Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent

M. Bouchekif*, A. Matallah
Universite Aboubekr Belkaid Tlemcen, Algeria

A R T I CLE INFO

Article history:

Received 7 March 2007
Received in revised form 18 September 2007
Accepted 24 March 2008

Keywords:

Positive solutions
Variational methods
Concave term
Critical Sobolev-Hardy exponent
Singularity

Abstract

In this paper, we establish the existence of multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with the existence and multiplicity of weak solutions to the following problem

$$
\left(\mathcal{P}_{\mu, s}\right)\left\{\begin{array}{lll}
-\Delta u-\frac{\mu}{|x|^{2}} u=\lambda u^{q-1}+\frac{u^{2^{*}(s)-1}}{|x|^{s}} & \text { in } \Omega \backslash\{0\} & \text { (a) }{ }_{\mu} \\
u>0 & \text { in } \Omega \backslash\{0\} & \text { (b) } \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is an open bounded domain with smooth boundary, $0 \in \Omega, 0 \leq \mu<\bar{\mu}:=\left(\frac{N-2}{2}\right)^{2}$ which is the best constant in the Hardy inequality, $1<q<2,0 \leq s<2,2^{*}(s)=\frac{2(N-s)}{N-2}$ is the so-called critical Sobolev-Hardy exponent and λ is a positive parameter.

We start by giving a brief historic.
Ambrosetti et al. [1] have studied problem ($\mathscr{P}_{0,0}$). They proved that there exists $\Lambda>0$ such that $\left(\mathcal{P}_{0,0}\right)$ has at least two positive solutions for all $\lambda \in(0, \Lambda)$. To obtain a first positive solution, they used sub-super solutions method and applied the Mountain Pass Theorem to obtain a second positive solution.

In the case $q=2, s=0$. If $0 \leq \mu<\left(\frac{N-2}{2}\right)^{2}-4(N \geq 7)$, Cao and Peng [4] established a pair of sign-changing solutions for problem (a) $)_{0}-(\mathrm{c})$ with $0<\lambda<\lambda_{1}$, here λ_{1} is the first eigenvalue of $-\Delta-\frac{\mu}{|x|^{2}}$. Subsequently, Cao and Han [3] proved that if $0 \leq \mu<\left(\frac{N-2}{2}\right)^{2}-\left(\frac{N+2}{N}\right)^{2}(N \geq 5)$, then, for all $\lambda>0$ there exists a nontrivial solution for problem (a) $)_{0}-$ (c) with critical level in the range $\left(0, \frac{1}{N} S_{\mu}^{\frac{N}{2}}\right)$. Relevant papers on this matter see [6,9-11].

[^0]In the case $\mu>0$ and $s=0$, Chen [5] studied the asymptotic behavior of solutions by using Moser's iteration method, and he gave the following existence results:

- Existence of a local minimizer of associated energy functional to ($\mathcal{P}_{\mu, 0}$), and
- Existence of a second positive solution by variational methods.

The case $\lambda=0$ and $0<s<2$, Kang et al. [12] proved that, for $\varepsilon>0$ and $\beta=\sqrt{\bar{\mu}-\mu}$, the functions

$$
\begin{equation*}
U_{\varepsilon}(x)=\frac{C_{\varepsilon}}{|x|^{\sqrt{\bar{\mu}}-\beta}\left(\varepsilon+|x|^{(2-s) \beta / \sqrt{\bar{\mu}}}\right)^{(N-2) /(2-s)}} \quad \text { with } C_{\varepsilon}=\left(\frac{2 \varepsilon(\bar{\mu}-\mu)(N-s)}{\sqrt{\bar{\mu}}}\right)^{\sqrt{\bar{\mu} /(2-s)}} \tag{1.1}
\end{equation*}
$$

solve the equation

$$
-\Delta u-\frac{\mu}{|x|^{2}} u=\frac{|u|^{2^{*}(s)-2}}{|x|^{s}} u \quad \text { in } \mathbb{R}^{N} \backslash\{0\}
$$

and satisfy

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla U_{\varepsilon}\right|^{2}-\mu \frac{\left|U_{\varepsilon}(x)\right|^{2}}{|x|^{2}}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} \frac{\left|U_{\varepsilon}(x)\right|^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x=S_{\mu, s}^{(N-s) /(2-s)} \tag{1.2}
\end{equation*}
$$

with $S_{\mu, s}$ is the best constant defined as

$$
\begin{equation*}
S_{\mu, s}:=\inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}\left(|\nabla u|^{2}-\mu \frac{u^{2}}{|x|^{2}}\right) \mathrm{d} x}{\left(\int_{\Omega} \frac{\left.|u(x)|\right|^{* *}(s)}{|x|^{s}} \mathrm{~d} x\right)^{2 \backslash 2^{*}(s)}} \tag{1.3}
\end{equation*}
$$

which is independent of Ω.
A natural interesting question is whether the results concerning the solutions of $\left(\mathscr{P}_{\mu, 0}\right)$ remain true for $\left(\mathscr{P}_{\mu, s}\right)$. Borrowing ideas from [5], we give a positive answer.

