , Pn (z) be polynomials such that

max
1≤j≤n

{degPj} ≤ degP0.

Let f(z) be a meromorphic solution to the difference equation

Pn (z)∆
n
c f (z) + Pn−1∆

n−1
c f (z) + · · ·+ P0 (z) f (z) = 0.

Then ρ (f) ≥ 1.

4. Proofs of Theorems and Corollary

Proof of Theorem 1.1. Without loss of generality, we suppose that
n ≥ 1 is a positive integer. We can write

(4.1)
f (z + n)

f (z)
=

f (z + n)

f (z + n− 1)

f (z + n− 1)

f (z + n− 2)
· · · f (z + 1)

f (z)
,

which implies
(4.2)

ρ

(
f (z + n)

f (z)

)
≤ max

{
ρ

(
f (z + i+ 1)

f (z + i)

)
, i = 0, · · · , n− 1

}
.

Set g (z) = f(z+1)
f(z)

. Then, by using Lemma 3.1 and Lemma 3.7, for

i ∈ N we have ρ (g (z + i)) = ρ (g (z)) . So

(4.3) ρ

(
f (z + i+ 1)

f (z + i)

)
= ρ

(
f (z + 1)

f (z)

)
.

It follows that

(4.4) ρ

(
f (z + n)

f (z)

)
≤ ρ

(
f (z + 1)

f (z)

)
, (n ≥ 1) .

Hence

(4.5) max

{
ρ

(
f (z + n)

f (z)

)
, n ≥ 1

}
= ρ

(
f (z + 1)

f (z)

)
.

Suppose now, for all n ≥ 2

(4.6) ρ

(
f (z + n)

f (z)

)
< ρ

(
f (z + 1)

f (z)

)
.

Set φ (z) = f(z+n)
f(z−1)

. Then, by Lemma 3.1 and Lemma 3.7, we have

ρ (φ (z + 1)) = ρ (φ (z)) . So

ρ

(
f (z + n+ 1)

f (z)

)
= ρ

(
f (z + n)

f (z − 1)

)
= ρ

(
f (z + n)

f (z)

f (z)

f (z − 1)

)
,
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and since

ρ

(
f (z)

f (z − 1)

)
= ρ

(
f (z + 1)

f (z)

)
> ρ

(
f (z + n)

f (z)

)
then, we deduce

(4.7) ρ

(
f (z + n+ 1)

f (z)

)
= ρ

(
f (z + 1)

f (z)

)
.

By (4.5)− (4.7) , we obtain

max

{
ρ

(
f (z + n)

f (z)

)
, n ≥ 1

}
= max

n≥1

{
ρ

(
f (z + n)

f (z)

)
, ρ

(
f (z + n+ 1)

f (z)

)}
= ρ

(
f (z + 1)

f (z)

)
.

Proof of Theorem 1.2. Let f be a meromorphic function of order ρ
and c ∈ C\ {0} . Then, by using Lemmas 3.2-3.3, for any given ε > 0,
we have

T

(
r,
f (z + c)

f (z)

)
= m

(
r,
f (z + c)

f (z)

)
+N

(
r,
f (z + c)

f (z)

)
≤ O(rρ−1+ε) +N

(
r,

1

f (z)

)
+N (r, f (z + c))

= N

(
r,

1

f

)
+N (r, f) + S (r, f)

≤ rλ(f)+ε + rλ(
1
f )+ε + S (r, f)

≤ 2rmax{λ(f),λ( 1
f )}+ε + S (r, f) .

Then, by Lemma 3.7

ρ

(
f (z + c)

f (z)

)
≤ max

{
λ (f) , λ

(
1

f

)}
≤ ρ (f) = ρ

(
f (z + c)

f (z)

)
.

Hence

max

{
λ (f) , λ

(
1

f

)}
= ρ (f) .

Proof of Corollary 1.1. Since ρ (∆cf) < ρ (f) , then

ρ

(
f (z + c)

f (z)

)
= ρ

(
∆cf

f

)
= ρ (f) .

