

Miskolc Mathematical Notes Vol. 11 (2010), No 2, pp. 113-120

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2010.219

First order nonhomogeneous linear differential polynomials

Benharrat Belaidi

Miskolc Mathematical Notes Vol. 11 (2010), No. 2, pp. 113–119

FIRST ORDER NONHOMOGENEOUS LINEAR DIFFERENTIAL POLYNOMIALS

BENHARRAT BELAÏDI

Received 10 June, 2009

Abstract. In this paper, we investigate the complex oscillation of the nonhomogeneous linear differential polynomial $g_f = d_1 f' + d_0 f + b$. Here $d_0(z)$, $d_1(z)$, b(z) are meromorphic functions such that at least one of $d_0(z)$ and $d_1(z)$ does not vanish identically with $\rho_p(d_j) < \infty$ $(j = 0, 1), \rho_p(b) < \infty$, and f is a solution of the differential equation f'' + A(z) f = 0, where A(z) is a transcendental meromorphic function with finite iterated order $\rho_p(A) = \rho > 0$.

2000 Mathematics Subject Classification: 34M10, 30D35

Keywords: differential polynomials, linear differential equations, iterated order, iterated exponent of convergence of the sequence of distinct zeros, iterated exponent of convergence of the sequence of distinct fixed points

1. INTRODUCTION AND MAIN RESULT

For the definition of the iterated order of a meromorphic function, we use the same definition as in [3]([2], p. 317), ([4], p. 129). For all $r \in \mathbb{R}$, we define $\exp_1 r := e^r$ and $\exp_{p+1} r := \exp(\exp_p r)$, $p \in \mathbb{N}$. We also define for all sufficiently large r the functions $\log_1 r := \log r$ and $\log_{p+1} r := \log(\log_p r)$, $p \in \mathbb{N}$. Moreover, we denote by $\exp_0 r := r$, $\log_0 r := r$, $\log_{-1} r := \exp_1 r$ and $\exp_{-1} r := \log_1 r$.

Definition 1 ([3,4]). Let f be a meromorphic function. Then the iterated p-order $\rho_p(f)$ of f is defined by

$$\rho_p(f) = \lim_{r \to +\infty} \frac{\log_p T(r, f)}{\log r} \quad (p \ge 1 \text{ is an integer}), \tag{1.1}$$

where T(r, f) is the Nevanlinna characteristic function of f. For p = 1, this notation is called order and for p = 2 hyper-order (see [7]).

© 2010 Miskolc University Press

BENHARRAT BELAÏDI

Definition 2 ([3]). The finiteness degree of the order of a meromorphic function f is defined by

$$i(f) = \begin{cases} 0, & \text{if } f \text{ is rational,} \\ \min\{j \in \mathbb{N} : \rho_j(f) < +\infty\}, \text{ if } f \text{ is transcendental such that} \\ & \text{some } j \in \mathbb{N} \text{ with } \rho_j(f) < +\infty \text{ exists,} \\ +\infty, & \text{for } f \text{ with } \rho_j(f) = +\infty \text{ for all } j \in \mathbb{N}. \end{cases}$$

Definition 3 ([3,5]). Let f be a meromorphic function. Then the iterated exponent of convergence of the sequence of distinct zeros of f(z) is defined by

$$\overline{\lambda}_{p}(f) = \frac{\log_{p} \overline{N}\left(r, \frac{1}{f}\right)}{\log r} \quad (p \ge 1 \text{ is an integer}), \tag{1.2}$$

where $\overline{N}\left(r, \frac{1}{f}\right)$ is the counting function of distinct zeros of f(z) in $\{z : |z| < r\}$. For p = 1, this notation is called the exponent of convergence of the sequence of distinct zeros and for p = 2 the hyper-exponent of convergence of the sequence of distinct zeros (see [6]).

