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Abstract

The main focus of this thesis is applications of integral inequalities, in as many ways
as possible, on hybrid differential equations of fractional order. For this purpose,
generalizations of a certain type of integral inequalities are obtained. In addition to
that, applications on a class of fractional hybrid differential equations using fixed
point theory are established.

First, we present generalizations to some integral inequalities of Gronwall-Ballman
type. This type of integral inequalities has many uses when it comes to differential
equations. In that light, some applications to fractional hybrid differential equations
with Hadamard derivative got included in this thesis.

Then, we present a different sense of applications of integral inequalities to a
certain class of fractional hybrid differential equations. We study a boundary value
problem which is a system of n-hybrid differential equations with Caputo deriva-
tive and nonlocal conditions. Accordingly, some results that address existence and
uniqueness of the solution of the system are given. For the existence of at least one
solution, two approaches are used: Shaefer fixed point theorem and another theo-
rem developed by the mathematician Dhage. Illustrative examples will be presented
as well to validate the results.

For stability of the system, we proceed through Ulam-Hyers stability as the main
way to study it. We try to establish the necessary results that validate the stability
of the system mentioned above.

Keywords : Hybrid differential equation, Caputo derivative, Hadamard deriva-
tive, integral inequalities, fixed point, existence, uniqueness, Ulam-Hyers stability,

Mathematical Subject Classification (2010) : 34A38, 26A33, 32A65, 39B05,
39A30
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خصالمل  

 

 ىعل ,الممكنة الطرق بمختلف, امليةالتك المتراجحات تطبيق على أساسها في الأطروحة ذهه ترتكز

 سنقوم ,الأمر هذا تحقيق أجل من. (صحيحة الغير)  الاختيارية الرتب ذات الهجينة التفاضلية المعادلات

 التفاضلية ادلاتالمع من معينة فئة على اتتطبيقال بعض الى بالإضافة التكاملية المتراجحات بعض بتعميم

.الثابتة النقط نظرية باستعمال الهجينة  

 من عالنو لهذا. بالمان غرونوال نوع من التكاملية المتراجحات لبعض تعميمات بتقديم سنقوم, بداية

 سنقوم  ,لكذل .التفاضلية بالمعادلات الأمر يتعلق عندما خصوصا عديدة لاتاستعما مليةالتكا المتراجحات

 نوع من اضلتف ذات هجينة تفاضلية معادلات على أنفا عليها المحصل للنتائج التطبيقات بعض بإرفاق

  .هادامار

 من فئة لىع ,سبق امع مختلفة بطريقة ذلك و ,التكاملية للمتراجحات التطبيقات بعض سنقدم ذلك بعد

 هذه أن ثحي حدية قيم ذات لةأمس بدراسة نقومس. صحيحة الغير الرتب ذات ينةالهج التفاضلية المعادلات

 يرغ حدية شروط مع كابوتو عنو من تفاضل ذات مترابطة هجينة تفاضلية معادلات عن عبارة المسألة

 حل وجود ةإمكانيب يتعلق فيما ماأ. للمسالة وحيد حل وجود تدعم نتائج على الحصول سنهدف إلى .موضعية

.داج للرياضي خرىأ نظرية و لشايفر الثابتة النقط طريقة: مختلفتين طريقتين سنعتمد على الأقل على واحد  

 الاستقرار ريةنظ سنقوم باستعمالف ,أعلاه المذكورة التفاضلية المعادلات جملة استقرار لموضوع بالنسبة اما

 جملة أن ثباتا أجل من المرجوة النتائج لتحصيل وذلك الأمر هذا لدراسة أساسي كمنهج هايرز ايلام

.مستقرة المعادلات  

 

 اجحاتمتر, هادامار نوع من تفاضل, كابوتو نوع من تفاضل, هجينة تفاضلية معادلات: مفتاحية كلمات

.هايرز ايلام استقرار, وحيد, وجود, ثابتة نقطة, تكاملية  

(:  0202) الرياضية المواضيع صنيفت  

34A38, 26A33, 32A65, 39B05, 39A30  



Résumé

L’objectif principal de cette thèse est les applications des inégalités intégrales, avec
autant de manières que possible, aux équations différentielles hybrides fraction-
naires. Des généralisations de quelques inégalités intégrales sont abouti pour ce
but là. En plus, des applications sur une certaine classe d’équations différentielles
hybrides fractionnaires, en utilisant la théorie des points fixes, sont obtenues.

D’abord, on présente des généralisations de quelques inégalités intégrales de
type Gronwall-Ballman. Ces inégalités intégrales ont plusieurs utilisations quand
les équations différentielles sont concernées. Quelques applications à des équations
différentielles hybrides fractionnaires avec la dérivée de Hadamard sont aussi in-
clues dans cette thèse.

Ensuite, on présente des applications des inégalités intégrales dans un autre
sens à une certaine classe d’équations différentielles hybrides fractionnaires. On fait
l’étude à un problème aux limites qui est un système de n-équations différentielles
hybrides avec la dérivée de Caputo et avec conditions non-locales. Des résultats
qui adressent l’existence et l’unicité de solution du système sont bien donnés. Pour
l’existence d’une solution au moins, deux approches sont utilisées: le théorème de
point fixe de Shaefer et le théorème de point fixe développé par le mathématicien
Dhage. Des exemples illustrant la validité des résultats sont aussi présentés.

Pour la stabilité du système, on a pris la stabilité au sens de Ulam-Hyers comme
la méthode principale pour l’étudier. On cherche a établir les résultats nécessaires
pour valider la stabilité du système mentionné ci dessus.

Mots clés : Équation différentielle hybride, dérivée de Caputo, dérivée de Hadamard,
inégalités intégrales, point fixe, existence, unicité , stabilité Ulam-Hyers,

Mathematical Subject Classification (2010) : 34A38, 26A33, 32A65, 39B05,
39A30
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Introduction

One of the beauties of science is that it is progressive in its nature. It builds up on
what was found yesterday to create what is new today. What was once a scientific
truth can turn to be a false hypothesis later in years just to be found useful in differ-
ent ways as we go in time. Science grows through trial and error. No information is
ever a waste. Every new perspective brings something new to the table and so did
fractional calculus theory to many aspects of mathematics.

Fractional Calculus is a branch of mathematics that had seen huge development
in the last few decades.

A conversation took place in 1695 between two great mathematicians Leibnitz
and L’Hospital. It started with a notation and a question: Leibnitz gave the deriva-
tive of order n by dny

dxn
and L’Hospital asked if n can take the value of 1

2
"What if n

be 1
2
?", asked L’Hopital. It will lead to a paradox","From this apparent paradox, one

day useful consequences will be drawn." responded Leibnitz [50]. More than a cen-
tury later, hints of a derivative of arbitrary order were mentioned by S. F. Lacroix,
Euler, and Fourier. The year 1832 was marked in the historical development of frac-
tional calculus by the works of N. H. Abel who used the concept in solving an in-
tegral equation that has a crucial part in what was called tautochrome problem (or
isochrome problem)[50]. His work was considered the first official application of
fractional calculus in physics even though it didn’t have the proper representations
back then, but the idea was there[50]. Between 1832 to 1855, Liouville was the first
to make serious attempts to give this derivative a shape and form in a mathematical
sense. He applied some of his works to address problems in potential theory. The
works of Riemann followed through as well as O. Heaviside, P. A. Nekrassov, A.
Krug, Laurent, ... The subject went dormant for few years between 1940s and 1960s
to come back to the spotlight again around 1960s and 1970s. [50], [51].

A turning point this theory had seen was around the 1980s when physicists
showed interest in the integral and derivative concept of arbitrary order. From this
point on till now, fractional calculus knew huge development in the area of applied
mathematics. It touched variety of subjects as it is mentioned in the book of [59],
"from inverse mechanical problems to control theory and dynamical chaos, heat
flow spreading, electrical and radio engineering to astrophysics and cosmology not
forgetting biophysics and medicine" as we see in [8], [10], [11],[13], [22], [34], [42],

7



Introduction

[49], [52], [53], [54], [56], [59], [60]. Mainly, it is fractional differential equations that
are used as substitutes to old known models that represent the physical phenomena.

In this thesis, we address a certain class of hybrid differential equations with ar-
bitrary order. Hybrid differential equations are results of perturbation techniques
that were applied to unsolvable models. These techniques are not exactly speci-
fied but they are a common tool that is used as an approach to solve mathematical
models. Since we are interested in the arbitrary order of these equations, and since
these equations are not linear, we explore through both axes of fractional calculus :
integration and derivation, many techniques in order to apply them to these equa-
tions as in Gronwall-Ballman type inequalities, Banach contraction principle, Shae-
fer fixed point theorem and some other tools to achieve results that help in solving
and probably finding approximations to the solution of these equations. The stabil-
ity of these equations is also addressed using Ulam-Hyers stability.

