Electronic Journal of Differential Equations $\,$, Vol. 2009 (2009) , No. 88 , pp. 1 – 7 . ISSN: 172 - 6691 . URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftpejde.math.txstate.edu

A CLASS OF GENERALIZED INTEGRAL OPERATORS SAMIR BEKKARA, BEKKAI MESSIRDI, ABDERRAHMANE SENOUSSAOUI ABSTRACT. In this paper, we introduce a class of generalized integral operators that includes Fourier integral operators. We establish some conditions on these operators such that they do not have bounded extension on $L^2(\mathbb{R}n)$. This permit us in particular to construct a class of Fourier integral operators with bounded symbols in $S^0_{1,1}(\mathbb{R}n\times\mathbb{R}n)$ and in $T_{0<\rho<1}S^0_{\rho,1}(\mathbb{R}n\times\mathbb{R}n)$ which cannot be extended to bounded operators in $L^2(\mathbb{R}^n)$.

1. Introduction
The integral operators of type

$$A\varphi(x) = \int e^{iS(x,\theta)} a(x,\theta) \mathcal{F}\varphi(\theta) d\theta \tag{1.1}$$

appear naturally for solving the hyperbolic partial differential equations and ex - pressing the C^{∞} - solution of the associate Cauchy problem 's (see e . g . [10, 11]).

If we write formally the expression of the Fourier transform $\mathcal{F}\varphi(\theta)$ in (1.1), we obtain the following Fourier integral operators, so - called canonical transformations,

$$A\varphi(x) = \int e^{i(S(x,\theta) - y\theta)} a(x, y, \theta) \varphi(y) dy d\theta$$
 (1.2)

in which appear two C^{∞} – functions , the phase function $\phi(x,y,\theta)=S(x,\theta)-y\theta$ and the amplitude a called the symbol of the operator A. In the particular case where $S(x,\theta)=x\theta$, one recovers the notion of pseudodifferential operators (see e . g [6 , 1 5]) .

Since 1 970 , many of Mathematicians have been interested to these type of operators: Duistermaat [3], H \ddot{o} rmander [6, 7] Kumano - Go [8], and Fuj iwara [2]. We mention also the works of Hasanov [4], and the recent results of Messirdi Senous - saoui [12] and Aiboudi - Messirdi - Senoussaoui [1].

In this paper we study a general class of integral operators including the class of Fourier integral operators, specially we are interested in their continuity on $L^2(\mathbb{R}^n)$.

The continuity of the operator A on $L^2(\mathbb{R}^n)$ is guaranteed if the weight of the symbol a is bounded, if this weight tends to zero then A is compact on $L^2(\mathbb{R}^n)$ (see eg. $[1\ 2\]$).

2000 Mathematics Subject Classification . 35 S 30 , 35 S 5 , 47 A 10 , 35 P 5 . Key words and phrases . Integral operators ; L^2- boundedness ; unbounded Fourier integral operators .

 $circle copyrt-c2009 \ {\it Texas} \ {\it State} \ {\it University-San Marcos} \ .$ Submitted February 1 2 , 2009 . Published July 27 , 2009 .

If the symbol a is only bounded the associated Fourier integral operator A is not necessary bounded on $L^2(\mathbb{R}^n)$. Indeed , in 1 998 Hasanov [4] constructed an example of unbounded Fourier integral operators on $L^2(\mathbb{R})$.

Aiboudi - Messirdi - Senoussaoui [1] constructed recently in a class of Fourier inte - gral operators with bounded symbols in the H \ddot{o} rmander class $\bigcap_{0<\rho<1} S^0_{\rho,1}(\mathbb{R}^n\times\mathbb{R}^n)$ that cannot be extended to be a bounded operator in $L^2(\mathbb{R}^n)$, $n\geq 1$.

