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SINGULAR ELLIPTIC EQUATIONS INVOLVING A CONCAVE
TERM AND CRITICAL CAFFARELLI - KOHN - NIRENBERG
EXPONENT WITH SIGN - CHANGING WEIGHT FUNCTIONS
MOHAMMED BOUCHEKIF , ATIKA MATALLAH
ABSTRACT . In this article we establish the existence of at least two distinct
solutions to singular elliptic equations involving a concave term and critical
Calffarelli - Kohn - Nirenberg exponent with sign - changing weight functions .
1. INTRODUCTION
This article shows the existence of at least two solutions to the problem

u ) u |u 972 u

.,V |ul>2u
—dlv(| Pl u| 2 2D = Ah(x) B + k(z) TR nQ\ {0} (1.1)
u=0 ondQ2
where @ < RV is an open bounded domain

, N > 3 0 € Q a < (N-=2)/2

a<b<a+1,1<qg<2c<qla+1)+N(1-q/2),2.:=2N/(N—-2+2(b—a))

is the critical Caffarelli - Kohn - Nirenberg exponent ,u < jia := (N — 2(a + 1))%/4, A
is a positive parameter and h, k are continuous functions which change sign in Q.

It is clear that degeneracy and singularity o ccur in problem (1. 1) . In these
situations , the classical methods fail to be applied directly so that the existence
results may become a delicate matter that is closely related to some phenomena due to
the degenerate ( or singular ) character of the differential equation .  The st arting
point of the variational approach to these problems is the following Caffarelli - Kohn -

Nirenberg inequality in [ 6 | : there is a positive constant C,; such that

(/ ‘x |—2*b
RN

where —oo <a < (N —-2)/2,a<b<a+1,2, =2N/(N —2+2(b— a)). For sharp
constants and extremal functions ,see [7,9].In(1.2),asb=a+ 1, then 2, =2
and we have the following weighted Hardy inequality [ 9 ] :

u [* d)1/2, < Ca,b(/ |z |72% Vu |* dr)1/2 Yu € CF(Q), (1.2)
RN

1
/ | & | 7200 o 2dx < 7—/ | |72 Vu |* dr forallu € C5°(Q).  (1.3)
RN Hna JrN
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2  M.BOUCHEKIF, A. MATALLAH EJDE-2010/32 We introduce a weighted Sobolev
space D}2(2) which is the completion of the
space C5°(£2) with respect to the norm

o | o,a:</ & [ Vu |? da)1/2.
Q

Define H,, as the completion of the space C§°(€2) with respect to the norm

= ( /Q (272 Vu [2 = | 2 |2 w?)da)1/2 for — o0 < p < fia.

By weighted Hardy inequality | - || p,a is equivalent to || - || 0,a;i.e.,

1 1
(1- %maX(u,O))l/Q [ull 0,0 <[l ullpa<(1— %min(u,o))l/Z [ull0,a,

forallu € H,.  From the boundedness of  and the standard approximation
arguments , it is easy to see that ( 1. 2 ) hold for any v € H, in the sense

</Q | [~ u P dx)1/p < c</ﬂ | 2] Vu |? de)2, (1.4)

for 1 <p <2N/(N—-2),c<pla+1)+N(1—p/2),andin [15]if p < 2N/(N — 2)
the embedding H,, — L,(Q,| x |7¢) is compact , where L,(£2,| x |7¢) is the weighted
L, space with norm

|t = (/Q |z 79w [P d)1/p

We start by giving a brief historic point of view . It is known that the number of
nontrivial solutions of problem ( 1. 1) is affected by the concave and convex terms .
This study has been the fo cus of a great deal of research in recent years .