This thesis is ordered as follow:
o. Chapter one: In this chapter, we present some of the fundamental notions of

fractional calculus like special functions, integral operators and derivative operators
and their properties as well. We also find it useful to mention some of the basics of
analysis and topology as a helpful mean to understand functional analysis theorems
and how they work.

o. Chapter two: This chapter takes you first to a place where you can understand
hybrid differential equations better. Then, generalizations of some integral inequal-
ities of Gronwall-Ballman type are established to accommodate fractional hybrid
differential equations. As a mean of application, the generalizations are applied on
hybrid differential equation with Hadamard derivative.

o. Chapter three: This chapter is dedicated to another type of applications of
integral inequalities. It is through existence/ existence and uniqueness of solution
for a system of n hybrid differential equations with fractional order by using fixed
point theorems like Banach contraction principle, Shaefer fixed point theorem, and
another fixed theorem developed specifically for hybrid differential equations.

o. Chapter four: In this chapter, we cover specifically the stability of the system
studied in chapter three. For this purpose, Ulam-Hyers stability is used to prove the
desired results.

Finally, we conclude our work by summarizing the whole process while express-
ing some possibilities and aspects that can be addressed as future perspectives to
new areas hoping that it will help in expending the research.

8



Notations index

For the sake of practicality, we found it important to first clarify some of the nota-
tions used in this thesis.

R : The set of the real numbers,

C : The set of the complex numbers,

N : The set of natural numbers,

‖.‖ : The infinity norm,

Γ(.) : Gamma function of Euler,

B(., .) : Beta function of Euler,

log(.) : the natural logarithm with base number e (e ≈ 2.718),

Iαa : The Riemann-Liouville integral of order α (noted Iα when a = 0).

RLD
α
a : The Riemann-Liouville derivative of order α (noted RLD

α when a = 0).

cDα
a : The Caputo derivative of order α (noted CDα when a = 0).

HIαa : The Hadamard integral of order α (noted HIα when a = 1).

HDα
a : The Hadamard derivative of order α (noted HDα when a = 1).

9



Chapter 1

Basic and Important Notions in
Fractional Calculus and Functional
Analysis

1 Elementary Notions of Fractional Calculus

1.1 Special Functions in Fractional Calculus

One of the most basic aspects that the theory of fractional calculus was built on is
the famous Gamma function of Euler. As it is considered a generalization for the
factorial, it was used to develop what we now call fractional operators for integral
and derivative.

Definition 1.1 [46], [33] We call a Gamma function the following integration

Γ(χ) :=

∫ +∞

0

tχ−1 exp (−t)dt

where χ ∈ R and χ ≥ 0.

Some of the properties of this function ([46], [33]) :

a). Γ(χ+ 1) = χΓ(χ), (χ > 0).

b). Γ(n+ 1) = n! and Γ(1) = 1 (n ∈ N).

c). The gamma function has simple poles at the points χ = 0,−1,−2, ....

d). For χ ∈ R∗+, the following equality is valid: Γ(χ) =
Γ(χ− n)

χ(χ+ 1)...(χ+ n− 1)
,

(n ∈ N).

Another special function is what is called the beta function of Euler

10



1. ELEMENTARY NOTIONS OF FRACTIONAL CALCULUS

Definition 1.2 [46], [33] The beta function of Euler is the function defined by

B(χ, λ) :=

∫ 1

0

uχ−1(1− u)λ−1, (χ > 0, λ > 0). (1.1)

? Some of the properties of the beta function of Euler is that it can be written as
follow ([46]):

B(χ, λ) =
Γ(χ)Γ(λ)

Γ(χ+ λ)
, (χ > 0, λ > 0). (1.2)

? Another property to this function that is related to the previous property is
that ([46])

B(χ, λ) = B(λ, χ), (χ > 0, λ > 0). (1.3)

Next, we present some of the commonly used approaches of integration and
differentiation in fractional calculus. But before that, let us introduce Lp spaces.

"Let [a, b] ⊂ R. For 0 < p < +∞, the space Lp([a, b]) is the collection of all equiva-
lence classes of measurable functions f for which the p-norm

‖f‖p =

(∫ b

a

|f(t)|pdt
) 1

p

< +∞.

Lp([a, b]) = {f : [a, b] −→ C, f measurable, and ‖f‖p < +∞}.

". [5]

1.2 The Riemann-Liouville Approach

Definition 1.3 [33] Let h be a continuous function on [a, b] (−∞ ≤ a < b ≤ +∞). The
integral of h of an arbitrary order α (α ∈ R, α > 0) with the approach of Riemann-Liouville
is introduced as follow:

(Iαa h)(t) :=

∫ t

a

(t− ζ)α−1

Γ(α)
h(ζ)dζ, (1.4)

where Γ is given in Definition 1.1.

Definition 1.4 [33] Let h be a continuous function on [a, b] (−∞ ≤ a < b ≤ +∞). The
derivative of h of an arbitrary order α (α ∈ R, α > 0) with the approach of Riemann-
Liouville is introduced as follow:

(RLD
α
ah)(t) :=

(
d

dt

)n
(In−αa h)(t)

=

(
d

dt

)n ∫ t

a

(t− ζ)n−α−1

Γ(n− α)
h(ζ)dζ

(1.5)

11



1. ELEMENTARY NOTIONS OF FRACTIONAL CALCULUS

with n = [α] + 1.

Before the definitions above took form, specifically between 1832 and 1880, many
attempts had been taken to give meaning to the fractional derivative of arbitrary or-
der. Abel, Liouville, and Riemann are the most famous ones in that era to give some-
thing meaningful. However, there were obvious differences between the operators.
The scientific committee of that period decided on some criteria that a fractional
derivative should fulfill. One of these criteria is linearity. Accordingly we have the
following property:

Property 1 [33] Let α > 0, f, g ∈ Lp(a, b) (1 ≤ p ≤ ∞) and let σ, γ ∈ R. Then

Iαa [(σf(χ) + γg(χ)] = σIαa f(χ) + γIαa g(χ). (1.6)

Property 2 [33] For α > 0, and β ∈ R (β > 0), we can obtain the following equalities:

a). (Iαa (χ− a)β−1) =
Γ(β)

Γ(β + α)
(χ− a)β+α−1 (α > 0),

b). (RLD
α
a (χ− a)β−1) =

Γ(β)

Γ(β − α)
(χ− a)β−α−1 (α > 0, β > α).

Proof: Let us have α, β ∈ R (α > 0, β > 0).

a). Using the definition of Riemann-Liouville integral, we have

(Iαa (χ− a)β−1) =
1

Γ(α)

∫ χ

a

(χ− s)α−1(s− a)β−1ds (1.7)

Let us put u = s−a
χ−a Then, the equation becomes

(Iαa (χ− a)β−1) =
(χ− a)α+β−1

Γ(α)

∫ 1

0

(1− u)α−1uβ−1du

=
(χ− a)α+β−1

Γ(α)
B(α, β)

(1.8)

Thanks to the property(1.2) of the function B, we get

(Iαa (χ− a)β−1) =
Γ(β)

Γ(β + α)
(χ− a)α+β−1 (1.9)

b). We have:

(RLD
α
a (χ− a)β−1) =

(
d

dχ

)n
(In−α(χ− a)β−1) (1.10)

12



1. ELEMENTARY NOTIONS OF FRACTIONAL CALCULUS

Thanks to the previous property, we have

(RLD
α
a (χ− a)β−1) =

(
d

dχ

)n(
Γ(β)

Γ(β + n− α)
(χ− a)n−α+β−1

)
(1.11)

By calculating the term under the derivative ( d
dχ

)n and using the property (d)
of the Gamma function, we get

(RLD
α
a (χ− a)β−1) =

Γ(β)

Γ(β − α)
(χ− a)β−α−1. (1.12)

�

One of the special traits of Rieman-Liouville derivative is that applying it to a
constant does not mean the derivative is equal to 0.

Property 3 [33] Let β = 1 and with α ≥ 0, we have

i/. (RLD
α
a (1)) =

(χ− a)−α

Γ(1− α)
(0 < α < 1),

ii/. Yet, for j = 1, 2, ..., [α] + 1, we have (RLD
α
a (χ− a)α−j) = 0.

Property 4 [33]"Semi-group property"

For α > 0 and β > 0, we have

(Iαa I
β
a h)(t) = (Iα+βa h)(t) (1.13)

at almost every point t ∈ [a, b] and h ∈ Lp(a, b) (1 ≤ p ≤ +∞).

Proof
For t ∈ [a, b], we have :

(Iαa (Iβa h))(t) =
1

Γ(α)

∫ t

a

(t− ζ)α−1(Iβa h)(ζ)dζ

=
1

Γ(α)Γ(β)

∫ t

a

∫ s

a

(t− ζ)α−1(ζ − χ)β−1h(χ)dχdζ

=
1

Γ(α)Γ(β)

∫ t

a

h(χ)

∫ t

χ

(t− ζ)α−1(ζ − χ)β−1dζdχ

(1.14)

We chose u = ζ−χ
t−χ as a change of variables. Then (1.14), becomes:

13



1. ELEMENTARY NOTIONS OF FRACTIONAL CALCULUS

(Iαa (Iβa h))(t) =
1

Γ(α)Γ(β)

∫ t

a

h(χ)(t− χ)α+β−1
∫ 1

0

(1− u)α−1uβ−1dudχ

=
B(α, β)

Γ(α)Γ(β)

∫ t

a

h(χ)(t− χ)α+β−1dχ

(1.15)

Thanks to the properties of beta function, we have :

(Iαa (Iβa h))(t) =
Γ(α)Γ(β)

Γ(α)Γ(β)Γ(α + β)

∫ t

a

h(χ)(t− χ)α+β−1dχ

=
1

Γ(α + β)

∫ t

a

(t− χ)α+β−1h(χ)dχ

= (Iα+βa h)(t)

(1.16)

which is the desired result.