The main result of this paper is
Theorem 1. Suppose that $0 \leq \mu<\bar{\mu}-1$ and $0 \leq s<2$, then there exists $\Lambda>0$ such that ($\mathcal{P}_{\mu, s}$) has at least two positive solutions in $H_{0}^{1}(\Omega)$ for any $\lambda \in(0, \Lambda)$.

This paper is organized as follows. In Section 2 we give some preliminaries. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

$L^{p}\left(\Omega,|x|^{t} \mathrm{~d} x\right), 1 \leq p<+\infty$ and $-2 \leq t<0$, denote weighted Lebesgue Sobolev spaces with norm the $\left.\left.\right|_{. \mid}\right|_{p, t} ; H_{0}^{1}(\Omega)$ endowed with the norm $\|u\|=\left(\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}, B_{r}$ denotes the ball of radius r centred at the origin and C denotes various generic positive constants.

The following lemma is essentially due to Caffarelli et al. [2].
Lemma 1. Suppose that $0 \leq s<2$ and $0 \leq \mu<\bar{\mu}$. Then for all $u \in H_{0}^{1}(\Omega)$,
(i) $\int_{\Omega} \frac{u^{2}}{|x|^{2}} \mathrm{~d} x \leq \frac{1}{\bar{\mu}} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x$
(ii) there exists a constant $C>0$ such that

$$
\int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x \leq C \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x
$$

For any $\mu \in[0, \bar{\mu})$ fixed, we consider $H_{\mu}(\Omega)$ be the space $H_{0}^{1}(\Omega)$ endowed with the following scalar product

$$
\langle u, v\rangle=\int_{\Omega}\left(\nabla u . \nabla v-\mu \frac{u v}{|x|^{2}}\right) \mathrm{d} x, \quad \forall u, v \in H_{\mu}(\Omega) .
$$

In view of Lemma 1 (i), the induced norm

$$
\|u\|_{\mu}:=\left(\int_{\Omega}\left(|\nabla u|^{2}-\mu \frac{u^{2}}{|x|^{2}}\right) \mathrm{d} x\right)^{\frac{1}{2}}
$$

is equivalent to the standard norm $\|u\|$ of $H_{0}^{1}(\Omega)$.

The corresponding energy functional to problem $\left(\mathcal{P}_{\mu, s}\right)$ is defined by

$$
I_{\lambda}(u)=\frac{1}{2}\|u\|_{\mu}^{2}-\frac{\lambda}{q} \int_{\Omega}\left(u^{+}\right)^{q} \mathrm{~d} x-\frac{1}{2^{*}(s)} \int_{\Omega} \frac{\left(u^{+}\right)^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x, \quad u \in H_{\mu}(\Omega)
$$

where $u^{+}=\max (u, 0)$.
From Lemma 1(ii), $I_{\lambda}(u)$ is well defined and of class C^{1} on $H_{\mu}(\Omega)$.
$u \in H_{\mu}(\Omega)$ is said to be a weak solution of problem $\left(\mathscr{P}_{\mu, s}\right)$ if

$$
\int_{\Omega}\left(\nabla u \nabla v-\frac{\mu}{|x|^{2}} u v-\lambda\left(u^{+}\right)^{q-1} v-\frac{\left(u^{+}\right)^{2^{*}(s)-1}}{|x|^{s}} v\right) \mathrm{d} x=0, \quad \forall v \in H_{\mu}(\Omega),
$$

and by the standard elliptic regularity argument, we have that $u \in C^{2}(\Omega \backslash\{0\})$.

3. Proof of Theorem 1

The proof of Theorem 1 is given in two parts, we start by proving the existence of a first positive solution by using the concentration-compactness method [13]. Moreover the second positive solution is given by applying the Mountain Pass Theorem.