The case h = 1 and k = 1 has been studied extensively by many authors , we refer the
readerto[1], [2], [8], [14]and thereferencestherein. In[1]Ambrosetti
et al . studied the problem (1. 1) for u=0,a=b=¢=0,2, =2*=2N/(N —2)
replaced by p, where 1 < p < 2,. They establish the existence of Ay > 0 such that
(Px,0) for A fixed in (0, Ag) has at least two positive solutions by using sub - super
method and the Mountain Pass Theorem , problem (1. 1) for A = Ag has also a
positive solution and no positive solution for A > Ag. When u > 0,a = b = ¢ =0, Chen
[ 8 ] studied the asymptotic behavior of solutions to problem ( 1 . 1 ) by using the
Moser ’ s iteration . By applying the Ekeland Variational Principle he obtained a
first positive solution , and by the Mountain Pass Theorem he proved the existence of a
second positive solution .  Recently , Bouchekif and Matallah [ 2 ] extended the results
of [ 8 ] to problem (Py ) with a = ¢ = 0,0 < b < 1, they established the existence of
two positive solutions under some sufficient conditions for A and . Lin [ 1 4 ] considered
a more general problem (1. 1) with0<a< (N —-2)/2,a<b<a+1,

c=0,1<q < 2andp > 0.

For the case h £ 1 or k # 1, we refer the reader to [3,12,17,18] and
the references therein .  Tarantello [ 1 7] studied the problem (1. 1) for
u= 0, a= b= c¢c= 0,g=X=1k=1 and h not necessarily equals to 1 ,
satisfying some conditions .



Recently , problem (1. 1) in Q = RY with ¢ = 1 has considered in [ 3 ] .

Wu [ 1 8] showed the existence of multiple positive solutions for problem (1. 1)
witha=b=¢c=0,1<q¢g<2,k=1,his a continuous function which changes sign in
Q. In[12], Hsu and Lin established the existence of multiple nontrivial solutions to
problem (1. 1)witha=b=¢=0, 1<q¢<2,handk are smooth functions which

change sign in
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The operator L, qu = — div (|  |72* Vu) — p | # |72@+D 4 has been the subject
of many papers , we quote , among others [1 1] fora=0and g < 10, and [1 0] or |
16 ] for general casei. e —oo < a < (N —2)/2 and u < fia.
Xuan et al . [1 6] proved that under the conditions

, a<(N-=2)/2, 0<+pa—+ipa—p+a<(N-—2)/2,

a<b<a+1, p<pa—>?

N >3

for € > 0, the function

2
2, —2

2 2,—2, — 2,—2, —
ue(z) = Coe 5— 2(8\/2 fo — PV Ta — pi_p | T | 5 (vVia — Ve, T(\/ua +VhaT ) -

(1.5)

2.

with a suitable positive constant Cy, is a weak solution of

—div(| z |72 Vu) — p | 2 |20 = 2 |72t u 2724 RN\ {0}.

u

Furthermore |,

[ el VuPas—p [ e e o= [ e,
RN RN RN

where A, ,, is the best constant ,

2. _
dzr = Aa,b,/u

(1.6)

Aa,lyu = Hinf \{O}Ea’bﬁ(u) = Emb}u(ug), (17)

Eu M
with

- f]RN | 2 |72¢| Vu |* dz — MIRN | 2 |~2(e+D) o 2dx

E, :
b (W) (Jaw [ @ |2 40,2 % d2)?/ 2

Alsoin [1 3] and [ 14 ], they proved that for 0 <a < (N —2)/2,a <b<a+1,
0 < u < fia, the function defined for £ > 0 as

2*_2 — — 2
\/+x| 5 (Via + Ma_ﬂ))—m

ve(a) = (22,2 (0 — 1) g (2 | @ | /@~ D( Jia — Jia — 02

(1.8) is a weak solution of

—div(|z |72 Vu) —p |z 720D = 2 [72b w22 w inRY \ {0},

and satisfies

/ Iw\_Z“IWEIde—u/ |w|-2<“+l>e%,dx=/ 2 |72 v,
RN RN RN

where By, is the best constant ,

2. _
dx = me’u,

(1.9)




By, = Hinf {0}Eap,u(u) = Eqp,u(ve). (1.10)

Cum

A natural question that arises in concert applications is to see what happens if
these elliptic ( degenerate or non - degenerate ) problems are affected by a certain

singular perturbations .  In our work we prove the existence of at least two dis - tinct

nonnegative critical points of energy functional associated to problem (1. 1)

by splitting the Nehari manifold ( see for example Tarantello [17] or Brown and
Zhang[5]).

