ELSEVIER

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev–Hardy exponent

M. Bouchekif*, A. Matallah

Universite Aboubekr Belkaid Tlemcen, Algeria

ARTICLE INFO

Article history: Received 7 March 2007 Received in revised form 18 September 2007 Accepted 24 March 2008

Keywords: Positive solutions Variational methods Concave term Critical Sobolev–Hardy exponent Singularity

1. Introduction

ABSTRACT

In this paper, we establish the existence of multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent.

© 2008 Elsevier Ltd. All rights reserved.

This paper deals with the existence and multiplicity of weak solutions to the following problem

$$(\mathcal{P}_{\mu,s}) \begin{cases} -\Delta u - \frac{\mu}{|x|^2} u = \lambda u^{q-1} + \frac{u^{2^*(s)-1}}{|x|^s} & \text{in } \Omega \setminus \{0\} \quad (a)_{\mu} \\ u > 0 & & \text{in } \Omega \setminus \{0\} \quad (b) \\ u = 0 & & \text{on } \partial \Omega \quad (c) \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ ($N \ge 3$) is an open bounded domain with smooth boundary, $0 \in \Omega$, $0 \le \mu < \overline{\mu} := \left(\frac{N-2}{2}\right)^2$ which is the best constant in the Hardy inequality, 1 < q < 2, $0 \le s < 2$, $2^*(s) = \frac{2(N-s)}{N-2}$ is the so-called critical Sobolev–Hardy exponent and λ is a positive parameter.

We start by giving a brief historic.

Ambrosetti et al. [1] have studied problem $(\mathcal{P}_{0,0})$. They proved that there exists $\Lambda > 0$ such that $(\mathcal{P}_{0,0})$ has at least two positive solutions for all $\lambda \in (0, \Lambda)$. To obtain a first positive solution, they used sub-super solutions method and applied the Mountain Pass Theorem to obtain a second positive solution.

In the case q = 2, s = 0. If $0 \le \mu < (\frac{N-2}{2})^2 - 4(N \ge 7)$, Cao and Peng [4] established a pair of sign-changing solutions for problem (a)₀-(c) with $0 < \lambda < \lambda_1$, here λ_1 is the first eigenvalue of $-\Delta - \frac{\mu}{|x|^2}$. Subsequently, Cao and Han [3] proved that if $0 \le \mu < (\frac{N-2}{2})^2 - (\frac{N+2}{N})^2$ ($N \ge 5$), then, for all $\lambda > 0$ there exists a nontrivial solution for problem (a)₀-(c) with critical level in the range (0, $\frac{1}{N}S_{\mu}^{\frac{N}{2}}$). Relevant papers on this matter see [6,9–11].

^{*} Corresponding address: Université Aboubekr Belkaid Tlemcen, B.P. 119 Faubourg Pasteur, 13000 Tlemcen, Algérie. Tel.: +213 43286480; fax: +213 43286480.

E-mail addresses: m_bouchekif@mail.univ-tlemcen.dz (M. Bouchekif), atika_matallah@yahoo.fr (A. Matallah).

^{0893-9659/\$ –} see front matter 0 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2008.03.024

In the case $\mu > 0$ and s = 0, Chen [5] studied the asymptotic behavior of solutions by using Moser's iteration method, and he gave the following existence results:

- Existence of a local minimizer of associated energy functional to $(\mathcal{P}_{\mu,0})$, and

- Existence of a second positive solution by variational methods.

The case $\lambda = 0$ and 0 < s < 2, Kang et al. [12] proved that, for $\varepsilon > 0$ and $\beta = \sqrt{\overline{\mu} - \mu}$, the functions

$$U_{\varepsilon}(x) = \frac{C_{\varepsilon}}{|x|^{\sqrt{\mu}-\beta} \left(\varepsilon + |x|^{(2-s)\beta/\sqrt{\mu}}\right)^{(N-2)/(2-s)}} \quad \text{with } C_{\varepsilon} = \left(\frac{2\varepsilon(\overline{\mu}-\mu)(N-s)}{\sqrt{\mu}}\right)^{\sqrt{\mu}/(2-s)}, \tag{1.1}$$