3.1. Existence of a first positive solution

In this subsection, we prove that there is $\Lambda>0$ such that I_{λ} can achieve a local minimizer for any $\lambda \in(0, \Lambda)$. In order to check a local Palais-Smale condition, we use the concentration-compactness method. More precisely we have the following result.

Lemma 2. There exists a constant $C=C(N, \Omega, q, s)$ such that, for all sequence $\left(u_{n}\right) \subset H_{\mu}(\Omega)$ satisfying

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right) \leq c<\frac{2-s}{2(N-s)} S_{\mu, s}^{(N-s) /(2-s)}-C(N, \Omega, q, s) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }\left(H_{\mu}(\Omega)\right)^{\prime}\left(\text { dual of } H_{\mu}(\Omega)\right) \tag{3.2}
\end{equation*}
$$

Then there exists a subsequence strongly convergent in $H_{\mu}(\Omega)$.
Proof. From (3.1) and (3.2) we deduce that $\left(u_{n}\right)$ is bounded. Up to a subsequence if necessary, we have that
(1) $u_{n} \rightharpoonup u_{\lambda}$ in $H_{\mu}(\Omega)$,
(2) $u_{n} \rightarrow u_{\lambda} \quad$ in $L^{t}(\Omega)$, for $1 \leq t<2^{*}$ and a.e in Ω,
(3) $u_{n} \rightharpoonup u_{\lambda}$ in $L^{2}\left(\Omega,|x|^{-2} \mathrm{~d} x\right)$,
(4) $u_{n} \rightharpoonup u_{\lambda}$ in $L^{2^{*}(s)}\left(\Omega,|x|^{-s} \mathrm{~d} x\right)$.

Using the concentration-compactness lemma of Lions and Sobolev-Hardy inequality we get a subsequence, still denoted by (u_{n}) such that
(a) $\left|\nabla u_{n}\right|^{2}-\mu \frac{\left|u_{n}\right|^{2}}{|x|^{2}} \rightharpoonup \mathrm{~d} \mu \geq\left|\nabla u_{\lambda}\right|^{2}-\mu \frac{\left|u_{\lambda}\right|^{2}}{|x|^{2}}+\sum_{j \in J} \mu_{j} \delta_{x_{j}}$,
(b) frac $\left|u_{n}\right|^{2^{*}(s)}|x|^{s} \rightharpoonup \mathrm{~d} v=\frac{\left|u_{\lambda}\right|^{2^{*}(s)}}{|x|^{s}}+\sum_{j \in J} v_{j} \delta_{x_{j}}$,
(c) $\nu_{j}^{\frac{2}{2^{*}(s)}} \leq S_{\mu, s}^{-1} \mu_{j}$ for all $j \in J$, where J is at most countable.

Thus we have the following consequence.
Claim 1. Either $\mu_{j}=0$ or $\mu_{j} \geq S_{\mu, s}^{(N-s) /(2-s)}$ for all $j \in J$.
Proof of claim. We assume that there exist some $j \in J$ such that $\mu_{j} \neq 0$. Let $\varepsilon>0$ and Φ a cut-off function centred at x_{j} with

$$
\Phi(x)=\left\{\begin{array}{ll}
1 & \text { if } \quad\left|x-x_{j}\right| \leq \frac{1}{2} \varepsilon, \\
0 & \text { if } \quad\left|x-x_{j}\right| \geq \varepsilon,
\end{array} \quad \text { and } \quad|\nabla \Phi| \leq \frac{4}{\varepsilon}\right.
$$

Then we get

$$
\begin{aligned}
0 & =\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), \Phi u_{n}\right\rangle \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left(\int_{\Omega}\left|\nabla u_{n}\right|^{2} \Phi \mathrm{~d} x+\int_{\Omega} u_{n} \nabla u_{n} \nabla \Phi \mathrm{~d} x-\mu \int_{\Omega} \frac{u_{n}^{2}}{|x|^{2}} \Phi \mathrm{~d} x-\int_{\Omega} \frac{u_{n}^{2^{*}(s)}}{|x|^{s}} \Phi \mathrm{~d} x-\lambda \int_{\Omega} u_{n}^{q} \Phi \mathrm{~d} x\right) \\
& \geq \mu_{j}-v_{j} .
\end{aligned}
$$

and by (c) we deduce that $\mu_{j} \geq S_{\mu, s}^{(N-s) /(2-s)}$.
Then as a conclusion $\mu_{j}=0$ or $\mu_{j} \geq S_{\mu, s}^{(N-s) /(2-s)}$.
From (3.1) and (3.2) we have

$$
I_{\lambda}\left(u_{n}\right)-\frac{1}{2^{*}(s)}\left(I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right)=\frac{2-s}{2(N-s)}\left\|u_{n}\right\|_{\mu}^{2}-\lambda\left(\frac{1}{q}-\frac{1}{2^{*}(s)}\right) \int_{\Omega}\left(u_{n}^{+}\right)^{q} \mathrm{~d} x .
$$

