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ON THE SPECTRAL BOUNDARY VALUE PROBLEMS AND
BOUNDARY APPROXIMATE CONTROLLABILITY OF LINEAR

SYSTEMS

NASSIMA KHALDI1, MOHAMMED BENHARRAT2 AND BEKKAI MESSIRDI3

Abstract. The main subject of this paper is the study of a general spectral
boundary value problems with right invertible (resp. left invertible) operators
and corresponding initial boundary operators. The obtained results are used to
describe the approximate boundary controllability of linear systems in abstract
operator-theoretic setting.

1. Introduction

Spectral theory of boundary value problems in abstract operator-theoretic set-
ting has received a lot of attention in the recent past, in particular, were applied
to extend the spectral study for symmetric and self-adjoint elliptic differential
operators on bounded and unbounded domains. The classic results known in
this context are the ones of J. von Neumann, H. Weyl, D. Hilbert, K. Friedrichs,
M. Krĕın and those of many other authors. We refer the reader to the recent
contributions [1, 2, 3, 4, 7, 9, 13, 14] and the references therein.

In [9], the author has developed a study of a general class of linear equations
with right invertible operators and corresponding initial, boundary and mixed
boundary value problems. Moreover, he has also investigated controllability of
linear systems with right invertible operators and with generalized almost in-
vertible operators. Recently, V. Ryzhov [14] has considered a general spectral
boundary value problems, in Hilbert spaces setting. He used the left inverse of an
operator to reformulate Poincaré, Hilbert and Riemman problems for harmonic
and analytic functions in abstract setting.

This paper is a continuation and refinement of the research treatment of bound-
ary value problems from the point of view of the Banach space operators theory
in terms of general initial boundary operators. Note that this treatment yields
certain useful properties and new techniques for studies of many problems in the
literature. We treat here general abstract boundary value problems with gen-
eralized boundary conditions in the case when the first member is right or left
invertible and the corresponding spectral parameter is in the Browder resolvent
set. As an example, it turns out that it allows to interpret boundary value prob-
lems when the “boundary” does not exist a priori and is constructed artificially as
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93C25.

Key words and phrases. Spectral boundary value problems, Right invertible operators,
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2 N. KHALDI, M. BENHARRAT AND B. MESSIRDI

a certain perturbation of the original problem. Problems of this type frequently
arise in the case of singular perturbations of differential operators. For opera-
tors in Hilbert spaces often so-called boundary triplets are used in the context
of abstract boundary value problems and the analysis becomes particularly chal-
lenging when the boundary conditions depend on the spectral parameter in linear
or nonlinear way as well (λ-dependent boundary conditions), see, for example,
[2, 7].

The paper consists of two parts. In the first part, we develop the spectral
boundary value problems from the perspective of general theory of left and right
invertible linear operators in Banach spaces. An abstract form of spectral bound-
ary value problems with generalized boundary conditions is introduced and results
on their solvability complemented by representation formulas of solutions are ob-
tained. The question of existence of solutions of boundary value problems with
singularities defined by a given boundary condition is also studied. This question
is addressed on the basis of a version of Browder’s resolvent formula derived from
the obtained representations of solutions. In the second part of the paper, we
develop a theoretical framework for the concepts of controllability. Recall that,
in infinite dimensional spaces, exact controllability is not always realized. To
overcome these restrictions, H. V. Thi in [16] (see also [9]) defined the so-called
F1-controllability, in the sens of: A system is approximate controllable if any
state can be transfered to a neighborhood of other state by an admissible control.
In this work we consider a new concepts of approximate controllability called
Γ1-controllability, in view to generalizes the work of [16] and cover a large class of
linear control systems, in particular, those with boundary conditions. This con-
trollability refers to the boundary approximate controllability, in the sense that
any boundary state can be transfered to a neighborhood of other boundary state
by an admissible control. The necessary and sufficient conditions for a linear sys-
tem to be boundary approximately reachable, and boundary exactly controllable
are also given.

