# Symmetry and uniqueness of positive solutions for a Neumann boundary value problem 

Ahmed Bensedik, Mohammed Bouchekif*<br>BP 119, Université de Tlemcen, Département de Mathématiques, Tlemcen, 13000 Algérie

Received 23 January 2006; received in revised form 29 April 2006; accepted 11 May 2006


#### Abstract

This work deals with the existence and symmetry of positive solutions for a Neumann boundary value problem. It is a generalization of the work of Pedro J. Torres. The main result is the uniqueness of positive solutions, which is proved by an analytical method, for a given interval of the positive parameter $q$.


(C) 2006 Elsevier Ltd. All rights reserved.

Keywords: Krasnoselskii theorem; Neumann conditions; Green's function; Symmetry; Uniqueness and positivity of solutions

## 1. Introduction

In this work we are concerned with the existence, symmetry and uniqueness of positive solutions for the following problem:

$$
\left(P_{p}\right)\left\{\begin{array}{l}
\left.L u \equiv-u^{\prime \prime}+q^{2} u=|u|^{p} f(x), \quad x \in\right] a, b[ \\
u^{\prime}(a)=0=u^{\prime}(b)
\end{array}\right.
$$

where $p>1, q>0,0 \leq a<b \leq \pi$, and $f$ is a continuous positive symmetric function on $[a, b]$.
For $f(x)=1+\sin x$ and $[a, b]=[0, \pi]$, Mays and Norbury [2] have considered the problem $\left(P_{2}\right)$ arising in fluid dynamics. They have proved numerically the existence of positive solutions if $\left.q^{2} \in\right] 0,10[$. Torres [4] has confirmed analytically the results of [2] by using a fixed-point Theorem for Krasnoselskii operators [1]; he also proved the symmetry of the solutions. We remark that the analytical proof of uniqueness of positive solutions for $\left(P_{2}\right)$ remains an open problem. It is strongly suggested numerically [2] on a given range of values of the parameter $q$.

In this work we generalize the work of [4] by considering the term $|u|^{p} f(x)$ instead of $u^{2}(1+\sin x)$ and we give a uniqueness result. The work is organized as follows. In Section 2 we give an existence result, Section 3 is concerned with the properties of the solutions and the last one contains a uniqueness result.

In this work we use the following notation. $\|u\|_{0}=\sup \{|u(x)|, x \in[a, b]\}$, and $\|u\|_{\gamma}=\left(\int_{a}^{b}|u(x)|^{\gamma} \mathrm{d} x\right)^{\frac{1}{\gamma}}$ for $\gamma \geq 1$.

[^0]The proof of the existence of positive solutions is based on the following theorems.
Theorem 1 ([1]). Let $\Omega_{1}$ and $\Omega_{2}$ be two bounded open sets in a Banach space $E$ such that $0 \in \Omega_{1}$ and $\bar{\Omega}_{1} \subset \Omega_{2}$. Let operator A : $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ be completely continuous, where $P$ is a cone of $E$, and such that one of the following conditions is satisfied:

$$
\begin{array}{ll}
\text { (1) }\|A x\| \leq\|x\|, & \forall x \in P \cap \partial \Omega_{1} \quad \text { and } \quad\|A x\| \geq\|x\|, \quad \forall x \in P \cap \partial \Omega_{2} ; \\
\text { (2) }\|A x\| \geq\|x\|, \quad \forall x \in P \cap \partial \Omega_{1} \quad \text { and } \quad\|A x\| \leq\|x\|, \quad \forall x \in P \cap \partial \Omega_{2} .
\end{array}
$$

Then $A$ has at least one fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Theorem 2 ([3]). Let $C(K, \mathbb{R})$ be the space of continuous functions on the compact set $K \subset \mathbb{R}^{n}$. Then a subset $S \subset C(K, \mathbb{R})$ is precompact if and only if the functions of $S$ are uniformly bounded and equicontinuous.

## 2. Existence result

Theorem 3. Assume that $f$ is a positive continuous function on $[a, b]$. Then the problem $\left(P_{p}\right)$ has at least one positive solution for any positive $q$ and any $p>1$.