Lemma 1.1 [33] If α > 0, and h ∈ Lp(a, b), (1 ≤ p <∞), then the following equality

(RLD
α
a I

α
a h)(χ) = h(χ) (1.17)

holds almost everywhere on [a, b].

Proof: Let us have for α > 0 and h ∈ Lp(a, b)

(RLD
α
a I

α
a h)(χ) =

(
d
dt

)n
In−αa Iαa h(χ) (1.18)

Using the semi-group property, we get the desired results.

Property 5 [33] If α > β > 0, then for h ∈ Lp(a, b), (1 ≤ p <∞), we have

(RLD
β
aI

α
a h)(χ) = Iα−βa h(χ) (1.19)

holds almost everywhere on [a, b].

This property is proved similarly to Lemma 1.1 .

1.3 The Caputo Approach

Since Riemann-Liouville derivative has its own flaws when it comes to the use of it
in practical matters as it is indicated in I. Podlubny’s book [46], Caputo developed a
derivative operator that covers the blind side of Riemann-Liouville

14



1. ELEMENTARY NOTIONS OF FRACTIONAL CALCULUS

Definition 1.5 [33] Let h be a function in Cn([a, b]). The derivative of h of an arbitrary
order α (n− 1 < α < n) with the approach of Caputo is introduced as follow:

cDα
ah(t) := In−αa h(n)(t)

=

∫ t

a

(t− ζ)n−α−1

Γ(n− α)
h(n)(ζ)dζ, a < ζ < t < b,

(1.20)

with n = [α] + 1.

Property 6 [33] Let α > 0, β > 0, and n is given by n = [α] + 1.

•
(
cDα

a (χ− a)β−1
)

=
Γ(β)

Γ(β − α)
(χ− a)β−α−1 such that (β > n).

•
(
cDα

a (χ− a)k
)

= 0, where k = 1, 2, ..., n− 1.

• (cDα
a 1) = 0. This is one of the main differences between Caputo derivative and

Riemann-Liouville derivative.

Lemma 1.2 [33] Let α > 0, and y ∈ C(a, b). If α /∈ N, or α ∈ N and n = [α] + 1, then

(cDα
a I

α
a y)(χ) = y(χ). (1.21)

Lemma 1.3 [33] Let y ∈ Cn([a; b],R). For α > 0, the fractional differential equation
cDα

a y(χ) = 0 has a general solution given by:

y(χ) =
n−1∑
i=0

ci(χ− a)i,

with ci ∈ R, i = 0, 1, 2, .., n− 1, and n = [α] + 1.

Proof: Let α > 0 and y ∈ Cn([a; b],R).

cDα
a y(χ) = 0⇒ In−αa Dn

ay(χ) = 0. (1.22)

We apply Dn−α
a and we get

Dn
ay(χ) = 0⇒ y(χ) =

n−1∑
i=0

ci(χ− a)i. (1.23)

Lemma 1.4 [33] Let y ∈ Cn([a; b],R). For α > 0, we have:

Iαa (cDα
a y)(χ) = y(χ) +

n−1∑
i=0

ci(χ− a)i,

with ci ∈ R, i = 0, 1, 2, ..., n− 1 and n = [α] + 1.

15



1. ELEMENTARY NOTIONS OF FRACTIONAL CALCULUS

Proof: Let α > 0 and y ∈ Cn([a; b],R).

Iαa (cDα
a y(χ)) = Iαa I

n−α
a Dn

ay(χ) (1.24)

If we use the semi-group property, we find that

Iαa (cDα
a y(χ)) = InaD

n
ay(χ)

= y(χ) +
n−1∑
i=0

ci(χ− a)i.
(1.25)

The Link between Riemann-Liouville Derivative and Caputo Deriva-

tive

If we want to give Caputo-derivative a meaning through Riemann-Liouville deriva-
tive it would be given by the following representation: [33]

(cDα
a y)(χ) :=

(
RLD

α
a

[
y(χ)−

n−1∑
k=0

y(k)(a)

k!
(χ− a)k

])
(1.26)

where y ∈ Cn(a, b), and n = [α] + 1.
This representation can be simplified by applying the necessary tools that we

presented and we can get the following formulation:[33]

(cDα
a y)(χ) := (RLD

α
a y)(χ)−

n−1∑
k=0

y(k)(a)

Γ(k − α + 1)
(χ− a)k (1.27)

where y ∈ Cn(a, b), and n = [α] + 1.
This type of links serve as a good tool for the flexibility between derivative op-

erators.

1.4 The Hadamard Approach

In 1892, the famous mathematician Hadamard, propose a new model of fractional
operator that was later named after him. In their book [33], Kilbas et al. presented
the definitions and properties of this operator.

Definition 1.6 [33] For a continuous function h on the interval (a, b) (0 ≤ a < b ≤ +∞),
the Hdamard integral of order α (α > 0) is given by the mathematical expression

(HIαa h)(χ) :=
1

Γ(α)

∫ χ

a

(
log

χ

t

)α−1 h(t)

t
dt, (a < χ < b) (1.28)

where Γ is given in Definition 1.1.
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1. ELEMENTARY NOTIONS OF FRACTIONAL CALCULUS

Definition 1.7 [33] Let [a, b] be a finite interval such that −∞ < a < b < +∞ and let
AC[a, b] be a space that contains all absolutely continuous functions on [a, b]. Let us denote
δ = t d

dt
and define the space

ACn
δ [a, b] = {h : t ∈ [a, b]→ R such that (δn−1h) ∈ AC[a, b]}. (1.29)

Clearly AC1
δ [a, b] ≡ AC[a, b] for n = 1.

Definition 1.8 [33] Let h be in the space ACn
δ [a, b], with 0 ≤ a < b < ∞, δ = t d

dt
, and

n = [α]+1 (α > 0 ). The derivative of the function h of an arbitrary order α with Hadamard
approach is defined as

HDα
ah(t) =

1

Γ(n− α)
(t
d

dt
)n
∫ t

a

(log
t

ζ
)n−α+1h(ζ)

dζ

ζ

= δn(HIn−αa h)(t).

(1.30)

Property 7 [33]"Semi-group property" Let α > 0, β > 0, and 1 ≤ p ≤ ∞. If 0 < a < b <

∞, then for h ∈ Lp(a, b),

a. HIαa (HIβa h) =H Iα+βa h

b. HDβ
a (HIαa h) =H Iα−βa h

c. HDα
a (HIαa h) = h.

Proof: a. Let h be in Lp(a, b) and α > 0. Then,

HIαa ((HIβa h))(t)) =
1

Γ(α)Γ(β)

∫ t

a

(
log

t

s

)α−1 ∫ s

a

(
log

s

χ

)β−1
h(χ)

dχ

χ

ds

s
(1.31)

We notice that a ≤ χ ≤ s ≤ t. Accordingly, we get

HIαa ((HIβa h))(t)) =
1

Γ(α)Γ(β)

∫ t

a

∫ t

χ

(
log

t

s

)α−1(
log

s

χ

)β−1
ds

s
h(χ)

dχ

χ
(1.32)

Now, let’s put w =
log s

χ

log t
χ

. If we accommodate (1.32) according to w, then, we get

HIαa ((HIβa h))(t)) =
1

Γ(α)Γ(β)

∫ t

a

(
log

t

χ

)α+β−1 ∫ 1

0

(1− w)α−1wβ−1dwf(χ)
dχ

χ

=
B(α, β)

Γ(α)Γ(β)

∫ t

a

(
log

t

χ

)α+β−1
h(χ)

dχ

χ
(1.33)
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1. ELEMENTARY NOTIONS OF FRACTIONAL CALCULUS

Thanks to the property of the beta function of Euler, we get

HIαa ((HIβa h))(t)) =
1

Γ(α + β)

∫ t

a

(
log

t

χ

)α+β−1
h(χ)

dχ

χ

= (HIα+βa h)(t).

(1.34)

which achieve the point. �

Property 8 [33] If α > 0, and β > 1 and 0 < a < b <∞, then

•
(
HIαa

(
log

χ

a

)β−1)
=

Γ(β)

Γ(β + α)

(
log

χ

a

)β+α−1
,

•
(
HDα

a

(
log

χ

a

)β−1)
=

Γ(β)

Γ(β − α)

(
log

χ

a

)β−α−1
.

