Growth of certain combinations of entire solutions of higher order linear differential equations

Zinelâabidine Latreuch and Benharrat Belaïdi

Abstract. The main purpose of this paper is to study the growth of certain combinations of entire solutions of higher order complex linear differential equations.
2010 Mathematics Subject Classification. Primary 34M10; Secondary 30D35.
Key words and phrases. Linear differential equations, Entire functions, Order of growth, Hyper-order, Linearly independent solutions, Combination of solutions.

1. Introduction and main results

In this paper, we assume that the reader is familiar with the fundamental results and standard notations of the Nevanlinna theory $[4,13]$. In addition, we will use $\rho(f)$ to denote the order and $\rho_{2}(f)$ to denote the hyper-order of f. See, $[4,6,13]$ for notations and definitions.
We consider the differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{0}(z) f=0 \tag{1}
\end{equation*}
$$

where $A_{j}(z)(j=0, \cdots, k-1)$ are entire functions. Suppose that $\left\{f_{1}, f_{2}, \cdots, f_{k}\right\}$ is the set of fundamental solutions of (1). It is clear that $f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{k} f_{k}$ where $c_{i}(i=1, \cdots, k)$ are complex numbers is a solution of (1), but what about the properties of $f=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{k} f_{k}$ if $c_{i}(i=1, \cdots, k)$ are non-constant entire functions? In [7], the authors gave answer to this question for the case $k=2$, and obtained the following results.

Theorem 1.1. [7] Let $A(z)$ be transcendental entire function of finite order. Let $d_{j}(z)(j=1,2)$ be finite order entire functions that are not all vanishing identically such that $\max \left\{\rho\left(d_{1}\right), \rho\left(d_{2}\right)\right\}<\rho(A)$. If f_{1} and f_{2} are two linearly independent solutions of

$$
\begin{equation*}
f^{\prime \prime}+A(z) f=0 \tag{2}
\end{equation*}
$$

then the polynomial of solutions $g_{f}=d_{1} f_{1}+d_{2} f_{2}$ satisfies

$$
\rho\left(g_{f}\right)=\rho\left(f_{j}\right)=\infty \quad(j=1,2)
$$

and

$$
\rho_{2}\left(g_{f}\right)=\rho_{2}\left(f_{j}\right)=\rho(A) \quad(j=1,2) .
$$

Received February 7, 2014.
This paper is supported by University of Mostaganem (UMAB) (CNEPRU Project Code B02220120024).

Theorem 1.2. [7] Let $A(z)$ be a polynomial of $\operatorname{deg} A=n$. Let $d_{j}(z)(j=1,2)$ be finite order entire functions that are not all vanishing identically such that $\max \left\{\rho\left(d_{1}\right), \rho\left(d_{2}\right)\right\}<\frac{n+2}{2}$ and $h \not \equiv 0$, where

$$
h=\left|\begin{array}{cccc}
d_{1} & 0 & d_{2} & 0 \\
d_{1}^{\prime} & d_{1} & d_{2}^{\prime} & d_{2} \\
d_{1}^{\prime \prime}-d_{1} A & 2 d_{1}^{\prime} & d_{2}^{\prime \prime}-d_{2} A & 2 d_{2}^{\prime} \\
d_{1}^{\prime \prime \prime}-3 d_{1}^{\prime} A-d_{1} A^{\prime} & d_{1}^{\prime \prime}-d_{1} A+2 d_{1}^{\prime \prime} & d_{2}^{\prime \prime \prime}-3 d_{2}^{\prime} A-d_{2} A^{\prime} & d_{2}^{\prime \prime}-d_{2} A+2 d_{2}^{\prime \prime}
\end{array}\right| .
$$