Proof. As was observed in [2], the Green's function $G(x, y)$ of the operator $L$, with the Neumann conditions, is a positive and continuous function on $[a, b] \times[a, b]$. Thus the problem $\left(P_{p}\right)$ can be written as the fixed-point problem

$$
u(x)=\int_{a}^{b} G(x, y)|u(y)|^{p} f(y) \mathrm{d} y \equiv A u(x) .
$$

Define

$$
\begin{aligned}
& m=\min \{G(x, y) ;(x, y) \in[a, b] \times[a, b]\}, \quad M=\max \{G(x, y) ;(x, y) \in[a, b] \times[a, b]\}, \\
& \alpha=\min \{f(x) ; a \leq x \leq b\}, \quad \beta=\max \{f(x) ; a \leq x \leq b\}, \quad l=b-a ;
\end{aligned}
$$

then $m, \alpha$ and $l$ are positive.
Now consider the Banach space $E=C([a, b])$ endowed with the norm $\|\cdot\|_{0}$, and define the cone

$$
P=\left\{u \in E: \min _{a \leq x \leq b} u(x) \geq \frac{m}{M}\|u\|_{0}\right\} .
$$

We start by proving that $A P \subset P$.
For any given $u \in P$, we have

$$
\begin{aligned}
A u(x) & \geq m \int_{a}^{b} u^{p}(y) f(y) \mathrm{d} y \\
& \geq \frac{m}{M} \int_{a}^{b} G(s, y) u^{p}(y) f(y) \mathrm{d} y \\
& =\frac{m}{M} A u(s), \quad \text { for all } x, s \in[a, b],
\end{aligned}
$$

so

$$
\min _{a \leq x \leq b} A u(x) \geq \frac{m}{M}\|A u\|_{0},
$$

and then $A u \in P$.
Now let us prove that $A: P \rightarrow P$ is completely continuous. For any fixed $u_{0} \in P$, and any $u \in P$, by the mean-value theorem, we obtain

$$
\left|A u(x)-A u_{0}(x)\right| \leq p \int_{a}^{b}\left|u(y)-u_{0}(y)\right| G(x, y) f(y)(v(y))^{p-1} \mathrm{~d} y, \quad \forall x \in[a, b],
$$

where the real number $v(y)$ is between $u(y)$ and $u_{0}(y)$.

Thus

$$
\left\|A u-A u_{0}\right\|_{0} \leq p \beta M\left\|u-u_{0}\right\|_{0} \int_{a}^{b}(v(y))^{p-1} \mathrm{~d} y
$$

which proves that the operator $A$ is continuous on $P$.
Let $\left(u_{n}\right)_{n}$ be a bounded sequence in $P$, that is,

$$
\exists C>0, \quad\left\|u_{n}\right\|_{0} \leq C, \quad \forall n \in \mathbb{N}
$$

Let us prove that the set $S:=\left\{A u_{n}, n \in \mathbb{N}\right\}$ is precompact.
First we verify that the functions $A u_{n}$ are uniformly bounded. For any $x \in[a, b]$, and any $n \in \mathbb{N}$, we have

$$
A u_{n}(x)=\int_{a}^{b} G(x, y) u_{n}^{p}(y) f(y) \mathrm{d} y \leq \beta l M C^{p},
$$

that is $\left\|A u_{n}\right\|_{0} \leq \beta l M C^{p}, \forall n \in \mathbb{N}$.
Now we prove that the functions $A u_{n}$ are equicontinuous.
For any $x_{1}$ and $x_{2}$ fixed in $[a, b]$,

$$
\left|A u_{n}\left(x_{1}\right)-A u_{n}\left(x_{2}\right)\right|=\left|\int_{a}^{b}\left(G\left(x_{1}, y\right)-G\left(x_{2}, y\right)\right) u_{n}^{p}(y) f(y) \mathrm{d} y\right|,
$$

and we remark that for any $y$ fixed in $[a, b]$, the function $x \longmapsto G(x, y)$ is uniformly continuous in $[a, b]$, i.e.

