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THE FREQUENCY OF THE ZEROS

OF SOME DIFFERENTIAL POLYNOMIALS

Abstract. Let ρp(f) and σp(f) denote respectively the iterated p-order and the
iterated p-type of an entire function f. In this paper, we study the iterated order and
the fixed points of some differential polynomials generated by solutions of the differential
equation

f
′′ +A1(z)f

′ +A0(z)f = 0,

where A1(z), A0(z) are entire functions of finite iterated p-order such that ρp(A1) =
ρp(A0) = ρ (0 < ρ < +∞) and σp(A1) < σp(A0) = σ (0 < σ < +∞).

1. Introduction and statement of results

In this paper, it is assumed that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distri-
bution theory of meromorphic functions (see [9, 15]). For the definition of
the iterated order of an entire function, we use the same definition as in
[10], [4, p. 317], [11, p. 129] . For all r ∈ R, we define exp1 r := er and
expp+1 r := exp(expp r), p ∈ N. We also define for all r sufficiently large
log1 r := log r and logp+1 r := log(logp r), p ∈ N. Moreover, we denote by
exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.1. Let f be a meromorphic function. Then the iterated
p-order ρp(f) of f is defined by

(1.1) ρp(f) = lim sup
r→+∞

logpT (r, f)

log r
(p ≥ 1 is an integer),

where T (r, f) is the Nevanlinna characteristic function of f . If f is an entire
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76 B. Belaïdi

function, then the iterated p-order ρp(f) of f is defined by

ρp(f) = lim sup
r→+∞

logpT (r, f)

log r
= lim sup

r→+∞

logp+1M(r, f)

log r
(p ≥ 1 is an integer),

where M(r, f) = max|z|=r |f(z)| . For p = 1, this notation is called order and
for p = 2 hyper-order (see [9, 15, 18]).

Definition 1.2. (See [4, 11].) The finiteness degree of the order of an
entire function f is defined by

(1.2)

i(f) =



















0, for f polynomial,

min {j ∈ N : ρj(f) < +∞} , for f transcendental for
which some j ∈ N with ρj(f) < +∞ exists,

+∞, for f with ρj(f) = +∞ for all j ∈ N.

Definition 1.3. [7] Let f be a meromorphic function. Then the iterated
p-type of f , with iterated p-order 0 < ρp(f) <∞ is defined by

(1.3) σp(f) = lim sup
r→+∞

logp−1T (r, f)

rρp(f)
(p ≥ 1 is an integer).

If f is an entire function, then the iterated p-type of f , with iterated p-order
0 < ρp(f) <∞ is defined by [3]

σM,p(f) = lim sup
r→+∞

logpM(r, f)

rρp(f)
(p ≥ 1 is an integer).

For p = 1, this notation is called the type of f (see [13]).

Remark 1.1. For entire function, we can have σM,1(f) 6= σ1(f). For
example, if f(z) = ez, then we have σM,1(f) = 1 and σ1(f) =

1
π
. However,

it follows by Proposition 2.2.2 in [11] that σM,p(f) = σp(f) for p ≥ 2.

Definition 1.4. (See [10, 12].) Let f be a meromorphic function. Then
the iterated convergence exponent of the sequence of zeros of f(z) is defined
by

(1.4) λp(f) = lim sup
r→+∞

logpN(r, 1/f)

log r
(p ≥ 1 is an integer),

where N
(

r, 1
f

)

is the counting function of zeros of f(z) in {z : |z|<r}, and

the iterated convergence exponent of the sequence of distinct zeros of f(z)
is defined by

λp(f) = lim sup
r→+∞

logpN(r, 1/f)

log r
(p ≥ 1 is an integer),

whereN
(

r, 1
f

)

is the counting function of distinct zeros of f(z) in {z : |z|<r}.
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The frequency of the zeros of some differential polynomials 77

Definition 1.5. (See [12].) Let f be a meromorphic function. Then the
iterated exponent of convergence of the sequence of fixed points of f(z) is
defined by

(1.5) τp(f) = λp(f − z) = lim sup
r→+∞

logpN
(

r, 1
f−z

)

log r
(p ≥ 1 is an integer),

and the iterated exponent of convergence of the sequence of distinct fixed
points of f(z) is defined by

τp(f) = λp(f − z) = lim sup
r→+∞

logpN
(

r, 1
f−z

)

log r
(p ≥ 1 is an integer).