If f_{1} and f_{2} are two linearly independent solutions of (2), then the polynomial of solutions $g_{f}=d_{1} f_{1}+d_{2} f_{2}$ satisfies

$$
\rho\left(g_{f}\right)=\rho\left(f_{j}\right)=\frac{n+2}{2}(j=1,2) .
$$

The aim of this paper is to study the growth of

$$
g_{k}=d_{1} f_{1}+d_{2} f_{2}+\cdots+d_{k} f_{k}
$$

where $\left\{f_{1}, f_{2}, \cdots, f_{k}\right\}$ is any set of fundamental solutions of (1) and $d_{j}(z)(j=$ $1,2, \cdots, k)$ are finite order entire functions that are not all vanishing identically. In fact, we give sufficient conditions on $A_{j}(z)(j=0, \cdots, k-1)$ and $d_{j}(z)(j=1,2)$ to prove that for any two solutions f_{1} and f_{2} of (1), the growth of $g_{2}=d_{1} f_{1}+d_{2} f_{2}$ is the same as the growth of $f_{j}(j=1,2)$, and we obtain the following results.
Theorem 1.3. Let $A_{j}(z)(j=0, \cdots, k-1)$ be entire functions of finite order such that $\max \left\{\rho\left(A_{j}\right): j=1, \cdots, k-1\right\}<\rho\left(A_{0}\right)$. Let $d_{j}(z)(j=1,2)$ be finite order entire functions that are not all vanishing identically such that $\max \left\{\rho\left(d_{1}\right), \rho\left(d_{2}\right)\right\}<$ $\rho\left(A_{0}\right)$. If f_{1} and f_{2} are any two linearly independent solutions of (1), then the combination of solutions $g_{2}=d_{1} f_{1}+d_{2} f_{2}$ satisfies

$$
\rho\left(g_{2}\right)=\rho\left(f_{j}\right)=\infty \quad(j=1,2)
$$

and

$$
\rho_{2}\left(g_{f}\right)=\rho_{2}\left(f_{j}\right)=\rho(A) \quad(j=1,2) .
$$

Theorem 1.4. Let $A_{0}(z)$ be transcendental entire function with $\rho\left(A_{0}\right)=0$, and let A_{1}, \cdots, A_{k-1} be polynomials. Let $d_{j}(z)(j=1,2)$ be finite order entire functions that are not all vanishing identically. If f_{1} and f_{2} are any two linearly independent solutions of (1), then the combination of solutions $g_{2}=d_{1} f_{1}+d_{2} f_{2}$ satisfies

$$
\rho\left(g_{2}\right)=\rho\left(f_{j}\right)=\infty \quad(j=1,2)
$$

Return now to the differential equation

$$
\begin{equation*}
f^{(k)}+p_{k-1}(z) f^{(k-1)}+\cdots+p_{0}(z) f=0 \tag{3}
\end{equation*}
$$

where $p_{j}(z)(j=0, \cdots, k-1)$ are polynomials with $p_{0}(z) \not \equiv 0$. It is well-known that every solution f of (3) is an entire function of finite rational order; see, [10], [11], [5, pp. $199-209]$, [9, pp. $106-108]$, [12, pp. $65-67]$. For equation (3), set

$$
\begin{equation*}
\lambda=1+\max _{0 \leq j \leq k-1} \frac{\operatorname{deg} p_{j}}{k-j} \tag{4}
\end{equation*}
$$

It is known [6, p. 127] that for any solution f of (3), we have

$$
\rho(f) \leq \lambda
$$

As we have seen in Theorem 1.3 and [7], it is clear that the study of the growth of g_{k} where $k>2$, is more difficult than the case where $k=2$. For that, we give in the following result some sufficient conditions to prove that g_{k} keeps the same order of growth of solutions of (3) for $k \geq 2$, and we obtain the following result.

Theorem 1.5. Let $p_{j}(z)(j=0, \cdots, k-1)$ be polynomials, and let $d_{i}(z)(1 \leq i \leq k)$ be entire functions that are not all vanishing identically such that $\max \left\{\rho\left(d_{i}\right): 1 \leq\right.$ $i \leq k\}<\lambda$. If $\left\{f_{1}, f_{2}, \cdots, f_{k}\right\}$ is any set of fundamental solutions of (3), then the combination of solutions g_{k} satisfies

$$
\rho\left(g_{k}\right)=1+\max _{0 \leq j \leq k-1} \frac{\operatorname{deg} p_{j}}{k-j}
$$