$$
\forall \varepsilon>0, \quad \exists \delta(\varepsilon, y)>0:\left|x_{1}-x_{2}\right|<\delta \Rightarrow\left|G\left(x_{1}, y\right)-G\left(x_{2}, y\right)\right|<\varepsilon
$$

and since $y \in[a, b]$ which is a compact set, there exists $\delta(\varepsilon)>0$ independent of $y$, such that for any given $\varepsilon>0$,

$$
\forall x_{1}, x_{2} \in[a, b]:\left|x_{1}-x_{2}\right|<\delta(\varepsilon) \Rightarrow\left|G\left(x_{1}, y\right)-G\left(x_{2}, y\right)\right|<\varepsilon
$$

and then

$$
\forall \varepsilon>0, \quad \exists \delta>0:\left|x_{1}-x_{2}\right|<\delta \Rightarrow\left|A u_{n}\left(x_{1}\right)-A u_{n}\left(x_{2}\right)\right|<\beta l C^{p} \varepsilon, \quad \forall n \in \mathbb{N}
$$

which confirms that the functions $A u_{n}$ are equicontinuous, and in consequence of Theorem 2 the set $S$ is precompact, and so the operator $A$ is completely continuous.

In order to apply Theorem 1, we consider the open balls

$$
\Omega_{1}=\left\{u \in E,\|u\|_{0}<r_{1}\right\} \quad \text { and } \quad \Omega_{2}=\left\{u \in E,\|u\|_{0}<r_{2}\right\}
$$

where

$$
r_{1}=(\beta l M)^{-\frac{1}{p-1}} \quad \text { and } \quad r_{2}=\left(\frac{M^{p}}{\alpha l m^{p+1}}\right)^{\frac{1}{p-1}}
$$

Clearly $0 \in \Omega_{1}$ and $\bar{\Omega}_{1} \subset \Omega_{2}$ because $r_{1}<r_{2}$.
Now, if $u \in P \cap \partial \Omega_{1}$, we get

$$
\|A u\|_{0} \leq \beta l M\|u\|_{0}^{p}=\|u\|_{0}
$$

and if $u \in P \cap \partial \Omega_{2}$,

$$
\begin{aligned}
\|A u\|_{0} & \geq \alpha m \int_{a}^{b} u^{p}(y) \mathrm{d} y \\
& \geq \alpha m l\left(\frac{m}{M}\|u\|_{0}\right)^{p}=\frac{\alpha l m^{p+1}}{M^{p}}\|u\|_{0}^{p}=\|u\|_{0}
\end{aligned}
$$

then the operator $A$ satisfies condition (1) of Theorem 1.
Therefore it has at least one fixed point $u \in P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, and so the problem $\left(P_{p}\right)$ has at least a positive solution for any positive $q$.

Remark that the solution $u$ of our problem satisfies the inequalities

$$
m\left(\beta l M^{p}\right)^{-\frac{1}{p-1}} \leq u(x) \leq\left(\alpha l m^{p+1} M^{-p}\right)^{-\frac{1}{p-1}}, \quad \forall x \in[a, b] .
$$

## 3. Uniform upper bound and symmetry of the solutions

At the beginning of this section, we deduce the uniform upper bound for every positive solution of the problem $\left(P_{p}\right)$.

Theorem 4. Assume that $f$ is a positive continuous function on $[a, b]$. Then there exists a constant $C_{q}:=$ $\left(\frac{q^{2}}{\alpha}\right)^{\frac{1}{p-1}}\left(1+(q l)^{2}\right)$, such that any positive solution of the problem $\left(P_{p}\right)$ verifies

$$
u(x)<C_{q}, \quad \forall x \in[a, b] .
$$

Proof. Let $u$ be a positive solution of the problem. Integrating the equation of $\left(P_{p}\right)$, we obtain

$$
q^{2}\|u\|_{1}=\int_{a}^{b} u^{p}(y) f(y) \mathrm{d} y \geq \alpha\|u\|_{p}^{p}
$$

and using the Hölder inequality, we can write

$$
\|u\|_{1}=\int_{a}^{b} u(x) \mathrm{d} x \leq\left[\int_{a}^{b} \mathrm{~d} x\right]^{\frac{p-1}{p}}\left[\int_{a}^{b} u^{p}(x) \mathrm{d} x\right]^{\frac{1}{p}}=l^{\frac{p-1}{p}}\|u\|_{p}
$$

and then

$$
\|u\|_{p} \leq\left[\frac{q^{2}}{\alpha}\right]^{\frac{1}{p-1}} l^{\frac{1}{p}} \quad \text { and } \quad\|u\|_{1} \leq\left[\frac{q^{2}}{\alpha}\right]^{\frac{1}{p-1}} l .
$$

