Experimental and Theoretical Study on Lipophilicity of Novel 1.2-Dithiole-3-thiones Synthetic

Abstract

Z. Rahmani ${ }^{1, *}$, M. Saidi 1, M. Yousfi ${ }^{2}$ and M. Dakmouche ${ }^{1}$ ${ }^{1}$ Laboratoire de Valorisation et Promotion des Ressources Sahariennes, Université Kasdi Merbah de Ouargla, (30000) Ouargla, Algeria ${ }^{2}$ Laboratoire des Sciences Fondamentales, Université Amar Telidji, (16000) Laghouat, Algeria *Corresponding author: E-mail: zhor_rahmani@hotmail.com; zhorrahmani@gmail.com (Received: Accepted:) AJC-0000

The aim of this work is to determine the partition coefficients $\log \mathrm{P}_{\mathrm{wo}}$ of eleven compounds, dithiolethiones, dithiolone, nitrone, 1.2-dithiole-3-imine and bromines compounds which is carried out by two experimental methods: UV-VIS and HPLC. According to the procedure of the traditional method shake-flask and we confirm the results by using a theoretical method for calculating the values of log $P_{w o}$. Another aim is to obtain the value of the unknown fragmental constant of imine $(C=N)$ and the value found of imine $f_{C=N}$ underlined in the calculatation of $\log \mathrm{P}_{\mathrm{wo}}\left(\mathrm{N}\right.$ - p-nitrophenyl 5-phenyl-1.2-dithiole-3-imine); then to compare the calculated log P_{wo} value with the experimental. The results show that: (i) the dithiolones are more hydrophilic than the dithiolethiones; (ii) the values of $\log P_{\text {wo }}$ of derivatives bromines, imine and nitrone are lately given in experiments. Our analysis demonstrates good agreement between the experimentally observed and calculated $\log \mathrm{P}_{\mathrm{wo}}$ values.

Key Words: Dithiolethiones, Partition coefficient, Hydrophobe.

INTRODUCTION

Although many sulfur containing heterocycles have been known from the early times of organic chemistry, it has not been until recently that some of these compounds have found their most important applications. On the other hand, the study of many bioactive compounds, as oltipraz (35972 R.P.) ($\mathrm{R}_{4}=$ $\mathrm{CH}_{3} ; \mathrm{R}_{5}=2$-pyrazinyl) and other natural and synthetic 1.2-dithiole-3-thione ${ }^{1}$, has drawn attention to the role of polysulfur heterocycles in the field of pharmaceutical chemistry and especially for the prevention of carcinogenesis ${ }^{2}$.

Dithiolethiones Fig. $1(\mathrm{X}=\mathrm{S})$ compounds found in cruciferous vegetables increase the rate of detoxification chemical carcinogens. A high-life of cruciferous vegetables (including cabbage, broccoli and cauliflower) is associated with protection from the development of colorectal cancer.

Fig. 1. 1,2-Dithiolethione

These plants all contain substantial concentrations of dithiolethiones, indoles and isothiocynates, each of which has been proposed to account for chemoprotection ${ }^{3}$.

Reduction of oxidative stress is considered to be an attractive approach to provide neuroprotection in neurodegenerative diseases ${ }^{4}$. Increased formation of reactive oxygen species (ROS) and consequent oxidative stress is thought to be involved in the loss of neurons occurring in chronic (neuro) degenerative diseases and ischemic brain injury. So, astroglial cells protect neurons against oxidative damage. The antioxidant glutathione plays a pivotal role in the neuroprotective action of astroglial cells which are impaired following loss of glutathione. Anethole dithiolethione 4a, a sulfur-containing compound which is used in humans as a secretagogue, increases glutathione levels in cultured astroglial cells under "physiological" conditions and is thought thereby to protect against oxidative damage ${ }^{5}$.

However, 1.2-dithiole-3-thione derivatives have poor water solubility (generally $<10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$) and no data concerning their lipophilicity existed in the literature before the studies of Bona et al. ${ }^{6}$, one parameters of lipophilicity is water/noctanol partition coefficient $\left(\mathrm{P}_{\mathrm{wo}}\right)$, which is the quantitative parameter for an insight into the interaction between drug and biofilm, is one of the most important parameters employed for estimating a chemical's environmental fate and toxicity. $\mathrm{P}_{\mathrm{w} \text { o }}$, defined as the ratio of a chemical concentration in the n octanol phase to its concentration in the aqueous phase at equilibrium. The logarithm of this coefficient, $\log \mathrm{P}_{\mathrm{wo}}$, has been shown to be one key parameters in quantitative structure activity/property relationship (QSAR/QSPR) studies ${ }^{7}$.