Proof: Let α > 0, α > 0. We have(
HIαa

(
log

χ

a

)β−1)
=

1

Γ(α)

∫ χ

a

(
log

χ

s

)α−1 (
log

s

a

)β−1 ds
s

(1.35)

If we put u =
log s

a

log χ
a

, then we get

(
HIαa

(
log

χ

a

)β−1)
=

1

Γ(α)

(
log

χ

a

)β+α−1 ∫ χ

a

(1− u)α−1 (u)β−1 du

=
1

Γ(α)

(
log

χ

a

)β+α−1
B(α, β)

(1.36)

Using the property of the function beta of Euler, we get(
HIαa

(
log

χ

a

)β−1)
=

Γ(β)

Γ(β + α)

(
log

χ

a

)β+α−1
(1.37)

Similarily, we get the second equation.

Remark 1.1 [33]

? If β = 1, and α ≥ 0, then HDα
aC 6= 0 where C is a real constant.

? If 0 < α < 1, then HDα
a 1 =

1

Γ(1− α)

(
log

χ

a

)−α
.

? For j = [α] + 1, we have
(
HDα

a

(
log

χ

a

)α−j)
= 0.
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2. IMPORTANT ELEMENTS OF FUNCTIONAL ANALYSIS

Corollary 1.1 [33] Let α > 0, n = [α]+1, and 1 < a < b <∞. The equality (HDα
a y)(χ) =

0 is valid if, and only if,

y(χ) =
n∑
j=1

cj(log
χ

a
)α−j (1.38)

and the following formula holds:

HIαa (HDα
a y(χ)) = y(χ) +

n∑
j=1

cj(log
χ

a
)α−j

where cj ∈ R, j = 1, 2, ..., n, and n− 1 < α < n.

Remark 1.2 [33] When 0 < α ≤ 1, the relation (HDα
a y)(χ) = 0 holds if and only if

y(χ) = c
(
log χ

a

)α−1.

2 Important Elements of Functional Analysis

Since everything is connected in mathematics, it is important to clear some of the
fondamental concepts that keeps the process of work flowing. The following notions
create a map for the reader to follow through.

2.1 Banach Space

Definition 1.9 [58] LetB be a vector normed set and σ a metric onB. A metric pace (B, σ)
is complete if every Cauchy sequence in B has a limit.

Definition 1.10 [39] We call a Banach space every normed vector space where the induced
metric is complete.

2.2 Completely Continuous Operators

Definition 1.11 [39] A function f : X → Y between metric spaces is continuous when
it preserves convergence,

χn → χ ∈ X ⇒ f(χn)→ f(χ) ∈ Y. (1.39)

where {χn}n∈N.
In this case, f( lim

n→+∞
χn) = lim

n→+∞
f(χn).
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2. IMPORTANT ELEMENTS OF FUNCTIONAL ANALYSIS

Definition 1.12 [39] A set B is bounded when the distance between any two points in
the set has an upper bound,

∃r > 0, ∀χ, y ∈ B, d(χ, y) ≤ r (1.40)

Definition 1.13 [47] Let us have the spaces X , Y that happens to be Banach spaces and let
T : D ⊂ X → Y .

(a) We say that the operator T is bounded if it maps any bounded subset of D into a
bounded subset of Y .

(b) We say that the operator T is completely continuous if it is continuous and maps
any bounded subset of D into a relatively compact subset of Y .

2.3 Ascoli-Arzela Theorem

Ascoli-Arzela theorem is one of the most used theorems in fixed point theory. It is a
theorem that provided a simpler way to use fixed point theorems and add the factor
of practicallity to them. It has created a bridge beween the concepts that are easily
applied and those that are a bit harder to put to immediate use.

To be more clear, let (K, d) be a compact metric space andC(K,Rn) be the famous
Banach space that encompasses all continuous functions from K to Rn, under the
sup-norm |.|∞

Theorem 1.1 [47] A subset Y of C(K,Rn) is relatively compact if and only if the fol-
lowing conditions are satisfied:

(i) Y is bounded, i. e., there exists a constant c > 0 such that

|u(χ)| ≤ c (1.41)

for all χ ∈ K and u ∈ Y .
(ii) Y is equicontinuous, i.e., for every ε > 0, there exists a δ > 0 such that for all

u ∈ Y ,
|u(χ)− u(χ1)| < ε (1.42)

whenever χ, χ1 ∈ K and d(χ, χ1) < δ.

2.4 About Fixed Point Theorems

Banach Contraction Principle

Definition 1.14 [39] A function f : X → Y is called a Liptschiz map when

∃c > 0,∀χ1, χ2 ∈ X, dY (f(χ1), f(χ2)) ≤ cdX(χ1, χ2). (1.43)
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2. IMPORTANT ELEMENTS OF FUNCTIONAL ANALYSIS

where (X, dX) and (Y, dY ) are metric spaces. Furthermore, it is called a contraction when
it is Lipschitz with constant c < 1.

Theorem 1.2 [43], [35] Let (E, ‖.‖) be a Banach space, and let B ⊆ E be nonempty and
closed. If the function T : B → B satisfies

‖Tχ− Ty‖ ≤ q‖χ− y‖, for all χ, y ∈ B (1.44)

with q < 1, then within B there exists a unique fixed point χ∗ of T .

Shaefer Fixed Point Theorem

Lemma 1.5 [43],[35] In a Banach space named ∆, we define the completely continuous
operator ϕ : ∆ −→ ∆. If the set z = {χ ∈ ∆,χ = λϕ(χ), λ ∈]0, 1[} is bounded, then, we
can consider that ϕ has at least one solution.

Dhage Fixed Point Approach

Lemma 1.6 [15] Let z (z 6= ∅) be a subset of the space ∆ where ∆ is a Banach space and
z is bounded, closed, and convex. Now, let us have the following operators: Λ : ∆→ ∆ and
Θ : z→ ∆. These operators satisfy the following conditions:

a) Λ must be a Lipschitzian with Lipschitz constant noted γ,

b) Θ is completely continuous,

c) the equation χ = ΛχΘy amplies that χ is in z for all y ∈ z, and

d) we have γM < 1, where M = ‖Θ(z)‖ = sup{‖Θ(χ)‖ : χ ∈ z}

Therefore, we can say that the operator equation

ΛχΘχ = χ

possibly has a solution.

2.5 Additional Concepts and Tools

As another set of useful tools, here we present some notions that are important links
to create a clear picture of the works presented in Chapter 2.

Theorem 1.3 [21] "Cauchy-Schwartz Inequality" Let a1, a2, ..., an and b1, b2, ..., bn be
real numbers. Then, we have :∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

|ai|2
) 1

2

+

(
n∑
i=1

|bi|2
) 1

2

(1.45)
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As an extension to the theorem, for f, g ∈ L2([a, b]), we have

∣∣∣∣∫ b

a

f(χ)g(χ)dχ

∣∣∣∣ ≤ (∫ b

a

|f(χ)|2dχ
) 1

2
(∫ b

a

|g(χ)|2dχ
) 1

2

(1.46)

Theorem 1.4 [21] " Hölder Inequality" Let a1, a2, ..., an and b1, b2, ..., bn be real num-
bers.If we have ρ, σ ∈ [1,+∞) such that 1

ρ
+ 1

σ
= 1, then we have

∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

|ai|ρ
) 1

ρ

+

(
n∑
i=1

|bi|σ
) 1

σ

(1.47)

Let f, g ∈ L2([a, b]). Then, Hölder’s Inequality extension is given by

∣∣∣∣∫ b

a

f(χ)g(χ)dχ

∣∣∣∣ ≤ (∫ b

a

|f(χ)|ρdχ
) 1

ρ
(∫ b

a

|g(χ)|σdχ
) 1

σ

(1.48)

Definition 1.15 [39] A finite (or infinite) inequality is positive if all variables a, b, ... in-
volved in it are real and non-negative.

The following Jensen Lemma is also needed in chapter2.

Lemma 1.7 [55] Let n ∈ N, and let a1, ..., an be nonnegative real numbers. Then, for r > 1,(
n∑
i=1

ai

)r

≤ nr−1
n∑
i=1

ari (1.49)
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Chapter 2

Applications of Integral Inequalities
to Fractional Hybrid Differential
Equations

Gronwall-Ballman type inequalities are a type of inequalities that can be used in
many ways to study differential and integral equations. Whether it is for the effect
of the order of the equation on the solution itself or on its uniqueness, or to find an
approximation in someway to the said solution, in literature we find many works
in that context as we see in the works of [1], [6], [7], [9], [14], [36], [45], [48], [55],
[57], [62], [64], [65]. In this chapter, we present some of the results we obtained
while addressing the heart of this thesis. To achieve our purpose of applying in-
tegral inequalities to fractional hybrid differential equations, first it is necessary to
understand what are hybrid differential equations.