Moreover, for any $x \in] a, b[$,

$$
\begin{aligned}
u^{\prime}(x) & =\int_{a}^{x} u^{\prime \prime}(s) \mathrm{d} s=\int_{a}^{x}\left(q^{2} u(s)-u^{p}(s) f(s)\right) \mathrm{d} s \\
& <q^{2}\|u\|_{1} \leq q^{2}\left[\frac{q^{2}}{\alpha}\right]^{\frac{1}{p-1}} l, \\
-u^{\prime}(x) & =\int_{x}^{b} u^{\prime \prime}(s) \mathrm{d} s=\int_{x}^{b}\left(q^{2} u(s)-u^{p}(s) f(s)\right) \mathrm{d} s \\
& <q^{2}\|u\|_{1} \leq q^{2}\left[\frac{q^{2}}{\alpha}\right]^{\frac{1}{p-1}} l,
\end{aligned}
$$

so

$$
\left\|u^{\prime}\right\|_{0}<q^{2}\left[\frac{q^{2}}{\alpha}\right]^{\frac{1}{p-1}} l .
$$

On the other hand

$$
\left.u^{\prime}(a)=u^{\prime}(b) \Rightarrow \exists x_{0} \in\right] a, b\left[: u^{\prime \prime}\left(x_{0}\right)=0\right.
$$

and then from the equation,

$$
u^{p-1}\left(x_{0}\right)=\frac{q^{2}}{f\left(x_{0}\right)},
$$

which gives us

$$
\left(\frac{q^{2}}{\beta}\right)^{\frac{1}{p-1}} \leq u\left(x_{0}\right) \leq\left(\frac{q^{2}}{\alpha}\right)^{\frac{1}{p-1}} .
$$

We can deduce the constant $C_{q}$ :

$$
u(x)=u\left(x_{0}\right)+\int_{x_{0}}^{x} u^{\prime}(s) \mathrm{d} s<\left(\frac{q^{2}}{\alpha}\right)^{\frac{1}{p-1}}+(q l)^{2}\left(\frac{q^{2}}{\alpha}\right)^{\frac{1}{p-1}} .
$$

Then

$$
C_{q} \equiv\left(\frac{q^{2}}{\alpha}\right)^{\frac{1}{p-1}}\left(1+(q l)^{2}\right)
$$

The constant $C_{q}$ will be used to prove the symmetry of the positive solutions.
Theorem 5. Assume that $f$ is a positive, symmetric and continuous function on $[a, b]$ and the positive parameter $q$ satisfies the following inequality:

$$
\begin{equation*}
p \beta \frac{q^{2}}{\alpha}\left(1+q^{2} l^{2}\right)^{p-1}<1+q^{2} \tag{3.1}
\end{equation*}
$$

then any positive solution of the problem $\left(P_{p}\right)$ is symmetric.
Proof. We follow along the lines of [4]. Let $u_{1}$ be a positive solution; then $u_{2}$ such that $u_{2}(x)=u_{1}(a+b-x)$ is also a solution, because $f$ is symmetric.

Let us prove that $u_{1} \equiv u_{2}$. Define $z=u_{1}-u_{2}$; then $z$ is a solution of the problem

$$
\left\{\begin{array}{l}
z^{\prime \prime}+g(x) z=0  \tag{3.2}\\
z^{\prime}(a)=0=z^{\prime}(b)
\end{array}\right.
$$

where $g(x)=p f(x)(w(x))^{p-1}-q^{2}$, and the real number $w(x)$ is between $u_{1}(x)$ and $u_{2}(x)$ and such that

$$
u_{1}^{p}(x)-u_{2}^{p}(x)=p(w(x))^{p-1}\left(u_{1}(x)-u_{2}(x)\right) .
$$

Using the fact that $u_{1}$ and $u_{2}$ are strictly less than $C_{q}$ and the condition (3.1), we verify that

$$
\begin{equation*}
g(x)<1, \quad \forall x \in[a, b] . \tag{3.3}
\end{equation*}
$$

Our purpose is to prove that $z \equiv 0$. Suppose that $z$ is not a trivial solution and let us change to polar coordinates:

$$
z=r \cos \theta, \quad z^{\prime}=-r \sin \theta, \quad r>0,0 \leq \theta<2 \pi
$$