In addition, $\log \mathrm{P}_{\mathrm{wo}}$ is essential for understanding the transport mechanisms and distribution of compounds in the environment, for example, the process involving the deposition a pollutant into bodies of water ${ }^{9}$. Although $\log \mathrm{P}_{\text {wo }}$ can be measured reliably for a given compound, the experimental process might be time-consuming and expensive. This problem becomes critical when many of candidate molecules, which sometimes are just virtual, require screening during a drug design and discovery procedure. Thus, there is a clear need for calculation procedures that can give reliable estimations of $\log \mathrm{P}_{\mathrm{wo}}$ based merely on the chemical structure of a given compound.

During the past three decades, many methods of calculating $\log P$ have been reported in the literature ${ }^{10}$. At present, the most widely accepted method is classified as the 'additive method', where a molecule is dissected into basic fragments (functional groups or atoms) and its $\log \mathrm{P}$ value is obtained by summing the contributions of each fragment. 'Correction factors' are also introduced to rectify the calculated $\log \mathrm{P}$ value when some special substructures occur in the molecule.

This method originated with Rekker and coworkers ${ }^{11,12}$. Current popular fragment-additive methods include CLOGP ${ }^{13,14}$, KLOGP ${ }^{15}$, KOWWIN ${ }^{16}$, CHEMICALC- 2^{17} etc. Atom-additive methods include MOLCAD ${ }^{18}$, ALOGP ${ }^{19}$ and SMILOGP ${ }^{20}$. There are also methods that try to incorporate molecular properties into the calculation, such as HINT^{21} and ASCLOGP ${ }^{22}$.

We have been engaged for a long time in the chemistry of the dithiolethiones compounds ${ }^{23}$ and, because of the great importance of lipophilic factors ${ }^{24}$, we determined very recently the water $/ n$-octanol $\log \mathrm{P}_{\mathrm{wo}}$ of basic dithiolethiones.

We confirm these results in this paper. The methodology described here is using a fragmental lipophilic constant of Rekker (revised version) ${ }^{25}$. On other aim of our work was to correlate the experimentally determined and calculate $\log \mathrm{P}_{\mathrm{w}}$ values for dithiolethiones using rapid method for the calculation (based on atom/fragment contributions). Finally, we obtained the unknown fragmental constant of imine $(\mathrm{C}=\mathrm{N})$ and the value found of imine $\mathrm{f}_{\mathrm{C}=\mathrm{N}}$ underlined in the calculation of $\log \mathrm{P}_{\mathrm{wo}}$ (5-phenyl-1.2-dithiole-3-(N- p-nitrophenyl imine)).

The dithiolethiones empolyed in this study, their abbreviated are shown in following:

$$
\begin{aligned}
& \text { 1a: } \mathrm{X}=\mathrm{S}, \mathrm{R}_{4}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\mathrm{CH}_{3} \\
& \text { 2a: } \mathrm{X}=\mathrm{S}, \mathrm{R}_{4}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{5}=\mathrm{H} \\
& \text { 3a: } \mathrm{X}=\mathrm{S}, \mathrm{R}_{4}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}_{5}=\mathrm{H} \\
& \text { 4a: } \mathrm{X}=\mathrm{S}, \mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{5}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \\
& \text { 5a: } \mathrm{X}=\mathrm{S}, \mathrm{R}_{4}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{~N} \rightarrow \mathrm{O})=\mathrm{CH} \\
& \text { 1b: } \mathrm{X}=\mathrm{O}, \mathrm{R}_{4}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{5}=\mathrm{H} \\
& \text { 2b: } \mathrm{X}=\mathrm{O}, \mathrm{R}_{4}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}_{5}=\mathrm{H} \\
& \text { 3b: } \mathrm{X}=\mathrm{O}, \mathrm{R}_{4}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{5}=\mathrm{Br} \\
& \text { 4b: } \mathrm{X}=\mathrm{O}, \mathrm{R}_{4}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}_{5}=\mathrm{Br} \\
& \text { 1c: } \mathrm{X}=\mathrm{NO}_{2}(\mathrm{p}) \mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{N}, \mathrm{R}_{4}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{C}_{6} \mathrm{H}_{5}
\end{aligned}
$$

EXPERIMENTAL

The dithiolethiones derivatives used in these studies were synthesized as previously described ${ }^{26,27}$. All other chemicals were obtained from Aldrich.

To analysis the following instruments were used: UV-VIS 114 spectrophotometer with 1 cm quartz cells.

HPLC: calibration curves were constructed by linear re- 116 gression of the peak-area ration versus concentration. The RP- 117 HPLC column was stainless steel tubing (i.d. 4.5 mm in diam- 118 eter and 15 cm long) filled with $5 \mu \mathrm{~m}$ ODS2 stationary and 119 the flow rate of the mobile phase was $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. UV detec- 120 tion was achieved at an adequately wavelength. The mobile 121 phase used for analysis was methanol-water mixtures (80-20/ 122 $70-30 \mathrm{v} / \mathrm{v}$) as the hydrophobicity of compounds.

