

Available online at www.sciencedirect.com

Applied Mathematics Letters

Applied Mathematics Letters 20 (2007) 419-426

www.elsevier.com/locate/aml

Symmetry and uniqueness of positive solutions for a Neumann boundary value problem

Ahmed Bensedik, Mohammed Bouchekif*

BP 119, Université de Tlemcen, Département de Mathématiques, Tlemcen, 13000 Algérie

Received 23 January 2006; received in revised form 29 April 2006; accepted 11 May 2006

Abstract

This work deals with the existence and symmetry of positive solutions for a Neumann boundary value problem. It is a generalization of the work of Pedro J. Torres. The main result is the uniqueness of positive solutions, which is proved by an analytical method, for a given interval of the positive parameter q. (© 2006 Elsevier Ltd. All rights reserved.

Keywords: Krasnoselskii theorem; Neumann conditions; Green's function; Symmetry; Uniqueness and positivity of solutions

1. Introduction

In this work we are concerned with the existence, symmetry and uniqueness of positive solutions for the following problem:

$$(P_p) \begin{cases} Lu \equiv -u'' + q^2 u = |u|^p f(x), & x \in]a, b[\\ u'(a) = 0 = u'(b), \end{cases}$$

where $p > 1, q > 0, 0 \le a < b \le \pi$, and f is a continuous positive symmetric function on [a, b].

For $f(x) = 1 + \sin x$ and $[a, b] = [0, \pi]$, Mays and Norbury [2] have considered the problem (P_2) arising in fluid dynamics. They have proved numerically the existence of positive solutions if $q^2 \in [0, 10[$. Torres [4] has confirmed analytically the results of [2] by using a fixed-point Theorem for Krasnoselskii operators [1]; he also proved the symmetry of the solutions. We remark that the analytical proof of uniqueness of positive solutions for (P_2) remains an open problem. It is strongly suggested numerically [2] on a given range of values of the parameter q.

In this work we generalize the work of [4] by considering the term $|u|^p f(x)$ instead of $u^2 (1 + \sin x)$ and we give a uniqueness result. The work is organized as follows. In Section 2 we give an existence result, Section 3 is concerned with the properties of the solutions and the last one contains a uniqueness result.

In this work we use the following notation. $||u||_0 = \sup \{|u(x)|, x \in [a, b]\}$, and $||u||_{\gamma} = \left(\int_a^b |u(x)|^{\gamma} dx\right)^{\frac{1}{\gamma}}$ for $\gamma \ge 1$.

* Corresponding author.

E-mail addresses: a_bensedik@mail.univ-tlemcen.dz (A. Bensedik), m_bouchekif@mail.univ-tlemcen.dz (M. Bouchekif).

^{0893-9659/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2006.05.008

The proof of the existence of positive solutions is based on the following theorems.

Theorem 1 ([1]). Let Ω_1 and Ω_2 be two bounded open sets in a Banach space E such that $0 \in \Omega_1$ and $\overline{\Omega}_1 \subset \Omega_2$. Let operator $A : P \cap (\overline{\Omega}_2 \setminus \Omega_1) \to P$ be completely continuous, where P is a cone of E, and such that one of the following conditions is satisfied:

(1) $||Ax|| \le ||x||$, $\forall x \in P \cap \partial \Omega_1$ and $||Ax|| \ge ||x||$, $\forall x \in P \cap \partial \Omega_2$; (2) $||Ax|| \ge ||x||$, $\forall x \in P \cap \partial \Omega_1$ and $||Ax|| \le ||x||$, $\forall x \in P \cap \partial \Omega_2$.

Then A has at least one fixed point in $P \cap (\overline{\Omega}_2 \setminus \Omega_1)$ *.*

Theorem 2 ([3]). Let $C(K, \mathbb{R})$ be the space of continuous functions on the compact set $K \subset \mathbb{R}^n$. Then a subset $S \subset C(K, \mathbb{R})$ is precompact if and only if the functions of S are uniformly bounded and equicontinuous.

2. Existence result

Theorem 3. Assume that f is a positive continuous function on [a, b]. Then the problem (P_p) has at least one positive solution for any positive q and any p > 1.