By deriving $z$ and $z^{\prime}$, we get

$$
z^{\prime}=r^{\prime} \cos \theta-r \theta^{\prime} \sin \theta=-r \sin \theta
$$

and

$$
z^{\prime \prime}=-r^{\prime} \sin \theta-r \theta^{\prime} \cos \theta=-g(x) r \cos \theta
$$

From these equations, we obtain

$$
\begin{equation*}
\theta^{\prime}=g(x) \cos ^{2} \theta+\sin ^{2} \theta \tag{3.4}
\end{equation*}
$$

Integrating (3.4) in the interval $[a, x], a<x \leq b$, and using (3.3) we get

$$
\begin{equation*}
\theta(x)-\theta(a)=\int_{a}^{x} g(s) \cos ^{2} \theta(s)+\sin ^{2} \theta(s) \mathrm{d} s<\int_{a}^{x} \mathrm{~d} s=x-a . \tag{3.5}
\end{equation*}
$$

Now remark that

$$
z(x)=-z(a+b-x),
$$

and therefore

$$
z\left(\frac{a+b}{2}\right)=0
$$

By using the Sturm comparison theorem with the equation

$$
z^{\prime \prime}+\left(\frac{\pi}{l}\right)^{2} z=0
$$

which admits the solution

$$
z_{0}(x)=\sin \frac{\pi}{l}(x-a),
$$

we deduce that $\frac{a+b}{2}$ is the unique zero of $z$ in the interval $[a, b]$.
The solution $z$ is supposed not identically zero and $z(a)=-z(b)$; then

$$
z(a) z(b)<0 .
$$

Assume that $z(a)>0$; then from $z^{\prime}(a)=0$, we get

$$
\theta(a)=0 .
$$

On the other hand,

$$
z\left(\frac{a+b}{2}\right)=0
$$

and so,

$$
\theta\left(\frac{a+b}{2}\right)=\frac{\pi}{2}, \quad \text { or } \quad \theta\left(\frac{a+b}{2}\right)=\frac{3 \pi}{2} .
$$

Now, using (3.5) we get

$$
\pi<b-a, \quad \text { or } \quad 3 \pi<b-a
$$

this is a contradiction. Then $z \equiv 0$, and therefore

$$
u_{1}(x)=u_{1}(a+b-x), \quad \forall x \in[a, b] .
$$

## 4. Uniqueness result for the positive solution

Let $\lambda_{1}$ be the first positive eigenvalue of the following problem with Neumann boundary conditions:

$$
\left\{\begin{array}{l}
\left.-u^{\prime \prime}=\lambda u, \quad x \in\right] a, b[ \\
u^{\prime}(a)=u^{\prime}(b)=0
\end{array}\right.
$$

Theorem 6. Under the hypothesis for the function $f$, and if the positive parameter $q$ satisfies the relation

$$
\begin{equation*}
\lambda_{1}+q^{2}-p \frac{\beta}{\alpha} q^{2}\left(1+q^{2} l^{2}\right)^{p-1}>0 \tag{4.1}
\end{equation*}
$$

then the problem $\left(P_{p}\right)$ admits a unique positive solution.
Proof. Let $u_{1}$ and $u_{2}$ be two positive solutions of the problem $\left(P_{p}\right)$. Then, if we put $v=u_{1}-u_{2}$, we get the following problem:

$$
\begin{align*}
& \left.-v^{\prime \prime}+q^{2} v=\left(u_{1}^{p}(x)-u_{2}^{p}(x)\right) f(x), \quad x \in\right] a, b[,  \tag{4.2}\\
& v^{\prime}(a)=v^{\prime}(b)=0 .
\end{align*}
$$

Now by the mean-value theorem, there exists a real number $w(x)$ between $u_{1}(x)$ and $u_{2}(x)$ such that

$$
u_{1}^{p}(x)-u_{2}^{p}(x)=p w^{p-1}(x)\left(u_{1}(x)-u_{2}(x)\right) .
$$

Then the problem (4.2) becomes

$$
\begin{align*}
& \left.-v^{\prime \prime}+\left(q^{2}-p w^{p-1}(x) f(x)\right) v=0, \quad x \in\right] a, b[  \tag{4.3}\\
& v^{\prime}(a)=v^{\prime}(b)=0 .
\end{align*}
$$