Thus τp(f) = λp(f − z) is an indication of oscillation of distinct fixed points
of f(z).

Since the beginning of the last four decades, a substantial number of re-
search articles have been written to describe the fixed points of general tran-
scendental meromorphic functions (see [17]). However, there are few studies
on the fixed points of solutions of differential equations. It was in the year
2000 that Z. X. Chen first pointed out the relation between the exponent
of convergence of distinct fixed points and the rate of growth of solutions of
second order linear differential equations with entire coefficients (see [8]). In
[14], Liu and Zhang investigated fixed points and hyper order of some higher
order linear differential equations with meromorphic coefficients. In [16],
Wang and Yi investigated fixed points and hyper order of differential poly-
nomials generated by solutions of second order linear differential equations
with meromorphic coefficients.

Let L(G) denote a differential subfield of the field M(G) of meromorphic
functions in a domain G ⊂ C. If G = C, we simply denote L instead of L(C).
Special case of such differential subfield

Lp+1,ρ = {g meromorphic: ρp+1(g) < ρ},

where ρ is a positive constant. In [12], Laine and Rieppo gave an improve-
ment of the results of [16] by considering fixed points and iterated order and
obtained the following result.

Theorem A. [12] Let A(z) be a transcendental meromorphic function of

finite iterated order ρp(A) = ρ > 0 such that δ(∞, A) = lim
r→+∞

m(r,A)
T (r,A) = δ

> 0, and let f be a transcendental meromorphic solution of the equation

(1.6) f ′′ +A(z)f = 0.

Suppose, moreover, that either:
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78 B. Belaïdi

(i) all poles of f are of uniformly bounded multiplicity or that

(ii) δ(∞, f) > 0.

Then ρp+1(f) = ρp(A) = ρ. Moreover, let

(1.7) P [f ] = P (f, f ′, . . . , f (m)) =
m
∑

j=0

pjf
(j)

be a linear differential polynomial with coefficients pj ∈ Lp+1,ρ, assuming

that at least one of the coefficients pj does vanish identically. Then for the

fixed points of P [f ], we have τp+1(P [f ]) = ρ, provided that neither P [f ]
nor P [f ]− z vanishes identically.

Remark 1.2. (See [12, p. 904].) In Theorem A, in order to study P [f ],
the authors consider m ≤ 1. Indeed, if m ≥ 2, we obtain, by repeated
differentiation of (1.6), that f (k) = qk,0f + qk,1f

′, qk,0, qk,1 ∈ Lp+1,ρ for
k = 2, . . . ,m. Substitution into (1.7) yields the required reduction.

Recently, the author has studied the relationship between solutions of
the differential equation

(1.8) f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = 0 (k ≥ 2),

and entire functions with finite iterated p-order and have obtained the fol-
lowing result.

Theorem B. [3] Let A0(z), . . . , Ak−1(z) be entire functions, and let i(A0)
= p (1 ≤ p <∞). Assume that max{ρp(Aj) : j = 1, 2, . . . , k−1} ≤ ρp(A0) =
ρ(0 < ρ < +∞) and max{σp(Aj) : ρp(Aj) = ρp(A0)} < σp(A0) = σ (0 <
σ < +∞). If ϕ(z) 6≡ 0 is an entire function with finite iterated p-order
ρp(ϕ) < +∞, then every solution f 6≡ 0 of equation (1.8) satisfies

(1.9) λp(f − ϕ) = λp(f − ϕ) = ρp(f) = +∞

and

(1.10) λp+1(f − ϕ) = λp+1(f − ϕ) = ρp+1(f) = ρ.

Consider the linear differential equation

(1.11) f ′′ +A1(z)f
′ +A0(z)f = 0,

where A1(z), A0(z) are entire functions of finite iterated p-order.

