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Abstract

This work deals with the existence and symmetry of positive solutions for a Neumann boundary value problem. It is a
generalization of the work of Pedro J. Torres. The main result is the uniqueness of positive solutions, which is proved by an
analytical method, for a given interval of the positive parameter g.
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1. Introduction

In this work we are concerned with the existence, symmetry and uniqueness of positive solutions for the following
problem:

(p,) [Lu =~ + u =l f @), x € Ja. b
P @) =0=u ).

where p > 1, > 0,0 <a < b < m, and f is a continuous positive symmetric function on [a, b].

For f (x) = 1 +sinx and [a, b] = [0, ], Mays and Norbury [2] have considered the problem (P») arising in fluid
dynamics. They have proved numerically the existence of positive solutions if g> € ]0, 10[. Torres [4] has confirmed
analytically the results of [2] by using a fixed-point Theorem for Krasnoselskii operators [1]; he also proved the
symmetry of the solutions. We remark that the analytical proof of uniqueness of positive solutions for (P,) remains
an open problem. It is strongly suggested numerically [2] on a given range of values of the parameter g.

In this work we generalize the work of [4] by considering the term |u|? f (x) instead of u? (1 4 sinx) and we give
a uniqueness result. The work is organized as follows. In Section 2 we give an existence result, Section 3 is concerned
with the properties of the solutions and the last one contains a uniqueness result.

1
In this work we use the following notation. |lullo = sup {|u (x)|, x € [a, b]}, and ||u]l, = (fab lu (x) |de) " for
y > 1
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The proof of the existence of positive solutions is based on the following theorems.

Theorem 1 ([1]). Let (2 and (% be two bounded open sets in a Banach space E such that 0 € () and 21 c M.
Let operator A : P N (Qg \ (21) — P be completely continuous, where P is a cone of E, and such that one of the
following conditions is satisfied:

(W IAx] < llxll, Vx e PNafy and |Ax|l > |lx|l, Vx € PNofk;
@) |lAx] = Ixll, Yxe PNaR and |Ax|| < |x], ¥x e PNad.

Then A has at least one fixed point in P N (ﬁg \ Ql).

Theorem 2 (/3]). Let C (K, R) be the space of continuous functions on the compact set K C R". Then a subset
S C C (K, R) is precompact if and only if the functions of S are uniformly bounded and equicontinuous.

2. Existence result
Theorem 3. Assume that f is a positive continuous function on [a, b]. Then the problem (Pp) has at least one positive
solution for any positive g and any p > 1.

Proof. As was observed in [2], the Green’s function G (x, y) of the operator L, with the Neumann conditions, is a
positive and continuous function on [a, b] X [a, b]. Thus the problem (Pp) can be written as the fixed-point problem

b
we) = [ G 0y =Au )
Define
m =min{G (x, y); (x,y) € [a, b] x [a, b]}, M = max{G (x,y); (x,y) € [a, b] x [a, b]},
oa=min{f (x); a <x < b}, B =max{f (x); a <x < b}, l=b—a;

then m, o and [ are positive.
Now consider the Banach space £ = C ([a, b]) endowed with the norm ||.||o, and define the cone

m
P = E : mi > — .
{u € min_ u (x) > M||M||0}

a=x=

We start by proving that AP C P.
For any given u € P, we have

b
Au(x) > m/ u? () f () dy

v

m b
M/a G (s, y)u?(y) f(y)dy

m
= —A , forallx,s € la,b],
v u(s) orall x,s € [a, b]

SO

m
in A > —||Aulo,
min, u(x) = MII ullo

a=x=

and then Au € P.
Now let us prove that A : P — P is completely continuous. For any fixed up € P, and any u € P, by the
mean-value theorem, we obtain

b
|Au (x) — Aug (x) | < 19/ lu (v) —uo () 1G (x,y) f () w ()P~ dy, Vx € [a,b],

where the real number v (y) is between u (y) and ug (y).
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Thus

b
lAu — Auollo < ppMlu — uollo/ @ ()P~ dy,
a

which proves that the operator A is continuous on P.
Let (u,), be a bounded sequence in P, that is,
AC >0, J|lupllo<C, VneN.