solve the equation

$$-\Delta u - \frac{\mu}{|x|^2}u = \frac{|u|^{2^*(s)-2}}{|x|^s}u \quad \text{in } \mathbb{R}^N \setminus \{0\},$$

and satisfy

$$\int_{\mathbb{R}^{N}} \left(|\nabla U_{\varepsilon}|^{2} - \mu \frac{|U_{\varepsilon}(x)|^{2}}{|x|^{2}} \right) \mathrm{d}x = \int_{\mathbb{R}^{N}} \frac{|U_{\varepsilon}(x)|^{2^{*}(s)}}{|x|^{s}} \mathrm{d}x = S_{\mu,s}^{(N-s)/(2-s)}, \tag{1.2}$$

with $S_{\mu,s}$ is the best constant defined as

$$S_{\mu,s} := \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \left(|\nabla u|^2 - \mu \frac{u^2}{|\mathsf{x}|^2} \right) d\mathsf{x}}{\left(\int_{\Omega} \frac{|u(\mathsf{x})|^{2^*(s)}}{|\mathsf{x}|^s} d\mathsf{x} \right)^{2 \setminus 2^*(s)}}$$
(1.3)

which is independent of Ω .

A natural interesting question is whether the results concerning the solutions of $(\mathcal{P}_{\mu,0})$ remain true for $(\mathcal{P}_{\mu,s})$. Borrowing ideas from [5], we give a positive answer.

The main result of this paper is

Theorem 1. Suppose that $0 \le \mu < \overline{\mu} - 1$ and $0 \le s < 2$, then there exists $\Lambda > 0$ such that $(\mathcal{P}_{\mu,s})$ has at least two positive solutions in $H_0^1(\Omega)$ for any $\lambda \in (0, \Lambda)$.

This paper is organized as follows. In Section 2 we give some preliminaries. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

 $L^p(\Omega, |x|^t dx), 1 \le p < +\infty$ and $-2 \le t < 0$, denote weighted Lebesgue Sobolev spaces with norm the $|_{\cdot|_{p,t}}; H_0^1(\Omega)$ endowed with the norm $||u|| = (\int_{\Omega} |\nabla u|^2 dx)^{\frac{1}{2}}, B_r$ denotes the ball of radius r centred at the origin and C denotes various generic positive constants.

The following lemma is essentially due to Caffarelli et al. [2].

Lemma 1. Suppose that $0 \le s < 2$ and $0 \le \mu < \overline{\mu}$. Then for all $u \in H_0^1(\Omega)$,

(i) $\int_{\Omega} \frac{u^2}{|x|^2} dx \le \frac{1}{\overline{\mu}} \int_{\Omega} |\nabla u|^2 dx$ (ii) there exists a constant C > 0

(ii) there exists a constant C > 0 such that

$$\int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s} \mathrm{d}x \leq C \int_{\Omega} |\nabla u|^2 \,\mathrm{d}x.$$

For any $\mu \in [0, \overline{\mu})$ fixed, we consider $H_{\mu}(\Omega)$ be the space $H_0^1(\Omega)$ endowed with the following scalar product

$$\langle u, v \rangle = \int_{\Omega} \left(\nabla u . \nabla v - \mu \frac{uv}{|x|^2} \right) \mathrm{d}x, \quad \forall u, v \in H_{\mu}(\Omega).$$

In view of Lemma 1 (i), the induced norm

$$\|u\|_{\mu} \coloneqq \left(\int_{\Omega} \left(|\nabla u|^2 - \mu \frac{u^2}{|x|^2}\right) \mathrm{d}x\right)^{\frac{1}{2}}$$

is equivalent to the standard norm ||u|| of $H_0^1(\Omega)$.

The corresponding energy functional to problem $(\mathcal{P}_{\mu,s})$ is defined by

$$I_{\lambda}(u) = \frac{1}{2} \|u\|_{\mu}^{2} - \frac{\lambda}{q} \int_{\Omega} (u^{+})^{q} dx - \frac{1}{2^{*}(s)} \int_{\Omega} \frac{(u^{+})^{2^{*}(s)}}{|x|^{s}} dx, \quad u \in H_{\mu}(\Omega)$$

where $u^+ = \max(u, 0)$.