Then, by Sobolev inequality, we find that

$$
I_{\lambda}\left(u_{n}\right)-\frac{1}{2^{*}(s)}\left(I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right) \geq \frac{2-s}{2(N-s)}\left\|u_{n}\right\|_{\mu}^{2}-\lambda\left(\frac{1}{q}-\frac{1}{2^{*}(s)}\right) C\left\|u_{n}\right\|_{\mu}^{q}
$$

Thus there exists $C:=C(N, \Omega, q, s)$ such that

$$
\frac{2-s}{2(N-s)} t^{2}-\lambda\left(\frac{1}{q}-\frac{1}{2^{*}(s)}\right) C t^{q} \geq-C(N, \Omega, q, s) \lambda^{2 /(2-q)} \quad \forall t \geq 0
$$

If we assume that $\mu_{j} \neq 0$ for some $j \in J$, then

$$
\begin{aligned}
c & \geq \frac{2-s}{2(N-s)} S_{\mu, s}^{(N-s) /(2-s)}+\frac{2-s}{2(N-s)}\left\|u_{\lambda}\right\|_{\mu}^{2}-\lambda\left(\frac{1}{q}-\frac{1}{2^{*}(s)}\right) \int_{\Omega}\left(u_{\lambda}^{+}\right)^{q} \mathrm{~d} x \\
& \geq \frac{2-s}{2(N-s)} S_{\mu, s}^{(N-s) /(2-s)}-C(N, \Omega, q, s) \lambda^{2 /(2-q)}
\end{aligned}
$$

which contradicts our assumption. Hence $u_{n} \rightarrow u_{\lambda}$, as n goes to $+\infty$, strongly in $H_{\mu}(\Omega)$.
The geometry conditions of I_{λ} will be obtained after the following computations. Using the Sobolev and Sobolev-Hardy inequalities, we obtain

$$
I_{\lambda}(u) \geq \frac{1}{2}\|u\|_{\mu}^{2}-\frac{\lambda C}{q}\|u\|_{\mu}^{q}-\frac{C}{2^{*}(s)}\|u\|_{\mu}^{2^{*}(s)}
$$

Let $\|u\|_{\mu}=\rho$, then we have

$$
I_{\lambda}(u) \geq \frac{1}{2} \rho^{2}-\frac{\lambda C}{q} \rho^{q}-\frac{C}{2^{*}(s)} \rho^{2^{*}(s)}
$$

Hence we can choose ρ_{0} and Λ such that, for $\lambda \in(0, \Lambda), I_{\lambda}(u)$ is bounded from below in $B_{\rho_{0}}$ and $I_{\lambda}(u) \geq r>0$ for $\|u\|_{\mu}=\rho_{0}$.

Let $\Phi \in H_{\mu}(\Omega)$ such that $\|\Phi\|_{\mu}=1$. Then, for $t>0$, we have

$$
I_{\lambda}(t \Phi)=\frac{t^{2}}{2}-\frac{\lambda t^{q}}{q} \int_{\Omega}\left(\Phi^{+}\right)^{q} \mathrm{~d} x-\frac{t^{2^{*}(s)}}{2^{*}(s)} \int_{\Omega} \frac{\left(\Phi^{+}\right)^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x .
$$

So there is t_{0} such that for $0<t<t_{0}, I_{\lambda}(t \Phi)<0$. Then

$$
I:=\inf _{u \in B_{\rho_{0}}} I_{\lambda}(u)<0 .
$$

Lemma 2 implies that I_{λ} can achieves its minimum I at u_{λ}, i.e. $I=I_{\lambda}\left(u_{\lambda}\right)$. Moreover u_{λ} satisfies $\left(\mathscr{P}_{\mu, s}\right)$.

