Applied Mathematics Letters 22 (2009) 268-275

. . o . = Applied =
Contents lists available at ScienceDirect R e

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml BN

Multiple positive solutions for elliptic equations involving a concave
term and critical Sobolev-Hardy exponent

M. Bouchekif*, A. Matallah

Universite Aboubekr Belkaid Tlemcen, Algeria

ARTICLE INFO ABSTRACT

ArtiC{e history: In this paper, we establish the existence of multiple positive solutions for elliptic equations
Received 7 March 2007 involving a concave term and critical Sobolev-Hardy exponent.

Received in revised form 18 September © 2008 Elsevier Ltd. All rights reserved.
2007

Accepted 24 March 2008

Keywords:

Positive solutions

Variational methods

Concave term

Critical Sobolev-Hardy exponent
Singularity

1. Introduction

This paper deals with the existence and multiplicity of weak solutions to the following problem

w 2%(s)—1
—Au— —u=r0""4 in 2\{0} (a)
(P9 x| [x|* g
B lu >0 in 2\{0} (b)
u=20 onad £2 (c)

where 2 C RN (N > 3) isan open bounded domain with smooth boundary,0 € 2,0 < u < [t = (u)2 which is the best

2
constant in the Hardy inequality, 1 < g < 2,0 < s < 2,2%(s) = ZEVN_’ZS) is the so-called critical Sobolev-Hardy exponent
and A is a positive parameter.

We start by giving a brief historic.

Ambrosetti et al. [1] have studied problem (£ ). They proved that there exists A > 0 such that (J’o,o) has at least two
positive solutions for all A € (0, A). To obtain a first positive solution, they used sub-super solutions method and applied
the Mountain Pass Theorem to obtain a second positive solution.

Inthecaseq =2,s=0.1f0 < u < (%)2 — 4(N > 7), Cao and Peng [4] established a pair of sign-changing solutions
for problem (a)o—(c) with 0 < A < XAy, here A is the first eigenvalue of —A — ﬁ Subsequently, Cao and Han [3] proved

thatif0 < o < (%52)? — (%2)2 (N > 5), then, for all A > 0 there exists a nontrivial solution for problem (a)o—(c) with

N
critical level in the range (0, %S,f ). Relevant papers on this matter see [6,9-11].
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In the case © > 0 and s = 0, Chen [5] studied the asymptotic behavior of solutions by using Moser's iteration method,
and he gave the following existence results:

- Existence of a local minimizer of associated energy functional to (£, o), and

- Existence of a second positive solution by variational methods.

Thecase . = 0and 0 < s < 2, Kang et al. [12] proved that, for ¢ > 0 and 8 = /i@ — i, the functions

U, (x) = G with C. = (Z‘B(M_M)(N_S))ﬂ/(z_” (1.1)
‘ |x|VE-$B (g + |x|(275)ﬁ/~/l:’»)(N72)/(275) ‘ N ' ’
solve the equation
po_ O
—Au — WU = Tu n RN\{O},
and satisfy
U, (x)|? U.(x))*®
R
RN X RN X ’
with S, 5 is the best constant defined as
S (IVuP = 15 ) e
Spus = inf (1.3)

* 2\2%(s)
ueH} ($2)\{0} lu@)2*©
0 Jo M dx

[x[*

which is independent of £2.

A natural interesting question is whether the results concerning the solutions of (J’uo) remain true for (e‘/’ms). Borrowing
ideas from [5], we give a positive answer.

The main result of this paper is

Theorem 1. Suppose that 0 < u < & — 1and 0 < s < 2, then there exists A > 0 such that (,7’#.5) has at least two positive
solutions in H&(Q)for any A € (0, A).

This paper is organized as follows. In Section 2 we give some preliminaries. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

i (.(2 |x|‘dx), 1<p < +ooand -2 <t < 0, denote weighted Lebesgue Sobolev spaces with norm the | |, ; ; H(} (£2)

endowed with the norm |[u|| = (fQ |Vul? dx)% , B, denotes the ball of radius r centred at the origin and C denotes various
generic positive constants.
The following lemma is essentially due to Caffarelli et al. [2].