These results of unboundedness was obtained by using the properties of the operators

$$B\varphi(x) = \int_{\mathbb{R}^n} k(z)\varphi((b(x)z + a(x))dz \tag{1.3}$$

on $L^2(\mathbb{R}^n)$, $n \geq 1$, where $k(z) \in S(\mathbb{R}^n)$ (the space of C^{∞} – functions on \mathbb{R}^n , whose derivatives decrease faster than any power of |x| as $|x| \to +\infty$), a(x) and b(x) are real - valued, measurable functions on \mathbb{R}^n . Operators of type (1.3) was considered by Hasanov [4] and a slightly different way by Aiboudi Messirdi Senoussaoui [1].

We also give in this paper a generalization of these results since we consider a class of integral operators which is general than thus of type $(\ 1\ .\ 3\)$:

$$C\varphi(x) = \int_{\mathbb{R}^n} K(x, z)\varphi(F(x, z))dz \tag{1.4}$$

where K(x,z) and F(x,z) are real - valued , measurable functions on \mathbb{R}^{2n} . The generalized integral operator C includes Hilbert , Mellin and the Fourier - Bros - Iagolnitzer transforms which they has been used by many authors and for many purposes , in particular respectively by H \ddot{o} rmander [5] for the analysis of linear partial differential operators , Robert [13] about the functional calculus of pseudodiffrential operators , Sj \ddot{o} strand [14] in the area of microlocal and semiclassical analysis and Stein [15] for the study of singular integral operators .

The operators C appears also in the study of the width of the quantum reso - nances (see e . g . $\ [\ 9\]$) .

We shall discuss in the second section bounded extension problems for the class of operators type C. We give some technical conditions on the functions K(x,z) and F(x,z) such that C do not admit a bounded extension on $L^2(\mathbb{R}^n)$. We also indicate a connection between transformations C and Fourier integral operators .

In the third section , we construct an example of Fourier integral with bounded symbols belongs respectively to $S_{1,1}^0(\mathbb{R}^n)$, (the case n=1 is given in [4] and gen - eralized for $n\geq 2$ in [1]), and $\bigcap_{0<\rho<1}S_{\rho,1}^0$ that cannot be extended as a bounded operator on $L^2(\mathbb{R}^n)$, $n\geq 2$. In the case of the H \ddot{o} rmander symbolic class $S_{1,1}^0(\mathbb{R}^n)$ our constructions are direct and technical .

2. Unboundedness of the generalized integral operators

In this section we construct a class of operators C that cannot be extended to be a bounded operator in $L^2(\mathbb{R}^n)$, $n \geq 1$. We have first an easy boundedness criterion of the operator C.

$$F(x,.) \in C^1(\mathbb{R}^n), \quad and \quad K(x,.) \in L^2(\mathbb{R}^n) \text{ for all } x \in R$$

Suppose that there exits a function g(x) such that

$$g(x) > 0, \quad \forall x \in \mathbb{R}^n$$

$$|\det(\frac{\partial F(x,z)}{\partial z})| \ge g(x), \quad \forall x, z \in \mathbb{R}^n$$

$$||K(x,.)|| L^2(\mathbb{R}n)^{/\sqrt{g(x)}} \in L^2(\mathbb{R}^n)$$

then C is a bounded operator on $L^2(\mathbb{R}^n)$. Proof. Using H \ddot{o} lder inequality and the change of variable y = F(x, z), it 's inverse is denoted z = G(x, y), we obtain for all $\varphi \in L^2(\mathbb{R}^n)$,

$$\| C\varphi \| 2L_{2}(\mathbb{R}n) = \int_{\mathbb{R}^{n}} |\int_{\mathbb{R}^{n}} K(x,z)\varphi(F(x,z))dz|^{2}dx$$

$$\leq \int_{\mathbb{R}^{n}} [\int_{\mathbb{R}^{n}} |K(x,z)\varphi(F(x,z))| dz]2_{dx}$$

$$\leq \int_{\mathbb{R}^{n}} [\| K(x,.) \| 2L_{2}(\mathbb{R}n) \int_{\mathbb{R}^{n}} |\varphi(F(x,z))|^{2} dz]dx$$

$$= \int_{\mathbb{R}^{n}} [\| K(x,.) \|_{L^{2}(\mathbb{R}^{n})}^{2} \int_{\mathbb{R}^{n}} |\varphi(y)|^{2} |\det(\frac{\partial F(x,z)}{\partial z})_{(z=G(x,y))}|^{-1} dy]dx$$

$$\leq \| \varphi \|_{L^{2}(\mathbb{R}^{n})}^{2} \int_{\mathbb{R}^{n}} \frac{\| K(x,.) \|_{L^{2}(\mathbb{R}^{n})}^{2} dx$$