3.2. Existence of a second positive solution

To prove the existence of a second positive solution we need the following proposition.
Proposition 1. For any solutions $u \in C^{2}(\Omega \backslash\{0\})$ of $\left(\mathcal{P}_{\mu, s}\right)$ there exists a positive constant M such that

$$
\left.u(x) \geq M|x|^{-(\sqrt{\bar{\mu}}-\sqrt{\bar{\mu}}-\mu}\right),
$$

hold for any $x \in B_{\rho}(0) \backslash\{0\}$ with ρ is sufficiently small.
Proof. The proof is similar to ([5], Proposition 3.1).

For fixed $\lambda \in(0, \Lambda)$ we look for a second solution of $\left(\mathcal{P}_{\mu, s}\right)$ in the form $u=u_{\lambda}+v$ where u_{λ} is found in the previous subsection and $v>0$ in $\Omega \backslash\{0\}$. The corresponding equation for v becomes

$$
\begin{equation*}
-\Delta v-\frac{\mu}{|x|^{2}} v=\lambda\left(u_{\lambda}+v\right)^{q-1}-\lambda u_{\lambda}^{q-1}+\frac{1}{|x|^{s}}\left(\left(u_{\lambda}+v\right)^{2^{*}(s)-1}-u_{\lambda}^{2^{*}(s)-1}\right) . \tag{3.3}
\end{equation*}
$$

Let us define

$$
\begin{aligned}
& g_{\lambda}(x, t)= \begin{cases}\lambda\left(u_{\lambda}+t\right)^{q-1}-\lambda u_{\lambda}^{q-1}+\frac{1}{|x|^{s}}\left(\left(u_{\lambda}+t\right)^{2^{*}(s)-1}-u_{\lambda}^{2^{*}(s)-1}\right) & \text { if } t \geq 0, \\
0 & \text { if } t<0,\end{cases} \\
& G_{\lambda}(x, v)=\int_{0}^{v} g_{\lambda}(x, t) \mathrm{d} t,
\end{aligned}
$$

and

$$
J_{\lambda}(v)=\frac{1}{2}\|v\|_{\mu}^{2}-\int_{\Omega} G_{\lambda}\left(x, v^{+}(x)\right) \mathrm{d} x .
$$

Lemma 3. $v=0$ is a local minimum of J_{λ} in $H_{\mu}(\Omega)$.
Proof. The proof is similar to the lemma 5.1 of the paper [5].
We recall that J_{λ} satisfies the $(P S)_{c}$ condition if any sequence $\left(v_{n}\right)$ in $H_{\mu}(\Omega)$ such that $J_{\lambda}\left(v_{n}\right) \longrightarrow c$ and $J_{\lambda}^{\prime}\left(v_{n}\right) \longrightarrow 0$ in $\left(H_{\mu}(\Omega)\right)^{\prime}$ as $n \rightarrow \infty$ has a convergent subsequence.

Lemma 4. If $v=0$ is the only critical point of J_{λ}, then J_{λ} satisfies the $(P S)_{c}$ condition for any $c<c^{*}=\frac{2-s}{2(N-s)} S_{\mu, s}^{(N-s) /(2-s)}$.
Proof. Let $\left(v_{n}\right) \subset H_{\mu}(\Omega)$ be such that

$$
J_{\lambda}\left(v_{n}\right) \longrightarrow c<\frac{2-s}{2(N-s)} S_{\mu, s}^{(N-s) /(2-s)} \text { and } J_{\lambda}^{\prime}\left(v_{n}\right) \rightarrow 0 \text { in }\left(H_{\mu}(\Omega)\right)^{\prime} \text { as } n \rightarrow \infty,
$$

then $\left(v_{n}\right)$ is bounded in $H_{\mu}(\Omega)$.
Going if necessary to a subsequence, we may assume that

$$
\begin{array}{ll}
v_{n} \rightarrow v & \text { in } H_{\mu}(\Omega), \\
v_{n} \rightarrow v & \text { in } L^{t}(\Omega), \text { for } 1<t<2^{*} \text { and a.e in } \Omega, \tag{3.4}\\
v_{n} \longrightarrow v & \text { in } L^{p}\left(\Omega,|x|^{-s} \mathrm{~d} x\right) \text { for } 2 \leq p<2^{*}(s) .
\end{array}
$$

Moreover v is a critical point of J_{λ} in $H_{\mu}(\Omega)$. From our hypothesis, we know that $v=0$. Now we want to prove $v_{n} \longrightarrow 0$ strongly in $H_{\mu}(\Omega)$. From (3.4) and Ghoussoub-Yuan's relation [8]:

$$
\int_{\Omega} \frac{\left(u_{\lambda}+v_{n}^{+}\right)^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x-\int_{\Omega} \frac{u_{\lambda}^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x=\int_{\Omega} \frac{\left(v_{n}^{+}\right)^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x+o(1) .
$$