Remark 1.1. The proof of Theorems 1.3-1.5 is quite different from that in the proof of Theorems 1.1-1.2 (see, [7]) . The main ingredient in the proof is Lemma 2.1. By the proof of Theorem 1.5, we can deduce that Theorem 1.2 holds without the additional condition $h \not \equiv 0$.
Corollary 1.6. Let $A(z)$ be a nonconstant polynomial and let $d_{i}(z)(1 \leq i \leq k)$ be entire functions that are not all vanishing identically such that

$$
\max \left\{\rho\left(d_{i}\right): 1 \leq i \leq k\right\}<\frac{\operatorname{deg}(A)+k}{k}
$$

If $\left\{f_{1}, f_{2}, \cdots, f_{k}\right\}$ is any set of fundamental solutions of

$$
\begin{equation*}
f^{(k)}+A(z) f=0 \tag{5}
\end{equation*}
$$

then the combination of solutions g_{k} satisfies

$$
\rho\left(g_{k}\right)=\frac{\operatorname{deg}(A)+k}{k} .
$$

2. Preliminary lemmas

Lemma 2.1. [8] (i) Let $f(z)$ be an entire function with $\rho_{2}(f)=\alpha>0$, and let $L(f)=a_{k} f^{(k)}+a_{k-1} f^{(k-1)}+\cdots+a_{0} f$, where $a_{0}, a_{1}, \cdots, a_{k}$ are entire functions which are not all equal zero and satisfy $b=\max \left\{\rho\left(a_{j}\right): j=0, \cdots, k\right\}<\alpha$. Then $\rho_{2}(L(f))=\alpha$.
(ii) Let $f(z)$ be an entire function with $\rho(f)=\alpha \leq \infty$, and let $L(f)=a_{k} f^{(k)}+$ $a_{k-1} f^{(k-1)}+\cdots+a_{0} f$, where $a_{0}, a_{1}, \cdots, a_{k}$ are entire functions which are not all equal zero and satisfy $b=\max \left\{\rho\left(a_{j}\right): j=0, \cdots, k\right\}<\alpha$. Then $\rho(L(f))=\alpha$.
Lemma 2.2. [3] For any given equation of the form (3), there must exists a solution of (3) that satisfies $\rho(f)=\lambda$, where λ is the constant in (4).
Lemma 2.3. [1] Let $A_{j}(z)(j=0, \cdots, k-1)$ be entire functions of finite order such that

$$
\max \left\{\rho\left(A_{j}\right): j=1, \cdots, k-1\right\}<\rho\left(A_{0}\right) .
$$

Then every solution $f \not \equiv 0$ of (1) satisfies $\rho(f)=\infty$ and $\rho_{2}(f)=\rho\left(A_{0}\right)$.
Lemma 2.4. [2] Let $A_{0}(z)$ be transcendental entire function with $\rho\left(A_{0}\right)=0$, and let A_{1}, \cdots, A_{k-1} be polynomials. Then every solution $f \not \equiv 0$ of (1) satisfies $\rho(f)=\infty$.
By using similar proofs as in the proofs of Proposition 1.5 and Proposition 5.5 in [6], we easily obtain the following lemma.

Lemma 2.5. For all non-trivial solutions f of (5). If A is a polynomial with $\operatorname{deg} A=n \geq 1$, then we have

$$
\rho(f)=\frac{n+k}{k} .
$$

Lemma 2.6. Let f be any nontrivial solution of (1). Then the following identity holds

$$
\sum_{j=0}^{k}\left(A_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right)=\sum_{j=1}^{k}\left(A_{j} \sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right),
$$

where $A_{k}(z) \equiv 1$ and $C_{j}^{i}=\frac{j!}{i!(j-i)!}$.
Proof. We have

$$
\begin{aligned}
& \sum_{j=0}^{k}\left(A_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right)=A_{0} \frac{d_{1}}{d_{2}} f+\sum_{j=1}^{k}\left(A_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right) \\
& \quad=A_{0} \frac{d_{1}}{d_{2}} f+\sum_{j=1}^{k}\left(A_{j} C_{j}^{0}\left(\frac{d_{1}}{d_{2}}\right) f^{(j)}+A_{j} \sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right) \\
& \quad=A_{0} \frac{d_{1}}{d_{2}} f+\sum_{j=1}^{k} A_{j}\left(\frac{d_{1}}{d_{2}}\right) f^{(j)}+\sum_{j=1}^{k}\left(A_{j} \sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right) \\
& \quad=\frac{d_{1}}{d_{2}}\left(f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{0} f\right)+\sum_{j=1}^{k}\left(A_{j} \sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right) \\
& \quad=\sum_{j=1}^{k}\left(A_{j} \sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right)
\end{aligned}
$$