Definition 4 ([5]). Let f be a meromorphic function. Then the iterated exponent of convergence of the sequence of distinct fixed points of f(z) is defined by

$$\overline{\tau}_{p}(f) = \overline{\lambda}_{p}(f-z) = \frac{1}{r \to +\infty} \frac{\log_{p} \overline{N}\left(r, \frac{1}{f-z}\right)}{\log r} \quad (p \ge 1 \text{ is an integer}).$$
(1.3)

For p = 1, this notation is called the exponent of convergence of the sequence of distinct fixed points and for p = 2 the hyper-exponent of convergence of the sequence of distinct fixed points (see [6]). Thus $\overline{\tau}_p(f) = \overline{\lambda}_p(f-z)$ is an indication of oscillation of distinct fixed points of f(z).

Let $\mathcal{L}(\mathbf{G})$ denote a differential subfield of the field $\mathcal{M}(\mathbf{G})$ of meromorphic functions in a domain $\mathbf{G} \subset \mathbb{C}$. If $\mathbf{G} = \mathbb{C}$, we simply use \mathcal{L} instead of $\mathcal{L}(\mathbb{C})$. A special case of such differential subfields is

$$\mathcal{L}_{p+1,\rho} = \{g \text{ meromorphic: } \rho_{p+1}(g) < \rho\}, \qquad (1.4)$$

where ρ is a positive constant.

Consider the linear differential equation

$$f'' + A(z) f = 0, (1.5)$$

where A(z) is a transcendental meromorphic function with finite iterated order $\rho_p(A) = \rho > 0$. Since the beginning of the last four decades, a substantial number of research articles have been written to describe the fixed points of general transcendental meromorphic functions (see [8]). However, there are few studies on the fixed points of solutions of general differential equations. In [5] Laine and Rieppo have

114

investigated the fixed points and iterated order of equation (1.5) and have obtained the following result:

Theorem 1 ([5]). Let A(z) be a transcendental meromorphic function of finite iterated order $\rho_p(A) = \rho > 0$ such that $\delta(\infty, A) = \lim_{r \to +\infty} \frac{m(r, A)}{T(r, A)} = \delta > 0$, and let f be a transcendental meromorphic solution of equation (1.5). Suppose, moreover, that either:

(i) all poles of f are of uniformly bounded multiplicity or

(ii) $\delta(\infty, f) > 0$.

Then $\rho_{p+1}(f) = \rho_p(A) = \rho$. Moreover, let

$$P[f] = P\left(f, f', \dots, f^{(m)}\right) = \sum_{j=0}^{m} p_j f^{(j)}$$
(1.6)

be a linear differential polynomial with coefficients $p_j \in \mathcal{L}_{p+1,\rho}$, assuming that at least one of the coefficients p_j does not vanish identically. Then for the fixed points of P[f], we have $\overline{\tau}_{p+1}(P[f]) = \rho$, provided that neither P[f] nor P[f] - z vanishes identically.

Remark 1 ([5], p. 904). In Theorem 1, in order to study P[f], the authors consider $m \le 1$. Indeed, if $m \ge 2$, we obtain, by repeated differentiation of (1.5), that $f^{(k)} = q_{k,0}f + q_{k,1}f'$, $q_{k,0}, q_{k,1} \in \mathcal{L}_{p+1,\rho}$ for k = 2, ..., m. Substitution into (1.6) yields the required reduction.

The main purpose of this paper is to investigate the fixed points of the nonhomogeneous linear differential polynomial $g_f = d_1 f' + d_0 f + b$, where $d_0(z)$, $d_1(z)$, b(z) are meromorphic functions generated by solutions of equation (1.5). Instead of looking at the zeros of $g_f - z$, we proceed to a slight generalization by considering zeros of $g_f - \varphi(z)$, where φ is a meromorphic function of finite iterated p-order, while the solution of respective differential equation is of infinite iterated p-order.