We know that a differential equation bears a relation to all derivatives of
its solutions. Hence, linear differential polynomials generated by its solutions
must have special nature because of the control of differential equations. The
main purpose of this paper is to investigate the growth and the fixed points
of the linear differential polynomial gf = d1f

′ + d0f , where d0(z), d1(z) are
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The frequency of the zeros of some differential polynomials 79

entire functions, generated by solutions of equation (1.11). Instead of looking
at the zeros of gf − z, we proceed to a slight generalization by considering
zeros of gf −ϕ, where ϕ is an entire function of finite iterated p-order, while
the solution of respective differential equation is of infinite iterated p-order.
We obtain some estimates of their iterated order and fixed points.

Theorem 1.1. Let A1(z), A0(z) be entire functions, and let i(Aj) = p
(j = 0, 1), (1 ≤ p < ∞) such that ρp(A1) = ρp(A0) = ρ (0 < ρ < +∞)
and σp(A1) < σp(A0) = σ (0 < σ < +∞). Let d0(z), d1(z) be entire func-

tions such that at least one of d0(z), d1(z) does not vanish identically with

max{ρp(dj) : j = 0, 1} < ρp(A0), and let ϕ(z) 6≡ 0 be an entire function with

ρp(ϕ) < ∞. If f 6≡ 0 is a solution of equation (1.11), then the differential

polynomial gf = d1f
′ + d0f satisfies

λp(gf − ϕ) = λp(gf − ϕ) = ρp(gf ) = ρp(f) = ∞,(1.12)

λp+1(gf − ϕ) = λp+1(gf − ϕ) = ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ.(1.13)

Applying Theorem 1.1 for ϕ(z) = z, we obtain the following result.

Corollary 1.1. Under the hypotheses of Theorem 1.1. If f 6≡ 0 is a

solution of equation (1.11), then the differential polynomial gf = d1f
′ + d0f

satisfies τp(gf ) = τp(gf ) = ρp(gf ) = ρp(f) = ∞ and τp+1(gf ) = τp+1(gf ) =
ρp+1(gf ) = ρp+1(f) = ρ.

In the following, we obtain a result which is an application of Theo-
rem 1.1.

Theorem 1.2. Let P (z) =
n
∑

i=0
aiz

i and Q(z) =
n
∑

i=0
biz

i be nonconstant

polynomials where ai, bi (i = 0, 1, . . . , n) are complex numbers, anbn 6= 0
such that |bn| > |an| . Let hj(z) ( 6≡ 0) (j = 0, 1) be entire functions with

max{ρp(hj) : j = 0, 1} < n (1 ≤ p < ∞). Let d0(z), d1(z) be entire func-

tions such that at least one of d0(z), d1(z) does not vanish identically with

max{ρp(dj) : j = 0, 1} < n, and let ϕ(z) 6≡ 0 be an entire function with

ρp(ϕ) < +∞. If f 6≡ 0 is a solution of the equation

(1.14) f ′′ + h1(z) expp {P (z)} f
′ + h0(z) expp {Q(z)} f = 0,

then the differential polynomial gf = d1f
′ + d0f satisfies

λp(gf − ϕ) = λp(gf − ϕ) = ρp(gf ) = ρp(f) = ∞,(1.15)

λp+1(gf − ϕ) = λp+1(gf − ϕ) = ρp+1(gf ) = ρp+1(f) = n.(1.16)

Applying Theorem 1.2 for ϕ(z) = z, we obtain the following result.
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80 B. Belaïdi

Corollary 1.2. Under the assumptions of Theorem 1.2, if f 6≡ 0 is a

solution of equation (1.14), then the differential polynomial gf = d1f
′ + d0f

satisfies τp(gf ) = τp(gf ) = ρp(gf ) = ρp(f) = ∞ and τp+1(gf ) = τp+1(gf ) =
ρp+1(gf ) = ρp+1(f) = n.

2. Auxiliary lemmas

We need the following lemmas in the proofs of our theorems.

Lemma 2.1. (See Remark 1.3 of [10].) If f is a meromorphic function with

i(f) = p ≥ 1, then ρp(f) = ρp(f
′).

Lemma 2.2. [12] If f is a meromorphic function with 0 < ρp(f) < ρ
(p ≥ 1), then ρp+1(f) = 0.