Proof. As was observed in [2], the Green's function G(x, y) of the operator L, with the Neumann conditions, is a positive and continuous function on $[a, b] \times [a, b]$. Thus the problem (P_p) can be written as the fixed-point problem

$$u(x) = \int_{a}^{b} G(x, y) |u(y)|^{p} f(y) dy \equiv Au(x).$$

Define

$$m = \min \{G(x, y); (x, y) \in [a, b] \times [a, b]\}, \qquad M = \max \{G(x, y); (x, y) \in [a, b] \times [a, b]\},\\ \alpha = \min \{f(x); a \le x \le b\}, \qquad \beta = \max \{f(x); a \le x \le b\}, \qquad l = b - a;$$

then m, α and l are positive.

Now consider the Banach space E = C([a, b]) endowed with the norm $\|.\|_0$, and define the cone

$$P = \left\{ u \in E : \min_{a \le x \le b} u(x) \ge \frac{m}{M} \|u\|_0 \right\}$$

We start by proving that $AP \subset P$.

For any given $u \in P$, we have

$$Au(x) \ge m \int_{a}^{b} u^{p}(y) f(y) dy$$
$$\ge \frac{m}{M} \int_{a}^{b} G(s, y) u^{p}(y) f(y) dy$$
$$= \frac{m}{M} Au(s), \text{ for all } x, s \in [a, b].$$

so

$$\min_{\leq x \leq b} Au(x) \geq \frac{m}{M} \|Au\|_0,$$

and then $Au \in P$.

a

Now let us prove that $A : P \to P$ is completely continuous. For any fixed $u_0 \in P$, and any $u \in P$, by the mean-value theorem, we obtain

$$|Au(x) - Au_0(x)| \le p \int_a^b |u(y) - u_0(y)| G(x, y) f(y) (v(y))^{p-1} dy, \quad \forall x \in [a, b],$$

where the real number v(y) is between u(y) and $u_0(y)$.

Thus

$$\|Au - Au_0\|_0 \le p\beta M \|u - u_0\|_0 \int_a^b (v(y))^{p-1} \, \mathrm{d}y,$$

which proves that the operator A is continuous on P.

Let $(u_n)_n$ be a bounded sequence in *P*, that is,

 $\exists C > 0, \quad \|u_n\|_0 \le C, \quad \forall n \in \mathbb{N}.$

Let us prove that the set $S := \{Au_n, n \in \mathbb{N}\}$ is precompact.

First we verify that the functions Au_n are uniformly bounded. For any $x \in [a, b]$, and any $n \in \mathbb{N}$, we have

$$Au_n(x) = \int_a^b G(x, y) u_n^p(y) f(y) \, \mathrm{d}y \le \beta l M C^p,$$

that is $||Au_n||_0 \leq \beta l M C^p, \forall n \in \mathbb{N}$.

Now we prove that the functions Au_n are equicontinuous.

For any x_1 and x_2 fixed in [a, b],

$$|Au_n(x_1) - Au_n(x_2)| = \left| \int_a^b (G(x_1, y) - G(x_2, y)) u_n^p(y) f(y) \, \mathrm{d}y \right|,$$

and we remark that for any y fixed in [a, b], the function $x \mapsto G(x, y)$ is uniformly continuous in [a, b], i.e.

$$\forall \varepsilon > 0, \quad \exists \delta (\varepsilon, y) > 0 : |x_1 - x_2| < \delta \Rightarrow |G (x_1, y) - G (x_2, y)| < \varepsilon$$

and since $y \in [a, b]$ which is a compact set, there exists $\delta(\varepsilon) > 0$ independent of y, such that for any given $\varepsilon > 0$,

$$\forall x_1, x_2 \in [a, b] : |x_1 - x_2| < \delta(\varepsilon) \Rightarrow |G(x_1, y) - G(x_2, y)| < \varepsilon$$

and then

$$\forall \varepsilon > 0, \quad \exists \delta > 0 : |x_1 - x_2| < \delta \Rightarrow |Au_n(x_1) - Au_n(x_2)| < \beta l C^p \varepsilon, \quad \forall n \in \mathbb{N}$$

which confirms that the functions Au_n are equicontinuous, and in consequence of Theorem 2 the set S is precompact, and so the operator A is completely continuous.