From Lemma 1(ii), $I_{\lambda}(u)$ is well defined and of class C^1 on $H_{\mu}(\Omega)$. $u \in H_{\mu}(\Omega)$ is said to be a weak solution of problem $(\mathcal{P}_{\mu,s})$ if

$$\int_{\Omega} \left(\nabla u \nabla v - \frac{\mu}{|x|^2} uv - \lambda \left(u^+ \right)^{q-1} v - \frac{\left(u^+ \right)^{2^*(s)-1}}{|x|^s} v \right) \mathrm{d}x = 0, \quad \forall v \in H_{\mu}(\Omega),$$

and by the standard elliptic regularity argument, we have that $u \in C^2(\Omega \setminus \{0\})$.

3. Proof of Theorem 1

The proof of Theorem 1 is given in two parts, we start by proving the existence of a first positive solution by using the concentration-compactness method [13]. Moreover the second positive solution is given by applying the Mountain Pass Theorem.

3.1. Existence of a first positive solution

In this subsection, we prove that there is $\Lambda > 0$ such that I_{λ} can achieve a local minimizer for any $\lambda \in (0, \Lambda)$. In order to check a local Palais–Smale condition, we use the concentration-compactness method. More precisely we have the following result.

Lemma 2. There exists a constant $C = C(N, \Omega, q, s)$ such that, for all sequence $(u_n) \subset H_{\mu}(\Omega)$ satisfying

$$I_{\lambda}(u_n) \le c < \frac{2-s}{2(N-s)} S_{\mu,s}^{(N-s)/(2-s)} - C(N, \Omega, q, s)$$
(3.1)

and

$$I'_{\lambda}(u_n) \to 0 \quad \text{in } (H_{\mu}(\Omega))' (\text{dual of } H_{\mu}(\Omega)).$$
(3.2)

Then there exists a subsequence strongly convergent in $H_{\mu}(\Omega)$.

Proof. From (3.1) and (3.2) we deduce that (u_n) is bounded. Up to a subsequence if necessary, we have that

 $\begin{array}{l} (1) \ u_n \rightharpoonup u_\lambda \ \text{in} \ H_\mu \left(\Omega \right), \\ (2) \ u_n \rightarrow u_\lambda \quad \text{in} \ L^t \left(\Omega \right), \text{for} \ 1 \leq t < 2^* \ \text{and} \ \text{a.e in} \ \Omega, \\ (3) \ u_n \rightharpoonup u_\lambda \ \text{in} \ L^2 \left(\Omega, \ |x|^{-2} dx \right), \\ (4) \ u_n \rightharpoonup u_\lambda \ \text{in} \ L^{2^*(s)} \left(\Omega, \ |x|^{-s} dx \right). \end{array}$

Using the concentration-compactness lemma of Lions and Sobolev–Hardy inequality we get a subsequence, still denoted by (u_n) such that

(a)
$$|\nabla u_n|^2 - \mu \frac{|u_n|^2}{|x|^2} \rightarrow d\mu \ge |\nabla u_\lambda|^2 - \mu \frac{|u_\lambda|^2}{|x|^2} + \sum_{j \in J} \mu_j \delta_{x_j},$$

(b) $frac |u_n|^{2^*(s)} |x|^s \rightarrow d\nu = \frac{|u_\lambda|^{2^*(s)}}{|x|^s} + \sum_{j \in J} \nu_j \delta_{x_j},$

(c) $v_j^{\frac{2}{2}(s)} \leq S_{\mu,s}^{-1} \mu_j$ for all $j \in J$, where J is at most countable.

Thus we have the following consequence.

Claim 1. Either
$$\mu_j = 0$$
 or $\mu_j \ge S_{\mu,s}^{(N-s)/(2-s)}$ for all $j \in J$.