The paper is organized as follows. In Section 2 we give some preliminary results
of the theory of right and left invertible operators. In particular, we define the
so-called initial boundary operators corresponding to a right (resp. left) invert-
ible operator and we show that this notion generalize those of initial operators
introduced by D. Przeworska-Rolewicz in [12]. In Section 3, we illustrate the
general solutions of a general abstract boundary value problems defined by or-
dered pairs (D,A) of linear operators acting in Banach spaces with D is a right
(resp. a left) invertible operator. The section ends with a brief discussion on the
solution of some boundary value problems with singularities. In Section 4, based
on the results obtained in the last section and the concept of boundary control-
lability and boundary reachability, we give necessary and sufficient conditions
for an abstract control linear system to be boundary approximately reachable,
boundary exactly controllable and boundary approximately controllable. Finally,
by a typical example, we show that the concept and results of the boundary ap-
proximate reachability are completely coincide with the approximate reachability
of the evolution linear control systems in infinite dimensional spaces.
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2. Preliminaries

Let X be a complex Banach space. Let a linear operator A defined in a linear
subset D(A) of X, called the domain of A, and mapping D(A) into X. R(A) and
N (A) are respectively the range and the null space of A and A∗ is the adjoint of
A. We denote by L(X) the Banach algebra of all bounded operators on X. An
operator A is closed if its graph is a closed subspace of X × X. The spectrum
and resolvent of a closed linear operator A on X are respectively denoted by σ(A)
and ρ(A).

An operator D : D(D) ⊆ X −→ X, is said to be right invertible if there exists
an operator R such that

R(R) ⊂ D(D) and DR = IX .

Where IX is the identity operator on X. In this case R is called a right inverse
of D. By RD we denote the set of all right inverses of D. If R ∈ RD is a given
right inverse of D, the family RD is characterized by

RD = {R + (IX −RD)S : S ∈ L(X)}.
The theory of right invertible operators started with the works of D. Przeworska-
Rolewicz [11], and then developed through many mathematicians (see [9, 16]).
An operator D : D(D) ⊆ X −→ X, is said to be left invertible if there exists an
operator L such that

R(D) ⊂ D(L) and LD = IX .

In this case L is called a left inverse of D. By LD we denote the set of all left
inverses of D. If L ∈ LD is a given left inverse of D, the family LD is characterized
by

LD = {L+ T (IX −DL) : T ∈ L(X)}.

Proposition 2.1. (i) If D is a right invertible operator then for every R ∈
RD

D(D) = R(R)⊕N (D).

(i) If D is a left invertible operator then for every L ∈ LD

D(L) = R(D)⊕N (L).

Now, let E another complex Banach space, called boundary space.

Definition 2.2. An operator Γ : X −→ E is said to be an initial boundary
operator for a right invertible operator D : D(D) ⊆ X −→ X corresponding to a
right inverse R of D, if

• N (Γ) = R(R).
• There exists an operator Π : E −→ X for which R(Π) = N (D) and

ΓΠ = IE.

The set of all initial boundary operators forD will be denoted by ID. If Γ ∈ ID,
then by Proposition 2.1 and Definition 2.2, we have

D(D) = R(R)⊕R(Π). (2.1)
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In [12] D. Przeworska-Rolewicz introduced the class of initial operators. Recall
that an operator F : X → X is said to be an initial operator for D corresponding
to R ∈ RD if F 2 = F , FX = N (D) and FR = 0 on D(R). Let us remark that if
Γ and Π are as in the Definition 2.2 and if we put F = ΠΓ, then F is an initial
operator for D. By the same way we define the set of initial boundary operators
for a left invertible operator as follows.

Definition 2.3. An operator Λ : X −→ E is said to be an initial boundary
operator for a left invertible operator D corresponding to a left inverse L, if

• N (Λ) = R(D).
• There exists an operator Θ : E −→ X for which R(Θ) = N (L) and

ΛΘ = IE.