We have

$$
\begin{aligned}
&\left\langle j_{\lambda}^{\prime}\left(v_{n}\right), u_{\lambda}+v_{n}\right\rangle= \int_{\Omega}\left(\nabla v_{n} \nabla\left(u_{\lambda}+v_{n}\right)-\frac{\mu}{|x|^{2}} v_{n}\left(u_{\lambda}+v_{n}\right)\right) \mathrm{d} x+o(1) \\
&-\int_{\Omega}\left[\frac{\left(u_{\lambda}+v_{n}^{+}\right)^{2^{*}(s)-1}}{|x|^{s}}\right. \\
&\left.\left(u_{\lambda}+v_{n}\right)-{\frac{u_{\lambda}}{|x|^{s}}}^{2^{*}(s)-1}\left(u_{\lambda}+v_{n}\right)\right] \mathrm{d} x \\
&-\lambda \int_{\Omega}\left[\left(u_{\lambda}+v_{n}^{+}\right)^{q-1}\left(u_{\lambda}+v_{n}\right)-u_{\lambda}^{q-1}\left(u_{\lambda}+v_{n}\right)\right] \mathrm{d} x \\
&= \int_{\Omega}\left(\left|\nabla v_{n}\right|^{2}-\frac{\mu}{|x|^{2}} v_{n}^{2}\right) \mathrm{d} x-\int_{\Omega} \frac{\left(v_{n}^{+}\right)^{2^{*}(s)}}{|x|^{s}} \\
& \mathrm{~d} x+o(1) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus we can assume that

$$
\left\|v_{n}\right\|_{\mu}^{2} \rightarrow b \text { and } \int_{\Omega} \frac{\left(v_{n}^{+}\right)^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x \rightarrow b \geq 0 \text { when } n \rightarrow \infty .
$$

If $b=0$, the proof is complete. If $b \neq 0$, we have from the definition of $S_{\mu, s}$ that

$$
\int_{\Omega}\left(\left|\nabla v_{n}\right|^{2}-\frac{\mu}{|x|^{2}} v_{n}^{2}\right) \mathrm{d} x \geq S_{\mu, s}\left(\int_{\Omega} \frac{\left(v_{n}^{+}\right)^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x\right)^{\frac{2}{2^{*}(s)}}
$$

and so that $b \geq S_{\mu, s}^{(N-s) /(2-s)}$. Then we get that

$$
\begin{aligned}
& c=J_{\lambda}\left(v_{n}\right)+\circ(1)=\frac{1}{2}\left\|v_{n}\right\|_{\mu}^{2}-\frac{1}{2^{*}(s)} \int_{\Omega} \frac{\left(v_{n}^{+}\right)^{2^{*}(s)}}{|x|^{s}} \\
& d x+o(1) \text { as } n \rightarrow \infty \\
&=\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right) b \geq \frac{2-s}{2(N-s)} S_{\mu, s}^{(N-s) /(2-s)}
\end{aligned}
$$

which gives a contradiction.
In the following, we shall give some estimates for the extremal functions defined in (1.1). Let

$$
V_{\varepsilon}=U_{\varepsilon} / C_{\varepsilon} \text { and } \Psi(x) \in C_{0}^{\infty}(\Omega) \text { such that }
$$

$0 \leq \Psi(x) \leq 1, \Psi(x)=1$ for $|x| \leq \rho, \Psi(x)=0$ for $|x| \geq 2 \rho, \rho$ is chosen as in Proposition 1.
Set

$$
v_{\varepsilon}(x)=\left(\Psi(x) V_{\varepsilon}\right) /\left(\int_{\Omega} \frac{\left|\Psi(x) V_{\varepsilon}\right|^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x\right)^{1 / 2^{*}(s)}
$$