(2.1) hence C is bounded operator on $L^2(\mathbb{R}^n)$ with $\parallel C \parallel \leq M = \parallel \frac{\|K(x,.)\|L^2(\mathbb{R}^n)}{\sqrt{g(x)}} \parallel L^2(\mathbb{R}n)$.

Now we give the main result of this paper . We proof that under some conditions the operator C do not admit a bounded extension on $L^2(\mathbb{R}^n)$. Theorem $\mathbf{2} \cdot \mathbf{2} \cdot Let$ $\delta \in]0,1[$ and the operator C defined by $(1\cdot 4)$ on $L^2(\mathbb{R}^n)$ for

$$x = (x_1, ..., x_n) \in]0, \delta[^n such that :$$

$$(\text{ H 1 }) \quad \text{For } \varepsilon > 0 \text{ and for al } l \quad x \in \mathbb{R}^n$$

$$n$$

$$\{z \in \mathbb{R}^n : | F(x, z) | \le \varepsilon\} = \prod [a_i^-(x, \varepsilon), i_a^+(x, \varepsilon)]$$

$$i = 1$$

where $i_a^{\pm}(x,t)$ are real - measurable functions on $\mathbb{R}^n \times]0,+\infty[$ satisfying 1 - for any $p \in \mathbb{N}^*$ and $i \in \{1,...,n\},$

$$\lim_{i_x \to 0^+} i_a^{\pm}(px, x_i) = \pm \infty$$

2 - for any $\lambda \in]0,1[$, $i \in \{1,...,n\}$ and $p \in \mathbb{N}^*$, the functions $i_a^+(px,\lambda)$ and $a_i^-(px,\lambda)$ are respectively decreasing and in creasing with respect to x

$$in]0,\delta[$$
 n

(H 2) There exists a constant R>0 such that for any $r\geq R$ and for all $x\in]0,\delta[^n$

$$|\int_{[-r,r]^n} K(x,z)dz| \ge \delta$$

Then the operator C cannot be extended to a bounded operator on $L^2(\mathbb{R}^n)$.

4 S . BEKKARA , B . MESSIRDI , A . SENOUSSAOUI EJDE - 2 9 / 88 Proof . Let us define the generalized sequence of functions

$$\varphi \varepsilon(x) = \begin{cases} 1, & \text{otherwise}^{if x \in [-\varepsilon, \varepsilon]^n} \end{cases}$$
 (2.2)

then $\varphi \varepsilon \in L^2(\mathbb{R}^n)$ for all $\varepsilon > 0$ and we have

$$C\varphi\varepsilon(x) = \int_{Q_{i-1}^n} [a_i^-(x,\varepsilon), i_a^+(x,\varepsilon)] K(x,z) dz$$

Consequently,

$$C\varphi\varepsilon_{j}(x) = integral display - Qni = 1^{[a-(}x,\varepsilon_{j}), i^{+}_{a}(x,\varepsilon_{j})]K(x,z)dz \quad (2.3)$$
 where $\varepsilon_{j} \geq 0$ and $\lim_{j \to +\infty} \varepsilon_{j} = 0$.

By condition 1 of the the assumption (H1), for any $p \in \mathbb{N}^*$ there exists a number $\varepsilon_p \geq 0$ such that

$$i_a^+(p\Lambda_p, \varepsilon_p) \ge R$$
 (2.4)

and

$$a_i^-(p\Lambda_p, \varepsilon_p) \le -R \quad (2.5)$$
 for $\Lambda_p = (\varepsilon_p, \varepsilon_p, ... \varepsilon_p), p\varepsilon_p \le \delta < 1$ and $i \in \{1, ..., n\}$.