The set of all initial boundary operators for D will be denoted by KD. If
Λ ∈ KD, then by Proposition 2.1 and Definition 2.3, we have

D(L) = R(D)⊕R(Θ). (2.2)

Let us remark that all the definitions and the results of this section are also valid
in the algebraic setting, i.e it can suppose that X and E are also linear spaces
over the same field.

3. Spectral boundary value problem

3.1. Regular spectral boundary value problem. Let X,E be a complex Ba-
nach spaces. Suppose that D : D(D) ⊂ X −→ X, with dimN (D) 6= 0, be right
invertible with a right inverse R, Γ be a boundary operator of D corresponding
to R ∈ RD, and A be a linear operator such that D(D) ⊂ D(A). We consider
the following spectral boundary value problem for the ordered pairs (D,A) for
unknown x ∈ D(D): {

Dx = λAx+ f

Γx = ϕ
(3.1)

where f ∈ X, ϕ ∈ E and λ ∈ C is spectral parameter. We state and prove the
following key mathematical result.

Theorem 3.1. Let A,B be two linear operators on X such that R(A) ⊂ D(B)
and R(B) ⊂ D(A), then
I − λAB is invertible if and only if I − λBA is invertible for all λ 6= 0.
In this case, we have

(I − λBA)−1 = I + λB(I − λAB)−1A, (3.2)

and
(I − λAB)−1 = I + λA(I − λBA)−1B. (3.3)

Proof. Let λ 6= 0. Assuming I − λAB is invertible with inverse C, then

(I − λAB)C = C(I − λAB) = I ⇐⇒ C − λABC = C − λCAB = I.

Hence
λCAB = C − I.
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Otherwise,

(I + λBCA)(I − λBA) = I − λBA+ λBCA− λ2BCABA

= I − λBA+ λBCA− λB(C − I)A

= I

By the same calculation and the fact that λABC = C − I, we obtain (I −
λBA)(I + λBCA) = I. Then (I − λBA) is invertible and

(I − λBA)−1 = (I + λBCA) = I + λB(I − λAB)−1A.

The converse holds by interchanging A and B. �

As in our caseR(A) ⊂ D(R) andR(R) ⊂ D(A) , then by virtue of the Theorem
3.1, we obtain

Lemma 3.2. Let R ∈ RD. If λ−1 ∈ ρ(RA) then

N (D − λA) = R((I − λRA)−1Π). (3.4)

Proof. Let x ∈ D(D) then, by (2.1), there exist f ∈ X and ϕ ∈ E such that
x = Rf + Πϕ. Hence

(D − λA)x = (D − λA)(Rf + Πϕ)

= f − λARf − λAΠϕ

= (I − λAR)f − λAΠϕ.

Now, for λ−1 ∈ ρ(RA) and x ∈ N (D − λA), we obtain f = λ(I − λAR)−1AΠϕ.
Thus

x = λR(I − λAR)−1AΠϕ+ Πϕ

= [λR(I − λAR)−1A+ I]Πϕ

= (I − λRA)−1Πϕ.

This implies that x ∈ R((I − λRA)−1Π).
To prove the inverse; put z = (I − λRA)−1Πϕ, for some ϕ ∈ E. By using (3.2)
we have

(D − λA)z = (D − λA)(I − λRA)−1Πϕ

= (D − λA)[I + λR(I − λAR)−1A]Πϕ

= [D − λA+ λ(I − λAR)(I − λAR)−1A]Πϕ

= (D − λA+ λA)Πϕ

= 0.