Experimental determination of $\log \mathbf{P}_{\mathrm{wo}}$ values: Before 124 each determination, the purity of the compounds was checked 125 by determination of its melting point and also by TLC using 126 two pairs of eluents. Let us recall only that $\log \mathrm{P}_{\text {wo }}$ was calcu- 127 lated as the decimal logarithm of the ratio of the solute con- 128 centration in n-octanol and in water after partition equilib- 129 rium. An octanolic solution (saturated in water) of a solute $10 \quad 130$ mL was introduced into a 250 mL separatory funnel with $50 \quad 131$ mL of water (previously saturated in n-octanol). It was stirred 132 in a mechanical shaker for 0.5 h . The solutions were then left 133 to stand for 24 h until the two phases were seperated. At equi- 134 librium, the aqueous solution separated then its concentration 135 is determined by UV-VIS and HPLC may be also used to quan- 136 tify the concentration of the solute. The values of the partition 137 coefficient of compounds were listed in Table-2. 138

Spectrophotometric UV-VIS $\log \mathbf{P}_{\text {wo }}$ determinations: 139 For UV-VIS studies, one analytical working wavelength cor- 140 responding the maxima of molar absorptivities were selected 141 for each compound. In both cases, the sample concentration 142 was determined by comparison to a calibration curve con- 143 structed with four to five known concentrations in water satu- 144 rated with n-octanol are usually estabilished. A straight line 145 was according to the equation $\mathrm{C}=\mathrm{aH}+\mathrm{b}$ where C was the 146 concentration of the solute ($\mathrm{mol} \mathrm{L}^{-1}$) and H was the absor- 147 bance at the wavelength of absorbance maximum. For 148 dithiolethiones max was situated in the range 400-460 nm 149 and for dithiolones between 300 and 370 nm .

Calculation method: Partition coefficients are additive- 151 constitutive, free energy related properties. $\log \mathrm{P}_{\text {wo }}$ represents 152 the over-all hydrophobicity of a molecules, which includes 153 the sum of the hydrophobic contributions of the "parent" mol- 154 ecule and its substituent ${ }^{28}$. Hansh and leo took a construction- 155 ist approach and developed a fragmental system that included 156 correction factors for bonds and proximity effects ${ }^{29}$. For us, 157 we apply these rules to the studied compounds adopting val- 158 ues of the following fragmentales constants which are listed 159 in Table-1:

Fragmentation methods: This approach breaks a mol- 161 ecule into fragments and assumes that the total $\log \mathrm{P}$ of a mol- 162 ecule is the sum total of all contributions of each fragment. 163 However, the molecular environment affects the contributions 164 by each fragment. Hence, correction factors are included in 165 the calculation as shown by the following equation: 166

$$
\begin{equation*}
\log P=\sum_{i=1}^{n} a_{i} f_{i}+\sum_{i=1}^{m} b_{j} F_{j} \tag{167}
\end{equation*}
$$

where, $\log \mathrm{P}=\log$ of the partition coefficient, $\mathrm{a}=$ the number 168 of fragments, $\mathrm{f}=$ fragmental constant, $\mathrm{b}_{\mathrm{j}}=$ frequency of $\mathrm{F}_{\mathrm{j}}, \mathrm{F}_{\mathrm{j}} 169$ $(\mathrm{CM})=$ correction factor for the jth fragment.

TABLE-1	
VALUES OF FRAGMENTS	
Substituant x	f_{X}
$\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}$	$1.902{ }^{25}$
$\mathrm{f}_{\text {Br aliphatic }}$	0.258^{25}
$\mathrm{f}_{\mathrm{Br} \text { aromatic }}$	1.134^{25}
$\mathrm{f}_{\mathrm{CH}_{3}-\mathrm{O}}$	0.274^{25}
f_{H}	0.204^{25}
$\mathrm{f}_{\mathrm{CH}_{3}}$	0.219^{25}
f_{C}	0.724^{25}
$\log \mathrm{P}_{\text {pyridin }}$	0.110^{25}
$\mathrm{f}_{\text {a aromatic }}$	0.099^{25}
$\mathrm{f}_{\mathrm{NO}_{2} \text { aromatic }}$	-0.039^{25}
$\mathrm{f}_{\mathrm{NO} \text { aromatic }}$	-1.000^{36}
$\mathrm{f}_{\mathrm{C}=\mathrm{H} \text { aromatic }}$	0.315^{25}
$\log \mathrm{P}_{\text {exp }}$ (parent dithiolethione)	1.580^{24}
$\log \mathrm{P}_{\text {exp }}$ (parent dithiolone)	0.820^{24}

1a: $\mathrm{X}=\mathrm{S}, \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CH}_{3}$ (4.5-dimethyl-1.2-dithiole-3-thione) $\log \mathrm{P}_{1 \mathrm{a}}=\log \mathrm{P}_{\text {(exp of parent DTT) }}-\left[\mathrm{f}_{\mathrm{H}}+\mathrm{C}_{\mathrm{M}}(\mathrm{H}\right.$ linked to a strongly attractive group (5-[1.2-dithiole-3-thione,one]-yl) $)^{26}$] $-\mathrm{f}_{\mathrm{H}}+2 \mathrm{f}_{\mathrm{CH}_{3}}, \log \mathrm{P}_{1 \mathrm{a}}=2.401$.