In order to apply Theorem 1, we consider the open balls

$$\Omega_1 = \{ u \in E, \|u\|_0 < r_1 \}$$
 and $\Omega_2 = \{ u \in E, \|u\|_0 < r_2 \}$

where

$$r_1 = (\beta l M)^{-\frac{1}{p-1}}$$
 and $r_2 = \left(\frac{M^p}{\alpha l m^{p+1}}\right)^{\frac{1}{p-1}}$

Clearly $0 \in \Omega_1$ and $\overline{\Omega}_1 \subset \Omega_2$ because $r_1 < r_2$. Now, if $u \in P \cap \partial \Omega_1$, we get

$$||Au||_0 \le \beta lM ||u||_0^p = ||u||_0$$

and if $u \in P \cap \partial \Omega_2$,

$$\|Au\|_{0} \ge \alpha m \int_{a}^{b} u^{p}(y) \,\mathrm{d}y$$
$$\ge \alpha m l \left(\frac{m}{M} \|u\|_{0}\right)^{p} = \frac{\alpha l m^{p+1}}{M^{p}} \|u\|_{0}^{p} = \|u\|_{0},$$

then the operator A satisfies condition (1) of Theorem 1.

Therefore it has at least one fixed point $u \in P \cap (\overline{\Omega}_2 \setminus \Omega_1)$, and so the problem (P_p) has at least a positive solution for any positive q. \Box

Remark that the solution u of our problem satisfies the inequalities

$$m\left(\beta lM^{p}\right)^{-\frac{1}{p-1}} \le u\left(x\right) \le \left(\alpha lm^{p+1}M^{-p}\right)^{-\frac{1}{p-1}}, \quad \forall x \in [a, b].$$

3. Uniform upper bound and symmetry of the solutions

At the beginning of this section, we deduce the uniform upper bound for every positive solution of the problem (P_p) .

Theorem 4. Assume that f is a positive continuous function on [a, b]. Then there exists a constant $C_q := \left(\frac{q^2}{\alpha}\right)^{\frac{1}{p-1}} (1 + (ql)^2)$, such that any positive solution of the problem (P_p) verifies $u(x) < C_q, \quad \forall x \in [a, b].$

Proof. Let *u* be a positive solution of the problem. Integrating the equation of (P_p) , we obtain

$$q^{2} \|u\|_{1} = \int_{a}^{b} u^{p}(y) f(y) \, \mathrm{d}y \ge \alpha \|u\|_{p}^{p},$$

and using the Hölder inequality, we can write

$$\|u\|_{1} = \int_{a}^{b} u(x) \, \mathrm{d}x \le \left[\int_{a}^{b} \mathrm{d}x\right]^{\frac{p-1}{p}} \left[\int_{a}^{b} u^{p}(x) \, \mathrm{d}x\right]^{\frac{1}{p}} = l^{\frac{p-1}{p}} \|u\|_{p},$$

and then

$$\|u\|_p \leq \left[\frac{q^2}{\alpha}\right]^{\frac{1}{p-1}} l^{\frac{1}{p}}$$
 and $\|u\|_1 \leq \left[\frac{q^2}{\alpha}\right]^{\frac{1}{p-1}} l.$

Moreover, for any $x \in]a, b[$,

$$u'(x) = \int_{a}^{x} u''(s) \, ds = \int_{a}^{x} \left(q^{2}u(s) - u^{p}(s) f(s)\right) ds$$

$$< q^{2} ||u||_{1} \le q^{2} \left[\frac{q^{2}}{\alpha}\right]^{\frac{1}{p-1}} l,$$

$$-u'(x) = \int_{x}^{b} u''(s) \, ds = \int_{x}^{b} \left(q^{2}u(s) - u^{p}(s) f(s)\right) ds$$

$$< q^{2} ||u||_{1} \le q^{2} \left[\frac{q^{2}}{\alpha}\right]^{\frac{1}{p-1}} l,$$

so

$$||u'||_0 < q^2 \left[\frac{q^2}{\alpha}\right]^{\frac{1}{p-1}} l.$$

On the other hand

$$u'(a) = u'(b) \Rightarrow \exists x_0 \in]a, b[: u''(x_0) = 0,$$

and then from the equation,

$$u^{p-1}(x_0) = \frac{q^2}{f(x_0)},$$

which gives us

$$\left(\frac{q^2}{\beta}\right)^{\frac{1}{p-1}} \le u\left(x_0\right) \le \left(\frac{q^2}{\alpha}\right)^{\frac{1}{p-1}}$$

We can deduce the constant C_q :

$$u(x) = u(x_0) + \int_{x_0}^{x} u'(s) \, \mathrm{d}s < \left(\frac{q^2}{\alpha}\right)^{\frac{1}{p-1}} + (ql)^2 \left(\frac{q^2}{\alpha}\right)^{\frac{1}{p-1}}$$

Then

$$C_q \equiv \left(\frac{q^2}{\alpha}\right)^{\frac{1}{p-1}} \left(1 + (ql)^2\right). \quad \Box$$

The constant C_q will be used to prove the symmetry of the positive solutions.

