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Abstract

This work deals with the existence and symmetry of positive solutions for a Neumann boundary value problem. It is a
generalization of the work of Pedro J. Torres. The main result is the uniqueness of positive solutions, which is proved by an
analytical method, for a given interval of the positive parameter q.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work we are concerned with the existence, symmetry and uniqueness of positive solutions for the following
problem:

(
Pp

) {
Lu ≡ −u′′ + q2u = |u|p f (x), x ∈ ]a, b[
u′ (a) = 0 = u′ (b),

where p > 1, q > 0, 0 ≤ a < b ≤ π , and f is a continuous positive symmetric function on [a, b].
For f (x) = 1 + sin x and [a, b] = [0, π], Mays and Norbury [2] have considered the problem (P2) arising in fluid

dynamics. They have proved numerically the existence of positive solutions if q2 ∈ ]0, 10[. Torres [4] has confirmed
analytically the results of [2] by using a fixed-point Theorem for Krasnoselskii operators [1]; he also proved the
symmetry of the solutions. We remark that the analytical proof of uniqueness of positive solutions for (P2) remains
an open problem. It is strongly suggested numerically [2] on a given range of values of the parameter q .

In this work we generalize the work of [4] by considering the term |u|p f (x) instead of u2 (1 + sin x) and we give
a uniqueness result. The work is organized as follows. In Section 2 we give an existence result, Section 3 is concerned
with the properties of the solutions and the last one contains a uniqueness result.

In this work we use the following notation. ‖u‖0 = sup {|u (x) |, x ∈ [a, b]}, and ‖u‖γ =
(∫ b

a |u (x) |γ dx
) 1

γ
for

γ ≥ 1.
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The proof of the existence of positive solutions is based on the following theorems.

Theorem 1 ([1]). Let Ω1 and Ω2 be two bounded open sets in a Banach space E such that 0 ∈ Ω1 and Ω1 ⊂ Ω2.
Let operator A : P ∩ (

Ω2 \ Ω1
) → P be completely continuous, where P is a cone of E, and such that one of the

following conditions is satisfied:

(1) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2;
(2) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2.

Then A has at least one fixed point in P ∩ (
Ω2 \ Ω1

)
.

Theorem 2 ([3]). Let C (K , R) be the space of continuous functions on the compact set K ⊂ R
n. Then a subset

S ⊂ C (K , R) is precompact if and only if the functions of S are uniformly bounded and equicontinuous.

2. Existence result

Theorem 3. Assume that f is a positive continuous function on [a, b]. Then the problem
(
Pp

)
has at least one positive

solution for any positive q and any p > 1.

Proof. As was observed in [2], the Green’s function G (x, y) of the operator L, with the Neumann conditions, is a
positive and continuous function on [a, b] × [a, b]. Thus the problem

(
Pp

)
can be written as the fixed-point problem

u (x) =
∫ b

a
G (x, y) |u (y) |p f (y) dy ≡ Au (x).

Define

m = min {G (x, y) ; (x, y) ∈ [a, b] × [a, b]}, M = max {G (x, y) ; (x, y) ∈ [a, b] × [a, b]},
α = min { f (x) ; a ≤ x ≤ b}, β = max { f (x) ; a ≤ x ≤ b}, l = b − a;

then m, α and l are positive.
Now consider the Banach space E = C ([a, b]) endowed with the norm ‖.‖0, and define the cone

P =
{

u ∈ E : min
a≤x≤b

u (x) ≥ m

M
‖u‖0

}
.