Lemma 1. Suppose that 0 <s < 2and0 < u < . Then forallu € H(}(.Q),

. 2 1 2
() [, pt?dx < ﬁfg |Vu|? dx
(ii) there exists a constant C > 0 such that

Jul>’®
dx<C | |Vul*dx.
5 <
2 Xl Q

For any p € [0, 1r) fixed, we consider H,,(§2) be the space H(} (£2) endowed with the following scalar product

w, v)=/ (w.w-ulurz)dx, Vi, v € Hu ().
Q X

In view of Lemma 1 (i), the induced norm

2 u? :
oty o= ([ (19 = s ) o)
2 x|

is equivalent to the standard norm ||u|| of H(} (£2).
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The corresponding energy functional to problem (£, ;) is defined by

1, A " W)
L) = 2 llully = A (uh)? 2*(5) |x|3 dx, ue€H,(2)

where u™ = max(u, 0).
From Lemma 1(ii), I, (u) is well defined and of class C' on H,(£2).
u € H,(£2) is said to be a weak solution of problem (£, ;) if

Ix? Ix*

" | (u )2 (s)—1
f (Vqu ——w—ruh)" v— v) dx =0, VYveH,(R),
2
and by the standard elliptic regularity argument, we have that u € C2(£2\{0}).

3. Proof of Theorem 1

The proof of Theorem 1 is given in two parts, we start by proving the existence of a first positive solution by using the
concentration-compactness method [13]. Moreover the second positive solution is given by applying the Mountain Pass
Theorem.

3.1. Existence of a first positive solution
In this subsection, we prove that there is A > 0 such that I, can achieve a local minimizer for any A € (0, A). In order to
check a local Palais-Smale condition, we use the concentration-compactness method. More precisely we have the following

result.

Lemma 2. There exists a constant C = C(N, £2, q, s) such that, for all sequence (u,) C H,, (§2) satisfying

2-5  N-s9/a-s) _
Li(uy) <c < 2N s)SM’S C(N, £2,q,5) (3.1)
and
I (u,) = 0 in (HH(.Q))/ (dual of H,,(2)). (3.2)

Then there exists a subsequence strongly convergent in H,, (§2).
Proof. From (3.1) and (3.2) we deduce that (u,) is bounded. Up to a subsequence if necessary, we have that

) up — u; in Hy, (2),

Yu, — u; in L' (£2),for1 <t <2*anda.ein £,
) up = uy in [2(£2, x| 72dx),
)

<

Using the concentration-compactness lemma of Lions and Sobolev-Hardy inequality we get a subsequence, still denoted by
(up) such that

12
(@) [Vunl? — 2l — dpe > |V P — 85 4+ 3 by,

* L1256
(b) frac|un|**® [x|* — dv = |“A‘L‘S + Z}.E] Viby;

2
(©) v <5, 1 forallj € ], where] is at most countable.

Thus we have the following consequence.

Claim 1. Either ;1; = 0 or u; > S\ >/®™ forallj e J.

Proof of claim. We assume that there exist some j € J such that u; # 0. Let ¢ > 0 and @ a cut-off function centred at x;
with
1 if < !
D(x) = i fx—x| < 5% and |Vo| <
0 if ]x — xj| >

™ [
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Then we get

0 = lim lim <I (up), <I>un>

e—>0n—o0

u? u2*(5)
lim lim / [Vu,|? qbdx—l—/ unVuanidx—,u/ —”qbdx—/ "—Sédx—A/ o dx
e>0n=00\ Jo 2 o X2 2 Xl 2

Z W=V

and by (c) we deduce that y; > S /%7,
S(N;S)/ (2—s)
PR .

Then as a conclusion p; = 0 or u; >
From (3.1) and (3.2) we have

1) = s e n) = 5=l = (¢ = ) [ e
P 2*() VT AN = T T \g 2@ ) e
Then, by Sobolev 1nequality, we find that

Btn) — ) 1) = ol = A~ = =) C gl

u —_— — - — .
B 2*()” YIS a2 q 2))
Thus there exists C := C(N, £2, q, s) such that

2—5 1 1
t2—x (7 — )aq > —C(N, £2,q,5))¥?9 vt > 0.