Proof of claim. We assume that there exist some $j \in J$ such that $\mu_j \neq 0$. Let $\varepsilon > 0$ and Φ a cut-off function centred at x_j with

$$\Phi(x) = \begin{cases} 1 & \text{if } |x - x_j| \le \frac{1}{2}\varepsilon, \\ 0 & \text{if } |x - x_j| \ge \varepsilon, \end{cases} \text{ and } |\nabla \Phi| \le \frac{4}{\varepsilon}.$$

Then we get

$$0 = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \left\langle I_{\lambda}'(u_n), \Phi u_n \right\rangle$$

=
$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \left(\int_{\Omega} |\nabla u_n|^2 \Phi dx + \int_{\Omega} u_n \nabla u_n \nabla \Phi dx - \mu \int_{\Omega} \frac{u_n^2}{|x|^2} \Phi dx - \int_{\Omega} \frac{u_n^{2^*(s)}}{|x|^s} \Phi dx - \lambda \int_{\Omega} u_n^q \Phi dx \right)$$

\ge \mu_j - \nu_j.

and by (c) we deduce that $\mu_j \ge S_{\mu,s}^{(N-s)/(2-s)}$. Then as a conclusion $\mu_j = 0$ or $\mu_j \ge S_{\mu,s}^{(N-s)/(2-s)}$. From (3.1) and (3.2) we have

$$I_{\lambda}(u_n) - \frac{1}{2^*(s)}(I_{\lambda}'(u_n), u_n) = \frac{2-s}{2(N-s)} \|u_n\|_{\mu}^2 - \lambda \left(\frac{1}{q} - \frac{1}{2^*(s)}\right) \int_{\Omega} (u_n^+)^q dx$$

Then, by Sobolev inequality, we find that

$$I_{\lambda}(u_n) - \frac{1}{2^*(s)}(I_{\lambda}'(u_n), u_n) \geq \frac{2-s}{2(N-s)} \|u_n\|_{\mu}^2 - \lambda\left(\frac{1}{q} - \frac{1}{2^*(s)}\right) C \|u_n\|_{\mu}^q.$$

Thus there exists $C := C(N, \Omega, q, s)$ such that

$$\frac{2-s}{2(N-s)}t^2 - \lambda\left(\frac{1}{q} - \frac{1}{2^*(s)}\right)Ct^q \ge -C(N, \Omega, q, s)\lambda^{2/(2-q)} \quad \forall t \ge 0.$$

If we assume that $\mu_j \neq 0$ for some $j \in J$, then

$$c \geq \frac{2-s}{2(N-s)} S_{\mu,s}^{(N-s)/(2-s)} + \frac{2-s}{2(N-s)} \|u_{\lambda}\|_{\mu}^{2} - \lambda \left(\frac{1}{q} - \frac{1}{2^{*}(s)}\right) \int_{\Omega} (u_{\lambda}^{+})^{q} dx$$

$$\geq \frac{2-s}{2(N-s)} S_{\mu,s}^{(N-s)/(2-s)} - C(N, \Omega, q, s) \lambda^{2/(2-q)},$$

which contradicts our assumption. Hence $u_n \to u_\lambda$, as *n* goes to $+\infty$, strongly in $H_\mu(\Omega)$. \Box

The geometry conditions of I_{λ} will be obtained after the following computations. Using the Sobolev and Sobolev–Hardy inequalities, we obtain

$$I_{\lambda}(u) \geq rac{1}{2} \|u\|_{\mu}^2 - rac{\lambda C}{q} \|u\|_{\mu}^q - rac{C}{2^*(s)} \|u\|_{\mu}^{2^*(s)},$$

Let $||u||_{\mu} = \rho$, then we have

$$I_{\lambda}(u) \geq \frac{1}{2}\rho^2 - \frac{\lambda C}{q}\rho^q - \frac{C}{2^*(s)}\rho^{2^*(s)}.$$

Hence we can choose ρ_0 and Λ such that, for $\lambda \in (0, \Lambda), I_{\lambda}(u)$ is bounded from below in B_{ρ_0} and $I_{\lambda}(u) \geq r > 0$ for $||u||_{\mu} = \rho_0.$

Let $\Phi \in H_{\mu}(\Omega)$ such that $\|\Phi\|_{\mu} = 1$. Then, for t > 0, we have

$$I_{\lambda}(t\Phi) = \frac{t^2}{2} - \frac{\lambda t^q}{q} \int_{\Omega} (\Phi^+)^q dx - \frac{t^{2^*(s)}}{2^*(s)} \int_{\Omega} \frac{(\Phi^+)^{2^*(s)}}{|x|^s} dx.$$

So there is t_0 such that for $0 < t < t_0$, $I_{\lambda}(t\Phi) < 0$. Then

$$I := \inf_{u \in B_{\rho_0}} I_{\lambda}(u) < 0.$$

Lemma 2 implies that I_{λ} can achieve its minimum I at u_{λ} , i.e. $I = I_{\lambda} (u_{\lambda})$. Moreover u_{λ} satisfies $(\mathcal{P}_{\mu,s})$.