By Theorem 1.2, we obtain max
{
λ (f) , λ

(
1
f

)}
= ρ (f) .
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Proof of Theorem 1.3. (i) By Hadamard factorization, f can be
written as

(4.8) f (z) = Π (z) exp (Pn (z)) ,

where Π is the canonical product of zeros and poles of f . Since ρ (Π) =

max
{
λ (f) , λ

(
1
f

)}
< ρ (f)− 1, then ρ (f) is an integer and

ρ (f) = ρ (exp (Pn (z))) = degPn.

By the hypothesis of Theorem 1.3 (i), we have

max

{
λ (f) , λ

(
1

f

)}
= ρ (Π) < ρ (f)− 1 = degPn − 1 = n− 1.

By the same method

f (z + c) = Π (z + c) exp (Pn (z + c)) ,

then

(4.9)
f (z + c)

f (z)
=

Π (z + c)

Π (z)
exp (Pn (z + c)− Pn (z)) .

On the other hand, we have

Pn (z + c)− Pn (z) =
(
an (z + c)n + an−1 (z + c)n−1 + · · ·

)
−
(
anz

n + an−1z
n−1 + · · ·

)
=
(
anz

n + (ncan + an−1) z
n−1 + · · ·

)
−
(
anz

n + an−1z
n−1 + · · ·

)
= ncanz

n−1 + · · · .
So

(4.10) deg (Pn (z + c)− Pn (z)) = n− 1.

By (4.9) , (4.10) and since max
{
λ (f) , λ

(
1
f

)}
= ρ

(
Π(z+c)
Π(z)

)
< ρ (f)−

1, then we have

ρ

(
f (z + c)

f (z)

)
= deg (Pn (z + c)− Pn (z)) = n− 1.

(ii) Suppose that ρ (f) < 1. Then, by using Lemma 3.4, for any ε > 0,
there exists a set E ⊂ (1,∞) that depends on f and that has finite
logarithmic measure, such that for all z satisfying |z| = r /∈ E ∪ [0, 1]

∆cf (z)

f (z)
= c

f ′ (z)

f (z)
+O

(
r2ρ−2+ε

)
,
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which implies

T

(
r,
∆cf (z)

f (z)

)
= T

(
r,
f ′ (z)

f (z)

)
+ S (r, f) .

Then, by Lemma 3.7

(4.11) ρ

(
f (z + c)

f (z)

)
= ρ

(
∆cf (z)

f (z)

)
= ρ

(
f ′

f

)
.

On the other hand, by Lemma 3.6, we have

T

(
r,
f ′

f

)
= m

(
r,
f ′

f

)
+N

(
r,
f ′

f

)
= O (log r) +N (r, f) +N

(
r,

1

f

)
≤ 2rmax{λ(f),λ( 1

f )}+ε +O (log r) .

So

(4.12) ρ

(
f ′

f

)
≤ max

{
λ (f) , λ

(
1

f

)}
.

By the same method, we have

N (r, f) ≤ N (r, f) +N

(
r,

1

f

)
= N

(
r,
f ′

f

)
≤ T

(
r,
f ′

f

)
and

N

(
r,

1

f

)
≤ N (r, f) +N

(
r,

1

f

)
= N

(
r,
f ′

f

)
≤ T

(
r,
f ′

f

)
,

which implies

(4.13) max

{
λ (f) , λ

(
1

f

)}
≤ ρ

(
f ′

f

)
.

From (4.11)− (4.13) , we get

max

{
λ (f) , λ

(
1

f

)}
= ρ

(
f (z + c)

f (z)

)
.

Proof of Theorem 1.4. By the same reasoning of Theorem 1.3

(4.14)
f (z + c)

f (z)
=

Π (z + c)

Π (z)
exp (g (z + c)− g (z)) ,
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where g is transcendental function of order less than one. By using
Lemma 3.5, ∆cg (z) = g (z + c)− g (z) is transcendental. Hence

ρ

(
f (z + c)

f (z)

)
= ρ (f) =∞.
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