1 About Hybrid Differential Equations

Fractional hybrid differential equations are simply hybrid differential equations that
have been generalized to their arbitrary order. In literature, specifically in the work
of the mathematician B. C. Dhage [16], we understand that hybrid differential equa-
tions are the consequence of applying perturbations techniques on dynamical sys-
tems that are represented by nonlinear equations. These perturbation techniques are
used due to the difficulty of solving the nonlinear differential equations for various
reasons. He goes far in explaining : "For any closed and bounded interval J = [0, T ]

of the real line R, consider the initial value problem of nonlinear first order ordinary
differential equation {

χ′(ζ) = h(ζ, χ(ζ)), a.e. ζ ∈ J
χ(0) = χ0 ∈ R.

(2.1)
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where h : J × R→ R."
If h is nonlinear and difficult to deal with, here the perturbation techniques be-

come useful.
We usually notice two types of perturbed differential equations:

? "Perturbation differential equation of first type: It is when the free unknown
function is the part that has been perturbed in some way." [16]

? "Perturbation differential equation of second type: It is when the unknown
function under the derivative has gone under the process of perturbation."
[16]

"Now, if the perturbation of second type involves multiplication or division, it is
called quadratic perturbation. It has the following form

d

dζ

(
χ(ζ)

φ2(ζ, χ(ζ))

)
= φ1(ζ, χ(ζ)), a.e. ζ ∈ J

χ(0) = χ0 ∈ R.

(2.2)

If the perturbation of second type involves addition or subtraction, it is called linear
perturbation. It has the following form

d

dζ

(
χ(ζ)− φ2(ζ, χ(ζ))

)
= φ1(ζ, χ(ζ)), a.e. ζ ∈ J

χ(0) = χ0 ∈ R.

(2.3)

where φ1 and φ2 has a direct relation to h.
In literature, these types of equations are named by hybrid differential equations."[16]
It is important to mention that in this dissertation, we focused on studying hy-

brid differential equations of second type with quadratic perturbation.

2 About Gronwall-Ballman Inequalities

In his book [12], C. Corduneanu states that a positive function χ for τ ∈ [t0, T )

(T ≤ +∞) satisfies

χ(τ) ≤ φ(τ) +

∫ τ

t0

κ(ζ)χ(ζ)dζ, (2.4)

where φ is a continuous function on [t0, T ), and κ is a positive function on the same
interval, then the Gronwall-Ballman inequality implies that
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Lemma 2.1 [12] For any function that satisfy the above inequality (2.4) and its assump-
tions, we have

χ(τ) ≤ φ(τ) +

∫ τ

t0

φ(ζ)κ(ζ) exp

[∫ τ

ζ

κ(σ)dσ

]
dζ, τ ∈ [t0, T ). (2.5)

In 2013, J. Shao and F. Meng [55] considered a class of nonlinear Gronwall-Ballman
inequalities that has generalized some results that was applied to fractional differ-
ential equations with Caputo derivative.

Lemma 2.2 [55] Let I = [t0, T ) ∈ R, κ, φ, ψ ∈ C(I,R+), (T ≤ ∞). Suppose that χ ∈
C(I,R+), and

χ(τ) ≤ κ(τ) +

∫ τ

t0

φ(ζ)χ(ζ)dζ +

∫ τ

t0

ψ(ζ)χγ(ζ)dζ, τ ∈ I, (2.6)

where 0 ≤ γ < 1.
Then, for τ ∈ I , we have

χ(τ) ≤
[
A1−γ(τ)+(1−γ)

∫ τ

t0

exp

(
(γ − 1)

∫ ζ

t0

φ(σ)dσ

)
ψ(ζ)dζ

]1/(1−γ)×exp

(∫ τ

t0

φ(ζ)dζ

)
,

(2.7)
where A(τ) = max

t0≤ζ≤τ
κ(ζ).

Theorem 2.1 [9] Let χ, a, b, hi, (i = 1, ..., n) be real valued nonnegative continuous func-
tions and there exists positive real numbers ρ1, ρ2, ..., ρn and χ(t) that satisfies the following
inequality

χρ(t) ≤ a(t) + b(t)

∫ t

0

i=n∑
i=1

hi(s)χ
ρi(s)ds, (2.8)

with t ∈ R+.
Accordingly, we can get that

χ(t) ≤

{
a(t) + b(t)

∫ t

0

n∑
i=1

hi(s)

(
ρi
ρ
a(s) +

ρ− ρi
ρ

)
× exp

(∫ t

s

b(σ)
n∑
i=1

ρi
ρ
hi(σ)dσ

)
ds

}1/ρ

(2.9)
for ρ ≥ ρ∗ = max ρi, i = 1, ..., n.

An attempt of extending results to inequalities of Gronwall-Ballman type to
cover equations with Hadamard derivative has been established for problem with
maxima by [57].

Inspired by the above works, we established some results that extend J. Shao
et al. results in Lemma 2.2 and generalized some results of [9] mentioned in The-
orem 2.1 to be applied to hybrid fractional differential equations with Hadamard
derivative.
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3 Main Results

We propose the following main result that generalizes Theorem 4 of [55]. We have

Theorem 2.2 [19] Let I = [t0, T ], t0 ≥ 1, α > 0, 0 < γ < 1 and a, b, p ∈ C(I,R+). For
the case when χ ∈ C(I,R+) and it satisfies

χ(t) ≤ a(t) +

∫ t

t0

(log(
t

s
))α−1b(s)χ(s)s−1ds+

∫ t

t0

(log(
t

s
))α−1p(s)χγ(s)s−1ds,

(2.10)
As a mean of approximation, the following two cases are valid:
(i) If α > 1/2, then

χ(t) ≤
[
A1−γ

1 (t) + (1− γ)G1

×
∫ t

t0

exp

(
(γ − 1)G1

∫ s

t0

b2(σ)σ−1dσ

)
p2(s)s3γ−4ds

] 1
2(1−γ)

×t3/2 exp

(
(G1/2)

∫ t

t0

b2(s)s−1ds

)
, t ∈ I,

(2.11)

with A1(t) = max
t0≤s≤t

3s−3a2(s), and G1 = Γ(2α− 1)/9α−1.

(ii) Suppose that α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α. Then, we have

χ(t) ≤
[
A1−γ

2 (t) + (1− γ)G2

×
∫ t

t0

pq(s)sq(γ(
p+1
p )−2) exp

(
(γ − 1)G2

∫ s

t0

bq(σ)σ−q(
p−1
p )dσ

)
ds

] 1
q(1−γ)

×t
p+1
p exp

(
G2

q

∫ t

t0

bq(σ)σ−q(
p−1
p )dσ

)
,

(2.12)

where A2(t) = max
t0≤s≤t

3q−1s−q(
p+1
p )aq(s), and G2 = 3q−1

(
Γ(p(α−1)+1)

(p+1)p(α−1)+1

) q
p

.

Proof:
Let t ∈ I . We have:

χ(t) ≤ a(t) +

∫ t

t0

(log(
t

s
))α−1b(s)s−2sχ(s)ds+

∫ t

t0

(log(
t

s
))α−1p(s)s−2sχγ(s)ds

(2.13)
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(i) With the help of the famous Cauchy-Schwartz inequality, we can get:

χ(t) ≤ a(t) +
(∫ t

t0

(log(
t

s
))2(α−1)s2ds

)1/2(∫ t

t0

b2(s)s−4χ2(s)ds
)1/2

+
(∫ t

t0

(log(
t

s
))2(α−1)s2ds

)1/2(∫ t

t0

p2(s)s−4χ2γ(s)ds
)1/2

≤ a(t) +
(3t3Γ(2α− 1)

9α

)1/2(∫ t

t0

b2(s)s−4χ2(s)ds
)1/2

+
(3t3Γ(2α− 1)

9α

)1/2(∫ t

t0

p2(s)s−4χ2γ(s)ds
)1/2

(2.14)

where α > 1/2.
Using Jensen Lemma (Lemma 1.7) for r = 2, the above inequality becomes

χ2(t) ≤ 3a2(t) +

(
t3Γ(2α− 1)

9α−1

)(∫ t

t0

b2(s)s−4χ2(s)ds

)

+

(
t3Γ(2α− 1)

9α−1

)(∫ t

t0

p2(s)s−4χ2γ(s)ds

) (2.15)

As a transitional mean, let us introduce the function w(t) := [χ2(t)t−3]. By adjust-
ing (2.15) according to w, we get:

w(t) ≤ A1(t) +G1

(∫ t

t0

b2(s)s−1w(s)ds

)
+G1

(∫ t

t0

p2(s)s3γ−4wγ(s)ds

)
(2.16)

Since A1(t) is nondecreasing, then by Lemma 2.2, it yields that:

w(t) ≤
[
A1−γ

1 (t) + (1− γ)G1

×
∫ t

t0

p2s3γ−4(s) exp

(
(γ − 1)G1

∫ s

t0

b2(σ)σ−1dσ

)
ds
]1/(1−γ)

× exp

(
G1

∫ t

t0

b2(s)s−1ds

)
,

(2.17)

Replacing w by its quantity, we get (3.2).
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(ii) Taking α ∈ (0, 1/2], q = (1+α)/α, and p = 1+α , then we get (1/p)+(1/q) = 1.