2a: $X=S, R_{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{H}$ (4-phenyl-1.2-dithiole-3thione), $\log \mathrm{P}_{2 \mathrm{a}}=\log \mathrm{P}_{\text {(exp of parent DTT) }}-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}, \log \mathrm{P}_{2 \mathrm{a}}=3.278$.

3a: $\mathrm{X}=\mathrm{S}, \mathrm{R}_{1}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}_{2}=\mathrm{H}$ (4-p-tolyl-1.2-dithiole-3-thione), $\log \mathrm{P}_{3 \mathrm{a}}=\log \mathrm{P}_{\text {(exp of parent DTT) }}-\mathrm{f}_{\mathrm{H}}+\left[\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}+\mathrm{f}_{\mathrm{CH}_{3}}-\mathrm{f}_{\mathrm{H}}\right]$, $\log \mathrm{P}_{3 \mathrm{a}}=3.798$.

4a: $\mathrm{X}=\mathrm{S}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ (5-p-methoxyphenyl-1.2-dithiole-3-thione), $\log \mathrm{P}_{4 \mathrm{a}}=\log \mathrm{P}_{(\text {exp of parent DTT) }}-\left[\mathrm{f}_{\mathrm{H}}+\mathrm{C}_{\mathrm{M}}\right.$ (H linked to a strongly attractive group (5-[1.2-dithiole-3thione, one $\left.]-\mathrm{yl})^{26}\right]+\left[\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{CH}_{3}-\mathrm{O}}\right]+\mathrm{C}_{\mathrm{M}}$ (conjugation), \log $\mathrm{P}_{4 \mathrm{a}}=3.348$.

5a: $\mathrm{X}=\mathrm{S}, \mathrm{R}_{4}=\mathrm{CH}_{3}, \mathrm{R}_{5}=\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{~N} \rightarrow \mathrm{O})=\mathrm{CH}$ (4-methyl-5[oxo (phenyl) imino] methyl-1.2-dithiole-3-thione, $\log \mathrm{P}_{5 \mathrm{a}}=$ $\log \mathrm{P}_{\text {(exp of parent DTT) }}-\left[\mathrm{f}_{\mathrm{H}}+\mathrm{C}_{\mathrm{M}}\right.$ (H linked to a strongly attractive group (5-[1.2-dithiole-3-thione,one]-yl $\left.{ }^{26}\right]+\left[\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}+\mathrm{f}_{\mathrm{NO}}+\mathrm{f}_{\mathrm{C}=\mathrm{H}}\right]$ $-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{CH}_{3}}, \log \mathrm{P}_{5 \mathrm{a}}=2.894$.

1b: $\mathrm{X}=\mathrm{O}, \mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{H}$ (4-phenyl-1.2-dithiole-3one), $\log \mathrm{P}_{1 \mathrm{~b}}=\log \mathrm{P}_{(\text {exp of parent DTO) }}-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}}, \log \mathrm{P}_{1 \mathrm{~b}}=2.518$.

2b: $\mathrm{X}=\mathrm{O}, \mathrm{R}_{1}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}_{2}=\mathrm{H}$ (4-p-tolyl-1.2-dithiole-3-one), $\log \mathrm{P}_{2 \mathrm{~b}}=\log \mathrm{P}_{\text {(exp of parent DTO) }}-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{CH}_{3}}-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}+\mathrm{C}_{\mathrm{M}}$, $\log \mathrm{P}_{2 \mathrm{~b}}=3.038$.

3b: $\mathrm{X}=\mathrm{O}, \mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{Br}$ (5-bromo 4-phenyl-1.2-dithiole-3-one), $\log \mathrm{P}_{3 \mathrm{~b}}=\log \mathrm{P}_{\text {(exp of parent DTO) }}-\left[\mathrm{f}_{\mathrm{H}}+\mathrm{C}_{\mathrm{M}}\right.$ (H linked to a strongly attractive group (5-[1.2-dithiole-3-thione,one]$\left.\mathrm{yl})^{26}\right]+\mathrm{f}_{\mathrm{Br} \text { roromaticaliphatic }}-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}+\mathrm{C}_{\mathrm{M}}$ (conjugation), $\log \mathrm{P}_{3 \mathrm{~b}}(\mathrm{Br}$ aromatic $)=3.448, \log \mathrm{P}_{3 \mathrm{~b}}(\mathrm{Br}$ aliphatic $)=2.572$.