We start by proving that AP ⊂ P .
For any given u ∈ P , we have

Au (x) ≥ m
∫ b

a
u p (y) f (y) dy

≥ m

M

∫ b

a
G (s, y) u p (y) f (y) dy

= m

M
Au (s), for all x, s ∈ [a, b],

so

min
a≤x≤b

Au (x) ≥ m

M
‖Au‖0,

and then Au ∈ P .
Now let us prove that A : P → P is completely continuous. For any fixed u0 ∈ P , and any u ∈ P , by the

mean-value theorem, we obtain

|Au (x) − Au0 (x) | ≤ p
∫ b

a
|u (y) − u0 (y) |G (x, y) f (y) (v (y))p−1 dy, ∀x ∈ [a, b],

where the real number v (y) is between u (y) and u0 (y).
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Thus

‖Au − Au0‖0 ≤ pβM‖u − u0‖0

∫ b

a
(v (y))p−1 dy,

which proves that the operator A is continuous on P .
Let (un)n be a bounded sequence in P , that is,

∃C > 0, ‖un‖0 ≤ C, ∀n ∈ N.

Let us prove that the set S := {Aun, n ∈ N} is precompact.
First we verify that the functions Aun are uniformly bounded. For any x ∈ [a, b], and any n ∈ N, we have

Aun (x) =
∫ b

a
G (x, y) u p

n (y) f (y) dy ≤ βl MC p,

that is ‖Aun‖0 ≤ βl MC p , ∀n ∈ N.
Now we prove that the functions Aun are equicontinuous.
For any x1 and x2 fixed in [a, b],

|Aun (x1) − Aun (x2) | =
∣∣∣∣
∫ b

a
(G (x1, y) − G (x2, y)) u p

n (y) f (y) dy

∣∣∣∣ ,
and we remark that for any y fixed in [a, b], the function x �−→ G (x, y) is uniformly continuous in [a, b], i.e.

∀ε > 0, ∃δ (ε, y) > 0 : |x1 − x2| < δ ⇒ |G (x1, y) − G (x2, y) | < ε

and since y ∈ [a, b] which is a compact set, there exists δ (ε) > 0 independent of y, such that for any given ε > 0,

∀x1, x2 ∈ [a, b] : |x1 − x2| < δ (ε) ⇒ |G (x1, y) − G (x2, y) | < ε

and then

∀ε > 0, ∃δ > 0 : |x1 − x2| < δ ⇒ |Aun (x1) − Aun (x2) | < βlC pε, ∀n ∈ N

which confirms that the functions Aun are equicontinuous, and in consequence of Theorem 2 the set S is precompact,
and so the operator A is completely continuous.

In order to apply Theorem 1, we consider the open balls

Ω1 = {u ∈ E, ‖u‖0 < r1} and Ω2 = {u ∈ E, ‖u‖0 < r2}
where

r1 = (βl M)
− 1

p−1 and r2 =
(

M p

αlm p+1

) 1
p−1

.

Clearly 0 ∈ Ω1 and Ω1 ⊂ Ω2 because r1 < r2.
Now, if u ∈ P ∩ ∂Ω1, we get

‖Au‖0 ≤ βl M‖u‖p
0 = ‖u‖0

and if u ∈ P ∩ ∂Ω2,

‖Au‖0 ≥ αm
∫ b

a
u p (y) dy

≥ αml
( m

M
‖u‖0

)p = αlm p+1

M p
‖u‖p

0 = ‖u‖0,

then the operator A satisfies condition (1) of Theorem 1.
Therefore it has at least one fixed point u ∈ P ∩ (

Ω2 \ Ω1
)
, and so the problem

(
Pp

)
has at least a positive solution

for any positive q . �
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Remark that the solution u of our problem satisfies the inequalities

m
(
βl M p)− 1

p−1 ≤ u (x) ≤
(
αlm p+1 M−p

)− 1
p−1

, ∀x ∈ [a, b].

3. Uniform upper bound and symmetry of the solutions

At the beginning of this section, we deduce the uniform upper bound for every positive solution of the problem(
Pp

)
.

Theorem 4. Assume that f is a positive continuous function on [a, b]. Then there exists a constant Cq :=(
q2

α

) 1
p−1 (

1 + (ql)2), such that any positive solution of the problem
(
Pp

)
verifies

u (x) < Cq , ∀x ∈ [a, b].