Thanks to Hölder inequality, we obtain

χ(t) ≤ a(t) +

(∫ t

t0

(
log

t

s

)p(α−1)
spds

) 1
p (∫ t

t0

bq(s)χq(s)s−2qds

) 1
q

+

(∫ t

t0

(
log

t

s

)p(α−1)
spds

) 1
p (∫ t

t0

pq(s)χqγ(s)s−2qds

) 1
q

.

(2.18)

As a direct consequence,

χ(t) ≤ a(t) +

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

) 1
p
(∫ t

t0

bq(s)χq(s)s−2qds

) 1
q

+

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

) 1
p
(∫ t

t0

pq(s)χqγ(s)s−2qds

) 1
q

(2.19)
By taking the aid of Jensen Lemma (Lemma 1.7) with r = q, we can write

χq(t) ≤ 3q−1aq(t) + 3q−1
(

tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

) q
p

×
(∫ t

t0

bq(s)χq(s)s−2qds+

∫ t

t0

pq(s)χqγ(s)s−2qds

)
.

(2.20)

Considering the function w(t) := (χ(t)t−(p+1)/p)q, it yields that

w(t) ≤ A2(t) +G2

∫ t

t0

bq(s)s−q(
p−1
p )w(s)ds+G2

∫ t

t0

pq(s)wγ(s)sq(γ(
p+1
p )−2)ds.

(2.21)
Due to Lemma 2.2, we notice that

w(t) ≤
[
A1−γ

2 (t) + (1− γ)G2

×
∫ t

t0

pq(s)sq(γ(
p+1
p )−2) exp

(
(γ − 1)G2

∫ t

t0

bq(σ)σ−q(
p−1
p )dσ

)
ds

]1/(1−γ)

× exp

(
G2

∫ t

t0

bq(σ)σ−q(
p−1
p )dσ

)
.

(2.22)
By replacingwwith its value, we get the inequality (2.12). The proof is thus achieved.
�
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Example: Let t0 = 1, T = e, and a(t) = exp(t), b(t) =
√

3t−2, p(t) = t
−3
2
γ . It is

obvious that a, b, and p are in C(I,R+). So, for γ = 1
2

and α = 3
4
, we have:

χ(t) ≤ exp(t) +

∫ t

1

(log(
t

s
))

−1
4

√
3s−2χ(s)s−1ds+

∫ t

1

(log(
t

s
))

−1
4 s

−3
4 χ

1
2 (s)s−1ds,

(2.23)
Since, α > 1/2 and thanks to (3.2), we get:

χ(t) ≤
[
(3t−3 exp(2t))1/2 +

1

3
exp

(
−
√
π

2
√

3
(t−3 − 1)

)
− 1

3

]−1
×t3/2 exp

(
−
√
π

2
√

3
(t−3 − 1)

)
.

(2.24)

We propose this second main result that generalizes Theorem 2.1 ([9]).

Theorem 2.3 [19] Let χ, a, ki real nonnegative functions defined on t ∈ [t0, T ] where t0 ≥
1, δi < 1 for i = 1, ..., n. If

χ(t) ≤ a(t) +

∫ t

t0

(
log

t

s

)α−1 i=n∑
i=1

ki(s)χ
δi(s)s−1ds, (2.25)

as a consequence, we’d have these possible results:
(i) If α > 1/2, then

χ(t) ≤

{
2a2(t) +

6t3

9α
Γ(2α− 1)

∫ t

t0

n∑
i=1

nk2i (s)s
−4 (δi2a2(s) + 1− δi

)
×exp

(∫ t

s

6σ3

9α
Γ(2α− 1)

n∑
i=1

nδik
2
i (σ)(σ)−4dσ

)
ds

}1/2 (2.26)

(ii)Suppose that α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α. Then, we have

χ(t) ≤

{
2q−1aq(t) + 2q−1

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

)q/p
×
∫ t

t0

n∑
i=1

nq−1kqi (s)s
−2q (δi2q−1aq(s) + (1− δi)

)
×exp

(∫ t

s

2q−1
(

σp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

)q/p n∑
i=1

nq−1δik
q
i (σ)σ−2q

)
ds

}1/q

(2.27)

Proof:
For t ∈ [t0, T ], we have

χ(t) ≤ a(t) +

∫ t

t0

(
log

t

s

)α−1
s
i=n∑
i=1

ki(s)χ
δi(s)s−2ds. (2.28)
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(i) Using Cauchy-Shwartz inequality and Lemma 1.7, we can write:

χ(t) ≤ a(t) +

(∫ t

t0

(
log

t

s

)2(α−1)

s2ds

)1/2(∫ t

t0

i=n∑
i=1

nk2i (s)χ
2δi(s)s−4ds

)1/2

. (2.29)

This leads to

χ(t) ≤ a(t) +

(
3t3

9α
Γ(2α− 1)

)1/2
(∫ t

t0

i=n∑
i=1

nk2i (s)χ
2δi(s)s−4ds

)1/2

(2.30)

where α > 1/2.
Thanks to the inequality (2.30) and Lemma 1.7, we get:

χ2(t) ≤ 2a2(t) +

(
6t3

9α
Γ(2α− 1)

)(∫ t

t0

i=n∑
i=1

nk2i (s)s
−4χ2δi(s)ds

)
(2.31)

Now, if we put p̃ = 2, p̃i = 2δi, h̃i(t) = nk2i (t)t
−4, ã(t) = 2a2(t), b̃(t) = 6t3

9α
Γ(2α− 1),

the inequality would take the following form:

χp̃(t) ≤ ã(t) + b̃(t)

(∫ t

t0

i=n∑
i=1

h̃i(s)χ
p̃i(s)ds

)
(2.32)

which, thanks to Theorem 2.1, gives

χ(t) ≤

{
ã(t) + b̃(t)

∫ t

0

n∑
i=1

h̃i(s) (δiã(s) + 1− δi) ×exp

(∫ t

s

b̃(σ)
n∑
i=1

δih̃i(σ)dσ

)
ds

}1/2

,

(2.33)
from which we conclude (2.26).

(ii) Let α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α , then we get (1/p) + (1/q) = 1.

Using Hölder inequality and Lemma 1.7, the inequality (2.28) becomes

χ(t) ≤ a(t) +

(∫ t

t0

(
log

t

s

)p(α−1)
spds

)1/p(∫ t

t0

i=n∑
i=1

nq−1kqi (s)χ
qδi(s)s−2qds

)1/q

(2.34)

Therefore, we get

χ(t) ≤ a(t)+

(
tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

)1/p
(∫ t

t0

i=n∑
i=1

nq−1kqi (s)χ
qδi(s)s−2qds

)1/q

(2.35)
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Thanks to (2.35) and using Lemma 1.7, we obtain

χq(t) ≤ 2q−1aq(t)+2q−1
(

tp+1

(p+ 1)p(α−1)+1
Γ(p(α− 1) + 1)

)q/p(∫ t

t0

i=n∑
i=1

nq−1kqi (s)χ
qδi(s)s−2qds

)
(2.36)

If we take the following notations p̂ = q, p̂i = qδi, â(t) = 2q−1aq(t), b̂(t) =

2q−1
(

tp+1

(p+1)p(α−1)+1Γ(p(α− 1) + 1)
)q/p

, ĥi(t) = nq−1kqi (t)t
−2q, then,

χp̂(t) ≤ â(t) + b̂(t)

(∫ t

t0

i=n∑
i=1

ĥ(s)χp̂i(s)ds

)
. (2.37)

According to Theorem 2.1, we have

χ(t) ≤

{
â(t) + b̂(t)

∫ t

0

n∑
i=1

ĥi(s) (δiâ(s) + (1− δi))× exp

(∫ t

s

b̂(σ)
n∑
i=1

δiĥi(σ)

)
ds

}1/q

(2.38)
Therefore, we have (2.27) which completes the proof. �

4 Applications on Fractional Hybrid Differential Equa-

tions

In this section, we are concerned with the following hybrid differential problem:
HDα

(
z(t)

f(t, z(t))

)
= g(t, z(t)) + h(t)z(t), 1 ≤ t ≤ T, 0 < α ≤ 1,

HI1−αz(t)|t=1 = η,

(2.39)

We take note that f ∈ C([1, T ]× R,R\{0}), g ∈ C([1, T ]× R,R), h ∈ C([1, T ],R),
HDα is the derivative of order α with Hadamard approach, HI1−α is the integral of
order 1− α with Hadamard approach, and η ∈ R.

It is to note that in the case where h is identically zero, the associated problem
has been discussed by B. Ahmed et al., see [2].