Let us prove that the set S := {Au,, n € N} is precompact.
First we verify that the functions Au,, are uniformly bounded. For any x € [a, b], and any n € N, we have

b
Auy (x) =/ G (x,y)up (v) f () dy < BIMCP,

that is ||Au,llo < BIMCP,Vn € N.
Now we prove that the functions Au,, are equicontinuous.
For any x; and x; fixed in [a, b],

b
[Aup (x1) — Aup (x2) | = / (G (x1,) = G (x2, ) uy (y) f () dy|,

and we remark that for any y fixed in [a, b], the function x —— G (x, y) is uniformly continuous in [a, b], i.e.
Ve>0, 35(,y)>0:|x1—x2]<é6=|G(x1,y) —G(x2,y)| <¢

and since y € [a, b] which is a compact set, there exists § (¢) > 0 independent of y, such that for any given ¢ > 0,
Vxi, x2 € [a,b] : [x1 —x2| <8(e) = [G(x1,y) =G (x2,¥) | <¢

and then
Ve >0, 38>0:|x;—x2| <8=|Au, (x1) — Au, (x2) | < BICPe, VneN

which confirms that the functions Au,, are equicontinuous, and in consequence of Theorem 2 the set S is precompact,
and so the operator A is completely continuous.
In order to apply Theorem 1, we consider the open balls

O ={uek, lullo<r} and (b ={ueck, |lullo <r)
where

-l MP O\
ry = (,BIM) P and rp = (W) .

Clearly 0 € £2; and 2, C 2 because r| < rs.
Now, if u € P N 3{2, we get

lAullo < BIMlullg = llullo

andifu € PNaf,

b
IAullo = am / u? (y)dy
a

almpPtl

MPp
then the operator A satisfies condition (1) of Theorem 1.

Therefore it has at least one fixed pointu € PN (ﬁz \ .Ql), and so the problem (P,,) has at least a positive solution
for any positive g. O

= aml (2 ullo) lullf = el
>aml (—|ullo) = ullt = |lullo,
M 0
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Remark that the solution u of our problem satisfies the inequalities
o1
p—1

m (,BIMP)_ﬁ <u(x) < (almpHM_p) , Vx ela,b]

3. Uniform upper bound and symmetry of the solutions

At the beginning of this section, we deduce the uniform upper bound for every positive solution of the problem
(Pp).
Theorem 4. Assume that f is a positive continuous function on [a, b]. Then there exists a constant C; =
1
(%2) -t (l + (ql)z), such that any positive solution of the problem (Pp) verifies

ux)<Cy, Vxe€la,b].

Proof. Let u be a positive solution of the problem. Integrating the equation of (P,,), we obtain

b
llully = / u? () f ) dy = alul?,

and using the Holder inequality, we can write

b b pT b % p—1
||u||1=/ u(x)dxs[/ dx} [/ uf’(x)dx} = 1" ull.

and then

72 T, 72 T
lulp <|—| 17 and Julh<|—| L
o [07

Moreover, for any x €]a, bl,
W (x) = / 4 (s)ds = / ) (4% ) —u” ) £ (5)) ds
a a )
275
< ¢lull; sqz["—} I,
o
b b
—u' (x) = / u” (s)ds =/ (qzu ) —u’ (s) f (s)) ds

1
21 p=1
q P
< ¢*lulli < ¢? [ﬂ I,

SO

1
2950
Iu'llo < ¢ [‘ﬂ l.

On the other hand
u' (a) =u' (b) = Axg €la, b[: u” (xg) =0,

and then from the equation,
2

q
f (x0)’

uP~ (xo) =
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which gives us

1 1
2\ 51 2\ p-T
7 <u(o) < (L :
B o
We can deduce the constant Cy:

X

N N
u(x) = u(xp) +/ u' (s)ds < <—> + (ql)2 (—) .
X0 (04 o

Then
1
2\ p=1
(L 2
cq_<a) @+«¢)) 0

The constant C,; will be used to prove the symmetry of the positive solutions.

Theorem 5. Assume that f is a positive, symmetric and continuous function on [a, b] and the positive parameter q
satisfies the following inequality:

2
p—1
pﬂ—i]x (1 + qzlz) <1+ qz; G.1)
then any positive solution of the problem (P,,) is symmetric.