Theorem 5. Assume that f is a positive, symmetric and continuous function on [a, b] and the positive parameter q satisfies the following inequality:

$$p\beta \frac{q^2}{\alpha} \left(1 + q^2 l^2\right)^{p-1} < 1 + q^2; \tag{3.1}$$

then any positive solution of the problem (P_p) is symmetric.

Proof. We follow along the lines of [4]. Let u_1 be a positive solution; then u_2 such that $u_2(x) = u_1(a + b - x)$ is also a solution, because f is symmetric.

Let us prove that $u_1 \equiv u_2$. Define $z = u_1 - u_2$; then z is a solution of the problem

$$\begin{cases} z'' + g(x) z = 0, \\ z'(a) = 0 = z'(b), \end{cases}$$
(3.2)

where $g(x) = pf(x)(w(x))^{p-1} - q^2$, and the real number w(x) is between $u_1(x)$ and $u_2(x)$ and such that

$$u_1^p(x) - u_2^p(x) = p(w(x))^{p-1}(u_1(x) - u_2(x)).$$

Using the fact that u_1 and u_2 are strictly less than C_q and the condition (3.1), we verify that

$$g(x) < 1, \quad \forall x \in [a, b]. \tag{3.3}$$

Our purpose is to prove that $z \equiv 0$. Suppose that z is not a trivial solution and let us change to polar coordinates:

$$z = r \cos \theta$$
, $z' = -r \sin \theta$, $r > 0$, $0 \le \theta < 2\pi$.

By deriving z and z', we get

$$z' = r' \cos \theta - r\theta' \sin \theta = -r \sin \theta,$$

and

$$z'' = -r'\sin\theta - r\theta'\cos\theta = -g(x)r\cos\theta.$$

From these equations, we obtain

$$\theta' = g(x)\cos^2\theta + \sin^2\theta. \tag{3.4}$$

Integrating (3.4) in the interval [a, x], $a < x \le b$, and using (3.3) we get

$$\theta(x) - \theta(a) = \int_{a}^{x} g(s) \cos^{2} \theta(s) + \sin^{2} \theta(s) \, \mathrm{d}s < \int_{a}^{x} \mathrm{d}s = x - a. \tag{3.5}$$

Now remark that

z(x) = -z(a+b-x),

and therefore

$$z\left(\frac{a+b}{2}\right) = 0.$$

By using the Sturm comparison theorem with the equation

$$z'' + \left(\frac{\pi}{l}\right)^2 z = 0$$

which admits the solution

$$z_0(x) = \sin\frac{\pi}{l}(x-a),$$

we deduce that $\frac{a+b}{2}$ is the unique zero of z in the interval [a, b]. The solution z is supposed not identically zero and z(a) = -z(b); then

$$z\left(a\right)z\left(b\right)<0$$

Assume that z(a) > 0; then from z'(a) = 0, we get

$$\theta(a) = 0.$$

On the other hand,

$$z\left(\frac{a+b}{2}\right) = 0.$$

and so,

$$\theta\left(\frac{a+b}{2}\right) = \frac{\pi}{2}, \text{ or } \theta\left(\frac{a+b}{2}\right) = \frac{3\pi}{2}.$$

Now, using (3.5) we get

$$\pi < b - a$$
, or $3\pi < b - a$;

this is a contradiction. Then $z \equiv 0$, and therefore

 $u_1(x) = u_1(a + b - x), \quad \forall x \in [a, b].$

4. Uniqueness result for the positive solution

Let λ_1 be the first positive eigenvalue of the following problem with Neumann boundary conditions:

$$\begin{cases} -u'' = \lambda u, & x \in]a, b[\\ u'(a) = u'(b) = 0. \end{cases}$$

Theorem 6. Under the hypothesis for the function f, and if the positive parameter q satisfies the relation

$$\lambda_1 + q^2 - p \frac{\beta}{\alpha} q^2 \left(1 + q^2 l^2 \right)^{p-1} > 0, \tag{4.1}$$

then the problem (P_p) admits a unique positive solution.