Thanks to [2], the integral equation that is equivalent to (2.39) is given by:

z(t) = f(t, z(t))
( η

Γ(α)
(logt)α−1+

1

Γ(α)

∫ t

1

(log
t

s
)α−1(g(s, z(s))+h(s)z(s))

ds

s

)
, t ∈ [1, T ]

(2.40)
Introducing the following two hypotheses,

(H.1) As t ∈ [1, T ], there exist a positive constant F, such that |f(t, z(t))| ≤ F .
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(H.2) For b, p ∈ C([1, T ],R+), 0 < γ < 1, we assume that |h(t)z(t) + g(t, z(t)| ≤
b(t)|z(t)|+ p(t)|z(t)|γ ,

we prove the theorem:

Theorem 2.4 [19] Let us consider that the hypothesis (H.1) and (H.2) are valid. If z(t) is
a solution of (2.39), then the following estimations hold:

(i) Suppose that α > 1/2. Then

|z(t)| ≤
[
Ã1−γ

1 (t) + (1− γ)
G1F

2

Γ2(α)

×
∫ t

1

exp

(
(γ − 1)

G1F
2

Γ2(α)

∫ s

1

b2(σ)σ−1dσ

)
p2(s)s3γ−4)ds

]1/2(1−γ)

×t3/2 exp

(
G1F

2

2Γ2(α)

∫ t

1

b2(s)s−1ds

)
, t ∈ I

(2.41)

where Ã1(t) = max
1≤s≤t

3s−3 η2F 2

Γ2
(α)

(logs)2(α−1), and G1 = Γ(2α− 1)/9α−1.

(ii) Suppose that α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α. Then

|z(t)| ≤
[
Ã1−γ

2 (t) + (1− γ)
G2F

q

Γq(α)

×
∫ t

1

pq(s)sq(γ(
p+1
p )−2) exp

(
(γ − 1)

G2F
q

Γq(α)

∫ s

1

bq(σ)σ−q(
p−1
p )dσ

)
ds

]1/q(1−γ)

×t
p+1
p exp

(
G2F

q

qΓq(α)

∫ t

1

bq(σ)σ−q(
p−1
p )dσ

)
(2.42)

where Ã2(t) = max
1≤s≤t

3q−1s−q(
p+1
p ) |η|qF q

Γq(α)
(logs)q(α−1), and G2 = 3q−1

(
Γ(p(α−1)+1)

(p+1)p(α−1)+1

)q/p
.

Proof:
Let t ∈ [1, T ]. Then, we can have:

|z(t)| ≤ |f(t, z(t)|
(
| η

Γ(α)
(logt)α−1|+ 1

Γ(α)

×
∫ t

1

(log
t

s
)α−1|h(s)z(s) + g(s, z(s))|ds

s

)
(2.43)

Thanks to hypothesis (H.1) and (H.2), we get:

|z(t)| ≤ F | η

Γ(α)
(logt)α−1|+ F

Γ(α)

×
∫ t

1

(log
t

s
)α−1b(s)|z(s)|+ p(s)|z(s)|γ ds

s

(2.44)
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If we rewrite (2.44) as

|z(t)| ≤ Â(t) +

∫ t

1

(log
t

s
)α−1B(s)|z(s)|ds

s
+

∫ t

1

(log
t

s
)α−1P (s)|z(s)|γ ds

s
(2.45)

where Â(t) = F |η|
Γ(α)
|(logt)α−1|, B(t) = F

Γ(α)
b(t), and P (t) = F

Γ(α)
p(t), we notice that

the inequality is similar to (2.10).
Using Theorem 2.2, we get the desired results. �

Now, let’s consider the following equation:
HDα

(
z(t)

f(t, z(t))

)
=

i=n∑
i=1

gi(t, z(t)), 1 ≤ t ≤ T, 0 < α ≤ 1,

HI1−αz(t)|t=1 = η,

(2.46)

We take note that f ∈ C([1, T ] × R,R\{0}), gi ∈ C([1, T ] × R,R) (i = 1, ..., n), HDα

is the derivative of order α with Hadamard approach, HI1−α is the integral of order
1− α with Hadamard approach, and η ∈ R.

The equivalent integral representation of (2.46) can be represented as follow:

z(t) = f(t, z(t))
( η

Γ(α)
(logt)α−1 +

1

Γ(α)

∫ t

1

(log
t

s
)α−1

i=n∑
i=1

gi(s, z(s))
ds

s

)
, t ∈ [1, T ].

(2.47)

Introducing the following hypothesis,
(H.3) For i = 1, ...n, ki ∈ C([1, T ],R+), 0 < δi < 1, we have |gi(t, z(t)| ≤

ki(t)|z(t)|δi ,
we present to the reader the following main result.

Theorem 2.5 [19] Suppose that (H.1) and (H.3) are satisfied.
Then, the following two cases are valid:
(i) If α > 1/2, we have

|z(t)| ≤

{
2Â2(t) +

6t3F 2Γ(2α− 1)

9αΓ2(α)

∫ t

1

n∑
i=1

nk2i (s)s
−4
(
δi2Â

2(s) + 1− δi
)

×exp

(∫ t

s

6σ3F 2Γ(2α− 1)

9αΓ2(α)

n∑
i=1

nδik
2
i (σ)(σ)−4dσ

)
ds

}1/2

,

(2.48)

where, Â(t) =
(
F |η|
Γ(α)
|(logt)|α−1

)
.
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(ii) Suppose that α ∈ (0, 1/2], q = (1 + α)/α, and p = 1 + α. Then, we have

|z(t)| ≤

{
2q−1Âq(t) + 2q−1

(
F

Γ(α)

)q (
tp+1Γ(p(α− 1) + 1)

(p+ 1)p(α−1)+1

)q/p
×
∫ t

1

n∑
i=1

nq−1kqi (s)s
−2q
(
δi2

q−1Âq(s) + (1− δi)
)

×exp

(∫ t

s

2q−1
(

F

Γ(α)

)q (
σp+1Γ(p(α− 1) + 1)

(p+ 1)p(α−1)+1

)q/p n∑
i=1

nq−1δik
q
i (σ)σ−2q

)
ds

}1/q

.

(2.49)

Proof: Let t ∈ [1, T ]. Accordingly, it is obvious that

|z(t)| ≤ |f(t, z(t))|
( |η|
Γ(α)

|(logt)|α−1 +
1

Γ(α)

∫ t

1

(log
t

s
)α−1

i=n∑
i=1

|gi(s, z(s))|
ds

s

)
(2.50)

Thanks to (H.1) and (H.3), we can write:

|z(t)| ≤
(
F
|η|
Γ(α)

|(logt)|α−1 +
F

Γ(α)

∫ t

1

(log
t

s
)α−1

i=n∑
i=1

|ki(s)||zδi(s)|
ds

s

)
(2.51)

If we rewrite (2.51) as

|z(t)| ≤ Â(t) +

∫ t

1

(log
t

s
)α−1

i=n∑
i=1

Ki(t)|zδi(s)|
ds

s
(2.52)

where Â(t) = F |η|
Γ(α)
|(logt)|α−1, and Ki(t) = F

Γ(α)
|ki(s)| (i = 1, ..., n), we notice that

the inequality is similar to (2.25).
Thanks to Theorem 2.3, we achieve the proof of this theorem. �
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Chapter 3

Investigation of Existence of Solutions
of a Boundary Value Problem

In recent years, researchers focused on developing as many types of fractional dif-
ferential equations as possible. They have shown special interest to this domain.
One of these types of equations that has got special attention is hybrid differential
equations. We see a lot of good works that addressed both types quadratic and lin-
ear as we see in [2], [3], [4], [16], [23], [24], and also in [25], [28], [37], [38], [40], [41],
[63].

In this chapter, we mainly present another way of how we can apply integral
inequalities to highlight the existence/ existence and uniqueness of the solution of
a certain class of hybrid differential equations of fractional order.

1 Boundary Value Problem

cDα1

(
χ1(t)

f1(t, χ1(t), χ2(t), ..., χn(t))

)
= h1(t, χ1(t), χ2(t), ..., χn(t))

+Iδ1k1(t, χ1(t), χ2(t), ..., χn(t)), t ∈ J
cDα2

(
χ2(t)

f2(t, χ1(t), χ2(t), ..., χn(t))

)
= h2(t, χ1(t), χ2(t), ..., χn(t))

+Iδ2k2(t, χ1(t), χ2(t), ..., χn(t)), t ∈ J
· · ·

cDαn

(
χn(t)

fn(t, χ1(t), χ2(t), ..., χn(t))

)
= hn(t, χ1(t), χ2(t), ..., χn(t))

+Iδnkn(t, χ1(t), χ2(t), ..., χn(t)), t ∈ J

χi(0) = θi

∫ βi

0

ϕi(s)χi(s)ds,

0 < βi < 1, i = 1, 2, ..., n.

(3.1)
For our problem, we consider cDαi the Caputo derivatives with 0 < αi < 1,

35



1. BOUNDARY VALUE PROBLEM

the symbols Iδi denote the RL-( Riemann-Liouville) fractional integrals of order δi,
with 0 < δi < 1, i = 1, ..., n, J = [0, 1] represents the time interval, θi are real num-
bers, ϕi are continuous functions on [0, βi], fi ∈ C (J × Rn,R− {0}) and hi, ki ∈
C (J × Rn,R) .

The Integral Representation

Since the system we have is not linear, we consider what is called "integral repre-
sentation" or "integral solution" of the given problem.

We also note that in order to make it easy to concentrate, we note: χ = (χ1, χ2, ..., χn)

and χ(t) = (χ1(t), χ2(t), ..., χn(t)).
The following lemma is an auxiliary result that highlights the integral represen-

tation of the system (3.1) which is very important for the main results.

