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NONHOMOGENEOUS ELLIPTIC PROBLEMS OF KIRCHHOFF
TYPE INVOLVING CRITICAL SOBOLEV EXPONENTS

SAFIA BENMANSOUR, MOHAMMED BOUCHEKIF

Abstract. This article concerns the existence and the multiplicity of solu-

tions for nonhomogeneous elliptic Kirchhoff problems involving the critical

Sobolev exponent, defined on a regular bounded domain of R3. Our approach
is essentially based on Ekeland’s Variational Principle and the Mountain Pass

Lemma.

1. Introduction

In this work we study the existence and the multiplicity of solutions for the
problem

−(a
∫

Ω

|∇u|2dx+ b)∆u = |u|4u+ f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain of R3, a, b are positive constants and f
belongs to H−1 (the topological dual of H1

0 (Ω)) satisfying suitable conditions.
The original one-dimensional Kirchhoff equation was introduced by Kirchhoff [8]

in 1883. His model takes into account the changes in length of the strings produced
by transverse vibrations.

Problem (1.1) is called nonlocal because of the presence of the integral over the
entire domain Ω, which implies that the equation in (1.1) is no longer a pointwise
identity.

Problem (1.1) is related to the stationary analog of the Kirchhoff equation

utt − (a
∫

Ω

|∇u|2dx+ b)4 u = h(x, u) in Ω× (0, T ),

u = 0 in ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

where T is a positive constant, u0 and u1 are given functions. It can be seen as
a generalization of the classical D’Alembert wave equation for free vibrations of
elastic strings. For such problems, u denotes the displacement, h(x, u) the external
force, b is the initial tension and a is related to the intrinsic properties of the strings
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(such as Young’s modulus). For more details, we refer the readers to the work of
D’Ancona and Shibata [6] and the references therein.

Nonlocal problems arise not only from mathematical and physical fields but also
from several other branches. When they appear in biological systems, u describes a
process depending on the average of itself, as population density. Their theoretical
study has attracted a lot of interests from mathematicians for a long time and
many works have been done. We quote in particular the famous article of Lions
[10]. However in most of papers, the used approach relies on topological methods.

In the last two decades, many authors have considered the stationary elliptic
problem

−
(
a

∫
Ω

|∇u|2dx+ b
)

∆u = h(x, u) in Ω

u = 0 on ∂Ω,
(1.2)

where Ω ⊂ RN and h(x, u) is a continuous function, see for example [1]. Alves and
colleagues were the first to obtain existence results via variational methods. After
this breakthrough, many works have been done in this direction. One can quote [2]
for the case where h(x, u) is asymptotically linear at infinity.

Problem (1.2) has also been extensively studied in the whole space when the
potential function has a subcritical or critical growth, for more details see [9].

In the case of a bounded domain of RN with N ≥ 3, Tarantello [11] proved,
under a suitable condition on f , the existence of at least two solutions to (1.2) for
a = 0, b = 1 and h(x, u) = |u|4/(N−2)u+ f .

A natural and interesting question is whether results in [11] remain valid for
a > 0. Our answer is affirmative and given for N = 3. To our best knowledge, this
kind of problems has not been considered before.

We will use the following notation: S is the best Sobolev constant for the em-
bedding from H1

0 (Ω) to L6(Ω); ‖ · ‖ is the norm of H1
0 (Ω) induced by the product

(u, v) =
∫

Ω
∇u∇vdx; ‖·‖− and |·|p := (

∫
Ω
|·|pdx)1/p are the norms in H−1and Lp(Ω)

for 1 ≤ p < ∞ respectively; we denote the space H1
0 (Ω) by H and the integrable∫

Ω
udx by

∫
u; Brc is the ball of center c and radius r; on(1) denotes any quantity

which tends to zero as n tends to infinity, O(εα) means that |O(εα)ε−α| ≤ K for
some constant K > 0 and o(εα) means |o(εα)ε−α| → 0 as ε→ 0.

In what follows, we fix b > 0 and consider a as a positive parameter. To state
our main results, we need the following hypothesis

(H1) |
∫
fv| < Ka(v), for all v ∈ H such that |v|6 = 1, where

Ka(v) := 10−5/2[12a2‖v‖8 + 80b‖v‖2 + 4a‖v‖4Aa(v)][3a‖v‖4 +Aa(v)]1/2

with Aa(v) := ‖v‖(9a2‖v‖6 + 20b)1/2.
We shall prove the following results.