In this work we consider the following assumptions :
(H) hisa continuous function defined in € and there exist hy and p0 positive

such that h(x) > hg for all z € B(0,2p0), where B(a,r) is a ball centered at a with
radius 7;



4 M .BOUCHEKIF, A. MATALLAH EJDE-2010/32 (K ) k isa continuous function
defined in  and satisfies k(0) = max,e Qk(x) >

0, k(z) = k(0) + o(z?)forz € B(0,2p0)withf > 2.v/fia — ;

and one of the following two assumptions

(A1) N >2(|b|+1)and

N -2
(a.1) €]~ 1,010, fia — 221010, * 2 [xJata — N +2), ia ~ 1
N -2
(A2) N >3, (a,p) €0, 5 [x[0, mal.
Following the method introducedin  [17, 12], we obtain the following existence
result .
Theorem 1.1. Suppose that

a < (N-=2)/2, a< b< a+1l, 1 < g< 2, ¢<
qgla+1)+N(1—-¢q/2), (H),(K)holdand (A1) or (A2) aresatisfy. Then
th ere
exists Ax > 0 such that for X\ € (0,Ax) problem (1. 1) has at least two nonnegative
s o lutio ns in H,.

This paper is organized as follows . In section 2 we give some preliminaries .
Section 3 is devoted to the proof of Theorem 1. 1 .

2. PRELIMINARY RESULTS
We st art by giving the following definitions .
Let E be a Banach space and a functional I € C}(E,R). We say that (u,) is a

Palais Smale sequence at level [((PS)l in short ) if T(u,) — ! and I'(u,) — 0 in
E'( dual of E) as n — oc. We say also that I satisfies the Palais Smale condition
at level [ if any (PS)l sequence has a subsequence converging strongly in E.
Define
. B 9 N -2 _ 9
ue  if(a,n) € — 1,0[x]0, ga — b*[U[0, [x]a(a — N +2), ia — b7,
We 1=
N -2
ve if(a, p) € [0, 5 (%[0, ial,
(2.1)and
Sabp =
. _ 9 N -2 _ 9
Aaie 80 ) €] = 1,00x]0, o — P00, 22 [xJafa — N +2), ja— ¥, (22)
: N —2 _
Ba,b,u lf(av lj') € [O’ 9 [X [Oa Ma[a .

Since our approach is variational , we define the functional I , as

1 A . 1 )
Do) = 5 o= [ no) a1 o= 5 [ k@) o 10 P do.

forue H,. By (1.2)and(1.4) wecan guarantee that I , is well defined in H,

andl, , € C'(H,,R).

u € Hy, is said to be a weak solution of (1. 1) if it satisfies



272 yw)dx = 0

/(\ z |72 VuVo—p | 2 | 720D wo—Ah(z) | 2 |7 w |72 wo—k(z) | = |7
Q

for all v € H,,. By the standard elliptic regularity argument , we have that u €

C*(Q )\ {0}).

In many problems as (1.1), I , is not bounded below on H,, but is bounded
below on an appropriate subset of H,, and a minimizer in this set ( if it exists ) may
give rise to solutions of the corresponding differential equation .
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for an appropriate subset of H,, is the so called Nehari manifold

Ny =A{u € Hy\ {0}, (I} ,,(u), u) = 0}.

It is useful to understand Ny in terms of the st ationary points of mappings of the
form

\I/u(t) = I,\,H(tu), t>0,

and so

W(1) = (14, (0w) 0) = (13,1, )

An immediate consequence is the following proposition . Proposition 2. 1.
Let w € H,\{0} and t > 0. Then tu € N\ ifand onlyif

vl (t) =0.
Let u be a lo cal minimizer of I ,, then ¥, has a lo cal minimum at ¢t = 1. So it is

natural to split V) into three subsets N, Ny and N} corresponding respectively to lo
cal minimums , lo cal maximums and points of inflexion .