3.2. Existence of a second positive solution

To prove the existence of a second positive solution we need the following proposition.

Proposition 1. For any solutions $u \in C^2(\Omega \setminus \{0\})$ of $(\mathcal{P}_{\mu,s})$ there exists a positive constant M such that

$$u(x) > M|x|^{-(\sqrt{\mu}-\sqrt{\mu}-\mu)},$$

hold for any $x \in B_{\rho}(0) \setminus \{0\}$ with ρ is sufficiently small.

Proof. The proof is similar to ([5], Proposition 3.1). \Box

For fixed $\lambda \in (0, \Lambda)$ we look for a second solution of $(\mathcal{P}_{\mu,s})$ in the form $u = u_{\lambda} + v$ where u_{λ} is found in the previous subsection and v > 0 in $\Omega \setminus \{0\}$. The corresponding equation for v becomes

$$-\Delta v - \frac{\mu}{|\mathbf{x}|^2} v = \lambda (u_{\lambda} + v)^{q-1} - \lambda u_{\lambda}^{q-1} + \frac{1}{|\mathbf{x}|^s} \left((u_{\lambda} + v)^{2^{*(s)-1}} - u_{\lambda}^{2^{*(s)-1}} \right).$$
(3.3)

Let us define

$$g_{\lambda}(x,t) = \begin{cases} \lambda(u_{\lambda}+t)^{q-1} - \lambda u_{\lambda}^{q-1} + \frac{1}{|x|^{s}} \left((u_{\lambda}+t)^{2^{*}(s)-1} - u_{\lambda}^{2^{*}(s)-1} \right) & \text{if } t \ge 0, \\ 0 & \text{if } t < 0 \end{cases}$$
$$G_{\lambda}(x,v) = \int_{0}^{v} g_{\lambda}(x,t) dt,$$

and

$$J_{\lambda}(v) = \frac{1}{2} \|v\|_{\mu}^{2} - \int_{\Omega} G_{\lambda}(x, v^{+}(x)) dx.$$

Lemma 3. v = 0 is a local minimum of J_{λ} in $H_{\mu}(\Omega)$.

Proof. The proof is similar to the lemma 5.1 of the paper [5]. \Box

We recall that J_{λ} satisfies the $(PS)_c$ condition if any sequence (v_n) in $H_{\mu}(\Omega)$ such that $J_{\lambda}(v_n) \longrightarrow c$ and $J'_{\lambda}(v_n) \longrightarrow 0$ in $(H_{\mu}(\Omega))'$ as $n \to \infty$ has a convergent subsequence.

Lemma 4. If v = 0 is the only critical point of J_{λ} , then J_{λ} satisfies the (PS)_c condition for any $c < c^* = \frac{2-s}{2(N-s)}S_{\mu,s}^{(N-s)/(2-s)}$.

Proof. Let $(v_n) \subset H_\mu(\Omega)$ be such that

$$J_{\lambda}(v_n) \longrightarrow c < \frac{2-s}{2(N-s)} S_{\mu,s}^{(N-s)/(2-s)} \quad \text{and} \quad J_{\lambda}'(v_n) \to 0 \text{ in } \left(H_{\mu}(\Omega)\right)' \text{ as } n \to \infty,$$

then (v_n) is bounded in $H_{\mu}(\Omega)$.