Therefore, formula (3.4) holds. �

Theorem 3.3. Let R ∈ RD. If λ−1 ∈ ρ(RA), then the problem (3.1) is uniquely
solvable for any f ∈ X, ϕ ∈ E with the solution

xf,ϕλ = (I − λRA)−1Rf + (I − λRA)−1Πϕ. (3.5)
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Proof. Let λ−1 ∈ ρ(RA), f ∈ X and ϕ ∈ E. Due to Lemma 3.2 we have

(D − λA)xf,ϕλ = (D − λA)(I − λRA)−1Rf + (D − λA)(I − λRA)−1Πϕ

= (D − λA)(I − λAR)−1Rf

= (D − λA)[I + λR(I − λAR)−1A]Rf

= f.

and

Γxf,ϕλ = Γ(I − λAR)−1(Rf + Πϕ)

= Γ[I + λR(I − λAR)−1A](Rf + Πϕ)

= ΓΠϕ

= ϕ.

Let us prove the uniqueness. Namely, if x1, x2 ∈ D(D) are two solutions of the
problem (3.1), then for their difference x0 = x1 − x2 = Rf0 + Πϕ0 with some
f0 ∈ X,ϕ0 ∈ E we have (D − λA)x0 = 0 and Γx0 = 0, i.e. Γ0(Rf0 + Πϕ0) = 0.
Since N (Γ) = R(R) and ΓΠ = IE, we infer that ϕ0 = 0. On the other hand,
0 = (D − λA)x0 = (D − λA)Rf0 = (I − λAR)f0, by assumption λ−1 ∈ ρ(RA) =
ρ(AR), thus f0 = 0. �

A version of Lemma 3.2 and Theorem 3.3 in the case of left invertible operators
is given as follows:

Theorem 3.4. If D is a left inverse of R and λ−1 ∈ ρ(RA), then

N (D − λA) = R((I − λRA)−1Π),

and the problem (3.1) is uniquely solvable for any f ∈ X, ϕ ∈ E with the solution

xf,ϕλ = (I − λRA)−1Rf + (I − λRA)−1Πϕ.

Remark 3.5. Theorem 3.4 generalize [14, Lemma 1.1] and [14, Theorem 1.2] re-
spectively, by taking A = I.

Example 3.6 (The abstract Cauchy problem). Let X = C([0, a], X) the space
of all continuous functions over [0, a] to a Banach space X. We consider the
following abstract Cauchy problem:{

ẋ(t) = Ax(t) + f(t), 0 < t ≤ a,

x(0) = x0

(3.6)

where A : D(A) −→ X is the generator of a C0-semigroupe T (t) on X and
x0 ∈ X. We denote by D = d

dt
x(t) and R =

∫ t
0
x(τ)dτ . The operator D is right

invertible and R is a right inverse of D on X . Now, if we denote by

Cx(t) =

∫ t

0

T (t− τ)x(τ)dτ,

then

(I + CA)(I −RA)x(t) = (I −RA)(I + CA)x(t) = x(t), for all t ∈ [0, a] .
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This means that the operator I −RA is invertible and its inverse is given by

(I −RA)−1x(t) = x(t) + A

∫ t

0

T (t− τ)x(τ)dτ.

We define the initial operator by Γ0x = x(0), for x(.) ∈ X . Now, We can rewrite
the abstract Cauchy problem as follows:{

Dx = Ax(t) + f(t)

Γ0x = x0

Since the operator I − RA is invertible, this problem is well-posed and has the
unique solution

x(t) = (I−RA)−1(Rf +x0)(t) =

∫ t

0

T (t−τ)x(τ)dτ +T (t)x0, for all t ∈ [0, a] .

This is exactly the solution given by the classical Cauchy theory, see [10].