By a straightforward computation one finds

$$
\int_{\Omega} \frac{\left|v_{\varepsilon}\right|^{2^{*}(s)}}{|x|^{s}}=1,\left\|v_{\varepsilon}\right\|_{\mu}^{2}=S_{\mu, s}+0\left(\varepsilon^{\frac{N-2}{2-s}}\right)
$$

and

$$
\int_{\Omega}\left|v_{\varepsilon}\right|^{r} \mathrm{~d} x= \begin{cases}0\left(\varepsilon^{\frac{r-\sqrt{\bar{\mu}}}{2-s}}\right) & \text { if } 1<r<\frac{N}{\sqrt{\bar{\mu}}+\sqrt{\bar{\mu}-\mu}} \\ 0\left(\varepsilon^{\frac{r-\sqrt{\bar{\mu}}}{2-s}}|\ln \varepsilon|\right) & \text { if } r=\frac{N}{\sqrt{\bar{\mu}}+\sqrt{\bar{\mu}-\mu}} \\ 0\left(\varepsilon^{\left.\frac{\sqrt{\bar{\mu}}(N-r \sqrt{\bar{\mu}})}{(2-s) \sqrt{\bar{\mu}-\mu}}\right)}\right. & \text { if } \frac{N}{\sqrt{\bar{\mu}}+\sqrt{\bar{\mu}-\mu}}<r<2^{*} .\end{cases}
$$

Lemma 5. Let c^{*} be defined in Lemma 4, then we have that

$$
\sup _{t \geq 0} J_{\lambda}\left(t v_{\varepsilon}\right)<c^{*}
$$

Proof. From the elementary inequality [1]

$$
(a+b)^{p} \geq a^{p}+b^{p}+p a^{p-1} b, \quad p>1, a, b \geq 0
$$

we get

$$
g\left(x, v_{\varepsilon}\right) \geq \frac{\left(v_{\varepsilon}^{+}\right)^{2^{*}(s)-1}}{|x|^{s}}+\left(2^{*}(s)-1\right) \frac{u_{\lambda}^{\left(2^{*}(s)-2\right)}}{|x|^{s}} v_{\varepsilon}^{+}
$$

and

$$
G\left(x, t v_{\varepsilon}\right) \geq \frac{t^{2^{*}(s)}}{2^{*}(s)} \frac{\left(v_{\varepsilon}^{+}\right)^{2^{*}(s)}}{|x|^{s}}+\frac{\left(2^{*}(s)-1\right) t^{2}}{2} \frac{u_{\lambda}^{\left(2^{*}(s)-2\right)}}{|x|^{s}}\left(v_{\varepsilon}^{+}\right)^{2}
$$

Since $u_{\lambda}(x) \geq M|x|^{-(\sqrt{\mu}-\sqrt{\mu-\mu})}>0$, on $B_{\rho_{0}}(0) \backslash\{0\}$ (result from Proposition 1)
thus

$$
\left(2^{*}(s)-1\right) \frac{u_{\lambda}^{\left(2^{*}(s)-2\right)}}{|x|^{s}} \geq\left(2^{*}(s)-1\right) M^{2^{*}(s)-2}|x|^{-\left(\left(2^{*}(s)-2\right)(\sqrt{\bar{\mu}}-\sqrt{\bar{\mu}-\mu})+s\right)} \geq M_{0}>0 \quad \text { on } B_{\rho_{0}}(0) \backslash\{0\} .
$$

The function

$$
J_{\lambda}\left(t v_{\varepsilon}\right)=\frac{t^{2}}{2}\left\|v_{\varepsilon}\right\|_{\mu}^{2}-\int_{\Omega} G_{\lambda}\left(t v_{\varepsilon}\right) \mathrm{d} x
$$

becomes

$$
J_{\lambda}\left(t v_{\varepsilon}\right) \leq h_{\varepsilon}(t)=\frac{t^{2}}{2}\left\|v_{\varepsilon}\right\|_{\mu}^{2}-\frac{t^{2^{*}(s)}}{2^{*}(s)}-\frac{t^{2}}{2} M_{0} \int_{\Omega} v_{\varepsilon}^{2} \mathrm{~d} x
$$

From

$$
h_{\varepsilon}^{\prime}(t)=t\left(\left\|v_{\varepsilon}\right\|_{\mu}^{2}-t^{2^{*}(s)-2}-M_{0} \int_{\Omega} v_{\varepsilon}^{2} \mathrm{~d} x\right)
$$

We get

$$
\max _{t \geq 0} h(t)=h\left(t_{\varepsilon}\right), \text { where } t_{\varepsilon}=\left(\left\|v_{\varepsilon}\right\|_{\mu}^{2}-M_{0} \int_{\Omega} v_{\varepsilon}^{2} \mathrm{~d} x\right)^{1 /\left(2^{*}(s)-2\right)}
$$