Proof. Let u be a positive solution of the problem. Integrating the equation of
(
Pp

)
, we obtain

q2‖u‖1 =
∫ b

a
u p (y) f (y) dy ≥ α‖u‖p

p,

and using the Hölder inequality, we can write

‖u‖1 =
∫ b

a
u (x) dx ≤

[∫ b

a
dx

] p−1
p

[∫ b

a
u p (x) dx

] 1
p

= l
p−1

p ‖u‖p,

and then

‖u‖p ≤
[

q2

α

] 1
p−1

l
1
p and ‖u‖1 ≤

[
q2

α

] 1
p−1

l.

Moreover, for any x ∈]a, b[,

u′ (x) =
∫ x

a
u′′ (s) ds =

∫ x

a

(
q2u (s) − u p (s) f (s)

)
ds

< q2‖u‖1 ≤ q2
[

q2

α

] 1
p−1

l,

−u′ (x) =
∫ b

x
u′′ (s) ds =

∫ b

x

(
q2u (s) − u p (s) f (s)

)
ds

< q2‖u‖1 ≤ q2
[

q2

α

] 1
p−1

l,

so

‖u′‖0 < q2
[

q2

α

] 1
p−1

l.

On the other hand

u′ (a) = u′ (b) ⇒ ∃x0 ∈]a, b[ : u′′ (x0) = 0,

and then from the equation,

u p−1 (x0) = q2

f (x0)
,
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which gives us

(
q2

β

) 1
p−1

≤ u (x0) ≤
(

q2

α

) 1
p−1

.

We can deduce the constant Cq :

u (x) = u (x0) +
∫ x

x0

u′ (s) ds <

(
q2

α

) 1
p−1

+ (ql)2
(

q2

α

) 1
p−1

.

Then

Cq ≡
(

q2

α

) 1
p−1 (

1 + (ql)2
)
. �

The constant Cq will be used to prove the symmetry of the positive solutions.

Theorem 5. Assume that f is a positive, symmetric and continuous function on [a, b] and the positive parameter q
satisfies the following inequality:

pβ
q2

α

(
1 + q2l2

)p−1
< 1 + q2; (3.1)

then any positive solution of the problem
(
Pp

)
is symmetric.

Proof. We follow along the lines of [4]. Let u1 be a positive solution; then u2 such that u2 (x) = u1 (a + b − x) is
also a solution, because f is symmetric.

Let us prove that u1 ≡ u2. Define z = u1 − u2; then z is a solution of the problem{
z′′ + g (x) z = 0,

z′ (a) = 0 = z′ (b),
(3.2)

where g (x) = p f (x) (w (x))p−1 − q2, and the real number w (x) is between u1 (x) and u2 (x) and such that

u p
1 (x) − u p

2 (x) = p (w (x))p−1 (u1 (x) − u2 (x)).

Using the fact that u1 and u2 are strictly less than Cq and the condition (3.1), we verify that

g (x) < 1, ∀x ∈ [a, b]. (3.3)

Our purpose is to prove that z ≡ 0. Suppose that z is not a trivial solution and let us change to polar coordinates:

z = r cos θ, z′ = −r sin θ, r > 0, 0 ≤ θ < 2π.

By deriving z and z′, we get

z′ = r ′ cos θ − rθ ′ sin θ = −r sin θ,

and

z′′ = −r ′ sin θ − rθ ′ cos θ = −g (x) r cos θ.

From these equations, we obtain

θ ′ = g (x) cos2 θ + sin2 θ. (3.4)

Integrating (3.4) in the interval [a, x], a < x ≤ b, and using (3.3) we get

θ (x) − θ (a) =
∫ x

a
g (s) cos2 θ (s) + sin2 θ (s) ds <

∫ x

a
ds = x − a. (3.5)

Now remark that

z (x) = −z (a + b − x),
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and therefore

z

(
a + b

2

)
= 0.

By using the Sturm comparison theorem with the equation

z′′ +
(π

l

)2
z = 0,

which admits the solution

z0 (x) = sin
π

l
(x − a),

we deduce that a+b
2 is the unique zero of z in the interval [a, b].