Lemma 2.7. Let f be any nontrivial solution of (1). Then the following identity holds

$$
\sum_{j=0}^{k}\left(A_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right)=\frac{\sum_{i=0}^{k-1} D_{i} f^{(i)}}{d_{2}^{2^{k}}}
$$

where $D_{i} \quad(i=0, \cdots, k-1)$ are entire functions depending on d_{1}, d_{2} and $A_{j} \quad(j=$ $1, \cdots, k-1), \quad A_{k}(z) \equiv 1$.

Proof. It is clear that we can express the double sum

$$
\sum_{j=0}^{k}\left(A_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right)=\sum_{j=1}^{k} A_{j}\left(\sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right)
$$

in the form of differential polynomial in f of order $k-1$. By mathematical induction we can prove that

$$
\begin{equation*}
\sum_{j=1}^{k} A_{j}\left(\sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f^{(j-i)}\right)=\sum_{i=0}^{k-1} \alpha_{i} f^{(i)}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{i}=\sum_{p=i+1}^{k} A_{p} C_{p}^{p-i}\left(\frac{d_{1}}{d_{2}}\right)^{(p-i)} . \tag{7}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\left(\frac{d_{1}}{d_{2}}\right)^{(j)}=\frac{\beta_{j}}{d_{2}^{2^{j}}} \tag{8}
\end{equation*}
$$

where β_{j} is entire function. Hence, we deduce from (6)-(8) that

$$
\sum_{i=0}^{k-1} \alpha_{i} f^{(i)}=\frac{\sum_{i=0}^{k-1} D_{i} f^{(i)}}{d_{2}^{2^{k}}}
$$

where $D_{i}(i=0, \cdots, k-1)$ are entire functions depending on d_{1}, d_{2} and $A_{j}(j=$ $1, \cdots, k-1), A_{k}(z) \equiv 1$.

3. Proof of Theorem 1.3

Proof. In the case when $d_{1}(z) \equiv 0$ or $d_{2}(z) \equiv 0$, then the conclusions of Theorem 1.3 are trivial. Suppose that f_{1} and f_{2} are two nontrivial linearly independent solutions of (1) such that $d_{i}(z) \not \equiv 0(i=1,2)$ and let

$$
\begin{equation*}
g_{2}=d_{1} f_{1}+d_{2} f_{2} \tag{9}
\end{equation*}
$$

Then, by Lemma 2.3 we have $\rho\left(f_{j}\right)=\infty(j=1,2)$ and $\rho_{2}\left(f_{j}\right)=\rho\left(A_{0}\right)(j=1,2)$. Suppose that $d_{1}=c d_{2}$, where c is a complex number. Then, by (9) we obtain

$$
g_{2}=c d_{2} f_{1}+d_{2} f_{2}=\left(c f_{1}+f_{2}\right) d_{2}
$$

Since $f=c f_{1}+f_{2}$ is a solution of (1) and $\rho\left(d_{2}\right)<\rho\left(A_{0}\right)$, then we have

$$
\rho\left(g_{2}\right)=\rho\left(c f_{1}+f_{2}\right)=\infty
$$

and

$$
\rho_{2}\left(g_{2}\right)=\rho_{2}\left(c f_{1}+f_{2}\right)=\rho\left(A_{0}\right)
$$

Suppose now that $d_{1} \not \equiv c d_{2}$ where c is a complex number. Dividing both sides of (9) by d_{2}, we obtain

$$
\begin{equation*}
F_{2}=\frac{g_{2}}{d_{2}}=f_{2}+\frac{d_{1}}{d_{2}} f_{1} \tag{10}
\end{equation*}
$$

Differentiating both sides of equation (10), k times for all integers $j=1, \cdots, k$, we get

$$
\begin{equation*}
F_{2}^{(j)}=f_{2}^{(j)}+\sum_{i=0}^{j} C_{j}^{i} f_{1}^{(i)}\left(\frac{d_{1}}{d_{2}}\right)^{(j-i)} \tag{11}
\end{equation*}
$$