Let us denote by

$$\alpha_0 = d_0' - d_1 A, \quad \alpha_1 = d_0 + d_1', \tag{1.7}$$

$$h = d_1 \alpha_0 - d_0 \alpha_1, \tag{1.8}$$

where A, d_j (j = 0, 1) are meromorphic functions. We obtain:

Theorem 2. Let A(z) be a transcendental meromorphic function of finite iterated order $\rho_p(A) = \rho > 0$ such that $\delta(\infty, A) = \delta > 0$, let $d_0(z)$, $d_1(z)$, b(z) be meromorphic functions such that at least one of $d_0(z)$, $d_1(z)$ does not vanish identically with $\rho_p(d_j) < \infty$ (j = 0, 1), $\rho_p(b) < \infty$ such that $h \neq 0$. Let $\varphi(z) (\neq 0)$ be a meromorphic function of finite iterated p- order such that $d_1(\varphi' - b') - \alpha_1(\varphi - b) \neq 0$. Suppose, moreover, that either: (i) all poles of f are of uniformly bounded multiplicity or
(ii) δ(∞, f) > 0.

If $f(z) \neq 0$ is a meromorphic solution of (1.5), then the differential polynomial $g_f = d_1 f' + d_0 f + b$ satisfies $\overline{\lambda}_p (g_f - \varphi) = \rho_p (f) = +\infty$ and $\overline{\lambda}_{p+1} (g_f - \varphi) = \rho_{p+1} (f) = \rho_p (A) = \rho$.

Setting p = 1 and $\varphi(z) = z$ in Theorem 2, we obtain the following corollary:

Corollary 1. Let A(z) be a transcendental meromorphic function of finite order $\rho(A) = \rho > 0$ such that $\delta(\infty, A) = \delta > 0$, let $d_0(z), d_1(z), b(z)$ be meromorphic functions such that at least one of $d_0(z), d_1(z)$ does not vanish identically with $\rho(d_j) < \infty$ $(j = 0, 1), \rho(b) < \infty$ such that $h \neq 0$ and $d_1(1-b') - \alpha_1(z-b) \neq 0$. Suppose, moreover, that either:

- (i) all poles of f are of uniformly bounded multiplicity or
- (ii) $\delta(\infty, f) > 0$.

If $f(z) \neq 0$ is a meromorphic solution of (1.5), then the differential polynomial $g_f = d_1 f' + d_0 f + b$ has infinitely many fixed points and satisfies $\overline{\tau}(g_f) = \rho(f) = +\infty$, $\overline{\tau}_2(g_f) = \rho_2(f) = \rho(A) = \rho$.

2. Some Lemmas

We need the following lemmas in the proofs of our theorem.

Lemma 1 (see Remark 1.3 of [3]). If f is a meromorphic function with $i(f) = p \ge 1$, then $\rho_p(f) = \rho_p(f')$.

Lemma 2 ([5]). If f is a meromorphic function with $0 < \rho_p(f) < \rho(p \ge 1)$, then $\rho_{p+1}(f) = 0$.

Lemma 3 ([1]). Let $k \ge 2$ and A(z) be a transcendental meromorphic function of finite iterated order $\rho_p(A) = \rho > 0$ such that $\delta(\infty, A) = \delta > 0$. Suppose, moreover, that either:

(i) all poles of f are of uniformly bounded multiplicity or

(ii) $\delta(\infty, f) > 0$.

Then every meromorphic solution $f(z) \neq 0$ of

$$f^{(k)} + A(z) f = 0, (2.1)$$

satisfies i(f) = p + 1, $\rho_p(f) = +\infty$ and $\rho_{p+1}(f) = \rho_p(A) = \rho$.

Lemma 4 ([1]). Let $A_0, A_1, ..., A_{k-1}$, $F \neq 0$ be finite iterated *p*-order meromorphic functions. If *f* is a meromorphic solution with $\rho_p(f) = +\infty$ and $\rho_{p+1}(f) = \rho < +\infty$ of the equation

$$f^{(k)} + A_{k-1}f^{(k-1)} + \dots + A_1f' + A_0f = F,$$
(2.2)

116

then $\overline{\lambda}_p(f) = \rho_p(f) = +\infty$ and $\overline{\lambda}_{p+1}(f) = \rho_{p+1}(f) = \rho$.