We define
24
N =Ny 2= q) [l o= .- a) [ Ko L e > 0)
q
={ueNy:(2-2,) || u| M?a—l—(Q*—q))\/h(x):ztcdx>0}.
Q

Note that N, and NV )(\J similarly by replacing > by < and = respectively .

ey = inf In,(u); A= inf L,(u); ¢ = inf I ,(u). 2.3

A WEN /\,u( ) c CuN /\,;L( ) A CuN - ML( ) (2.3)
The following lemma shows that minimizers on Ny are critical points for Iy ,. Lemma
2.2. Assume that w is a local minimizer for Iy, on Ny and that uelement —
slash./\//{).

Thenly , (u) = 0.

The proof of the above lemma is essentially the same as that of [ 5, Theorem 2 . 3

].

Lemma 2. 3. Let

2—q)2—q
2**(] 2*7(]

2,—2 ) — ine—minus 2—
e | ht |Ool‘ kT loo (Sa,b,u)l e—minus 4N (2—q)

Al = ( a+1 b’

(

where n*(x) = max (n(x),0), and | n" |w=sup,cqess|nt(z) |. Then N = for
al

A€ (0,Aq).

Proof . Suppose that NY # @. Then for u € N?, we have



2*7(1 |U|2>k
2 _
= 5=2 [ k) s,

2, —q u |4
e =222 [ ho) e

Moreover by (H ), (K ), Caffarelli - Kohn - Nirenberg and H 6 lder inequalities , we
obtain

__2-q

@ =2k |w
2* - _

Il 1% < (A5 (Sa)™2C1 [ B 1)2/(2 - q).

*

Thus A > A;. From this , we can conclude that NY = @ if A € (0,A;). O

Il 150 ( (Sap,u)>/2)2/ 22



6 M . BOUCHEKIF , A . MATALLAH EJDE-2010/32 Thus we conclude that N =
NTUN; for all A € (0,A1).

Lemma 2 . 4. Let \},cy definedin (2.1). Then there exists dy > 0
such that

AP <OYA € (0,A1) and ¢ > 6o¥A € (0, %Al).

Proo f —period Let u € Nyf. Then

2—q
k’ <
/ Mpwz >l

2

o
which implies
)‘Jr < Iy u(w)
1 v 5 u |2
*(5*5”'“”#,(1 777/ |$|2*bx
2-9)2. -2
_ 0.
< 29.q lwllf o<

Letu € Ny .Then

224 o2 [ k@ g
u X)—————ax.
2* _ q H,a Q ‘ T |2 *b

Moreover by (H ), ( K ) and Caffarelli - Kohn - Nirenberg inequality , we have

| -
R 5z < (Sapp)

;2[:11| k+ |OO .

This implies

2 q )1/(2**2)
R S 2./(2(2.-2))
” U || w,a > ((2* — 2) I Lt |oo (Sa,b7/1‘) .
On the other hand ,
1) e 124 _
D) > [ (5= 5 [ A5 (80,) 20k | L)

Thus , if A € (0,line — g2A1) we get Iy ,(u) > 6o, where

ime—minus— q 2.q 1) 2:(2 = ) g minus—ii |
50 = (lme minu (1%2*_2)“6“00)m(smb,p)m(( %— Z (Sa,b,u)m@ minus lme%z*—q)\kﬂoo,
>\l21nf2 minus2. (Sa,b,p‘)iq/zcl | |
Asin [ 1 8 , Proposition 9 | , we have the following result . Lemma 2 . 5 . (i)
If XN€(0,Ay), then there exists a (PS)., s equence (u,) C Ny
for I ,.