It follows from (2.4), (2.5) and condition 2 of the assumption (H 1) that for $x \in]0, p\varepsilon_p]^n$ and $i \in \{1,...,n\}$ we have

$$i_a^+(x,\varepsilon_p) \ge i_a^+(p\Lambda_p,\varepsilon_p) \ge R,$$
 (2.6)

$$a_i^-(x,\varepsilon_p) \le a_i^-(p\Lambda_p,\varepsilon_p) \le -R$$
 (2.7)

Finally using (H2), (2.3), (2.6) and (2.7) we deduce

$$\| C\varphi\varepsilon_p \|_{L^2(\mathbb{R}^n)}^2 \ge \int_{]0,p\varepsilon_p]^n} |C\varphi\varepsilon p^{(x)|^2 dx} \ge \delta^2 p^n \varepsilon_p^n$$
 (2.8)

If we consider that C has a bounded extension to $L^2(\mathbb{R}^n)$, then by virtue of (2, 1) we obtain for $\varphi = \varphi \varepsilon_p \in L^2(\mathbb{R}^n)$

$$\delta^2 p^n \varepsilon_p^n \le \parallel C \varphi \varepsilon_p \parallel_{L^2(\mathbb{R}^n)}^2 \le M^2 \varepsilon_p^n$$

and for any $p \in \mathbb{N}^*$

$$p^n \leq \frac{M^2}{\delta^2}$$

This is a contradiction. Consequently A cannot be a bounded operator in $L^2(\mathbb{R}^n)$.

Remark 2. 3. (1) If in particular K(x,z)=K(z) is independent on x and $F(x,z)=b(x)\circ z+a(x),$ where K(z) is a real - valued measurable function $,b(x),a(x)\in\mathbb{R}^n$ are

measurable functions on $\mathbb{R}^n,$ we obtain the so - called generalized Hilbert transforms introduced in [4]

(2) The operator C is an Fourier integral operator for an appropriate choice of the functions K(x,z) and F(x,z).

$$C\varphi(x) = \int_{\mathbb{R}^n} K(x, z)\varphi(F(x, z))dz$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{iz.\xi} \mathcal{F}K(x, \xi)\varphi(F(x, z))d\xi dz,$$

GENERALIZED INTEGRAL OPERATORS 5 where $\mathcal{F}K(x,\xi)$ is the Fourier transform of the partial function $z \to K(x,z)$. ting y = F(x, z) and z = G(x, y), we have

$$C\varphi(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{iG(x,y)\cdot\xi} \mathcal{F}K(x,\xi)\varphi(y) \mid \det(\frac{\partial G}{\partial y}) \mid d\xi dy$$

which is a Fourier integral operator with the phase function $\phi(x,y,\xi)=G(x,y).\xi$ and the symbol $p(x,y,\xi)=\mathcal{F}K(x,\xi)\mid \det\left(\frac{\partial G}{\partial y}\right)\mid$ if K and G are infinitely regular with respect to x, y and ξ .

A class of unbounded Fourier integral operators on $L^2(\mathbb{R}^n)$ It follows from theorem 2.2 that with an appropriate choice of K(x,z) and F(x,z)we can construct a class of Fourier integral operators which cannot be extended as bounded operators on $L^2(\mathbb{R}^n)$.

An example of unbounded fourier integral operator with a symbol in $S_{1,1}^0(\mathbb{R}\times\mathbb{R})$ and $\bigcap_{0<\rho<1} S^0_{\rho,1}(\mathbb{R}^n \times \mathbb{R}^n)$ was given respectively in [4] and [1], where if $\rho \in \mathbb{R}$,

$$S_{\rho,1}^{0}(\mathbb{R}^{n}\times\mathbb{R}^{n}) = \{p|_{\partial_{x}\alpha_{\theta}}^{\in C^{\infty}(\mathbb{R}^{n}, \theta)|\leq \mathbb{R}^{n}, |\forall (\alpha, \beta)| \in \mathbb{N}^{n}, |\forall (\alpha$$

3 . 1 . A class with symbols in $S^0_{1,1}(\mathbb{R}^n \times \mathbb{R}^n)$. Hre , we generalize the example given by Hasanov on \mathbb{R} to high dimensions . Namely, in the same spirit of [8]. we have easily if we get $K(z) \in \mathcal{S}(\mathbb{R}^n)$ and $b \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$.