Equations (10) and (11) are equivalent to

$$
\left\{\begin{array}{l}
F_{2}=f_{2}+\frac{d_{1}}{d_{2}} f_{1} \\
F_{2}^{\prime}=f_{2}^{\prime}+\left(\frac{d_{1}}{d_{2}}\right) f_{1}^{\prime}+\left(\frac{d_{1}}{d_{2}}\right)^{\prime} f_{1} \\
F_{2}^{\prime \prime}=f_{2}^{\prime \prime}+\left(\frac{d_{1}}{d_{2}}\right) f_{1}^{\prime \prime}+2\left(\frac{d_{1}}{d_{2}}\right)^{\prime} f_{1}^{\prime}+\left(\frac{d_{1}}{d_{2}}\right)^{\prime \prime} f_{1} \\
\cdots \\
F_{2}^{(k-1)}=f_{2}^{(k-1)}+\sum_{i=0}^{k-1} C_{k-1}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(k-1-i)} f_{1}^{(i)} \\
F_{2}^{(k)}=f_{2}^{(k)}+\sum_{i=0}^{k} C_{k}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(k-i)} f_{1}^{(i)}
\end{array}\right.
$$

which is also equivalent to

$$
\left\{\begin{array}{l}
A_{0} F_{2}=A_{0} f_{2}+A_{0} \frac{d_{1}}{d_{2}} f_{1} \tag{12}\\
A_{1} F_{2}^{\prime}=A_{1} f_{2}^{\prime}+A_{1}\left(\left(\frac{d_{1}}{d_{2}}\right) f_{1}^{\prime}+\left(\frac{d_{1}}{d_{2}}\right)^{\prime} f_{1}\right), \\
A_{2} F_{2}^{\prime \prime}=A_{2} f_{2}^{\prime \prime}+A_{2}\left(\left(\frac{d_{1}}{d_{2}}\right) f_{1}^{\prime \prime}+2\left(\frac{d_{1}}{d_{2}}\right)^{\prime} f_{1}^{\prime}+\left(\frac{d_{1}}{d_{2}}\right)^{\prime \prime} f_{1}\right), \\
\cdots \\
A_{k-1} F_{2}^{(k-1)}=A_{k-1} f_{2}^{(k-1)}+A_{k-1} \sum_{i=0}^{k-1} C_{k-1}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(k-1-i)} f_{1}^{(i)}, \\
F_{2}^{(k)}=f_{2}^{(k)}+\sum_{i=0}^{k} C_{k}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(k-i)} f_{1}^{(i)} .
\end{array}\right.
$$

By (12) we can obtain

$$
\begin{align*}
F_{2}^{(k)}+A_{k-1}(z) F_{2}^{(k-1)}+\cdots+A_{0}(z) F_{2} & =\left(f_{2}^{(k)}+A_{k-1}(z) f_{2}^{(k-1)}+\cdots+A_{0}(z) f_{2}\right) \\
+\sum_{j=0}^{k}\left(A_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f_{1}^{(j-i)}\right) & =\sum_{j=0}^{k}\left(A_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f_{1}^{(j-i)}\right), \tag{13}
\end{align*}
$$

where $A_{k}(z) \equiv 1$. By using Lemma 2.6, we have

$$
\begin{equation*}
F_{2}^{(k)}+A_{k-1}(z) F_{2}^{(k-1)}+\cdots+A_{0}(z) F_{2}=\sum_{j=1}^{k} A_{j}\left(\sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f_{1}^{(j-i)}\right) \tag{14}
\end{equation*}
$$

By Lemma 2.7, we get

$$
\begin{equation*}
\sum_{j=1}^{k} A_{j}\left(\sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f_{1}^{(j-i)}\right)=k \frac{\left(d_{1}^{\prime} d_{2}-d_{2}^{\prime} d_{1}\right) d_{2}^{\sum_{n=0}^{k-1} 2^{n}-1}}{d_{2}^{2 k}} f_{1}^{(k-1)}+\frac{1}{d_{2}^{2 k}} \sum_{i=0}^{k-2} D_{i} f_{1}^{(i)} \tag{15}
\end{equation*}
$$

where $D_{i}(i=0, \cdots, k-2)$ are entire functions depending on d_{1}, d_{2} and $A_{j}(j=$ $1, \cdots, k-1), A_{k}(z) \equiv 1$. By using (14) and (15), we obtain