The solution z is supposed not identically zero and z (a) = −z (b); then

z (a) z (b) < 0.

Assume that z (a) > 0; then from z′ (a) = 0, we get

θ (a) = 0.

On the other hand,

z

(
a + b

2

)
= 0,

and so,

θ

(
a + b

2

)
= π

2
, or θ

(
a + b

2

)
= 3π

2
.

Now, using (3.5) we get

π < b − a, or 3π < b − a;
this is a contradiction. Then z ≡ 0, and therefore

u1 (x) = u1 (a + b − x), ∀x ∈ [a, b]. �

4. Uniqueness result for the positive solution

Let λ1 be the first positive eigenvalue of the following problem with Neumann boundary conditions:{−u′′ = λu, x ∈ ]a, b[
u′ (a) = u′ (b) = 0.

Theorem 6. Under the hypothesis for the function f , and if the positive parameter q satisfies the relation

λ1 + q2 − p
β

α
q2

(
1 + q2l2

)p−1
> 0, (4.1)

then the problem
(
Pp

)
admits a unique positive solution.

Proof. Let u1 and u2 be two positive solutions of the problem
(
Pp

)
. Then, if we put v = u1 −u2, we get the following

problem:

−v′′ + q2v = (
u p

1 (x) − u p
2 (x)

)
f (x), x ∈ ]a, b[,

v′ (a) = v′ (b) = 0.
(4.2)

Now by the mean-value theorem, there exists a real number w (x) between u1 (x) and u2 (x) such that

u p
1 (x) − u p

2 (x) = pwp−1 (x) (u1 (x) − u2 (x)).
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Then the problem (4.2) becomes

−v′′ +
(

q2 − pwp−1 (x) f (x)
)

v = 0, x ∈ ]a, b[
v′ (a) = v′ (b) = 0.

(4.3)

Note that the function x �−→ w (x) is continuous in [a, b]. We can define it by

wp−1 (x) = u p
1 (x) − u p

2 (x)

p (u1 (x) − u2 (x))
, if u1 (x) �= u2 (x),

w (x) = u1 (x), if u1 (x) = u2 (x).

Return to the last problem and put h (x) = q2 − pwp−1 (x) f (x); then

q2 − pβC p−1
q ≤ h (x) ≤ q2, ∀x ∈ [a, b], (4.4)

where Cq =
(

q2

α

) 1
p−1 (

1 + q2l2
)
.

Multiplying the equation of the problem (4.3) by v and integrating in the interval [a, b], we obtain∫ b

a

(
v′ (x)

)2
dx +

∫ b

a
h (x) v2 (x) dx = 0.

Now using the characterization of λ1, we know, if I = ]a, b[, that

λ1 = inf

{∫
I

(
v′ (x)

)2 dx : v ∈ H 1 (I ), v′ (a) = 0 and
∫

I
v2dx = 1

}
.

In fact λ1 = π2

l2 , and it is attained by the function v1:

v1 (x) =
√

2

l
cos

(π

l
(x − a)

)
.

From the characterization of λ1, we have

λ1

∫
I
v2dx ≤

∫
I

(
v′)2 dx,

and then∫
I
(λ1 + h (x)) v2dx ≤

∫
I

(
v′)2 dx +

∫
I

h (x) v2dx = 0.

Hence v (x) = 0, ∀x ∈ I , i.e. u1 ≡ u2 if λ1 + h (x) > 0, ∀x ∈ I , but this is satisfied from (4.1) and (4.4). �

Application

For the particular case [4]:

p = 2, f (x) = 1 + sin x, and (a, b) = (0, π),

and then

α = 1, β = 2, l = π, and λ1 = 1.

By Theorem 6, this problem admits a unique positive solution if

4π2q4 + 3q2 − 1 < 0,

which means if

q ∈ ]0, 0, 354446 . . . [.
And this is the same range of values of the parameter q for which, the solution is symmetric.
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