Proof. We follow along the lines of [4]. Let u; be a positive solution; then u; such that up (x) = uj (a+b — x) is
also a solution, because f is symmetric.
Let us prove that u| = u;. Define z = u1 — uy; then z is a solution of the problem

" -
{i (Z)gz(xo) i}?z’,), (32)
where g (x) = pf (x) (w (x)P~1 = ¢, and the real number w (x) is between u1 (x) and u> (x) and such that
uf () —ud (¥) = p(w )~ (w1 (x) — w2 (x)).
Using the fact that 1 and u» are strictly less than C; and the condition (3.1), we verify that
gx) <1, Vxe€la,b] 3.3)

Our purpose is to prove that z = 0. Suppose that z is not a trivial solution and let us change to polar coordinates:
z=rcosb, 7 =—rsing, r>0,0<6 <2m.
By deriving z and 7/, we get
7 =r'cosh —r0'sinf = —rsinb,
and
7" = —r'sinf —r8’ cos® = —g (x) r cosf.
From these equations, we obtain
0 = g (x)cos’ O + sin® 6. (3.4)

Integrating (3.4) in the interval [a, x], a < x < b, and using (3.3) we get

9(x)—9(a)=/Xg(s)COSQG(s)+sin29(s)ds</de=x—a. 3.5)

a

Now remark that

z(x) =—z(a@a+b—x),
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and therefore

a+b
4 =0.
(*7)

By using the Sturm comparison theorem with the equation

T\2
" _
Z+<z>Z_Q

which admits the solution

.o
70 (x) = smT (x —a),

we deduce that # is the unique zero of z in the interval [a, b].
The solution z is supposed not identically zero and z (a) = —z (b); then
z(a)z (b) < 0.
Assume that z (a) > 0; then from 7’ (a) = 0, we get
0 (a) =0.

On the other hand,

a+b
=0,
(*7)

and so,

0 ath =z, or 6 ath =3—ﬂ.
2 2 2 2

Now, using (3.5) we get

7 <b—a, or 3m<b-—a;
this is a contradiction. Then z = 0, and therefore
uy(x)=ui(a+b—x), Vxela,b]l. O

4. Uniqueness result for the positive solution

Let A1 be the first positive eigenvalue of the following problem with Neumann boundary conditions:

—u" =, x¢€la,b|
u' (a) =u' (b) =0.

Theorem 6. Under the hypothesis for the function f, and if the positive parameter q satisfies the relation
p—1
M+ q2 — png (1 + q2l2> > 0, 4.1
then the problem (P,,) admits a unique positive solution.

Proof. Let u; and u» be two positive solutions of the problem (Pp). Then, if we put v = u| —us, we get the following
problem:

—v" +q*v =l ) —uf ) fx), x€la,bl,

v (@) =/ (b) = 0. (4.2)

Now by the mean-value theorem, there exists a real number w (x) between u; (x) and u, (x) such that

u? (x) — ub (x) = pwP™ (x) (w1 (x) — uz (x)).
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Then the problem (4.2) becomes

_U// + <q2 _ pwp—l ()C) f (x)) vV = 0, X G]a, b[

4.3)

v (@) =V (b) =0.

Note that the function x — w (x) is continuous in [a, b]. We can define it by
p D
wrl () = LD T D ) s ),
p (u1 (x) —u2 (x))

w(x) =up (x), ifup(x)=usx).
Return to the last problem and put & (x) = ¢g> — pw?~! (x) f (x); then

4* = pBCLT <h(x) <q* Vxela,b), (4.4)

1
2 =1
where C,; = (%) "1+ g22).
Multiplying the equation of the problem (4.3) by v and integrating in the interval [a, b], we obtain

b ) b
/ (v/ (x)) dx + / h(x) v? (x)dx =0.

a

Now using the characterization of A1, we know, if I = ]a, b[, that

Al =inf{/(v’(x))2dx:veHl(I), v’(a)=0and/v2dx=1}.
1 1

2 .. . .
Infact A = ’[’—2, and it is attained by the function v:

2 b4
vy (x) =4/ —cos (— (x — a)).
l l
From the characterization of A, we have
Al / v2dx < / (v’)zdx,
I I
and then
/ (M1 + & (x) v2dx < / (v/)zdx + / h (x) v2dx = 0.
I I I
Hencev (x) =0, Vx € I,i.e.u; =uyif Ay +h (x) > 0, Vx € I, but this is satisfied from (4.1) and (4.4). O
Application

For the particular case [4]:
p=2, f(x)=1+sinx, and (a,b)=(0,m),
and then
oa=1, B =2, l=m, and X;=1.
By Theorem 6, this problem admits a unique positive solution if
47r2q4 + 3q2 —-1<0,
which means if
q €10,0,354446. . .[.

And this is the same range of values of the parameter g for which, the solution is symmetric.
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