Theorem 1.1. Assume that f 6= 0 satisfies (H1). Then problem (1.1) admits at
least one weak solution in H. It is nonnegative if f is also nonnegative.

Theorem 1.2. Under hypothesis of Theorem 1.1 and for a a small positive number,
problem (1.1) admits at least two weak solutions in H. They are nonnegative if f
is also nonnegative.

Remark 1.3. In dimension 1 and 2, our problem becomes subcritical and standard
compactness argument applies to get the existence of solutions. This also happens
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for f ≡ 0. For dimensions higher than three, the problem under consideration
turns out to be “supercritical” thus no existence result is suspected directly via
variational methods.

Theorem 1.1 remains valid when f satisfies∣∣ ∫ fv
∣∣ ≤ Ka(v), for all v ∈ H such that |v|6 = 1.

These remarks clarify the purpose of restricting this study to dimension three in
this paper. This work is organized as follows: in Section 2 we give the definition
of Palais-Smale condition and some preliminary results which we will use later.
Section 3 is devoted to the proofs of Theorems 1.1 and 1.2.

2. Preliminary results

We define the energy functional corresponding to problem (1.1) by

Ia(u) =
1
2
M̂(‖u‖2)− 1

6
|u|66 −

∫
fu, for all u ∈ H

where M̂(t) is the primitive of M(t) = at+ b with M̂(0) = 0. It is clear that Ia is
well defined and of C1 on H and its critical points are weak solutions of problem
(1.1) i.e. they satisfy:

(a‖u‖2 + b)
∫
∇u∇v −

∫
|u|4uv −

∫
fv = 0, for all v ∈ H.

The functional Ia is not bounded from below on H but it is on a subset of H. A
good candidate for an appropriate subset of H is the so called Nehari manifold
defined by

N = {u ∈ H\{0} : 〈I ′a(u), u〉 = 0}.
Let hu(t) = Ia(tu) for t ∈ R∗ and u ∈ H\{0}. These maps are known as fibering
maps and were first introduced by Drábek and Pohozaev [7]. The set N is closely
linked to the behavior of hu(t), for more details see for example [5].

It is natural to split N into three subsets:

N+ := {u ∈ N : h′′u(1) > 0}, N 0 := {u ∈ N : h′′u(1) = 0},
N− := {u ∈ N : h′′u(1) < 0},

where h′′u(t) = −5|u|66t4 + 3a‖u‖4t2 + b‖u‖2. These subsets correspond to local
minima, points of inflexion and local maxima of Ia respectively.

Definition 2.1. A sequence (un) is said to be a Palais-Smale sequence at level c
((P-S)c in short) for I in H if

I(un) = c+ on(1) and I ′(un) = on(1) in H−1.

We say that I satisfies the Palais-Smale condition at level c if any (P-S)c sequence
for I has a convergent subsequence in H.

Put

Hu(t) = h′u(t) +
∫
fu = −|u|66t5 + a‖u‖4t3 + b‖u‖2t.

The function Hu(t) attains its maximum K̃a(u) at the point tua,max where

K̃a(u) := 10−5/2|u|−9
6 [12a2‖u‖8 + 80b|u|66‖u‖2 + 4a‖u‖4Ãa(u)][3a‖u‖4 + Ãa(u)]1/2
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and
tua,max = 10−1/2|u|−3

6 (3a‖u‖4 + Ãa(u))1/4

with Ãa(u) := ‖u‖(9a2‖u‖6 + 20b|u|66)1/2.
For a ≥ 0, let

µ̃a,f := inf
v∈H\{0}

{K̃a(v)− |
∫
fv|}, µa,f := inf

|v|6=1
{Ka(v)−

∫
fv}.

Remark 2.2. (i) If µ̃a,f > 0 then µa,f > 0.
(ii) We have, for a > 0, µ̃a,f ≥ µ̃0,f . Under the hypothese (H1) with a = 0,

Tarantello has proved that µ0,f > 0. Thus we deduce that µ̃a,f > 0.