Lemma 2.3. [2, 5] Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite iterated p-order
meromorphic functions. If f is a meromorphic solution with ρp(f) = +∞
and ρp+1(f) = ρ < +∞ of the equation

(2.1) f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = F,

then λp(f) = λp(f) = ρp(f) = +∞ and λp+1(f) = λp+1(f) = ρp+1(f) = ρ.

Lemma 2.4. Let f, g be meromorphic functions with iterated p-orders 0 <
ρp(f), ρp(g) < ∞ and iterated p-types 0 < σp(f), σp(g) < ∞ (1 ≤ p < ∞).
Then the following statements hold:

(i) If ρp(g) < ρp(f), then

(2.2) σp(f + g) = σp(fg) = σp(f).

(ii) If ρp(f) = ρp(g) and σp(g) 6= σp(f), then

(2.3) ρp(f + g) = ρp(fg) = ρp(f).

Proof. (i) By the definition of the iterated p-type, we have

σp(f + g) = lim sup
r→+∞

logp−1 T (r, f + g)

rρp(f+g)
(2.4)

≤ lim sup
r→+∞

logp−1(T (r, f) + T (r, g) +O(1))

rρp(f+g)
.

Since ρp(g) < ρp(f), then ρp(f + g) = ρp(f). Thus, from (2.4), we obtain

σp(f + g) ≤ lim sup
r→+∞

logp−1 T (r, f)

rρp(f)
+ lim sup

r→+∞

logp−1 T (r, g) +O(1)

rρp(f)
(2.5)

= σp(f).
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The frequency of the zeros of some differential polynomials 81

On the other hand since

(2.6) ρp(f + g) = ρp(f) > ρp(g),

then by (2.5), we get

(2.7) σp(f) = σp(f + g − g) ≤ σp(f + g).

Hence by (2.5) and (2.7), we obtain σp(f + g) = σp(f). Now we prove
σp(fg) = σp(f). Since ρp(g) < ρp(f), then ρp(fg) = ρp(f). By the definition
of the iterated p-type, we have

σp(fg) = lim sup
r→+∞

logp−1 T (r, fg)

rρp(fg)
(2.8)

≤ lim sup
r→+∞

logp−1(T (r, f) + T (r, g))

rρp(f)

≤ lim sup
r→+∞

logp−1 T (r, f)

rρp(f)
+ lim sup

r→+∞

logp−1 T (r, g) +O(1)

rρp(f)

= σp(f).

Since

(2.9) ρp(fg) = ρp(f) > ρp(g) = ρp

(

1

g

)

,

then by (2.8), we obtain

(2.10) σp(f) = σp

(

fg
1

g

)

≤ σp(fg).

Thus, by (2.8) and (2.10), we obtain σp(fg) = σp(f).
(ii) Without loss of generality, we suppose that ρp(f) = ρp(g) and σp(g) <

σp(f). Then, we have

(2.11) ρp(f + g) ≤ max {ρp(f), ρp(g)} = ρp(f) = ρp(g).

If we suppose that ρp(f + g) < ρp(f) = ρp(g), then by (2.2), we get

σp(g) = σp(f + g − f) = σp(f)

and this is a contradiction. Hence ρp(f +g) = ρp(f) = ρp(g). Now, we prove
that ρp(fg) = ρp(f) = ρp(g). Also we have

(2.12) ρp(fg) ≤ max {ρp(f), ρp(g)} = ρp(f) = ρp(g).

If we suppose that ρp(fg) < ρp(f) = ρp(g) = ρp
(

1
f

)

, then by (2.2), we can
write

σp(g) = σp

(

fg
1

f

)

= σp

(

1

f

)

= σp(f)

and this is a contradiction. Hence ρp(fg) = ρp(f) = ρp(g).
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Lemma 2.5. Let A1(z), A0(z) be entire functions, and let i(Aj) = p (j =
0, 1), (1 ≤ p < ∞) such that ρp(A1) = ρp(A0) = ρ (0 < ρ < +∞) and

σp(A1) < σp(A0) = σ (0 < σ < +∞). Let Bj (j = 0, 1, 2) be entire functions

such that at least one of B0(z), B1(z), B2(z) does not vanish identically with

ρp(Bj) < ρp(A0) (j = 0, 1, 2). Then

(2.13) h = B0A0 +B1A1 +B2 6≡ 0.