Going if necessary to a subsequence, we may assume that

$$\begin{array}{ll} v_n \to v & \text{ in } H_{\mu}(\Omega), \\ v_n \to v & \text{ in } L^t(\Omega), \text{ for } 1 < t < 2^* \text{ and a.e in } \Omega, \\ v_n \to v & \text{ in } L^p(\Omega, |x|^{-s} \mathrm{d}x) \text{ for } 2 \le p < 2^*(s). \end{array}$$

$$(3.4)$$

Moreover v is a critical point of J_{λ} in $H_{\mu}(\Omega)$. From our hypothesis, we know that v = 0. Now we want to prove $v_n \rightarrow 0$ strongly in $H_{\mu}(\Omega)$. From (3.4) and Ghoussoub–Yuan's relation [8]:

$$\int_{\Omega} \frac{(u_{\lambda} + v_{n}^{+})}{|x|^{s}} dx - \int_{\Omega} \frac{u_{\lambda}^{2^{*}(s)}}{|x|^{s}} dx = \int_{\Omega} \frac{(v_{n}^{+})^{2^{*}(s)}}{|x|^{s}} dx + o(1)$$

We have

$$\begin{split} \left\langle J_{\lambda}^{'}(v_{n}), u_{\lambda} + v_{n} \right\rangle &= \int_{\Omega} \left(\nabla v_{n} \nabla (u_{\lambda} + v_{n}) - \frac{\mu}{|\mathbf{x}|^{2}} v_{n} (u_{\lambda} + v_{n}) \right) d\mathbf{x} + o(1) \\ &- \int_{\Omega} \left[\frac{\left(u_{\lambda} + v_{n}^{+}\right)^{2^{*}(s)-1}}{|\mathbf{x}|^{s}} (u_{\lambda} + v_{n}) - \frac{u_{\lambda}}{|\mathbf{x}|^{s}}^{2^{*}(s)-1} (u_{\lambda} + v_{n}) \right] d\mathbf{x} \\ &- \lambda \int_{\Omega} \left[(u_{\lambda} + v_{n}^{+})^{q-1} (u_{\lambda} + v_{n}) - u_{\lambda}^{q-1} (u_{\lambda} + v_{n}) \right] d\mathbf{x} \\ &= \int_{\Omega} \left(|\nabla v_{n}|^{2} - \frac{\mu}{|\mathbf{x}|^{2}} v_{n}^{2} \right) d\mathbf{x} - \int_{\Omega} \frac{\left(v_{n}^{+}\right)^{2^{*}(s)}}{|\mathbf{x}|^{s}} d\mathbf{x} + o(1) \to 0 \quad \text{as } n \to \infty. \end{split}$$

Thus we can assume that

$$\|v_n\|_{\mu}^2 \to b$$
 and $\int_{\Omega} \frac{(v_n^+)^{2^*(s)}}{|x|^s} \mathrm{d}x \to b \ge 0$ when $n \to \infty$.

If b = 0, the proof is complete. If $b \neq 0$, we have from the definition of $S_{\mu,s}$ that

$$\int_{\Omega} \left(|\nabla v_n|^2 - \frac{\mu}{|x|^2} v_n^2 \right) \mathrm{d}x \ge S_{\mu,s} \left(\int_{\Omega} \frac{\left(v_n^+ \right)^{2^*(s)}}{|x|^s} \mathrm{d}x \right)^{\frac{2}{2^*(s)}},$$

and so that $b \ge S_{\mu,s}^{(N-s)/(2-s)}$. Then we get that

$$c = J_{\lambda}(v_n) + o(1) = \frac{1}{2} \|v_n\|_{\mu}^2 - \frac{1}{2^*(s)} \int_{\Omega} \frac{(v_n^+)^{2^*(s)}}{|x|^s} dx + o(1) \quad \text{as } n \to \infty$$
$$= \left(\frac{1}{2} - \frac{1}{2^*(s)}\right) b \ge \frac{2-s}{2(N-s)} S_{\mu,s}^{(N-s)/(2-s)},$$

which gives a contradiction. \Box

In the following, we shall give some estimates for the extremal functions defined in (1.1). Let

.