(ii) If A€ (0,2Ay), then there exists a (PS)c; s equence (u,) C Ny for I,,.
We define



| |2*
|

Kt :={
UEN)\'

Ht:={
UEN)\'
/Qh(x)

dr >

0}
b K7

0 =
{UEN)\:/
[ by
dr <
0}

|$|2*b
|l’|2*b

|U|qd
oz x>0}, H,
{ue./\/}\:/h(m)|u|q
Q |9C|CdeO}
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9 _ g P u
- - _ 2/(2.-2) — —

b = tt) = (3 =% 2 o) L) - 12, - 2)
for v € K*. Then we have the following result . Proposition 2 . 6 . For
A € (0,A1) we have

(1) If we Kt NHy then there exists unique t* > tyax such that tTu e Ny
and
IA,u(t+u) > I u(tu)  fort > tmax;
(2) If we KTNHT, then there exist unique t~,tT such that 0 <t~ < tpax <
tttTue Ny, ttu € Ny and
I, (ttu) > Iy, (tu) for ¢ >t and Iy, (¢t u) < I ,(tu) for t€[0,tF].
(3) If we K- NH", then does not exist t > 0 such that tu € N.
(4) If we KyNH?, then there exists unique 0 <t~ < +o0 such that t~u € N,
and
I ,(tTu) = ;fgg[w(t“)'
Proof . For u € H,,, we have
t2 t4 | u |4 2% | w|?
U =7 = — 2\ -
u(t) A,M(tu) 2 || u ‘u,a )‘q /Qh(l.)‘$ |cd.’17 2, /Qk(l‘)| T |2 *bdx
and
: e’
W) = ¢ u(®) - A [ (o)
Q X
where

2
_ 42— 2 2 — | [*
outt) = 0 |l o= 2+ q [ ko)

Easy computations show that pu is concave and achieves its maximum at

9 _ q )1/(2**2) | ” |2*
tmax = (5— lu || 62272 k(@) g de) = 1/(2 — 2)
2, —2 Q | z |2 %

for uw € KT that is ,

2.

U (tmax) = Ca (2-~0)/(2.=2) /k v
( ) ,0,q,N H u ||;L,a ( o (‘T)| T ‘2 *b

dx)(q—2)/(2. = 2),

where
_2tq—4 24 0g/2.-2)
CabgN = 5. 2 (2* — 2) .

Then we can get the conclusion of our proposition easily . [



3. Proor oF THEOREM 1 . 1 Existence of a local minimum for I, , on N .
We want to prove that I ,

can achieve a lo cal minimizer on N, ; .

Proposition 3 . 1. Let A€ (0,A1), then Iy, has a minimizer wuy in N; such
that

I)\,p.(u)\) = )\j < 0.
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Proof . By Lemma 2 . 5, there exists a minimizing sequence (u,) C N such that
Dou(un) = cx and I ,(u,) =0 in H;'( dual of H,). Since

1 1) 11 |y, |7
Do) = (5= 5o e |2 =2G = 50) [ e

by Caffarelli - Kohn - Nirenberg inequality , we have

1 1) 2, —q
exton(l) 2 (5 9, | un |l N,Za —A 2.q
where o,,(1) denotes that o, (1) — Oasn — oo. Thus (u,) is bounded in H,,, then passing
to a subsequence if necessary , we have the following convergence :

(Sap) 201 [ BY ool un |1

Up — uy inHy,
Up, — uy  inLo (Q,] |72*b),
U = uy  InLy(Q,] z|7°),
Uy —> Uy & . e.in Q.
Thusuy € N isaweaksolutionof (1.1). Asex < OandI,,(0) = 0,

then uyequivalence — negationslash0. Now we show that u, — uy in H,. Suppose
otherwise , then || uy ||, < lim inf, o || up ||, and we obtain

ex < Iy ()
1 1) ) 2, —q | uy |7
o= —A h
55 o lEe 35t [
1

! 1 2, —q |u"|q)
1 = - A h
<t (=50 N [ =350 [ Gt

= C).