Example 3.7 (The Darboux problem for hyperbolic equations). We consider the
following hyperbolic differential equation

∂2x(t, s)

∂t∂s
= a(t, s)

∂x(t, s)

∂t
+ b(t, s)

∂x(t, s)

∂s
+ c(t, s)x(t, s) + y(t, s), (3.7)

with initial conditions{
x(t, s1) = ϕ(t), for all t ∈ It = [t1, t2],

x(t1, s) = ψ(s), for all t ∈ Is = [s1, s2]
(3.8)

where a, b, c, y ∈ C(It × Is), ϕ ∈ C(It) and ψ ∈ C(Is) with ϕ(t1) = ψ(s1) = 0.
We put,

• X = C2(It × Is),
• E = {(f, g) : (f, g) ∈ C(It)× C(Is) such that f(t1) = g(s1) = 0},
• Dx(t, s) = ∂2x(t,s)

∂t∂s
,

• Rx(t, s) =
∫ t
t1

∫ s
s1
x(τ, σ)dτdσ,

• Ax(t, s) = a(t, s)∂x(t,s)
∂t

+ b(t, s)∂x(t,s)
∂s

+ c(t, s)x(t, s),
• Γ : X −→ E, Γx(t, s) = (x(t, s1), x(t1, s)),
• Π : E −→ X, Π(f(t), g(s)) = f(t) + g(s).

With these notations, the problem (3.7)-(3.8) take the form{
Dx = Ax+ y,

Γx(t, s) = (ϕ, ψ)

Since the operator I −RA is invertible, the problem (3.7)-(3.8) is well-posed and
has the unique solution

x(t, s) = (I −RA)−1(Ry + Π(ϕ, ψ))(t, s) = (I −RA)−1(Ry(t, s) + ϕ(t) + ψ(s)).
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3.2. Singular boundary value problem. Let T be a closed operator on X and
λ an isolated point of the spectrum of T . Form a contour

Γλ = {ξ ∈ C :| λ− ξ |= ε}),
with a bounded region inside Γλ intersecting the spectrum of T only at the point
Γλ. We define the Riesz projection of T associated to the contour Γλ by

Pλ =
1

2πi

∮
Γλ

(T − µ)−1 dµ, (3.9)

The discrete spectrum of T , denoted σd(T ), is just the set of isolated points
λ ∈ C of the spectrum such that the corresponding Riesz projectors Pλ are finite
dimensional. The points of σd(T ) being poles of finite rank, i.e., around each of
these points there is a punctured disk in which the resolvent has a Laurent expan-
sion whose singular part has only finitely many nonzero terms, the coefficients in
these being of finite rank. It follows that σeb(T ) = σ(T ) \ σd(T ) is an important
part of σ(T ) called the Browder essential spectrum of T (see [5]). Denotes by
ρB(T ) := C \ σeb(T ) the Browder resolvent set of T . ρB(T ) is the largest open
set on which the resolvent is finitely meromorphic.

For λ ∈ ρB(T ), let Pλ be the corresponding finite rank Riesz projector. From
the fact that D(T ) is Pλ−invariant, we may define the operator

Tλ = (λ− T )(I − Pλ) + Pλ

with domain D(T ). With respect to the decomposition X = N (Pλ)⊕R(Pλ) we
can write:

Tλ = (λ− T |N(Pλ))⊕ I
Since σ(Tλ) = σ((λ − T )(I − Pλ)) = σ(λ − T ) \ {0}, Tλ has a bounded inverse
which we denote by RB(λ, T ) and called the Browder resolvent operator, i.e.,

RB(λ, T ) = ((λ− T ) |N(Pλ))
−1(I − Pλ) + Pλ.

Clearly RB(λ, T ) = (λ − T )−1, for λ ∈ ρ(T ) and RB(λ, T ) may be viewed as
an extension of the usual resolvent from ρ(T ) to ρB(T ) and retains many of its
important properties. For example, because PλTλ = Pλ on D(T ) and TλPλ = Pλ
on X it follows that PλRB(λ, T ) = Pλ = RB(λ, T )Pλ. Now, we assume A =
I−Pλ−1 where Pλ−1 is the Riesz projector of R and λ−1 ∈ ρB(R), where R ∈ RD,
then the problem (3.1) becomes{

(D − λI)x+ λPλ−1x = f

Γx = ϕ
(3.10)

where f ∈ X, ϕ ∈ E. By noting that f = (I−Pλ−1)f +Pλ−1f and by proceeding
as in the proofs of Lemma 3.2 and Theorem 3.3, we obtain the following results.