Thus

$$
\begin{aligned}
J_{\lambda}\left(t v_{\varepsilon}\right) & \leq h\left(t_{\varepsilon}\right) \\
& =\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right)\left(\left\|v_{\varepsilon}\right\|_{\mu}^{2}-M_{0} \int_{\Omega} v_{\varepsilon}^{2} \mathrm{~d} x\right)^{2^{*}(s) /\left(2^{*}(s)-2\right)} \\
& = \begin{cases}\frac{2-s}{2(N-s)} S_{\mu, s}^{(N-s) /(2-s)}+\left(\varepsilon^{\frac{N-2}{2-s}}\right)-0\left(\varepsilon^{\frac{N-2}{(2-s) \sqrt{\mu-\mu}}}\right) & \text { if } 0<\mu<\bar{\mu}-1 \\
\frac{2-s}{2(N-s)} S_{\mu, s}^{(N-s) /(2-s)}+\left(\varepsilon^{\frac{N-2}{2-s}}\right)-0\left(\varepsilon^{\frac{N-2}{(2-s)}}|\ln \varepsilon|\right) & \text { if } \mu=\bar{\mu}-1 .\end{cases}
\end{aligned}
$$

Thus we get

$$
\sup _{t \geq 0} J_{\lambda}\left(t v_{\varepsilon}\right)<c^{*}
$$

Proof (Proof of Theorem 1 Completed). From Lemma 3, $v=0$ is a local minimizer of J_{λ} then there exists a sufficiently small positive number $\bar{\rho}$ such that $J_{\lambda}(v)>0$ for $\|v\|_{\mu}=\bar{\rho}$. Since $J_{\lambda}\left(t v_{\varepsilon}\right) \rightarrow-\infty$ as $t \rightarrow \infty$, then there exists $T>0$ such that $\left\|T v_{\varepsilon}\right\|_{\mu}>\bar{\rho}>0$ and $J_{\lambda}\left(T v_{\varepsilon}\right)<0$. We defined

$$
c:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J_{\lambda}(\gamma(t)) \quad \text { where } \Gamma=\left\{\gamma \in C\left([0,1], H_{\mu}(\Omega)\right), \gamma(0)=0, \gamma(1)=T u_{\varepsilon}\right\} .
$$

For $c<c^{*},(P S)_{c}$ is satisfied by Lemma 4, then we conclude by Lemma 5 that

$$
c \leq \sup _{t \geq 0} J_{\lambda}\left(t T v_{\varepsilon}\right) \leq \sup _{t \geq 0} J_{\lambda}\left(t v_{\varepsilon}\right)<c^{*}
$$

Then by applying the Mountain Pass theorem whenever $c>0$ and the Ghoussoub-Preiss version whenever $c=0$ see [7]. We obtain a nontrivial critical point v of J_{λ}.

Acknowledgement

The authors thank the anonymous referee for carefully reading this paper and suggesting many useful comments.

References

[1] A. Ambrosetti, H. Brézis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519-543.
[2] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequality with weights, Compos. Math. 53 (1984) 259-275.
[3] D. Cao, P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations 205 (2004) 521-537.
[4] D. Cao, S. Peng, A not on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations 193 (2003) 424-434.
[5] J. Chen, Multiple positive solutions for a class of nonlinear elliptic equations, J. Math. Anal. Appl. 295 (2004) 341-354.
[6] A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations 177 (2001) 494-522.
[7] N. Ghoussoub, D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 321-330.
[8] N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000) 5703-5743.
[9] P. Han, Asymptotic behavior of solutions to semilinear elliptic equations with Hardy potential, Proc. Amer. Math. Soc. 135 (2007) $365-372$.
[10] P. Han, Multiple solutions to singular critical elliptic equations, Israel J. Math. 156 (2006) 359-380.
[11] P. Han, Z. Liu, The sign-changing solutions for singular critical growth semilinear elliptic equations with a weight, Differential Integral Equations 17 (2004) 835-848
[12] D. Kang, S. Peng, Positive solutions for elliptic equations with critical Sobolev-Hardy exponents, Appl. Math. Lett. 17 (2004) 411-416.
[13] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Mat. Iberoamericana 1 (1985) 45-121.

[^0]: * Corresponding address: Université Aboubekr Belkaid Tlemcen, B.P. 119 Faubourg Pasteur, 13000 Tlemcen, Algérie. Tel.: +213 43286480; fax: +213 43286480.

 E-mail addresses: m_bouchekif@mail.univ-tlemcen.dz (M. Bouchekif), atika_matallah@yahoo.fr (A. Matallah).