$$
F_{2}^{(k)}+A_{k-1}(z) F_{2}^{(k-1)}+\cdots+A_{0}(z) F_{2}=\frac{L_{k-1}\left(f_{1}\right)}{d_{2}^{2 k}}
$$

where

$$
L_{k-1}\left(f_{1}\right)=\sum_{i=0}^{k-1} D_{i} f_{1}^{(i)}
$$

is differential polynomial with entire coefficients $D_{i}(i=0, \cdots, k-1)$ of order $\rho\left(D_{i}\right)<$ $\rho\left(A_{0}\right)(i=0, \cdots, k-1)$ and $D_{k-1}=k \frac{\left(d_{1}^{\prime} d_{2}-d_{2}^{\prime} d_{1}\right) d_{2}^{\sum_{n}^{n} \sum_{0}^{1} 2^{n}-1}}{d_{2}^{k}} \not \equiv 0$ because $d_{1} \not \equiv c d_{2}$. By Lemma 2.1 (i), we have

$$
\rho_{2}\left(F_{2}^{(k)}+A_{k-1}(z) F_{2}^{(k-1)}+\cdots+A_{0}(z) F_{2}\right)=\rho_{2}\left(L_{k-1}\left(f_{1}\right)\right)=\rho_{2}\left(f_{1}\right) .
$$

Since
$\rho_{2}\left(f_{1}\right)=\rho_{2}\left(F_{2}^{(k)}+A_{k-1}(z) F_{2}^{(k-1)}+\cdots+A_{0}(z) F_{2}\right) \leq \rho_{2}\left(F_{2}\right)=\rho_{2}\left(g_{2}\right) \leq \rho_{2}\left(f_{1}\right)$, then

$$
\rho_{2}\left(g_{2}\right)=\rho_{2}\left(f_{1}\right) .
$$

4. Proof of Theorem 1.4

Proof. By using a similar reasoning as in the proof of Theorem 1.3, Lemma 2.4 and Lemma 2.1 (ii) we obtain Theorem 1.4.

5. Proof of Theorem 1.5

Proof. Without loss of generality, by using Lemma 2.2, we suppose that

$$
\max \left\{\rho\left(f_{j}\right), j=1, \cdots, k\right\}=\rho\left(f_{1}\right)=\lambda=1+\max _{0 \leq j \leq k-1} \frac{\operatorname{deg} p_{j}}{k-j}
$$

and there exist at least two integers p and q such that $d_{p} \not \equiv c d_{q}$ where c is a complex number and $1 \leq p \leq q \leq k$. By the same proof as Theorem 1.3 we obtain

$$
\begin{equation*}
F_{2}^{(k)}+p_{k-1}(z) F_{2}^{(k-1)}+\cdots+p_{0}(z) F_{2}=\sum_{j=1}^{k}\left(p_{j} \sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f_{1}^{(j-i)}\right) \tag{16}
\end{equation*}
$$

and by Lemma 2.7, we get

$$
\begin{equation*}
\sum_{j=1}^{k}\left(p_{j} \sum_{i=1}^{j} C_{j}^{i}\left(\frac{d_{1}}{d_{2}}\right)^{(i)} f_{1}^{(j-i)}\right)=k \frac{\left(d_{1}^{\prime} d_{2}-d_{2}^{\prime} d_{1}\right) d_{2}^{\sum_{n=0}^{k-1} 2^{n}-1}}{d_{2}^{2 k}} f_{1}^{(k-1)}+\frac{1}{d_{2}^{2^{k}}} \sum_{i=0}^{k-2} D_{i} f_{1}^{(i)} \tag{17}
\end{equation*}
$$

where $p_{k}(z) \equiv 1$ and $D_{i}(i=0, \cdots, k-2)$ are entire functions. By using (16) and (17), we have

$$
F_{2}^{(k)}+A_{k-1}(z) F_{2}^{(k-1)}+\cdots+A_{0}(z) F_{2}=\frac{L_{k-1}\left(f_{1}\right)}{d_{2}^{2^{k}}}
$$

where

$$
L_{k-1}\left(f_{1}\right)=\sum_{i=0}^{k-1} D_{i} f_{1}^{(i)}
$$

is differential polynomial with entire coefficients $D_{i}(i=0, \cdots, k-1)$ of order $\rho\left(D_{i}\right)<$ $\lambda(i=0, \cdots, k-1)$ and there exists $0 \leq i \leq k-1$ such that $D_{i} \not \equiv 0$. By Lemma 2.1 (ii), we have

$$
\rho\left(F_{2}^{(k)}+p_{k-1}(z) F_{2}^{(k-1)}+\cdots+p_{0}(z) F_{2}\right)=\rho\left(L_{k-1}\left(f_{1}\right)\right)=\rho\left(f_{1}\right)
$$