Lemma 5. Let A(z) be a transcendental meromorphic function with finite iterated order $\rho_p(A) = \rho > 0$ such that $\delta(\infty, A) = \delta > 0$. Let $d_0(z)$, $d_1(z)$, b(z) be meromorphic functions such that at least one of $d_0(z)$, $d_1(z)$ does not vanish identically with $\rho_p(d_j) < \infty$ (j = 0, 1), $\rho_p(b) < \infty$ such that $h \neq 0$. Suppose, moreover, that either:

- (i) all poles of f are of uniformly bounded multiplicity or
- (ii) $\delta(\infty, f) > 0$.

If $f(z) \neq 0$ is a meromorphic solution of (1.5), then the differential polynomial

$$g_f = d_1 f' + d_0 f + b (2.3)$$

satisfies $i(g_f) = p + 1$, $\rho_p(g_f) = \rho_p(f) = +\infty$ and $\rho_{p+1}(g_f) = \rho_{p+1}(f) = \rho_p(A) = \rho$.

Proof. Suppose that $f \ (\neq 0)$ is a meromorphic solution of equation (1.5). Then by Lemma 3, we have $\rho_p(f) = +\infty$ and $\rho_{p+1}(f) = \rho_p(A) = \rho$. Differentiating both sides of equation (2.3) and replacing f'' with f'' = -Af, we obtain

$$g'_{f} - b' = (d_{0} + d'_{1})f' + (d'_{0} - d_{1}A)f.$$
 (2.4)

Then by (1.7), (2.3) and (2.4), we have

$$d_1 f' + d_0 f = g_f - b, (2.5)$$

$$\alpha_1 f' + \alpha_0 f = g'_f - b'. \tag{2.6}$$

Set

$$h = d_1 \alpha_0 - \alpha_1 d_0 = d_1 \left(d_0' - d_1 A \right) - d_0 (d_0 + d_1').$$
(2.7)

By the condition $h \neq 0$ and (2.5) - (2.7), we get

$$f = \frac{d_1 \left(g'_f - b' \right) - \alpha_1 \left(g_f - b \right)}{h}.$$
 (2.8)

If $\rho_p(g_f) < +\infty$, then by (2.8) and Lemma 1 we obtain $\rho_p(f) < +\infty$, and this is a contradiction. Hence $\rho_p(g_f) = \rho_p(f) = +\infty$.

Now, we prove that $\rho_{p+1}(g_f) = \rho_{p+1}(f) = \rho$. By (2.3), Lemma 1 and Lemma 2, we get $\rho_{p+1}(g_f) \le \rho_{p+1}(f)$ and by (2.8) we have $\rho_{p+1}(f) \le \rho_{p+1}(g_f)$. This yield $\rho_{p+1}(g_f) = \rho_{p+1}(f) = \rho$.

Remark 2. In Lemma 5, if we don't have the condition $h \neq 0$, then the differential polynomial can be of finite iterated *p*-order. For example, if $d'_0 - d_1 A \equiv 0$ and $d'_1 + d_0 \equiv 0$, then $h \equiv 0$ and $g'_f - b' \equiv 0$. It follows that $\rho_p(g_f) = \rho_p(g'_f) = \rho_p(b') = \rho_p(b) < +\infty$. Hence, the condition $h \neq 0$ is necessary in Theorem 2.