The following lemmas play crucial roles in the sequel.

Lemma 2.3. Suppose (H1) holds. Then, for any u ∈ H\{0}, there exist three
unique values t+1 = t+1 (u), t− = t−(u) 6= 0 and t+2 = t+2 (u) such that:

(i) t+1 < −tua,max, t+1 u ∈ N−, and Ia(t+1 u) = max
t≤−tua,max

Ia(tu),

(ii) −tua,max < t− < tua,max, t−u ∈ N+ and Ia(t−u) = min
|t|≤tua,max

Ia(tu)

(iii) t+2 > tua,max, t
+
2 u ∈ N− and Ia(t+2 u) = max

t≥tua,max

Ia(tu).

Proof. An easy computation shows that Hu(t) is concave for t > 0 and attains its
maximum K̃a(u) at tua,max. As Hu(t) is odd and under the hypothesis (H1) we
obtain the desired results. �

For t > 0, we have

Ψ(tu) = tΨ(u), where Ψ(u) = K̃a(u)− |
∫
fu|,

and for a given γ > 0, we derive that

inf
|u|6≥γ

Ψ(u) ≥ γµ̃a,f . (2.1)

In particular if f satisfies (H1) this infimum is bounded away from zero.

Lemma 2.4. If f satisfies (H1), then N 0 = ∅.

Proof. Arguing by contradiction we assume that there exists u ∈ N 0, i.e.,

3a‖u‖4 + b‖u‖2 = 5|u|66; (2.2)

thus, we obtain:

Ãa(u) = 3a‖u‖4 + 2b‖u‖2, and (tua,max)2 = 1 .

Consequently,

Ψ(u) = K̃a(u)− |
∫
fu| ≤ K̃a(u)−

∫
fu = Hu(1)−

∫
fu = h′u(1) = 0 . (2.3)

Condition (2.2) implies that

|u|6 ≥ (
b

5
S)1/4 := γ.

From (2.1) and (2.3) we obtain

0 < γµ̃a,f ≤ Ψ(u) = 0,

which yields a contradiction. �
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Lemma 2.5. Suppose that f 6= 0 satisfies (H1), then for each u ∈ N , there exist
ε > 0 and a differentiable function t : B(0, ε) ⊂ H → R+ such that t(0) = 1,
t(v)(u− v) ∈ N for ‖v‖ < ε and

〈t′(0), v〉 =
2(2a‖u‖2 + b)

∫
∇u∇v − 6b

∫
|u|4uv −

∫
fv

3a‖u‖4 + b‖u‖2 − 5|u|66
. (2.4)

Proof. Define the map F : R×H → R, by

F (s, w) = as3‖u− w‖4 + bs‖u− w‖2 − s5|u− w|66 −
∫
f(u− w).

Since F (1, 0) = 0, ∂F∂s (1, 0) = 3a‖u‖4 + b‖u‖2 − 5|u|66 6= 0 and applying the implicit
function theorem at the point (1, 0), we get the desired result. �

Define
c0 = inf

v∈N+
Ia(v), c1 = inf

v∈N−
Ia(v). (2.5)

Moreover if u0 is a local minimum for Ia then we have 3a‖u0‖4 +b‖u0‖2−5|u0|66 ≥ 0
and since N 0 = ∅, we obtain u0 ∈ N+. Consequently c0 = inf

u∈N
Ia(u).

Lemma 2.6. The functional Ia is coercive and bounded from below on N .

Proof. For u ∈ N , we have a‖u‖4 + b‖u‖2 = |u|66 +
∫
fu. Therefore, we get

Ia(u) =
a

12
‖u‖4 +

b

3
‖u‖2 − 5

6

∫
fu

≥ b

3
‖u‖2 − 5

6
‖f‖−‖u‖,

≥ −25
48b
‖f‖2−,

Thus Ia is coercive and bounded from below on N . �

In particular, we have c0 ≥ −25
48b ‖f‖

2
−. To prove that c0 < 0, we need an upper

bound for c0. For this, consider v ∈ H the unique solution of the equation−∆u = f .
Then for f 6≡ 0 we have

∫
fv = ‖v‖2 = ‖f‖2−.