2(N —5s) q 2%(s)
If we assume that u; # 0 for somej € J, then
2—5s 2—5s 1 1
€2 oSO ) — A - - f (u;h)Idx
2(N—s) * 2(N —s) . g 22/ Je
S 275 n-s/ees _ C(N, 2. q, 20,
“2(N—s) **

which contradicts our assumption. Hence u, — uj,, as n goes to +o00, strongly in H,(£2). O

The geometry conditions of I, will be obtained after the following computations. Using the Sobolev and Sobolev-Hardy
inequalities, we obtain
b = ol — 2 g - zf( S Il
Let ||ull,, = p, then we have
L () > 1[02 — EPQ_ L
2 q 2*(s)
Hence we can choose pg and A such that, for A € (0, A), I, (u) is bounded from below in B, and I, (u) > r > 0 for

llull. = po.
Let @ € H,($2) such that ||@]|,, = 1. Then, for t > 0, we have
((p+)2*(s)

2 At?
I qﬁ_——— &1)dx
(@) /() -5 |

So there is ty such that for 0<t<tyl (td) < O. Then
I:= inf I (u) <O0.

u€Bp,

2%(s)

2 (s)

Lemma 2 implies that I, can achieves its minimum I at u;, i.e.I = I, (u,). Moreover u;, satisfies (£, ).

3.2. Existence of a second positive solution

To prove the existence of a second positive solution we need the following proposition.
Proposition 1. For any solutions u € C2 (2 \ {0}) of (P,.s) there exists a positive constant M such that
ux) = Mlx| - VIV,

hold for any x € B,, (0) \ {0} with p is sufficiently small.
Proof. The proof is similar to ([5], Proposition 3.1). O
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For fixed A € (0, A) we look for a second solution of (£, ;) in the form u = u, + v where uj is found in the previous
subsection and v > 0in §2 \ {0}. The corresponding equation for v becomes

_ 1 * (5)— * (5
—Av— oy = 0T T — ((uA +o) O Y 1). (3.3)
|x|? |x]s
Let us define
_ _ 1 2%(s)—1 2% (s)—1 .
A, + 0T —ul! —(u t —u ) ift >0,
gA(Xy t)= ( )\,+ ) A + |X|5 ( }L+ ) " -
0 if t <0,

v
Gy (x, v) =/ &.(x, t)dt,
0
and

1
3w = 5 101 = [ Gt o0
2

Lemma 3. v = 0is a local minimum of J, in H, (£2).
Proof. The proof is similar to the lemma 5.1 of the paper [5]. O

We recall that J; satisfies the (PS). condition if any sequence (v,) in H, (£2) such that J, (v,) — ¢ andj; (v,) — 0in
(H. (22)) asn — oo has a convergent subsequence.

2—s S(NfS)/(ZfS)_

Lemma 4. If v = 0 is the only critical point of |y, then J; satisfies the (PS). condition for any ¢ < c* = TN s

Proof. Let (v,) C H,(£2) be such that
2—s5s ’
(N=s)/(2=s) ; !
Jo(ug) — ¢ < msw and J, (vy) = 0 in (H, (2)) asn — oo,
then (v,) is bounded in H,, (£2).
Going if necessary to a subsequence, we may assume that

Up — v in H,(£2),
v, —> v inl'(R), for1 <t <2*andaein £2, (3.4)
v, —> v InIP(2, x| dx) for2 < p < 2%(s).

Moreover v is a critical point of J, in H,, (£2). From our hypothesis, we know that v = 0. Now we want to prove v, —> 0
strongly in H, (£2). From (3.4) and Ghoussoub-Yuan’s relation [8]:

2%(s

) *
u, + vt 2%(s) +12%(s)
/M dX—/ u, dX:/ %dx_*_o(]).
Q Q Q

[x[* |x* Ix]

We have

fous + ) = | (anvm + 00) = s U +vn>) dx+o(1)
2

x|
2%(s)—1
uy, + vt U, 25)—1
—f M W+ o) = —= (U o) | dx
o] I x|
) / [+ )7 w4+ v — ™ s+ ) | dx
2

2%(s)

+
:/ <|an|2—izvﬁ>dx—/ ) dx+o0(1) > 0 asn— oo.
7] x| o IxP

Thus we can assume that

1256
v
[vall, = b and @)
I3 s
e X

dx— b>0 whenn — oc.
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If b = 0, the proof is complete. If b # 0, we have from the definition of S, s that