Note that the function $x \longmapsto w(x)$ is continuous in $[a, b]$. We can define it by

$$
\begin{aligned}
& w^{p-1}(x)=\frac{u_{1}^{p}(x)-u_{2}^{p}(x)}{p\left(u_{1}(x)-u_{2}(x)\right)}, \quad \text { if } u_{1}(x) \neq u_{2}(x), \\
& w(x)=u_{1}(x), \quad \text { if } u_{1}(x)=u_{2}(x) .
\end{aligned}
$$

Return to the last problem and put $h(x)=q^{2}-p w^{p-1}(x) f(x)$; then

$$
\begin{equation*}
q^{2}-p \beta C_{q}^{p-1} \leq h(x) \leq q^{2}, \quad \forall x \in[a, b], \tag{4.4}
\end{equation*}
$$

where $C_{q}=\left(\frac{q^{2}}{\alpha}\right)^{\frac{1}{p-1}}\left(1+q^{2} l^{2}\right)$.
Multiplying the equation of the problem (4.3) by $v$ and integrating in the interval $[a, b]$, we obtain

$$
\int_{a}^{b}\left(v^{\prime}(x)\right)^{2} \mathrm{~d} x+\int_{a}^{b} h(x) v^{2}(x) \mathrm{d} x=0 .
$$

Now using the characterization of $\lambda_{1}$, we know, if $\left.I=\right] a, b[$, that

$$
\lambda_{1}=\inf \left\{\int_{I}\left(v^{\prime}(x)\right)^{2} \mathrm{~d} x: v \in H^{1}(I), v^{\prime}(a)=0 \text { and } \int_{I} v^{2} \mathrm{~d} x=1\right\} .
$$

In fact $\lambda_{1}=\frac{\pi^{2}}{l^{2}}$, and it is attained by the function $v_{1}$ :

$$
v_{1}(x)=\sqrt{\frac{2}{l}} \cos \left(\frac{\pi}{l}(x-a)\right) .
$$

From the characterization of $\lambda_{1}$, we have

$$
\lambda_{1} \int_{I} v^{2} \mathrm{~d} x \leq \int_{I}\left(v^{\prime}\right)^{2} \mathrm{~d} x
$$

and then

$$
\int_{I}\left(\lambda_{1}+h(x)\right) v^{2} \mathrm{~d} x \leq \int_{I}\left(v^{\prime}\right)^{2} \mathrm{~d} x+\int_{I} h(x) v^{2} \mathrm{~d} x=0 .
$$

Hence $v(x)=0, \forall x \in I$, i.e. $u_{1} \equiv u_{2}$ if $\lambda_{1}+h(x)>0, \forall x \in I$, but this is satisfied from (4.1) and (4.4).

## Application

For the particular case [4]:

$$
p=2, \quad f(x)=1+\sin x, \quad \text { and } \quad(a, b)=(0, \pi)
$$

and then

$$
\alpha=1, \quad \beta=2, \quad l=\pi, \quad \text { and } \quad \lambda_{1}=1 .
$$

By Theorem 6, this problem admits a unique positive solution if

$$
4 \pi^{2} q^{4}+3 q^{2}-1<0
$$

which means if

$$
q \in] 0,0,354446 \ldots[.
$$

And this is the same range of values of the parameter $q$ for which, the solution is symmetric.

## References

[1] M.A. Krasnoselskii, Positive Solutions of Operators Equations, Noordhoff, Groningen, 1964.
[2] L. Mays, J. Norbury, Bifurcation of positive solutions for a Neumann boundary value problem, ANZIAM J. 42 (2002) 324-340.
[3] L. Schwartz, Topologie Générale et Analyse Fonctionnelle, Edition Hermann, Paris, 1970.
[4] P.J. Torres, Some remarks on a Neumann boundary value problem arising in fluid dynamics, ANZIAM J. 45 (2004) $327-332$.


[^0]:    * Corresponding author.

    E-mail addresses: a_bensedik@mail.univ-tlemcen.dz (A. Bensedik), m_bouchekif@mail.univ-tlemcen.dz (M. Bouchekif).