Let t0 = t−(v), v ∈ H\{0} defined as in Lemma 2.3. So t0v ∈ N+ and conse-
quently we have

Ia(t0v) = −3a
4
t40‖v‖4 −

b

2
t20‖v‖2 +

5
6
t60|v|66

≤ −a
4
t40‖v‖4 −

b

3
t20‖v‖2 < 0,

thus c0 < 0.

Lemma 2.7. Let f verifying (H1), then there exist minimizing sequences (un) ⊂
N+ and (vn) ⊂ N− such that

(i) Ia(un) < c0 + 1
n and Ia(w) ≥ Ia(un)− 1

n‖w − un‖ for all w ∈ N+.
(ii) Ia(vn) < c1 + 1

n and Ia(w) ≥ Ia(vn)− 1
n‖w − vn‖ for all w ∈ N−.

Proof. It is easy to prove that Ia is bounded in N , then by using the Ekeland
Variational Principle to minimization problems (2.5), we get minimizing sequences
(un) ⊂ N+ and (vn) ⊂ N− satisfying (i) and (ii) respectively. �
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Let (un) ⊂ N+ be the minimizing sequence obtained in the above lemma. For
n large enough, we have

Ia(un) =
a

12
‖un‖4 +

b

3
‖un‖2 −

5
6

∫
fun < c0 +

1
n
≤ − b

3
t20‖f‖2−,

this implies ∫
fun ≥

2
5
bt20‖f‖2− > 0, (2.6)

and consequently we have
2
5
bt20‖f‖− ≤ ‖un‖ ≤

5
2b
‖f‖−. (2.7)

So, we deduce that (un) is bounded in H.

Lemma 2.8. Let f verifying (H1), then ‖I ′a(un)‖ tends to 0 as n tends to +∞.

Proof. Assume that ‖I ′a(un)‖ > 0 for n large, by applying Lemma 2.5 with u = un

and w = δ
I′a(un)
‖I′a(un)‖ , δ > 0 small, we find tn(δ) := t[δ I′a(un)

‖I′a(un)‖ ], such that

wδ = tn(δ)
[
un − δ

I ′a(un)
‖I ′a(un)‖

]
∈ N .

From the Ekeland Variational Principle, we have
1
n
‖wδ − un‖ ≥ Ia(un)− Ia(wδ)

= (1− tn(δ))〈Ia(wδ), un〉+ δtn(δ)〈I ′a(wδ),
I ′a(un)
‖I ′a(un)‖

〉+ on(δ).

Dividing by δ and passing to the limit as δ goes to zero, we get
1
n

(1 + |t′n(0)|‖un‖) ≥ −t′n(0)〈I ′a(un), un〉+ ‖I ′a(un)‖ = ‖I ′a(un)‖,

where t′n(0) = 〈t′(0), I′a(un)
‖I′a(un)‖ 〉. Thus from (2.7), we conclude that

‖I ′a(un)‖ ≤ C

n
(1 + |t′n(0)|).

We claim that |t′n(0)| is bounded uniformly on n; indeed, since (un) is a bounded
sequence, from (2.4) and the estimate (2.7), we have

|t′n(0)| ≤ C

|3a‖un‖4 + b‖un‖2 − 5|un|66|
.

Hence we must prove that |3a‖un‖4 + b‖un‖2 − 5|un|66| is bounded away from zero.
Arguing by contradiction, assume that for a subsequence still called (un), we have

3a‖un‖4 + b‖un‖2 − 5|un|66 = on(1). (2.8)

From (2.7) and (2.8) we derive that

|un|6 ≥ γ, for a suitable constant γ

In addition (2.8) and the fact that un ∈ N also give∫
fun = −2a‖un‖4 + 4|un|66 + on(1),
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which together with the definition of µ̃a,f imply that

0 < γµ̃a,f ≤ γ(K̃a(un)−
∫
fun) + on(1)

= γh′un
(1) + on(1) = on(1).

which is absurd. Thus ‖I ′a(un)‖ tends to 0 as n tends to ∞. �

3. Proofs of Theorems 1.1 and 1.2

3.1. Existence of a local minimizer on N+. In this subsection, we prove that
Ia achieves a local minimum in N+ by the Ekeland Variational Principle.