Since

$$
\rho\left(f_{1}\right)=\rho\left(F_{2}^{(k)}+p_{k-1}(z) F_{2}^{(k-1)}+\cdots+p_{0}(z) F_{2}\right) \leq \rho\left(F_{2}\right)=\rho\left(g_{2}\right) \leq \rho\left(f_{1}\right)
$$

then

$$
\rho\left(g_{2}\right)=\rho\left(f_{1}\right) .
$$

Now, we suppose that

$$
\rho\left(g_{n}\right)=\rho\left(f_{1}\right)
$$

is true for all $n=1, \cdots, k-1$ and we show that

$$
\rho\left(g_{k}\right)=\rho\left(f_{1}\right) .
$$

We have

$$
\begin{equation*}
g_{k}=d_{1} f_{1}+d_{2} f_{2}+\cdots+d_{k} f_{k}=g_{k-1}+d_{k} f_{k} \tag{18}
\end{equation*}
$$

Suppose that $d_{k} \not \equiv 0$, and dividing both sides of (18) by d_{k}, we get

$$
F_{k}=\frac{g_{k}}{d_{k}}=\frac{g_{k-1}}{d_{k}}+f_{k}
$$

By the same reasoning as before, we obtain

$$
\left\{\begin{array}{l}
p_{0} F_{k}=p_{0} f_{k}+p_{0} \frac{1}{d_{k}} g_{k-1}, \tag{19}\\
p_{1} F_{k}^{\prime}=p_{1} f_{k}^{\prime}+p_{1}\left(\left(\frac{1}{d_{k}}\right) g_{k-1}^{\prime}+\left(\frac{1}{d_{k}}\right)^{\prime} g_{k-1}\right), \\
p_{2} F_{k}^{\prime \prime}=p_{2} f_{k}^{\prime \prime}+p_{2}\left(\left(\frac{1}{d_{k}}\right) g_{k-1}^{\prime \prime}+2\left(\frac{1}{d_{k}}\right)^{\prime} g_{k-1}^{\prime}+\left(\frac{1}{d_{k}}\right)^{\prime \prime} g_{k-1}\right), \\
\cdots \\
p_{k-1} F_{k}^{(k-1)}=p_{k-1} f_{k}^{(k-1)}+p_{k-1} \sum_{i=0}^{k-1} C_{k-1}^{i}\left(\frac{1}{d_{k}}\right)^{(k-1-i)} g_{k-1}^{(i)} \\
F_{k}^{(k)}=f_{k}^{(k)}+\sum_{i=0}^{k} C_{k}^{i}\left(\frac{1}{d_{k}}\right)^{(k-i)} g_{k-1}^{(i)}
\end{array}\right.
$$

By (19) we can deduce

$$
\begin{align*}
F_{k}^{(k)}+p_{k-1}(z) F_{k}^{(k-1)}+\cdots+p_{0}(z) F_{k} & =\left(f_{k}^{(k)}+p_{k-1}(z) f_{k}^{(k-1)}+\cdots+p_{0}(z) f_{k}\right) \\
+\sum_{j=0}^{k}\left(p_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{1}{d_{k}}\right)^{(i)} g_{k-1}^{(j-i)}\right) & =\sum_{j=0}^{k}\left(p_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{1}{d_{k}}\right)^{(i)} g_{k-1}^{(j-i)}\right) . \tag{20}
\end{align*}
$$