 $V_{\varepsilon} = U_{\varepsilon}/C_{\varepsilon}$ and $\Psi(x) \in C_0^{\infty}(\Omega)$ such that

 $0 \le \Psi(x) \le 1$, $\Psi(x) = 1$ for $|x| \le \rho$, $\Psi(x) = 0$ for $|x| \ge 2\rho$, ρ is chosen as in Proposition 1. Set

$$v_{\varepsilon}(x) = \left(\Psi(x)V_{\varepsilon}\right) \left/ \left(\int_{\Omega} \frac{\left|\Psi(x)V_{\varepsilon}\right|^{2^{*}(s)}}{|x|^{s}} \mathrm{d}x\right)^{1/2^{*}(s)}$$

By a straightforward computation one finds

$$\int_{\Omega} \frac{|v_{\varepsilon}|^{2^{*(s)}}}{|x|^{s}} = 1, \ \|v_{\varepsilon}\|_{\mu}^{2} = S_{\mu,s} + 0(\varepsilon^{\frac{N-2}{2-s}}),$$

and

$$\int_{\Omega} |v_{\varepsilon}|^{r} dx = \begin{cases} 0(\varepsilon^{\frac{r-\sqrt{\mu}}{2-s}}) & \text{if } 1 < r < \frac{N}{\sqrt{\mu} + \sqrt{\mu} - \mu} \\ 0(\varepsilon^{\frac{r-\sqrt{\mu}}{2-s}} |\ln \varepsilon|) & \text{if } r = \frac{N}{\sqrt{\mu} + \sqrt{\mu} - \mu} \\ 0(\varepsilon^{\frac{\sqrt{\mu}(N-r\sqrt{\mu})}{(2-s)\sqrt{\mu} - \mu}}) & \text{if } \frac{N}{\sqrt{\mu} + \sqrt{\mu} - \mu} < r < 2^{*}. \end{cases}$$

Lemma 5. Let c^* be defined in Lemma 4, then we have that

$$\sup_{t\geq 0}J_{\lambda}(tv_{\varepsilon}) < c^*.$$

Proof. From the elementary inequality [1]

$$(a+b)^p \ge a^p + b^p + p a^{p-1}b, \quad p > 1, a, b \ge 0,$$

we get

$$g(x, v_{\varepsilon}) \geq \frac{\left(v_{\varepsilon}^{+}\right)^{2^{*}(s)-1}}{|x|^{s}} + (2^{*}(s)-1)\frac{u_{\lambda}^{(2^{*}(s)-2)}}{|x|^{s}}v_{\varepsilon}^{+},$$

and

$$G(x,tv_{\varepsilon}) \geq \frac{t^{2^{*}(s)}}{2^{*}(s)} \frac{(v_{\varepsilon}^{+})^{2^{*}(s)}}{|x|^{s}} + \frac{(2^{*}(s)-1)t^{2}}{2} \frac{u_{\lambda}^{(2^{*}(s)-2)}}{|x|^{s}} (v_{\varepsilon}^{+})^{2}.$$

Since $u_{\lambda}(x) \ge M|x|^{-(\sqrt{\mu}-\sqrt{\mu}-\mu)} > 0$, on $B_{\rho_0}(0) \setminus \{0\}$ (result from Proposition 1) thus

$$(2^*(s)-1)\frac{u_{\lambda}^{(2^*(s)-2)}}{|x|^s} \ge (2^*(s)-1)M^{2^*(s)-2}|x|^{-((2^*(s)-2)(\sqrt{\mu}-\sqrt{\mu}-\mu)+s)} \ge M_0 > 0 \quad \text{on } B_{\rho_0}(0) \setminus \{0\}.$$

The function

$$J_{\lambda}(tv_{\varepsilon}) = \frac{t^2}{2} \|v_{\varepsilon}\|_{\mu}^2 - \int_{\Omega} G_{\lambda}(tv_{\varepsilon}) \mathrm{d}x$$

becomes

$$M_{\lambda}(tv_{\varepsilon}) \leq h_{\varepsilon}(t) = rac{t^2}{2} \|v_{\varepsilon}\|_{\mu}^2 - rac{t^{2^{r}(s)}}{2^{*}(s)} - rac{t^2}{2} M_0 \int_{\Omega} v_{\varepsilon}^2 \mathrm{d}x.$$

From

$$h_{\varepsilon}'(t) = t\left(\|v_{\varepsilon}\|_{\mu}^2 - t^{2^*(s)-2} - M_0 \int_{\Omega} v_{\varepsilon}^2 \mathrm{d}x\right).$$

We get

$$\max_{t\geq 0} h(t) = h(t_{\varepsilon}), \text{ where } t_{\varepsilon} = \left(\|v_{\varepsilon}\|_{\mu}^2 - M_0 \int_{\Omega} v_{\varepsilon}^2 dx \right)^{1/(2^*(s)-2)}$$