4b: $\mathrm{X}=\mathrm{O}, \mathrm{R}_{1}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}_{2}=\mathrm{Br}$ (5-bromo 4- - -tolyl-1.2-dithiole-3-one), $\log \mathrm{P}_{4 \mathrm{~b}}=\log \mathrm{P}_{(\text {exp of parent DTO) }}-\left[\mathrm{f}_{\mathrm{H}}+\mathrm{C}_{\mathrm{M}}(\mathrm{H}\right.$ linked to a strongly attractive group (5-[1.2-dithiole-3thione, one]-yl $\left.\left.)^{26}\right]+\mathrm{f}_{\mathrm{Br} \text { aromatic/aromatic }}\right)+\mathrm{f}_{\mathrm{CH}_{3}}-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}+\mathrm{C}_{\mathrm{M}}($ conjugation $), \log \mathrm{P}_{4 \mathrm{~b}}(\mathrm{Br}$ aromatic $)=3.968, \log \mathrm{P}_{4 \mathrm{~b}}(\mathrm{Br}$ aliphatic $)$ $=3.092$.

Fragmental lipophilic constant of imine fragment: Finally, we were interested in finding the value of $\mathrm{f}_{\mathrm{C}=\mathrm{N}}$, because dithiolethiones are aromatic compounds ${ }^{30}$.

We check the $\mathrm{f}_{\mathrm{C}=\mathrm{N}}$ in pyridin which is an aromatic compound. We applied the relation:

$$
\log \mathrm{P}_{\text {pyridin }}=\mathrm{f}_{\mathrm{C}=\mathrm{N}}+5 \mathrm{f}_{\mathrm{H}}+4 \mathrm{f}_{\mathrm{C}}+1 \mathrm{C}_{\mathrm{M}}=0.65^{29}
$$

We found $f_{C=N}=-1.029$

This value $\left[\mathrm{f}_{\mathrm{C}=\mathrm{N}}=-1.029\right]$ was entered in eqn. 1 for calcu- 213 lating $\log \mathrm{P}_{\text {(cal) }} 5$-phenyl-1.2-dithiole-3-(N-p-nitrophenyl 214 imine).

If we use the aliphatic fragment it is necessary to add 216 $1 \mathrm{C}_{\mathrm{M}}$ as a correction ${ }^{25}$.

$$
\begin{equation*}
\log \mathrm{P}_{(5 \text {-phenyl-1,2-dithiole-3-(N-p-nitrophenyl imine)) }}=2 \mathrm{f}_{\mathrm{S}}+\mathrm{f}_{\mathrm{H}}+2 \mathrm{f}_{\mathrm{C}} \tag{218}
\end{equation*}
$$

$+1 \mathrm{C}_{\mathrm{M}}$ cross conjugation $+\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}+\mathrm{f}_{\mathrm{C}=\mathrm{N}}+\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}-\mathrm{f}_{\mathrm{H}}+\mathrm{f}_{\mathrm{NO}_{2}}$ (1) 219
$\log \mathrm{P}_{(5 \text {-phenyl-1.2-dithiole-3-(N-p-nitrophenyl imine)) }}=3.373 \quad 220$
But the value of $\log \mathrm{P}_{(5 \text {-phenyl-1.2-ditithole-3 - (N-p--nitrophenyl imine)) }}$ ob- 221
tained by HPLC is $\log P_{\text {exp }}=3.31$.
The differences $(\Delta \log P)$ between $\log P_{\text {exp }}$ and calculated 223 data for 5-phenyl-1,2-dithiole-3- (N - p-nitrophenyl imine) ex- 224 ceed ± 0.063 is qualified as acceptable.

From experimental $\log \mathrm{P}_{\exp }$ (5-phenyl-1.2-dithiole-3-(N-p--nitrophenyl imine)) 226 and fragmental constants of Rekker we were calaculated the 227 new value of $\mathrm{f}_{\mathrm{C}=\mathrm{N}}$ according to these equation: 228
$\mathrm{f}_{\mathrm{C}=\mathrm{N}}=\log \mathrm{P}_{\exp }\left(5\right.$-phenyl-1.2-dititiole-3-(N-p-pitrophenyl imine)) $-2 \mathrm{f}_{\mathrm{S}}-\mathrm{f}_{\mathrm{H}}-2 \mathrm{f}_{\mathrm{C}}-1 \mathrm{C}_{\mathrm{M}} 229$ cross conjugation - $\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}-\mathrm{f}_{\mathrm{C}_{6} \mathrm{H}_{5}}-\mathrm{f}_{\mathrm{NO}_{5}}+\mathrm{f}_{\mathrm{H}}, \mathrm{f}_{\mathrm{C}=\mathrm{N}}=-1.092$. 230

This results is in agreement with the value $\mathrm{f}_{\mathrm{C}=\mathrm{N}}=-1.064231$ given by Liudmil Antonov et al. ${ }^{30}$ according to the equation: 232

$$
\mathrm{f}_{\mathrm{C}=\mathrm{N}}=\mathrm{f}_{\mathrm{CH}=\mathrm{N}}-\mathrm{f}_{\mathrm{H}}
$$

$\mathrm{f}_{\mathrm{C}=\mathrm{N}}=-0.86-0.204 \quad 234$
$\mathrm{f}_{\mathrm{C}=\mathrm{N}}=-1.064$

RESULTS AND DISCUSSION

Experimental and calculated $\log \mathrm{P}_{\mathrm{wo}}$ data obtained in this 236 study for derivatives 1a-1c are listed in the Table-2.