Proposition 3.1. If $K(z) \in \mathcal{S}(\mathbb{R}^n)$ and $b \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$, $\alpha, \beta \in \mathbb{N}^n$ there exists $C_{\alpha\beta} > 0$ such that

$$|\partial_x^{\alpha} \partial_{\xi}^{\beta} K(b(x)\xi)| \le C_{\alpha\beta} (1+|\xi|)^{|\alpha|-|\beta|} \tag{3.2}$$

for all $(x,\xi) \in [-1,1]^n \times R$ Proof. It suffices to use the fact that $K \in \mathcal{S}(\mathbb{R}^n)$ and β is bounded on $[-1,1]^n$. \square

Let also $a = (a_1, a_2, ..., a_n) \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ such that a, b, K satisfy (H 1) and (H2), with

$$b(x) > 0$$

$$i_a^{\pm}(x,t) = \frac{\pm t + a_i(x)}{b(x)}, \quad t > 0, x \in \mathbb{R}^n$$
(3.3)

Then, for $q(x,\xi) = K(b(x)\xi)$ defined on $[-1,1]^n \times \mathbb{R}^n$, we have

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}q(x,\xi)| \le C_{\alpha\beta}(1+|\xi)^{|\alpha|-|\beta|}$$

on $[-1,1]^n \times \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$, $C_{\alpha\beta}$ being constants. Thus $q \in S^0_{1,1}([-1,1]^n \times \mathbb{R}^n)$, in particular $q(x,\xi)$ is a well bounded symbol. Take a function $\eta \in C_0^{\infty}(\mathbb{R}^n)$ with supp $\eta \subset [-1,1]^n$ and $\eta(x) = 1$ for $x \in [-\delta,\delta]^n, \delta < 1$. It is now obvious to see that the function $p(x,\xi) = \eta(x)q(x,\xi) \in S_{1,1}^0(\mathbb{R}^n \times \mathbb{R}^n)$.

Now the Fourier integral operator defined by

$$C\varphi(x) = \int_{\mathbb{R}^2 n} e^{-i(a(x).\xi + y.\xi)} p(x,\xi)\varphi(\xi)dyd\xi$$
$$= \int_{\mathbb{R}^2 n} e^{-i(a(x).\xi + y.\xi)} \eta(x)K(b(x)\xi)\varphi(\xi)dyd\xi$$

S . BEKKARA , B . MESSIRDI , A . SENOUSSAOUI EJDE - 29/88 is of the type (1.4)). Indeed, for $s = b(x)\xi$ and $x \in]0, \delta]^n$

$$C\varphi(x) = \int_{\mathbb{R}^2 n} e^{-i\frac{(a(x)+t).s}{\beta(x)}} K(s) \frac{1}{bn(x)} \varphi(y) dy ds$$

Finally , if we pose $\frac{a(x)+y}{b(x)}=z,$ we have

$$C\varphi(x) = \int \mathcal{F}K(z)\varphi(b(x)z - a(x))dz$$

By theorem 2 . 2 , we conclude that the operator C cannot be extended as a bounded operator on $L^2(\mathbb{R}^n)$.