2
W20\ FE
/(anlz—iv,zl)dxzsw /(U”S) )
2 |x|? o x|

(N=s)/(2—s)

and so that b > Sis . Then we get that
= Ji(vn) (1)—*1 l ||2_ ! (n) (S)d + o(1) —
c vp) + o % X+ o asn [e%e)
g 27" 25(s) Jo IXI°

(1o L Yps 278 cwesses
2 2%s)) T 2(N—s) M ’

which gives a contradiction. O
In the following, we shall give some estimates for the extremal functions defined in (1.1). Let
Ve = U, /C, and ¥ (x) € C5°(£2) such that

0<¥((x) <1,¥((x) = 1for|x| <p,¥(x) = O0for|x| >2p, pischosen as in Proposition 1.
Set

W (x)V. |2*(s) 1/2%(s)
ve(X) = (‘I’(X)Vs)/< gdx) }
Q

|x[*

By a straightforward computation one finds

2%(s)
[ve | N—2
Txp =1, [lvell?, = Sus +0( 7)),
and
r—JE N
0(s 25 ) if1<r<

NN
Jlﬁv+m

<r <2

K‘

/Ivglrdx= 0(c =5 [Ing|) ifr =
2

VEN—TVID)
0(e G-vin ) if

VE+VE =1
Lemma 5. Let c* be defined in Lemma 4, then we have that

sup J; (tv,) < c*.
t>0

Proof. From the elementary inequality [1]

(@+bP > +b +pa”'b, p>1,a,b>0,

we get
(v+)2*(s>—1 @*(5)-2)
g(X, ve) = e + (2°(s) — N E——],
Ix| x|
and
(256 (pF)2FO 2%(s) — 1)¢2 u(z*(s>—2)
G(x, tve) > (ve) (@7 — D iy (whH?2.

2%(s)  |x|° 2 x°

Since u;, (x) > M|x|‘(ﬁ”ﬁ‘“) > 0, on B, (0) \ {0} (result from Proposition 1)
thus
(2%()-2)

(2%(s) — UAIT > (2%(s) — DMF O2 x|~ (FO-D(EVI)+) > My > 0 onB,, (0) \ {0}.
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The function
t2
2
v = 5 el - / G, (tv)dx
2

becomes

tZ , tZ*(S) t2 ,
I(tve) < he(t) = 5 ”vs”p, - - 7M0/ Ust.
2

2*(s) 2
From
ho(t) =t <||v5||i — 7O Mo/ vﬁclx) )
2
We get
1/@*(9-2)
max h(t) = h(t,), where t, = (nvgn,i -y [ vgdx>
t> o
Thus
]L(tvs) =< h(ts)
2%(9)/(2%(5)-2)
1 1
= (5 - 2*(5)) <||vg||,i —Mofgugdx>
2-—s5 N—2 __N-=2
=7 SN/@9 4 (p25) —0(eCoVin)  if0<pu<—1
Z(N _ S) n,S + ( ) ( ) ,bL M
-S N—2 N-2
20 IN9/@9 4 (675) — 0(e @ |Ingl) if p=T— 1.
2(N —s5) 1s +(e25) = 0@ [Ingl) if p=T
Thus we get

supJy (tvy) < c*. O
>0

Proof (Proof of Theorem 1 Completed). From Lemma 3, v = 0 is a local minimizer of J, then there exists a sufficiently small
positive number p such that J,(v) > 0 for [lv||,, = . Since J,(tve) — —oo0 ast — oo, then there exists T > 0 such that
ITvell,, > » > 0andJ;(Tve) < 0. We defined

¢ == inf max J; (y(t)) where I' = {y € C([0, 1], H,(£2)), ¥ (0) = 0, (1) = Tu,}.
yel tel0,1]

For ¢ < c*, (PS). is satisfied by Lemma 4, then we conclude by Lemma 5 that

¢ < sup),(tTve) < supjy (tvy) < c*.
t>0 t>0

Then by applying the Mountain Pass theorem whenever ¢ > 0 and the Ghoussoub-Preiss version whenever ¢ = 0 see [7].
We obtain a nontrivial critical point v of J,. O
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