Theorem 3.8. Let R ∈ RD. If λ−1 ∈ ρB(R), then

N (D − λI + λPλ−1) = R(RB(λ−1, R)Π),

and then the problem (3.10) is uniquely solvable for any f ∈ X, ϕ ∈ E with the
solution

xf,ϕλ = RB(λ−1, R)(Rf + Πϕ).
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Similarly, in the case of left invertible operators, we have

Theorem 3.9. If D is a left inverse of R and λ−1 ∈ ρB(R), then

N (D − λI + λPλ−1) = R(RB(λ−1, R)Π),

and then the problem (3.10) is uniquely solvable for any f ∈ X, ϕ ∈ E with the
solution

xf,ϕλ = RB(λ−1, R)(Rf + Πϕ).

4. The boundary approximate controllability of linear systems

Let D, A and Γ as in the problem (3.1). Furthermore, let U another Banach
space and B is bounded operator from U to X. Consider the following abstract
control linear system: {

Dx = Ax+Bu

Γx = ϕ0

(4.1)

The spaces X and U are called the space of states and space of controls, respec-
tively. The element ϕ0 ∈ E is said be an initial boundary state. According to
Theorem 3.3, if the operator I − RA (or I − AR) is invertible, then for every
fixed pair (ϕ0, u) ∈ E×U , the linear system (4.1) is well-posed and has a unique
solution, which is given by:

x(ϕ0, u) = EDA (RBu+ Πϕ0), where EDA = (I −RA)−1. (4.2)

x(ϕ0, u) is called output corresponding to the input u. We denote by

<(ϕ0) = ∪u∈Ux(ϕ0, u) (4.3)

the set of all solutions of (4.1) for arbitrary fixed initial boundary state ϕ0 ∈ E.
This set is called the reachable set from the initial boundary state ϕ0 by means
of control u ∈ U .

Definition 4.1. (1) A state x ∈ X is called approximately reachable by the
initial boundary state ϕ0 ∈ E if for every ε > 0 there exists a control
u ∈ U such that

‖x− x(ϕ0, u)‖X < ε.

(2) The linear system (4.1) is said to be approximately reachable from the
initial boundary state ϕ0 ∈ E if

<(ϕ0) = X.

Where M denote the closure of a subspace M of X.

Definition 4.2. Let Γ1 be a bounded operator from X to E.
(i) A state x1 ∈ X, such that Γ1x1 = ϕ1, for some ϕ1 ∈ E, is said to be

Γ1-reachable (resp. Γ1-approximately reachable) by the initial boundary
state ϕ0 ∈ E if there exists a control u ∈ U such that

Γ1x(ϕ0, u) = ϕ1, ( resp. ‖Γ1x(ϕ0, u)− ϕ1‖E < ε for all ε > 0).

The state x1 is called a final state.
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(ii) The linear system (4.1) is said to be Γ1-controllable (resp. Γ1-approximately
controllable) if for every initial boundary state ϕ0 ∈ E,

Γ1(<(ϕ0)) = E, ( resp. Γ1(<(ϕ0)) = E).

(iii) The linear system (4.1) is said to be Γ1-controllable (resp. Γ1-approximately
controllable) to zero if

0 ∈ Γ1(<(ϕ0)), ( resp. 0 ∈ Γ1(<(ϕ0))),

for every initial boundary state ϕ0 ∈ E.

Theorem 4.3. Let R ∈ RD and Γ1 be a bounded operator from X to E. The
linear system (4.1) is Γ1-controllable if and only if the operator Γ1EDARB is sur-
jective.