We obtain a contradiction .  Consequently u,, — uy strongly in H,. Moreover , we
have uy € Ny. If not uy € Ny, thus W/ (1) = 0 and ¥/(1) < 0, which implies that

I . (ux) > 0, contradiction. O

Existence of a local minimum for I,, on N, . To prove the existence of a
second nonnegative solution we need the following results .
Lemma 3 . 2. Let (uy) is a (PS)l s equence with w, — w in H,. Then th

ere exists positive constant C := C(a,b, N, ¢ | b |oos Sap,u) such that

L, (w) =0 and I,(u) > —CA\/C79.,
Proof . It is easy to prove that I;\,M(u) = 0, which implies that <I§\7u (u),u) = 0, and

K3

1, 11 ) 11 a
Iy u(u) — Z(A,M(U%w = (5 - Z) | wll pia— A(g - Z) Qh(ﬂf) —d.

By Caffarelli - Kohn - Nirenberg , H 6 Ider and Young inequalities we find that

|z |

1 1 2, —q _
Iy pu(u) > (§ - 2*) | wl p?a—x 9 (Sapu) 201 | B ool w [|9 .

2, —q

(Sapu) " V2C1 | B |0 t7 > —CAY =9 forallt > 0.
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that Iy ,(u) > —CA¥Y(C=9. O
Lemma 3. 3. Let (uy) in H, be such that

1 1 ~
Dyuultin) = L< U= (5 = )[BT foo (Sap)®/ 72 = CO2E=0 0 (3.)

*

Iy (un) = OinH, ' (3.2)

Then there exists a subsequence s tro ngly convergent . Proof . From (3. 1) and
(3. 2) we deduce that (u,) is bounded .  Thus up a subse -
quence , we have the following convergence :

U, =~ u inHy,
u, —u inLy (Q,]z|72?),
U, = u  inLy(Q,] z |79,
Up, > u a.e.inQ Then u is a weak solution of problem (1. 1).
Denote v, = u, — u. As k is continuous on €2, then the Br € zis - Lieb [ 4 ] leads to

/k(x)“‘” > dx—/k(m)|“" ™ dx+/ L (3.3)
o a0 Jo T a2 ry @ P '
and

lun [7a= v | w2at [T ull p?a +on(1). (34)
Using the Lebesgue theorem , it follows that

@) / Wz (3.5)
From (3.3),(3.4)and (3.5), we deduce that

Do) = D)+ 3 o a5 [ o2 o),

and

2,
v
(I o (un)y un) = (15 (u)s )+ | o [I7 / k(e | 72| pdx +on(1),
using the fact that v, — 0 in H,, we can assume that

| vn [
| vn ||i,a—>9 and /Qk(x)a:P ~dz — 0 > 0.

By the definition of S, ,, we have

‘UHF*

n |2 0> Sa L d)2/2,
” v H;L,a— Jh#( o |3C |2 *b ﬂf) / )
andsof) >| kT |« Sa7b7u92/2 *

Assume 6 # 0, then 0 >| kT | (Sap..)?*/ 32 and we get by Lemma 3 . 3 that



1 1
= Do) + (5 = 500

e 11 P
> —ONE0 (5= ) K o (S /72 =

which is a contradiction . So l=0;i. e .,u, = u in
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In the following , we shall give some estimates for the extremal functions defined in

(2.1). LetT(zx) € C§(Q) suchthat0< T(zx) < 1, ¥(z) = 1

for |x| <p0, ¥(x)=0 for | z|> 2p0, where p0 is a small positive number . Set

u(z) = (

2, -2
(\/u — Vet e | ——pa+

(e 5h —b fa— || 2272
VEHa— n 2% -2, ia= ) +
W (j¢x) holds, |#| (Via—y/
i) Al) holds 2 2. 2 potas VT~ Via= wy x| 2= 2

{ ‘I’(ifz)( A2)|’”|

| Vg |2* _ N-—2(at1-b) a1+1 b) "
\/Qk(af)wdl’ =& 2(a+1-b) | k |OO | |2 bdx + O( )
whereO(sC)denotes | O(e%) | /e < C,