TABLE-2		
EXPERIMENTALLY DETERMINED AND CALCULATED $\log \mathrm{P}_{\mathrm{wo}}$		
Compound	$\log \mathrm{P}_{\text {exp }}$	$\log \mathrm{P}_{\text {cal }}$
1a	2.440, 2.450*	2.401
2a	3.230, 3.200*	3.278
3a	3.490, 3.700*	3.798
4a	3.820, 3.820*	3.348
5a	0.760	2.894
1b	2.560, 2.600*	2.518
2b	2.680, 3.290*	3.038
3b	2.700, 2.800*	$2.572_{\text {(al) }} / 3.448_{\text {(ar) }}$
4b	3.437, 3.420*	$3.092_{\text {(al) }} / 3.968_{\text {(ar) }}$
1c	3.310, 3.300*	3.373

*HPLC. All other values are obtained by UV-VIS.
Modeling and prediction: For the validation of correlation between the values $\log \mathrm{P}_{\text {exp }}$ and $\log \mathrm{P}_{\text {cal }}$, we use partial 239 least squares (PLS) model. The statistical parameters used to 240 assess the quality of the model is the prediction error sum of 241 squares (PRESS) of validation and finally the standard corre- 242 lation coefficients R^{231}.

$$
\begin{align*}
\text { PRESS } & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \tag{244}\\
R^{2} & =1-\left(\frac{\text { PRESS }}{\sum_{i=1}^{n}\left(\left(y_{i}-\bar{y}\right)^{2}\right)}\right)
\end{align*}
$$

In these equations, n is the number of compounds used 246 for cross-validation, \hat{y}_{i} and y_{i} represent the calculated and 247
the experimental value of the partition coefficient, respectively. PRESS $_{\text {cal }}$ is the prediction error sum of squares for all samples included in the model. One reasonable choice for the optimum number of factors would be that number which yielded the minimum PRESS value.

The Fisher test determine the significance of PRESS values whose F-ratio probability drops below 0.05 was selected as the optimum. Data were processed by an Eviews statistical package (Version 4 for Window). The results of all models built from PLS analysis are summarized in Table-3.

TABLE-3
CALCULATIONS OF STATISTICAL

Type of $\log \mathrm{P}_{\text {wo }}$	PRESS	Pro (Fisher- statistic)	Correlation coefficients R
$\log \mathrm{P}^{*}-\log \mathrm{P}_{\text {cal(Br aliphatic) }}$	0.31	0.0007	0.82
$\log \mathrm{P}-\log \mathrm{P}_{\text {cal(Br aromatic) }}$	0.53	0.0019	0.77
$\log \mathrm{P}-\log \mathrm{P}_{\text {cal(Br aliphatic) }}$	0.84	0.0210	0.55
$\log \mathrm{P}^{*}-\log \mathrm{P}_{\text {cal(Br aromatic) }}$	0.77	0.0194	0.56

$\log \mathrm{P} * \operatorname{and} \log \mathrm{P}$ (respectively were obtained by HPLC and UV-VIS).
Experimental $\log \mathrm{P}_{\text {wo }}$ data obtained in this study for derivatives $\mathbf{1 a - 1 \mathbf { c }}$ are listed in the Table-2 together with calculated data. For most of compounds, experimental values were obtained by both HPLC and spectrophotometry UV-VIS; their close coincidence unequivocally proves the validity of the experimental results.

As mentioned in the Introduction section, many approaches have already been developed for $\log \mathrm{P}$ calculation. Some of them offer results comparable to experimental measurement. As far as the cost is concerned, they are even superior. However, routine application of $\log \mathrm{P}$ calculation procedures demand a continuous check of their validity by comparing with experimental data.

The great majority of these calculations are quite close to the experimental data. The models are acceptable according to the probability of fisher at a significance 95% ($\mathrm{P}<5 \%$) and the correlation between $\log \mathrm{P}^{*}$ obtained by HPLC and $\log \mathrm{P}_{\text {cal }}$ (Br aliphatic) perform significantly better than the other models.