By Lemma 2.6, we have

$$
\begin{gather*}
\sum_{j=0}^{k}\left(p_{j} \sum_{i=0}^{j} C_{j}^{i}\left(\frac{1}{d_{k}}\right)^{(i)} g_{k-1}^{(j-i)}\right)=\sum_{j=1}^{k}\left(p_{j} \sum_{i=1}^{j} C_{j}^{i}\left(\frac{1}{d_{k}}\right)^{(i)} g_{k-1}^{(j-i)}\right) \\
=-k \frac{d_{k}^{\prime} d_{k}^{n-1} \sum_{k}^{n} 2^{n}-1}{d_{k}^{2^{k}}} g_{k-1}^{(k-1)}+\frac{1}{d_{k}^{2^{k}}} \sum_{i=0}^{k-2} B_{i} g_{k-1}^{(i)}, \tag{21}
\end{gather*}
$$

where $p_{k}(z) \equiv 1$ and $B_{i}(i=0, \cdots, k-1)$ are entire functions. By using (20) and (21), we obtain

$$
F_{k}^{(k)}+A_{k-1}(z) F_{k}^{(k-1)}+\cdots+A_{0}(z) F_{k}=\frac{M_{k-1}\left(g_{k-1}\right)}{d_{k}^{2 k}}
$$

where

$$
M_{k-1}\left(g_{k-1}\right)=\sum_{i=0}^{k-1} B_{i} g_{k-1}^{(i)}
$$

is differential polynomial with entire coefficients $B_{i}(i=0, \cdots, k-1)$ of order $\rho\left(B_{i}\right)<$ $\lambda(i=0, \cdots, k-1)$. By Lemma 2.1 (ii), we have

$$
\rho\left(F_{k}^{(k)}+p_{k-1}(z) F_{k}^{(k-1)}+\cdots+p_{0}(z) F_{k}\right)=\rho\left(M_{k-1}\left(g_{k-1}\right)\right)=\rho\left(f_{1}\right) .
$$

Since

$$
\rho\left(f_{1}\right) \leq \rho\left(F_{k}^{(k)}+p_{k-1}(z) F_{k}^{(k-1)}+\cdots+p_{0}(z) F_{k}\right) \leq \rho\left(F_{k}\right)=\rho\left(g_{k-1}\right) \leq \rho\left(f_{1}\right)
$$

then

$$
\rho\left(F_{k}\right)=\rho\left(g_{k-1}\right)=\rho\left(f_{1}\right),
$$

which implies that

$$
\rho\left(g_{k}\right)=\rho\left(g_{k-1}\right)=\rho\left(f_{1}\right)=\lambda .
$$

This completes the proof of Theorem 1.5.

References

[1] Z. X. Chen and C. C. Yang, Quantitative estimations on the zeros and growths of entire solutions of linear differential equations, Complex Variables Theory Appl. 42 (2000), no. 2, 119-133.
[2] S. A. Gao and Z. X. Chen, The complex oscillation theory of certain nonhomogeneous linear differential equations with transcendental entire coefficients, J. Math. Anal. Appl. 179 (1993), no. 2, 403-416.
[3] G. G. Gundersen, E. M. Steinbart and S. Wang, The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc. $\mathbf{3 5 0}$ (1998), no. 3, 1225-1247.
[4] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[5] G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Verlag, Basel, 1985.
[6] I. Laine, Nevanlinna theory and complex differential equations, W. de Gruyter, Berlin, 1993.
[7] Z. Latreuch and B. Belaïdi, Some properties of solutions of second-order linear differential equations, J. Complex Anal. (2013), Article ID 253168, 5 pages.
[8] J. Tu, H. Y. Xu and C. Y. Zhang, On the zeros of solutions of any order of derivative of second order linear differential equations taking small functions, Electron. J. Qual. Theory Differ. Equ. 2011, no. 23, 1-17.
[9] G. Valiron, Lectures on the general theory of integral functions, translated by E. F. Collingwood, Chelsea, New York, 1949.
[10] A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Betrage bei gegebenem Argumente der Funktion, Acta Math. 41 (1916), no. 1, 1-28.
[11] H. Wittich, Über das Anwachsen der Lösungen linearer Differentialgleichungen, Math. Ann. 124 (1952), 277-288.
[12] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1968.
[13] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
(Zinelâabidine Latreuch, Benharrat Belaïdi) Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227
Mostaganem, Algeria
E-mail address: z.latreuch@gmail.com, belaidi@univ-mosta.dz