Proof of Theorem 1.1. Since (un) is bounded in H, passing to a subsequence if
necessary, we have un ⇀ u0 weakly in H, then we get 〈I ′a(u0), w〉 = 0, for all
w ∈ H. So u0 is a weak solution for (1.1).

From (2.6), we deduce that
∫
fu0 > 0, then u0 ∈ H\{0} and in particular

u0 ∈ N . Thus

c0 ≤ Ia(u0) =
a

12
‖u0‖4 +

b

3
‖u0‖2 −

5
6

∫
fu0 ≤ lim inf

n→∞
Ia(un) = c0,

then c0 = Ia(u0). It follows that (un) converges strongly to u0 in H and necessarily
u0 ∈ N+. To conclude that u0 is a local minimum of Ia, let us recall that for every
u ∈ H, we have

Ia(su) ≥ Ia(t−u) for every 0 < s < tua,max,

in particular for u = u0 ∈ N+, we have t− = 1 < tu0
a,max. Choose ε > 0 sufficiently

small to have 1 < tu0−w
a,max and t(w) satisfying t(w)(u0 − w) ∈ N for every ‖w‖ < ε.

Since t(w)→ 1 as ‖w‖ → 0, we can always assume that

t(w) < tu0−w
a,max for every w such that ‖w‖ < ε,

so t(w)(u0 − w) ∈ N+ and for 0 < s < tu0−w
a,max, we have

Ia(s(u0 − w)) ≥ Ia(t(w)(u0 − w)) ≥ Ia(u0),

taking s = 1, we conclude that Ia(u0 − w) ≥ Ia(u0), for all w ∈ H such that
‖w‖ < ε. �

To see that u0 ≥ 0 when f ≥ 0, it suffices to take t0 = t−(|u0|) such that
t0|u0| ∈ N+. This implies that necessarily

Ia(t0|u0|) ≤ Ia(|u0|) ≤ Ia(u0).

Consequently, we can always take u0 ≥ 0.

3.2. Existence of a local minimizer on N−. This subsection is devoted to the
existence of a second solution u1 in N− via Mountain Pass Lemma such that c1 =
Ia(u1). First we determine the good level for covering the Palais-Smale condition.

The best Sobolev constant S is attained in R3 by

Uε,x0(x) = ε1/2(ε2 + |x− x0|2)−1/2,

where x0 ∈ Ω and ε > 0. We have the following important result.
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Lemma 3.1. Let f satisfying (H1), then Ia satisfies the (P-S)c condition for

c < c∗ =
ab

4
S3 +

a3

24
S6 +

b

6
SE1 +

a2

24
S4E1 + c0,

where E1 = (a2S4 + 4bS)1/2.

Proof. Let (un) be a (P-S)c sequence with c < c∗, then (un) is a bounded sequence
in H. Thus it has a subsequence still denoted (un) such that un ⇀ u in H, un → u
strongly in Ls(Ω) for all 1 ≤ s < 6 and un → u a.e. in Ω.

Let wn = un − u. From the Brezis-Lieb Lemma [4], one has:

‖un‖2 = ‖wn‖2 + ‖u‖2 + on(1), ‖un‖4 = ‖wn‖4 + 2‖wn‖2‖u‖2 + ‖u‖4 + on(1),

|un|66 = |wn|66 + |u|66 + on(1).

Since Ia(un) = c+ on(1), we get

a

4
‖wn‖4 +

b

2
‖wn‖2 +

a

2
‖wn‖2‖u‖2 −

1
6
|wn|66 = Ia(un)− Ia(u) = c− Ia(u) + on(1) .

By the fact that I ′a(un) = on(1) and 〈I ′a(u), u〉 = 0, we obtain

a‖wn‖4 + b‖wn‖2 + 2a‖wn‖2‖u‖2 − |wn|66 = on(1) .

Assume that ‖wn‖ → l with l > 0, it follows that

|wn|66 = al4 + bl2 + 2al2‖u‖2 + on(1) .

From the definition of S, we have

‖wn‖2 ≥ S|wn|26, for all n ..

As n→ +∞, we deduce that

l2 ≥ a

2
S3 +

1
2
S
(
a2S4 + 4S(b+ 2a‖u‖2)

)1/2
.