Thus

$$\begin{aligned} J_{\lambda}(tv_{\varepsilon}) &\leq h(t_{\varepsilon}) \\ &= \left(\frac{1}{2} - \frac{1}{2^{*}(s)}\right) \left(\|v_{\varepsilon}\|_{\mu}^{2} - M_{0} \int_{\Omega} v_{\varepsilon}^{2} dx \right)^{2^{*}(s)/(2^{*}(s)-2)} \\ &= \begin{cases} \frac{2 - s}{2(N-s)} S_{\mu,s}^{(N-s)/(2-s)} + (\varepsilon^{\frac{N-2}{2-s}}) - 0(\varepsilon^{\frac{N-2}{(2-s)\sqrt{\mu-\mu}}}) & \text{if } 0 < \mu < \overline{\mu} - 1 \\ \frac{2 - s}{2(N-s)} S_{\mu,s}^{(N-s)/(2-s)} + (\varepsilon^{\frac{N-2}{2-s}}) - 0(\varepsilon^{\frac{N-2}{(2-s)}} \|\ln\varepsilon\|) & \text{if } \mu = \overline{\mu} - 1. \end{cases} \end{aligned}$$

Thus we get

$$\sup_{t\geq 0}J_{\lambda}(tv_{\varepsilon}) < c^*. \quad \Box$$

Proof (*Proof of* Theorem 1 *Completed*). From Lemma 3, v = 0 is a local minimizer of J_{λ} then there exists a sufficiently small positive number $\overline{\rho}$ such that $J_{\lambda}(v) > 0$ for $||v||_{\mu} = \overline{\rho}$. Since $J_{\lambda}(tv_{\varepsilon}) \to -\infty$ as $t \to \infty$, then there exists T > 0 such that $||Tv_{\varepsilon}||_{\mu} > \overline{\rho} > 0$ and $J_{\lambda}(Tv_{\varepsilon}) < 0$. We defined

 $c := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J_{\lambda}(\gamma(t)) \quad \text{where } \Gamma = \left\{ \gamma \in C([0,1], H_{\mu}(\Omega)), \gamma(0) = 0, \gamma(1) = Tu_{\varepsilon} \right\}.$

For $c < c^*$, $(PS)_c$ is satisfied by Lemma 4, then we conclude by Lemma 5 that

$$c \leq \sup_{t\geq 0} J_{\lambda}(tTv_{\varepsilon}) \leq \sup_{t\geq 0} J_{\lambda}(tv_{\varepsilon}) < c^*$$

Then by applying the Mountain Pass theorem whenever c > 0 and the Ghoussoub–Preiss version whenever c = 0 see [7]. We obtain a nontrivial critical point v of J_{λ} . \Box

Acknowledgement

The authors thank the anonymous referee for carefully reading this paper and suggesting many useful comments.

References

- [1] A. Ambrosetti, H. Brézis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519–543.
- [2] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequality with weights, Compos. Math. 53 (1984) 259–275.
- [3] D. Cao, P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations 205 (2004) 521–537.
- [4] D. Cao, S. Peng, A not on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations 193 (2003)
 - 424–434.
- [5] J. Chen, Multiple positive solutions for a class of nonlinear elliptic equations, J. Math. Anal. Appl. 295 (2004) 341–354.
- [6] A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations 177 (2001) 494-522.
 [7] N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 321-330.
- [8] N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000) 5703–5743.

274

- [9] P. Han, Asymptotic behavior of solutions to semilinear elliptic equations with Hardy potential, Proc. Amer. Math. Soc. 135 (2007) 365–372.
 [10] P. Han, Multiple solutions to singular critical elliptic equations, Israel J. Math. 156 (2006) 359–380.
 [11] P. Han, Z. Liu, The sign-changing solutions for singular critical growth semilinear elliptic equations with a weight, Differential Integral Equations 17 (2004) 835-848.
- [12] D. Kang, S. Peng, Positive solutions for elliptic equations with critical Sobolev–Hardy exponents, Appl. Math. Lett. 17 (2004) 411–416,
 [13] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Mat. Iberoamericana 1 (1985) 45–121.