Proof. Suppose that the system (4.1) is Γ1-controllable, then we have

Γ1(<(ϕ0)) = Γ1EDARBU + Πϕ0 = E,

for every ϕ0 ∈ E. Let ϕ1 ∈ E, there exists a control u ∈ U such that

Γ1EDARBu+ Πϕ0 = ϕ1

and
Γ1EDARBu = ϕ1 − Γ1EDA Πϕ0

The arbitrariness of ϕ0, ϕ1 ∈ E implies that Γ1EDARB is surjective. Conversely,
for all ϕ1 ∈ E there exists a control u ∈ U such that

Γ1EDARBu = ϕ1.

This means that the system (4.1) is Γ1-reachable by the initial boundary state
ϕ0 ∈ E, hence Γ1(<(0)) = E, by the linearity of the reachable set we obtain the
Γ1-controllability of the system (4.1). �

Theorem 4.4. Let R ∈ RD and Γ1 be a bounded operator from X to E. Then
the linear system (4.1) is Γ1-approximately reachable from zero if and only if the
operator B∗R∗(EDA )∗Γ∗1 is injective.

Proof. Suppose that the system (4.1) is Γ1-approximately reachable from the
boundary state zero, we have

Γ1(<(0)) = Γ1EDARBU = E.

This is equivalent to the injectivity of B∗R∗(EDA )∗Γ∗1. �

Lemma 4.5. Let R ∈ RD and Γ1 be a bounded operator from X to E. If
the linear system (4.1) is Γ1-approximately controllable to zero and Γ1EDA Π is
surjective, then every final state x1 is Γ1-approximately reachable by the initial
boundary zero.

Proof. Let x1 ∈ X such that x1 = Γ1ϕ1 for some ϕ1 ∈ E. By assumption,
0 ∈ Γ1(<(ϕ0)), for every initial boundary state ϕ0 ∈ E. Therefore, for every
ϕ0 ∈ E and ε > 0, there exists a control u0 ∈ U such that∥∥Γ1EDA (RBu0 + Πϕ0)

∥∥
E
< ε. (4.4)
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The surjectivity of Γ1EDA Π implies that, for any ϕ1 ∈ E, there exists ϕ2 ∈ E
such that Γ1EDA Πϕ2 = −ϕ1. This equality and (4.4) together imply that for every
ϕ1 ∈ E and ε > 0, there exists a control u1 ∈ U such that∥∥Γ1EDARBu1 − ϕ1

∥∥
E
< ε.

This proves that every finale state x1 is Γ1-approximately reachable by the initial
boundary zero. �

Theorem 4.6. Suppose that all assumptions of Lemma 4.5 are satisfied. Then
the linear system (4.1) is Γ1-approximately controllable.

Proof. According to assumptions of Lemma 4.5, for every initial boundary state
ϕ0 ∈ E and ε > 0, there exists a control u0 ∈ U such that∥∥Γ1EDA (RBu0 + Πϕ0)

∥∥
E
<
ε

2
. (4.5)

By the result of Lemma 4.5, for every ϕ1 ∈ E and ε > 0, there exists a control
u1 ∈ U such that ∥∥Γ1EDARBu1 − ϕ1

∥∥
E
<
ε

2
. (4.6)

From (4.5) and (4.6), it follows that for every ϕ0, ϕ1 ∈ E and ε > 0, there exists
a control u = u0 + u1 ∈ U such that∥∥Γ1EDA (RBu+ Πϕ0)− ϕ1

∥∥
E
≤
∥∥Γ1EDA (RBu0 + Πϕ0)

∥∥
E
−
∥∥Γ1EDARBu1 − ϕ1

∥∥
E

< ε.