3.2. A class with symbols in $\bigcap_{0<\rho<1} S^0_{\rho,1}(\mathbb{R}^n\times\mathbb{R}^n)$. We describe in this section the results of Aiboudi - Messirdi - Senoussaoui [1], they constructed a class of unbounded Fourier integral operators with a separated variables phase function and a symbol in the H \ddot{o} rm ander class $\bigcap_{0<\rho<1} S^0_{\rho,1}(\mathbb{R}^n\times\mathbb{R}^n)$. Precisely , let $K\in S(\mathbb{R})$ with K(t)=1 on $[-\delta,\delta]$ and b(t) is continuous function on

[0,1] such that

$$b(t) \in C^{\infty}(]0,1]), \quad b(0) = 0, \quad b'(t) > 0 \text{in}]0,1]$$
$$\mid b^{(k)}(t) \mid \leq \frac{C_k}{t^k} \text{in}]0,1], k \in \mathbb{N}^*, C_k > 0 \tag{3.4}$$

 $\chi(x), \psi(\xi) \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ homogeneous of degree 1. Thus the function

$$q(x,\xi) = e^{-i\chi(x)\psi(\xi)} \prod K(b(|x|) |x|\xi_j), \quad \xi = (\xi 1, ..., \xi_n)$$

$$j = 1$$
(3.5)

belongs to $C^{\infty}([-1,1]^n \times \mathbb{R}^n)$ and satisfies, as in the proposition 3.1, the following estimates

For all α, β in \mathbb{N}^n . Proposition 3.2.

$$|\partial_x^{\alpha} \partial_{\xi}^{\beta} q(x,\xi)| \leq C_{\alpha\beta_{\overline{b}}}^{(1+|\xi|)^{|\alpha|-}|\beta|} (1+|\xi|)^{-1})^{|\beta|} (3.6)$$

$$on[-1,1]^n \times \mathbb{R}^n where C_{\alpha\beta} > 0.$$

Now if $\phi(x)$ is a $C_0^{\infty}(\mathbb{R})$ – function such that

$$\phi(s) = 1$$
 on $[-\delta, \delta], \delta < 1$
 $\operatorname{supp} \phi \subset [-1, 1]$

define the global C^{∞} symbol on $\mathbb{R}^n \times \mathbb{R}^n$ by

$$p(x,\xi) = e^{-i\chi(x)\psi(\xi)} \prod_{j=1} \phi(x_j) K(b(|x|) | x | \xi_j)$$

$$x = (x_1, ... x_n), \quad \xi = (\xi_1, ..., \xi_n).$$
(3.7)

Then $p(x,\xi) \in \bigcap_{0<\rho<1} S^0_{\rho,1}(\mathbb{R}^n \times \mathbb{R}^n)$ and the corresponding Fourier integral oper - ator

$$C\varphi(x) = \int_{\mathbb{R}^n} e^{i\chi(x)\psi(\xi)} p(x,\xi) \mathcal{F}\varphi(\xi) d\xi$$
$$= \prod_n^{j=1} \phi(x_j) \int_{\mathbb{R}^n} K(b(|x|) |x| \xi_j) \mathcal{F}\varphi(\xi) d\xi$$
(3.8)

EJDE - 209/88 GENERALIZED INTEGRAL OPERATORS 7 By using an adequate change of variable in the integral (3 . 8), we have

$$C\varphi(x) = \int_{\mathbb{R}^n} \varphi(b(\mid x \mid) \mid x \mid z) \prod_{n=1}^{j=1} \mathcal{F}K(z_j) d\xi, \quad z = (z_1, ..., z_n)$$
(3.9)

which is of the form C in theorem 2 . 2 where the functions $F(x,z)=b(\mid x\mid)\mid x\mid z$ and $K(x,z)=\prod_{j=1}^n\mathcal{F}K(z_j)$ satisfy (H 1) and (H 2) . Consequently , the operator C

cannot be continuously extended on $L^2(\mathbb{R}^n)$.

REFERENCES

 $[\ 1\]$ M . Aiboudi , B . Messirdi , A . Senoussaoui ; An example of unbounded Fourier integral operator

on L^2 with symbol in $T_{0<\rho<1}S^0_{\rho,1}(\mathbb{R}^n\times\mathbb{R}^n)$. Int . Journal of Math . Analysis . Vol . 1 , 2007 ,

[2] K. Asada , D. Fujiwara ; On some oscil latory transformations in $L^2(\mathbb{R}^n)$. Japan J. Math. Vol. 4 (2), 1978, 299 - 361.