Proof. Let u_1 and u_2 be two positive solutions of the problem (P_p) . Then, if we put $v = u_1 - u_2$, we get the following problem:

$$-v'' + q^2 v = \left(u_1^p(x) - u_2^p(x)\right) f(x), \quad x \in]a, b[,$$

$$v'(a) = v'(b) = 0.$$
(4.2)

Now by the mean-value theorem, there exists a real number w(x) between $u_1(x)$ and $u_2(x)$ such that

$$u_1^p(x) - u_2^p(x) = pw^{p-1}(x)(u_1(x) - u_2(x))$$

424

Then the problem (4.2) becomes

$$-v'' + (q^2 - pw^{p-1}(x) f(x))v = 0, \quad x \in]a, b[$$

$$v'(a) = v'(b) = 0.$$
(4.3)

Note that the function $x \mapsto w(x)$ is continuous in [a, b]. We can define it by

$$w^{p-1}(x) = \frac{u_1^p(x) - u_2^p(x)}{p(u_1(x) - u_2(x))}, \quad \text{if } u_1(x) \neq u_2(x),$$

$$w(x) = u_1(x), \quad \text{if } u_1(x) = u_2(x).$$

Return to the last problem and put $h(x) = q^2 - pw^{p-1}(x) f(x)$; then

$$q^{2} - p\beta C_{q}^{p-1} \le h(x) \le q^{2}, \quad \forall x \in [a, b],$$
(4.4)

where $C_q = \left(\frac{q^2}{\alpha}\right)^{\frac{1}{p-1}} (1+q^2l^2).$

Multiplying the equation of the problem (4.3) by v and integrating in the interval [a, b], we obtain

$$\int_{a}^{b} (v'(x))^{2} dx + \int_{a}^{b} h(x) v^{2}(x) dx = 0$$

Now using the characterization of λ_1 , we know, if I =]a, b[, that

$$\lambda_{1} = \inf \left\{ \int_{I} \left(v'(x) \right)^{2} dx : v \in H^{1}(I), v'(a) = 0 \text{ and } \int_{I} v^{2} dx = 1 \right\}.$$

In fact $\lambda_1 = \frac{\pi^2}{l^2}$, and it is attained by the function v_1 :

$$v_1(x) = \sqrt{\frac{2}{l}} \cos\left(\frac{\pi}{l} (x-a)\right).$$

From the characterization of λ_1 , we have

$$\lambda_1 \int_I v^2 \mathrm{d}x \leq \int_I (v')^2 \mathrm{d}x,$$

and then

$$\int_{I} \left(\lambda_{1} + h\left(x\right)\right) v^{2} \mathrm{d}x \leq \int_{I} \left(v'\right)^{2} \mathrm{d}x + \int_{I} h\left(x\right) v^{2} \mathrm{d}x = 0.$$

Hence v(x) = 0, $\forall x \in I$, i.e. $u_1 \equiv u_2$ if $\lambda_1 + h(x) > 0$, $\forall x \in I$, but this is satisfied from (4.1) and (4.4). \Box

Application

For the particular case [4]:

$$p = 2$$
, $f(x) = 1 + \sin x$, and $(a, b) = (0, \pi)$,

and then

 $\alpha = 1, \qquad \beta = 2, \qquad l = \pi, \quad \text{and} \quad \lambda_1 = 1.$

By Theorem 6, this problem admits a unique positive solution if

$$4\pi^2 q^4 + 3q^2 - 1 < 0$$

which means if

 $q \in [0, 0, 354446\dots[.$

And this is the same range of values of the parameter q for which, the solution is symmetric.

References

- [1] M.A. Krasnoselskii, Positive Solutions of Operators Equations, Noordhoff, Groningen, 1964.
- [2] L. Mays, J. Norbury, Bifurcation of positive solutions for a Neumann boundary value problem, ANZIAM J. 42 (2002) 324-340.
- [3] L. Schwartz, Topologie Générale et Analyse Fonctionnelle, Edition Hermann, Paris, 1970.
- [4] P.J. Torres, Some remarks on a Neumann boundary value problem arising in fluid dynamics, ANZIAM J. 45 (2004) 327–332.