Consequently we obtain

c =
a

12
l4 +

b

3
l2 +

a

6
l2‖u‖2 + Ia(u)

≥ a

12
l4 +

b

3
l2 + c0

≥ ab

4
S3 +

a3

24
S6 +

b

6
SE1 +

a2

24
S4E1 + c0 = c∗

which is a contradiction. Therefore l = 0, then un → u strongly in H. �

Now, we shall give some useful estimates of the extremal functions. Let φ ∈
C∞0 (Ω) such that φ(x) = 1 for x ∈ Brx0

, φ(x) = 0 for x ∈ R3\B2r
x0

, 0 ≤ φ ≤ 1 and
|∇φ| ≤ C.

Set uε,x0(x) = φ(x)Uε,x0(x). The following estimates are obtained in [3], as ε
tends to 0:

|uε,x0 |66 = A+O(ε3) and ‖uε,x0‖2 = B +O(ε),

where

A =
∫

R3
(1 + |x− x0|2)−3, B =

∫
R3
|∇U1,x0(x)|2,

and from [11], we have
∫
u5
ε,x0

u0 = O(ε1/2) + o(ε1/2).
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In the search of our second solution, it is natural to show that c1 < c∗. For this
let Ω′ ⊂ Ω a be set of positive measure such that u0 > 0 on Ω′ (if not replace u0

and f by −u0 and −f respectively), where u0 is given in Theorem 1.1.

Lemma 3.2. Assume that the hypothesis (H1) is satisfied, then there exist a0

and ε0 small enough such that for every 0 < ε < ε0 and 0 < a < a0 we have
Ia(u0 + tuε,x0) < c∗ for all t > 0.

Proof. From the above estimates and the Holder Inequality, we obtain

Ia(u0 + tuε,x0)

= Ia(u0) +
a

4
t4‖uε,x0‖4 +

b

2
t2‖uε,x0‖2 −

1
6
t6|uε,x0 |66 −

t5

6

∫
u5
εu0

+ at2
[( ∫

∇u0∇uε
)2

+ ‖uε‖2
(1

2
‖u0‖2 + t

∫
∇u0∇uε

)]
+ o(ε1/2)

≤ Ia(u0) +
a

4
t4B2 +

b

2
t2B − 1

6
t6A− t5

6
O(ε1/2)+

+ at2
[3
2
‖u0‖2B + tB3/2‖u0‖

]
+ o(ε1/2)

= c0 +Qε(t) +R(t),

where

Qε(t) = −1
6
At6 +

a

4
B2t4 +

b

2
Bt2 − t5

6
O(ε1/2) + o(ε1/2),

and

R(t) = a
[3
2
t2‖u0‖2B + t3B3/2‖u0‖

]
.

We know that limt→+∞Qε(t) = −∞, and Qε(t) > 0 for t near 0, so supt≥0Qε(t)
is achieved for t = Tε > 0 and Tε satisfies:

−AT 5
ε + aB2T 3

ε + bBTε = O(ε1/2).

Also Q0(t) attains its maximum at T0 given by

T 2
0 =

aB2 + (a2B4 + 4bAB)1/2

2A
.

It is clear that Tε tends to T0 as ε goes to 0. Write Tε = T0(1± δε), hence δε tends
to 0 as ε goes to 0.

Moreover, since Ia(u0 + tuε) → −∞ as t approaches ∞, there exists Tε < T1

such that
Ia(u0 + tuε,x0) ≤ c∗ +Qε(Tε) + sup

t<T1

R(t).

On the other hand, we have

Qε(Tε) = −1
6
AT 6

ε +
a

4
B2T 4

ε +
b

2
BT 2

ε −O(ε1/2) + o(ε1/2)

= −1
6
AT 6

0 +
a

4
B2T 4

0 +
b

2
BT 2

0 ± aT 4
0B

2δε ± bT 2
0Bδε ∓ T 6

0Aδε

−O(ε1/2) + o(ε1/2)

= −1
6
AT 6

0 +
a

4
B2T 4

0 +
b

2
BT 2

0 −O(ε1/2) + o(ε1/2).