The arbitrariness of ϕ0, ϕ1 ∈ E and ε > 0 implies that Γ1(<(ϕ0)) = E. �

Theorem 4.7. Suppose that U is a separable Hilbert space. Let R ∈ RD and
Γ1 be a bounded operator from X to E. Then the linear system (4.1) is Γ1-
controllable to zero if and only if there exists a real number α > 0 such that∥∥B∗R∗(EDA )∗Γ∗1ψ

∥∥ ≥ α
∥∥(Π∗(EDA )∗Γ∗1)ψ

∥∥ , for every ψ ∈ E∗. (4.7)

Where E∗ denotes the dual space of E.

Proof. Suppose that the linear system (4.1) is Γ1- controllable, we have

0 ∈ Γ1(<(ϕ0)) for every ϕ0 ∈ E.
Therefore, for arbitrary ϕ0 ∈ E, there exists u ∈ U such that Γ1EDARBu =
−Γ1EDA Πϕ0. It implies that

R(Γ1EDA Π) ⊂ R(Γ1EDARB).

Now, by [17, Theorem 2.2, pp. 208], we obtain (4.7). The converse is obvious. �

Example 4.8. Let X = C(Ω) be the space of all continuous functions over
Ω = [0, a]× [0, a], a > 0, E = C([0, a]) and U = C(R). We consider the following
control system

∂x

∂t
(t, s) = λx(t, s) + u(t), (4.8)

with an initial condition
x(0, s) = ϕ(s). (4.9)
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Write D = ∂
∂t
x(t, s), Rx(t, s) =

∫ t
0
x(τ, s)dτ . We have

D(D) = {x ∈ X : x(., s) ∈ C1([0, a]) for every fixed s ∈ [0, a]} and D(R) = X.

In addition, The operator D is right invertible and R is a right inverse of D. An
initial boundary operator Γ for D corresponding to R is defined by

Γx(t, s) = x(0, s)− ϕ(s), for all t, s ∈ [0, a] .

We can define the operator Π by Πf(s) = f(s) + ϕ(s), for all f ∈ C([0, a]).
Therefore, with A = λI, B = I and ϕ0 = 0 the problem (4.8)-(4.9) can be
written in the form (4.1).

Now, if we denote by

Cx(t, s) =

∫ t

0

eλ(t−τ)x(τ, s)dτ,

then

(I+λC)(I−λR)x(t, s) = (I−λR)(I+λC)x(t, s) = x(t, s), for all t, s ∈ [0, a] .

This means that the operator I − λR is invertible and its inverse is given by

EDA x(t, s) = x(t, s) + λ

∫ t

0

eλ(t−τ)x(τ, s)dτ.

Hence, by formula (4.2), for every u, the solution of (4.8)-(4.9) is given by

x(t, s) = EDA (RBu+ Πϕ0)(t, s) = eλtϕ(s) +

∫ t

0

eλ(t−τ)u(τ)dτ.

Now, if Γ1 is a bounded operator from C(Ω) to C([0, a]), then by Theorem 4.3
and Theorem 4.4 respectively, the linear system (4.8)-(4.9) is

• Γ1-controllable if and only if the operator Γ1EDARB is surjective.
• Γ1-approximately reachable from zero if and only if the operatorB∗R∗(EDA )∗Γ∗1
is injective.

For example, let Γ1 defined by Γ1x(t, s) = x(t1, s) = ϕ1(s), for fixed t1 ∈]0, a]. it
is easy to check Γ1EDA Πϕ0 = eλt1ϕ = T (t1)ϕ for every ϕ ∈ C([0, a]), where T (t)
is a semi group of continuous linear operators generated by A. The injectivity of
B∗R∗(EDA )∗Γ∗1 is equivalent to

B∗T (t1)∗ψ = 0 =⇒ ψ = 0.

Note that this condition is necessary and sufficient for the linear system in infinite
dimensional space to be approximately reachable from zero. This example shows
that in the case where D is a differential operator, the concept and results of
Γ1-approximately reachable are completely coincide with the approximate reach-
ability of the linear control systems in infinite dimensional space (see [17]).
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