BENHARRAT BELAÏDI

3. PROOF OF THEOREM 2

Suppose that $f(z) \neq 0$ is a meromorphic solution of (1.5). Then by Lemma 3, we have $\rho_p(f) = +\infty$ and $\rho_{p+1}(f) = \rho_p(A) = \rho$. By Lemma 5, it is clear that $g_f \neq 0$ and $g_f \neq \varphi$. Set $w(z) = d_1 f' + d_0 f + b - \varphi$, since $\rho_p(\varphi) < +\infty$, then by Lemma 5 we have $\rho_p(w) = \rho_p(g_f) = \rho_p(f) = +\infty$ and $\rho_{p+1}(w) = \rho_{p+1}(g_f) = \rho_{p+1}(f) = \rho_p(A) = \rho$. In order to prove $\overline{\lambda}_p(g_f - \varphi) = +\infty$ and $\overline{\lambda}_{p+1}(g_f - \varphi) = \rho_p(A) = \rho$, we need to prove only $\overline{\lambda}_p(w) = +\infty$ and $\overline{\lambda}_{p+1}(w) = \rho_p(A) = \rho$. Substituting $g_f = w + \varphi$ into (2.8)

$$f = \frac{d_1 w' - \alpha_1 w}{h} + \psi, \qquad (3.1)$$

where

$$\psi = \frac{d_1\left(\varphi' - b'\right) - \alpha_1\left(\varphi - b\right)}{h}.$$
(3.2)

Substituting (3.1) into equation (1.5), we obtain

$$\frac{d_1}{h}w^{'''} + \phi_2 w^{''} + \phi_1 w^{'} + \phi_0 w = -\left(\psi^{''} + A(z)\psi\right) = W, \qquad (3.3)$$

where ϕ_j (j = 0, 1, 2) are meromorphic functions with $\rho_p(\phi_j) < \infty$ (j = 0, 1, 2). By $\rho_p(\psi) < +\infty$ and the condition $\psi \neq 0$, it follows by Lemma 3 that $W \neq 0$. By Lemma 4, we obtain $\overline{\lambda}_p(w) = \rho_p(w) = +\infty$ and $\overline{\lambda}_{p+1}(w) = \rho_{p+1}(w) = \rho$, i.e., $\overline{\lambda}_p(g_f - \varphi) = \rho_p(f) = +\infty$ and $\overline{\lambda}_{p+1}(g_f - \varphi) = \rho_{p+1}(f) = \rho_p(A) = \rho$.

Remark 3. From the proof of Theorem 2, we see that the condition $d_1(\varphi' - b') - \alpha_1(\varphi - b) \neq 0$ is necessary because if $d_1(\varphi' - b') - \alpha_1(\varphi - b) \equiv 0$, then $\psi \equiv 0$ and $W \equiv 0$.

REFERENCES

- B. Belaïdi, "Oscillation of fixed points of solutions of some linear differential equations," Acta Math. Univ. Comenian. (N.S.), vol. 77, no. 2, pp. 263–269, 2008.
- [2] L. G. Bernal, "On growth k-order of solutions of a complex homogeneous linear differential equation," Proc. Amer. Math. Soc., vol. 101, no. 2, pp. 317–322, 1987.
- [3] L. Kinnunen, "Linear differential equations with solutions of finite iterated order," *Southeast Asian Bull. Math.*, vol. 22, no. 4, pp. 385–405, 1998.
- [4] I. Laine, Nevanlinna theory and complex differential equations, ser. de Gruyter Studies in Mathematics. Berlin: Walter de Gruyter & Co., 1993, vol. 15.
- [5] I. Laine and J. Rieppo, "Differential polynomials generated by linear differential equations," *Complex Var. Theory Appl.*, vol. 49, no. 12, pp. 897–911, 2004.
- [6] M.-S. Liu and X.-M. Zhang, "Fixed points of meromorphic solutions of higher order linear differential equations," Ann. Acad. Sci. Fenn. Math., vol. 31, no. 1, pp. 191–211, 2006.
- [7] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, ser. Mathematics and its Applications. Dordrecht: Kluwer Academic Publishers Group, 2003, vol. 557.

[8] Q. T. Zhang and C. C. Yang, *The Fixed Points and Resolution Theory of Meromorphic Functions*. Beijing: Beijing University Press, 1988.

Author's address

Benharrat Belaïdi

University of Mostaganem, Department of Mathematics, Laboratory of Pure and Applied Mathematics, B. P. 227 Mostaganem, Algeria

E-mail address: belaidi@univ-mosta.dz