 $[\ 3\]$ J . Duistermaat ; Fourier integral operators $\$. Courant Institute . Lecture Notes , New - York , $\ 1\ 973$.

[4] M . Hasanov ; A class of Unbounded Fourier Integral Operators . Journal of Mathematical Analysis and Applications , 225 , 1 998 , 641 - 65 1 .

 $[\ 5\]$ L . H $\ \ddot{o}$ rm ander ; The analysis of Linear Partial differential Operators $\,$. Springer - Verlag , 1 983 .

[6] L . H \ddot{o} rmander ; On L^2 continuity of pseudodifferential operators . Comm . Pure Appl . Math . 24 , 1 971 , 529 - 535 .

[7] L. H. \ddot{o} rmander; Fourier integral operators I. Acta Math. Vol. 127, 1971, 33 - 57.

 $[\ 8\]$ H . Kumano - Go ; A pro b lem of Nirenberg on pseudodifferential operators $\,$. Comm . Pure Appl . Math . 23 , 1 970 , 1 5 1 - 1 2 1 .

[9] B. Messirdi ; Asymptotique de Born - Oppenheimer pour la $pr^{\acute{e}}$ dissociation mol \acute{e} culaire (cas de potentiels r \acute{e} guliers) . Annales de l ' I . H . P , Vol . 6 1 , No . 3 , 1 994 , 255 - 292 . [10] B . Messirdi - A . Rahmani - A . Senoussaoui ; Probl \grave{e} me de Cauchy $C\infty$ pour des syst \grave{e} mes d $'_{\acute{e}}$ quations aux d \acute{e} riv \acute{e} es partiel les \grave{a} caract \acute{e} ristiques multiples de multiplicit \acute{e} paire . Bul - letin Math . Soc . Sci . Math . Roumanie . Tome 1 9 / 97 , No . 4 , 2006 , 345 - 358 . [11] B . Messirdi , A . Senoussaoui : Parametrixe du pro b l \grave{e} me de Cauchy C^∞ muni d 'un syst \grave{e} me d 'ordre de Leray - Volev $\hat{\imath}$ c . Journal for Anal . and its Appl . Vol . 24 , 2005 , 581 - 592

[1 2] B. Messirdi , A. Senoussaoui : On the L^2- boundedness and L^2- compactness of a class of Fourier integral operators . Electon . J . Diff . Equa . Vol . 2006 (2006) , No . 26 , 1 - 1 2 . [1 3] D . Robert : Autour de l ' approximation s emi - cl assique . Birk \ddot{a} user , 1 987 . [14] J . Sj \ddot{o} strand ; Singularit \acute{e} s analytiques microlocales . Ast \acute{e} risque 95 , 1 982 . [1 5] E . M . Stein ; Harmonic Analysis : Real - Variable Methods , Orthogonality , and Oscillatory Integrals . Princeton Mathematical Series 43 , Princeton University Press , 1 993 .

Samir Bekkara

Universit \acute{e} des S ciences et de la Technologie d'Oran , Facult \acute{e} des Sciences , D \acute{e} partement de Math \acute{e} matiques , Oran , Algeria

$$E$$
 - $mail\ address$: sbekkara $@y^{a-h}$ oo . fr

Bekkai Messirdi , Abderrahmane Senoussaoui Universit \acute{e} d' Oran Es - S \acute{e} nia , Facult \acute{e} des Sciences , D \acute{e} partement de Math \acute{e} matiques . B . P . 1 5 24 El - Mnaouer , Oran , Algeria

 $E \text{ -} mail \ address : \texttt{bmessirdi} \quad @u-n \ \texttt{iv-oran} \ . \ \ \texttt{dz}$ $E \text{ -} mail \ address : \texttt{senoussaoui} \ . \ \ \texttt{abdou} \quad @u-n \ \texttt{iv-oran} \ . \ \ \texttt{dz}$