It must be noticed that when the fragmental f_{Br} aromatic value was used, the discrepancy between the experimental and calculated $\log \mathrm{P}_{\mathrm{wo}}$ was still higher than with the fragmental f_{Br} is aliphatic one. Also we inspected on the basis of (PRESS) values demonstrates that the correlation $\left[\log \mathrm{P}-\log \mathrm{P}_{\text {cal (Br aro- }}\right.$ matic) $]$ is superior to $\left[\log \mathrm{P}-\log \mathrm{P}_{\text {cal (Braliphatic) }}\right]$. However, we found that the (PRESS) of correlation between the experimental partition coefficient obtained by UV-VIS and calculated $\log \mathrm{P}$ is superior when we use the aliphatic value of bromine.

This finding reflects the importance of choice the type for the fragment (aromatic or aliphatic), since 1.2-dithiole-3thione are considered as aromatic compounds ${ }^{32}$, but Bortel et al., reported that these molecules contain a disulfide group forming, with three additional carbon atoms, an heterocyclic moiety displaying a weak aromatic character, with one carbonyl oxygen atom or one thio-carbonyl sulfura tom linked to one of the carbons of the dithiolic ring ${ }^{33}$.

Another possible explanation is that the value of $f_{B r}$ aromatic, might be overestimated. Indeed, a large difference between the value of $f_{B r}$ aromatic given in the Ref. ${ }^{25}$ and $f_{\text {Br }}$ aro-
matic $=0.86$ given in Ref. ${ }^{29}$. Also, the differences between 297 experiment and calculation $(\Delta \log \mathrm{P})$ exceeding ± 2.134 are 298 observed for compound 5a. Our results are insufficient be- 299 cause we have not the value of partition coefficient for 5a 300 obtained by HPLC.

In 4-aryldithiolethiones (ones): The comparison between 302 the 4-aryl-1.2-dithiole-3-thiones and 4-aryl-1.2-dithiole-3-ones 303 shows that the first are more lipophilic than the 4-aryl-1.2- 304 dithiole-3-ones; the explanation of this result as we propose 305 to its effect electronic attraction of the dithiolethiones and 306 dithiolones. The 5-dithiolethiones-yl group is very strongly 307 withdrawing group (as a nitro group) and the 5-dithiolones-yl 308 group is slightly less attractive ${ }^{26}$. Another character is affected 309 to the lipophilie is could be explained by considering the dif- 310 ference in hydrogen-bond capabilities of the water. The appli- 311 cation of the bond hydrogen theory is more affirmative to the 312 dithiolones that the dithiolethiones, it is demonstrated to com- 313 pound next one like Fig. 2 (3-oxo-1.2-dithiole-4-carboxylic acid) ${ }^{34}$.

Fig. 2. 3-Oxo-1.2-dithiole-4-carboxylic acid

These characteristics indicate that the dithiolethiones and 316
dithiolones nuclei and their respective substituents mutually 317 disturb their physicochemical behaviour including partitioning. 318

On the other hand, in 4-aryldithiolethiones, the aryl frag- 319 ment is not conjugated with the dithiole nucleus as shown by 320 molecular modeling ${ }^{8}$ (dihedral angle) 111° between aryl and 321 dithiole nuclei) and the aryl fragments have a normal 322 behaviour ${ }^{6}$.

In 5-aryldithiolethiones (4a, 5a): The hydrophilicity of 324 the 5a can be explained through the function of nitroso which 325 has a $f_{\mathrm{NO}}=-1^{16}$.
$\log \mathrm{P}(\mathbf{4 a})=3.82$ is very higher than the value of $\log \mathrm{P} 327$ (5a), we attributed this difference to the presence of a nitro- 328 gen or oxygen atom generally lowers the hydrophobicity ${ }^{36}$. 329

For 5-bromo 4-aryl-1.2-dithiole-3-one: We note an el- 330 evation of $\log \mathrm{P}_{\mathrm{wo}}$ according to the very high steric hindrance. 331 The effect of bromine in position 5 according to our semi- 332 empiric calculations, these calculations are achieved with the 333 help of the software MOPAC. The optimization of the geom- 334 etry of the compounds have been produced with the PM3 335 method which PM3 calculations provide a simple, efficient 336 and rapid methodology study of the structure of many mol- 337 ecules belonging to the same series ${ }^{24}$. Calculations give a the 338 (dihedral angle) torsion angle $\Phi: \mathrm{Br}^{2} \mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{C}_{3}=180^{\circ}$ at stable 339 conformation (low-energy) ${ }^{36}$. Therefore this result makes the 340 growth of lipophilicity by the effect of conjugation ${ }^{24}$. 341

Finally, we found $\mathrm{f}_{\mathrm{C}=\mathrm{N}}=-1.092$, in good agreement with 342 the value $\mathrm{f}_{\mathrm{C}=\mathrm{N}}=-1.064^{31}$. However, it is necessary to make 343 additional research in order to study an exact value of this 344 fragment.

Conclusion

Our analysis show experimental difficulties in the determination of $\log \mathrm{P}_{\mathrm{wo}}$ of dithiolethiones and their derivatives one of these difficulties arise from the fact that they are highly hydrophobobic.