Proof. First, we suppose that B0 6≡ 0. Then by Lemma 2.4, we have
ρp(h) = ρp(A0) = ρ > 0. Thus h 6≡ 0.

If B0 ≡ 0, B1 6≡ 0, then h = B1A1 + B2 and ρp(h) = ρp(A1) > 0. Hence
h 6≡ 0.

Finally, if B0 ≡ 0, B1 ≡ 0, B2 6≡ 0, then we have h = B2 6≡ 0.

Lemma 2.6. [3, Corollary 1.8] Let A0(z), . . . , Ak−1(z) be entire functions,

and let i(Aj) = p(j = 0, . . . , k − 1), (1 ≤ p < ∞). Assume that ρp(Aj) = ρ
(j = 0, . . . , k − 1), (0 < ρ < +∞) and max{σp(Aj) : j = 1, 2, . . . , k − 1} <
σp(A0) = σ (0 < σ < +∞). Then every solution f 6≡ 0 of (1.8) satisfies

i(f) = p+ 1 and ρp+1(f) = ρ.

Lemma 2.7. Let A1(z), A0(z) be entire functions, and let i(Aj) = p
(j = 0, 1), (1 ≤ p < ∞) such that ρp(A1) = ρp(A0) = ρ (0 < ρ < +∞)
and σp(A1) < σp(A0) = σ (0 < σ < +∞). Let d0(z), d1(z) be entire

functions such that at least one of d0(z), d1(z) does not vanish identically

with max{ρp(dj) : j = 0, 1} < ρp(A0). If f 6≡ 0 is a solution of (1.11), then

the differential polynomial

(2.14) gf = d1f
′ + d0f

satisfies

(2.15) ρp(gf ) = ρp(f) = ∞, ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ.

Proof. Suppose that f 6≡ 0 is a solution of equation (1.11). Then by Lemma
2.6, we have ρp(f) = +∞ and ρp+1(f) = ρp(A0) = ρ. Differentiating both
sides of equation (2.14) and replacing f ′′ with f ′′ = −A1f

′−A0f , we obtain

(2.16) g′f = (d′1 + d0 − d1A1)f
′ + (d′0 − d1A0)f.

Set

(2.17) α0 = d′0 − d1A0, α1 = d
′

1 + d0 − d1A1.

Then by (2.14), (2.16) and (2.17), we have

d1f
′ + d0f = gf ,(2.18)
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The frequency of the zeros of some differential polynomials 83

α1f
′ + α0f = g′f .(2.19)

Set

(2.20) h = d1α0 − d0α1 = d1(d
′
0 − d1A0)− d0(d

′
1 + d0 − d1A1).

Then from (2.20), we can write

h = B0A0 +B1A1 +B2,

where Bj (j = 0, 1, 2) are entire functions such that at least one of B0(z),
B1(z), B2(z) does not vanish identically with ρp(Bj) < ρp(A0) (j = 0, 1, 2).
Thus, by Lemma 2.5, we have h 6≡ 0. By h 6≡ 0 and (2.18)–(2.20), we obtain

(2.21) f =
d1g

′
f − α1gf

h
.

If ρp(gf ) < ∞, then by (2.21) and Lemma 2.1, we get ρp(f) < ∞ and this
is a contradiction. Hence ρp(gf ) = ∞.

Now, we prove that ρp+1(gf ) = ρp+1(f) = ρ. By (2.14), Lemma 2.1 and
Lemma 2.2, we get ρp+1(gf ) ≤ ρp+1(f) and by (2.21) we have ρp+1(f) ≤
ρp+1(gf ). This yield ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ.

Lemma 2.8. [3] Let hj(z) (j = 0, 1, . . . , k − 1) (k ≥ 2) be entire functions

with h0 6≡ 0, ρp(hj) < n (1 ≤ p < ∞), and let Aj(z) = hj(z) expp(Pj(z)),

where Pj(z) =
n
∑

i=0
ajiz

i (j = 0, . . . , k− 1) are polynomials with degree n ≥ 1,

ajn (j = 0, 1, . . . , k − 1) are complex numbers. If |a0n| > max{|ajn| : j =
1, . . . , k−1}, then every solution f 6≡ 0 of equation (1.8) satisfies i(f) = p+1
and ρp+1(f) = n.