(3.1)
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Now substituting the expression of T0 in (3.1), we obtain

Qε(Tε) =
abB3

4A
+
b(a2B6 + 4bB3A)1/2

6A
+
a3B6

24A2
+
a2(a2B12 + 4bB9A)1/2

24A2

−O(ε1/2) + o(ε1/2)

=
ab

4
S3 +

a3

24
S6 + (

b

6
S +

a2

24
S4)(a2S4 + 4bS)1/2 −O(ε1/2) + o(ε1/2)

≤ c∗ − c0 −O(ε1/2) + o(ε1/2).

Thus we have

Ia(u0 + tuε,x0) ≤ c∗ −O(ε1/2) + o(ε1/2) + sup
t<T1

R(t)

≤ c∗ −O(ε1/2) + o(ε1/2) + aK,

where K := 3
2T

2
1 ‖u0‖2B + T 3

1B
3/2‖u0‖.

Consequently, there exist a0 and ε0 small enough such that Ia(u0 + tuε,x0) < c∗

for every 0 < ε < ε0 and 0 < a < a0. �

Proof of Theorem 1.2. By Lemma 2.3, there exists an unique t+(u) > 0 such that
t+(u)u ∈ N− and Ia(t+u) ≥ Ia(tu), for all |t| ≥ tua,max and every u ∈ H such that
‖u‖ = 1.

The extremal property of t+(u) and its uniqueness give that it is a continuous
function of u. Set

V1 = {0} ∪ {u : ‖u‖ < t+(
u

‖u‖
)}, V2 = {u : ‖u‖ > t+(

u

‖u‖
)}.

As in [11], we remark that under the condition (H1), we have H\N− = V1∪V2 and
N+ ⊂ V1, u0 ∈ V1 and u0 + t0uε ∈ V2 for a t0 > 0, carefully chosen.

Let Γ = {h : [0, 1] → H continuous, h(0) = u0, h(1) = u0 + t0uε}. It is obvious
that h : [0, 1]→ H given by h(t) = u0 + tt0uε belongs to Γ. We conclude that

c = inf
h∈Γ

max
t∈[0,1]

Ia(h(t)) < c∗.

As the range of any h ∈ Γ intersects N−, one has c ≥ c1.
Applying again the Ekeland Variational Principle, we obtain a minimizing se-

quence (un) ⊂ N− such that

Ia(un)→ c1 and ‖I ′a(un)‖ → 0.

We also deduce that c1 < c∗. Consequently, we get a subsequence (unk
) of (un)

and u1 ∈ H such that
unk
→ u1 strongly in H.

This implies that u1 is a critical point for Ia, u1 ∈ N− and Ia(u1) = c1. �

Finally for f ≥ 0, let t+ = t+(|u1|) > 0 satisfying t+|u1| ∈ N−. From Lemma
2.3 we have Ia(u1) = max

t≥ta,max
Ia(tu1) ≥ Ia(t+u1) ≥ Ia(t+|u1|). So we conclude that

u1 ≥ 0.
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EJDE-2015/69 NONHOMOGENEOUS KIRCHHOFF EQUATIONS 11

References

[1] C. O. Alves, F. J. S. A. Correa, T. F. Ma; Positive solutions for a quasilinear elliptic equation
of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85-93.

[2] A. Bensedik, M. Bouchekif; On an elliptic equation of Kirchhoff-type with a potential asymp-

totically linear at infinity, Math. Comput. Model. 49, 1089-1096 (2009).
[3] H. Brezis, L. Nirenberg; Positive Solutions of Nonlinear Elliptic Equations Involving Critical

Sobolev Exponent, Comm. Pure Appl. Math. 36 (1983) 437-477.

[4] H. Brezis, E. Lieb; A relation between pointwise convergence of functions and convergence
of functional, Proc. Am. Math. Soc. 88 (1983) 486-490.

[5] Y. Chen, Y. C. Kuo, T. F. Wu; The Nehari manifold for a Kirchhoff type problems with
critical exponent functions, J. Differential Equations. 250 (2011) 1876-1908.

[6] P. D’Ancona, Y. Shibata; On global solvability of nonlinear viscoelastic equations in the

analytic category, Math. Methods Appl. Sci. 17 (1994) 477-489.
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