The chemistry of dithiolethiones and dithiolones is, indeed, characterized by two main physico-chimical properties which may be born in mind: (i) they are aromatic compounds. (ii) the 3-thioxo-1.2-dithiole-5-yl group is a very strong elec-tron-withdrawing. These two properties are important for lipophilicity of dithiolethione derivatives. We use the PLS method which has been shown to be an useful and power full tool to allow the prediction of the properties not available yet in the literature for $\mathbf{3 b}$ and 4 b.

However, it is necessary to make additional research in order to study other physic-chemical properties and biological activities for quite different sets of molecules. Work on this field is presently being made in our laboratory.

REFERENCES

1. S. Barriga, Carlos F. Marcos, Ana G. Neo and T. Torroba, ARKIVOC., 212 (2002).
2. B.N. Halpern and O. Gaudin, Arch. Int. Pharmacodyn. Ther., 83, 49 (1950).
. J. Peter, O'Dwya et al., J. Clin. Cancer, 6, 4692 (2000).
3. B. Drukarch, J. Flier, C.A. Jongenelen, G. Andringa and A.N. Schoffelmeer, J. Neural Transm., 113, 593 (2005).
4. R. Dringen, B. Hamprecht, B. Drukarch and J. Naunyn-Schmiedeberg's, Arch. Pharmacol., 358, 616 (1998).
5. P. Boudevillex, M. Bona and J. Louis Burgot, J. Pharm. Sci., 85 (1996).
6. J. Ghasemi and S. Saaidpour, Anal. Chim. Acta, 604, 99 (2007).
7. M. Bona, P. Boudeville, O. Zekri, M.O. Christen and J.-L. Burgot, J. Pharm. Sci., 84, 1107 (1995).
8. F.A. de lima Ribeiro et M.M.C. Ferreira, J. Mol. Struct. (Theochem.), 633, 111 (2003).
9. A.J. Leo, Chem. Rev., 93, 1281 (1993).
10. R.F. Rekker, Elsevier, New York, NY (1977).
11. R.F. Rekker and R. Mannhold, VCH, Weinheim (1992).
12. C. Hansch and A. Leo, Wiley, New York, NY (1979).
13. A. Leo, Pergamon, Oxford, 4 (1990).
14. G. Klopman, J.-Y. Li, S. Wang and M. Dimayuga, J. Chem. Inf. Comp. Sci., 34, 752 (1994).
15. W.M. Meylan and P.H. Howard, J. Pharm. Sci., 84, 83 (1995).
16. T. Suzuki and Y. Kudo, J. Comp.-Aided Mol. Design, 4, 155 (1990).
17. P. Broto, G. Moreau and C. Vandycke, Eur. J. Med. Chem., 19, 71 (1984).
18. A.K. Ghose, A. Pritchett and G.M. Crippen, J. Comp. Chem., 9, 80 (1988).
19. T. Convard, J.-P. Dubost and H. Le Solleu, Quant. Struct.-Act. Rel., 13, 34 (1994).
20. G.E. Kellogg, S.F. Semus and D.J. Abraham, J. Comp.-Aided Mol. Design, 5, 545 (1991).
21. D.J. Abraham and G.E. Kellogg, J. Comp.-Aided Mol. Design, 8, 41 (1994).
22. M. Saidi, Ph. D. Thesis, University of Rennes I, France (1988).
23. M. Bona., Ph. D. Thesis, University of Rennes I, France (1995)
24. Pierre-Alain Carrupt, LCT Pharmacochimie (2007).
25. M.L. Abasq, M. Saidi, J.L. Burgot, A. Darchen, J. Organomet. Chem., 694, 36 (2009).
26. Brevet d'Invention, Fongicide à noyan 1,2-dithiolique, $\mathrm{N}^{\circ} 1.248 .186$ (1959).
27. C.D. Selassie, Burger's, 1, 18 (2003).
28. C. Hansh, J.A. Leo and D. Elkins, Chem. Rev., 71, 544 (1971).
29. L. Antonov, M. Walter, F. Fabian and Peter, J. Phys. Org. Chem., 18, 1169 (2005).
30. N. Goudarzi and M. Goudarzi, J. Braz. Chem. Soc., 21, 1776 (2010).
31. M. Bona, M.O. Christen and J.L. Burgot, Chem. Pharm. Bull., 43, 1894 (1995).
32. A. Bortel, B. Illien, P. Rajezy, I. Ledoux and J. Zyss, Theoretica Chim. Acta, 87, 176 (1993).
33. M. Chollet., Ph.D. Thesis, University of Rennes I, France (1997).
34. S. Blaidi, M. Laabassi, R. Grée and A. Botrel, J. Rev. Roum. Chim., 9 (2005).
35. Renxiaowang, Y. Gao and L. Lai, J. Perspect. Drug Discov. Design, 19, 47 (2000).