Lemma 2.9. [10] Let f be a meromorphic function for which i(f) = p ≥ 1
and ρp(f) = ρ, and let k ≥ 1 be an integer. Then for any ε > 0,

(2.22) m

(

r,
f (k)

f

)

= O(expp−2

{

rρ+ε
}

),

outside of a possible exceptional set E1 of finite linear measure.

To avoid some problems caused by the exceptional set we recall the fol-
lowing lemma.

Lemma 2.10. [1, p. 68] Let g : [0,+∞) → R and h : [0,+∞) → R

be monotone non-decreasing functions such that g(r) ≤ h(r) outside of an

exceptional set E2 of finite linear measure. Then for any α > 1, there exists

r0 > 0 such that g(r) ≤ h(αr) for all r > r0.
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3. Proof of Theorem 1.1

Suppose that f 6≡ 0 is a solution of equation (1.11). Then by Lemma 2.6,
we have ρp(f) = ∞ and ρp+1(f) = ρp(A0) = ρ. Set w(z) = d1f

′ + d0f − ϕ.
Since ρp(ϕ) < ∞, then by Lemma 2.7 we have ρp(w) = ρp(gf ) = ρp(f) =
∞ and ρp+1(w) = ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ. In order to prove
λp(gf − ϕ) = λp(gf − ϕ) = ∞ and λp+1(gf − ϕ) = λp+1(gf − ϕ) = ρ, we
need to prove only λp(w) = λp(w) = ∞ and λp+1(w) = λp+1(w) = ρ. By
gf = w + ϕ, we get from (2.21)

(3.1) f =
d1w

′ − α1w

h
+ ψ,

where

(3.2) ψ =
d1ϕ

′ − α1ϕ

h
.

Substituting (3.1) into equation (1.11), we obtain

(3.3)
d1
h
w′′′ + φ2w

′′ + φ1w
′ + φ0w = −(ψ′′ +A1(z)ψ

′ +A0(z)ψ) = A,

where φj (j = 0, 1, 2) are meromorphic functions with ρp(φj) < ∞ (j =
0, 1, 2).

Now, we prove that ψ(z) 6≡ 0. Assume that ψ(z) ≡ 0. Then from (3.2)
and (2.17), we obtain that

(3.4) d′1 + d0 − d1A1 = d1
ϕ′

ϕ
.

First, if d1 ≡ 0, then by (3.4), we get d0 ≡ 0 and this is a contradiction.
Suppose that d1 6≡ 0. Since d1 6≡ 0 and ρp(ϕ) = α < ∞, we obtain by using
Lemma 2.9 and the equation (3.4) that

T (r, d′1 + d0 − d1A1) = m(r, d′1 + d0 − d1A1)(3.5)

≤ m(r, d1) +O(expp−2

{

rα+ε
}

)

= T (r, d1) +O(expp−2

{

rα+ε
}

)

holds for all r outside a set E ⊂ (0,+∞) with a finite linear measure m(E) <
+∞. Then by (3.5) and Lemma 2.10, we obtain

ρp(A1) = ρp(d
′
1 + d0 − d1A1) ≤ ρp(d1) < ρp(A0)

and this is a contradiction. Hence ψ(z) 6≡ 0. By ψ(z) 6≡ 0 and ρp(ψ) < ∞,
it follows by Lemma 2.6 that A 6≡ 0. Then by h 6≡ 0 and Lemma 2.3, we
obtain λp(w) = λp(w) = ρp(w) = ∞ and λp+1(w) = λp+1(w) = ρp+1(w) =
ρp(A0) = ρ, that is, λp(gf − ϕ) = λp(gf − ϕ) = ρp(gf ) = ρp(f) = ∞ and
λp+1(gf − ϕ) = λp+1(gf − ϕ) = ρp+1(gf ) = ρp+1(f) = ρp(A0) = ρ.
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4. Proof of Theorem 1.2

Suppose that f(z) 6≡ 0 is a solution of equation (1.14). Then by Lemma 2.8,
we have ρp(f) = ∞ and ρp+1(f) = n. By using Theorem 1.1, we obtain
Theorem 1.2.
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