- +1 ~
6. || pPa=e""20 D a2, +0(1),

= 12
|| Ve ||,u a o (EN72(a+17b)linefparenleft7minu52a+1 b)
| E‘ * ’
Jo k(@) \Z|2*b da
Lemma 3. 4. Let I* be defined in Lemma 8 . 3, then the re exists Ay > 0 such

that for all X € (0,A4) we have 1* >0 and  sup Iy ,(t70.) < I*.

t>0

Proof . We consider the following two functions

. 2 , 3 | D |2 * t4 | e |9
1) = Tt = 5 e o= 5 [ k@) mae =22 [ o) 2 Ca,

and

2.

5 2 t9% v
for=5 1o ida- Skt [ L
R

N|IIZ|2*b

Let Ay > 0 be such that

1 1 -
(5 — 2*) | kT oo (Sa,b“u,)2*/(2*_2) — CX¥/(=9) 5 0 forall\ € (0, As).
Then
1 1 -
F0)=0<(5=5) K" | (Sap )/ @2 — CAY (29 forall\ € (0, As).

By the continuity of f

—~

t), there exists ¢; > 0 small enough such that

1 1 ~
F6) <G =51 kT oo (Sap )2/ =2 — CAY 9D forallt € (0,t,).

On the other hand ,

t>0 *

1 1 — —2(a —b)minus—parenleft—line
max f(t) = (5=5-) | K* |oo (Sapp)/ 372 40N 20 Imtminmparentet-inaen ),

2
#)) - 2, —2
(VEa+Vpa™ py)
2
2,2
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0 L L - 2(a+1-b
Sup I)‘v“(tve) < (5 - 27) | k* |oo (Sa,b,u)2*/(2* 2) + O ? N(—;(a—&-l)—b))
>0 .
td b. |2
_/\Aho/ |9 lc dz.
q B(0,p0) | € |
Let0) < e < 022*72)mthen
7 q
/ | % |C dxr
B(0,00) | |
R e N s
- ol o] 22 (V= Vi e | 2 (Ve ) 292, — 2da
/B(o,po) Vita — 1_b 5 :
> (5.
Now , takmg E = )\2(2*7_ we get A< 0(2 Q)m and
e 2./(2.-2) 2/-a)y _ M
Sl;p],\ u(t0e) < (5 - 27> | oo (Sap,u)™ 77 + O(A ) — AEhOCQ.
t *

Choosing A3 > 0 such that
td ~
O\ (=0 Aglh()@ < —CX\Y2=9  forall\ € (0, As).

Then if we take Ay = min {A3, A3,0, 02 ﬁaiu} we deduce that sup Jy(t0.) <1* for
all A € (0,Ay).

t>0
O
Now , we prove that I, can achieve a lo cal minimizer on N .
Proposition 3 . 5. Let A* = min {qA1/2,A4}.  Then for all X € (0,A*), I,
has a minimizer vy in N, such that I ,(vy) =cy .
Proof . By Lemma 2 . 5, there exists a minimizing sequence (u,) C N, for all A €
(0,gA1/2) such that I ,(un) — ¢y and I} (un) —0 in H;'. Since I,
is coercive on N thus (u,) bounded .  Then , passing to a subsequence if necessary

, we have the following convergence :

Up — vy inH,,
U, — vy inLy, (€, ]z |2,
Up, — vx  InLy(Q, | 2|7,
U, — Uy a.e.in .
By Lemma 3.4, ¢, < [*, thus from Lemma 3 . 3 we deduce that u, — vy in H,. Then

we conclude that Iy ,(vx) = ¢, > 0. Similarly as the proof of Proposition 3 . 1,
we conclude that I, has a minimizer vy in N for all A € (0, Ax) such that

I)“M(’U)\) = C;\ >0. O

Proof of Theorem 1 . 1. By Propositions 2 . 6 and 3 . 5, there exists Ax > 0
such that ( 1 . 1) has two nonnegative solutions uy € N, and vy € N since

NINNy =@. O
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