Lemma 3.1 [17] Let i = 1, 2, ..., n and 0 < αi, δi < 1. For fi ∈ C (J × Rn,R− {0}) and
hi, ki ∈ C (J × Rn,R), we can consider as a solution for the equation:

cDαi

(
χi(t)

fi(t, χ(t))

)
= hi(t, χ(t)) + Iδiki(t, χ(t)) (3.2)

with the associated condition:

χi(0) = θi

∫ βi

0

ϕi(s)χi(s)ds, 0 < βi < 1, i = 1, 2, ..., n. (3.3)

the integral equation given by:

χi(t) = fi(t, χ(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ(τ))dτ

+
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

∫ βi

0

fi(s, χ(s))ϕi(s)

×

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)

(3.4)
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1. BOUNDARY VALUE PROBLEM

with: fi(0, χ(0)) 6= θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds.

Proof.
For i = 1, ..., n, we consider:

cDαi

(
χi(t)

fi(t, χ(t))

)
= hi(t, χ(t)) + Iδiki(t, χ(t)), t ∈ J (3.5)

To be able to obtain the general solution for the equation (3.5), we put lemmas
1.3 and 1.4 into perspective and we get:

χi(t)

fi(t, χ(t))
= Iαihi(t, χ(t)) + Iαi+δiki(t, χ(t))− c0 (3.6)

where c0 ∈ R is an arbitrary constant.
From (3.6), we get:

χi(t) = fi(t, χ(t))[Iαihi(t, χ(t)) + Iαi+δiki(t, χ(t))− c0] (3.7)

On the other hand, we multiply both sides of (3.7) by θiϕi(s), we get:

θiϕi(s)χi(s) = θiϕi(s)fi(s, χ(s))

×[Iαihi(s, χ(s)) + Iαi+δiki(s, χ(s))]− c0θifi(s, χ(s))ϕi(s)
(3.8)

The equation (3.8) gives us the privilege to have:

θi

∫ βi

0

ϕi(s)χi(s)ds = θi

∫ βi

0

ϕi(s)fi(s, χ(s))[Iαihi(s, χ(s)) + Iαi+δiki(s, χ(s))]ds

−c0
∫ βi

0

θifi(s, χ(s))ϕi(s)ds

(3.9)
With the help of (3.7) and the condition given in (3.3), we get

c0

(
fi(0, χ(0))−

∫ βi

0

θifi(s, χ(s))ϕi(s)ds

)
= θi

∫ βi

0

ϕi(s)fi(s, χ(s))

×[Iαihi(s, χ(s)) + Iαi+δiki(s, χ(s))]ds

(3.10)
and therefore, we establish that

c0 =
θi(

fi(0, χ(0))−
∫ βi
0
θifi(s, χ(s))ϕi(s)ds

)
∫ βi

0

ϕi(s)fi(s, χ(s))[Iαihi(s, χ(s) + Iαi+δiki(s, χ(s))]ds

(3.11)
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1. BOUNDARY VALUE PROBLEM

Replacing c0 by its value in (3.7), we obtain (3.4).

Now, we introduce the following Banach spaces:

Xi = {χi, i = 1, ..., n : χi ∈ C(J,R)} (3.12)

with the norm:
‖χi‖Xi = sup{|χi(t)| : t ∈ J} (3.13)

where i = 1, ..., n.
We bring to the attention that for i = 1, 2, ..., n,

(
Xi, ‖.‖Xi

)
is a Banach space [58].

The product space with its norm(
n∏
i=1

Xi, ‖.‖∏n
i=1Xi

)
with ‖χ‖∏n

i=1Xi
=

n∑
i=1

‖χi‖Xi (3.14)

is also a Banach space [58].
Let Q be an operator defined by:

Q :
∏n

i=1Xi →
∏n

i=1Xi

χ 7−→ Qχ

such that for t ∈ J ,
Qχ(t) =

(
Q1χ(t),Q2χ(t), ...,Qnχ(t)

)
(3.15)

where:

Qiχ(t) = fi(t, χ(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ(τ))dτ

+
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

∫ βi

0

fi(s, χ(s))ϕi(s)

×

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)

(3.16)

for i = 1, ..., n.
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2 Existence and Uniqueness

Theorem 3.1 [17] We suppose that:

H1. There exist constants ξij , ζij for i, j = 1, ..., n where we’d have:

|hi(t, χ1, ..., χn)− hi(t, y1, ..., yn)| ≤
n∑
j=1

ξij|χj − yj| (3.17)

and

|ki(t, χ1, ..., χn)− ki(t, y1, ..., yn)| ≤
n∑
j=1

ζij|χj − yj| (3.18)

when all values of t are in J , and χ, y ∈ Rn.

H2. There exist nonnegative constants Fi, i = 1, ..., n such that for all t ∈ J and
χ(t) ∈ Rn |fi(t, χ(t))| ≤ Fi.

H3.
∑n

i=1

(
Φi
∑n

j=1 ξij + Ψi
∑n

j=1 ζij

)
< 1, where:

Φi :=
Fi

Γ(αi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+1

i

Γ(αi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

Ψi :=
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+δi+1

i

Γ(αi + δi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

are satisfied. Then, there exists a unique solution to (3.1) provided that θi and fi(0, χ(0))

satisfy the condition of Lemma 3.1.

Proof
To achieve the desired results, we chose to proceed on two steps:

Step 1: Let Br be given by Br = {χ ∈
∏n

i=1Xi : ‖χ‖∏n
i=1Xi

≤ r} where r is defined
by:

r ≥
∑n

i=1 ΦiH
0
i + ΨiK

0
i

1−
∑n

i=1(Φi
∑n

j=1 ξij + Ψi
∑n

j=1 ζij)
(3.19)

Let us have Hi and Ki which are constants given by H0
i := sup

t∈J
|hi(t, 0, ..., 0)| <∞

and K0
i := sup

t∈J
|ki(t, 0, ..., 0)| <∞, for i = 1, ..., n.
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2. EXISTENCE AND UNIQUENESS

We notice that using (H1), for χ ∈ Br, we can write:

|hi(t, χ1, ..., χn)| ≤ |hi(t, χ1, ..., χn)− hi(t, 0, ..., 0)|+ |hi(t, 0, ..., 0)|

≤
∑n

j=1 ξij|χj|+H0
i

≤
∑n

j=1 ξijr +H0
i

(3.20)

and

|ki(t, χ1, ..., χn)| ≤ |ki(t, χ1, ..., χn)− ki(t, 0, ..., 0)|+ |ki(t, 0, ..., 0)|

≤
∑n

j=1 ζij|χj|+K0
i

≤
∑n

j=1 ζijr +K0
i

(3.21)

On the other hand, we have:

|Qiχ(t)| ≤ |fi(t, χ(t))|

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, χ(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, χ(τ))|dτ

+
|θi|

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

∫ βi

0

|fi(s, χ(s))||ϕi(s)|

×

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1|hi(τ, χ(τ))|dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1|ki(τ, χ(τ))|dτ

]
ds

)

(3.22)
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2. EXISTENCE AND UNIQUENESS

So, using (H1), (H2), (3.20), and (3.21), we get:

|Qiχ(t)| ≤ Fi

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1dτ

(
n∑
j=1

ξijr +H0
i

)

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ

(
n∑
j=1

ζijr +K0
i

)

+

Fi|θi|sup
s∈J
|ϕi(s)|

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

×
∫ βi

0

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1dτ

(
n∑
j=1

ξijr +H0
i

)

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1dτ

(
n∑
j=1

ζijr +K0
i

)]
ds

)

(3.23)

From this, we can easily conclude that

‖Qiχ‖Xi ≤

(
Fi

Γ(αi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+1

i

Γ(αi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)(
n∑
j=1

ξijr +H0
i

)

+

(
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+δi+1

i

Γ(αi + δi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

×

(
n∑
j=1

ζijr +K0
i

)

= Φi

(
n∑
j=1

ξijr +H0
i

)
+ Ψi

(
n∑
j=1

ζijr +K0
i

)
(3.24)

for i = 1, ..., n.

So (4.17) implies that:

‖Qiχ‖Xi ≤ Φi

(
n∑
j=1

ξijr +H0
i

)
+ Ψi

(
n∑
j=1

ζijr +K0
i

)
, i = 1, ..., n. (3.25)

Hence,

‖Qiχ‖∏n
i=1Xi

≤ r. (3.26)
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2. EXISTENCE AND UNIQUENESS

which leads to the conclusion that Qi(Br) ⊂ Br .
Step 2: Let χ, y ∈ Xi. For t with all its values in J , we have:

|Qiχ(t)−Qiy(t)| ≤ |fi(t, χ(t))|

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, χ(τ))− hi(τ, y(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, χ(τ))− ki(τ, y(τ))|dτ

+
Fi|θi|

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

∫ βi

0

|ϕi(s)|

×
[

1

Γ(αi)

∫ s

0

(s− τ)αi−1|hi(τ, χ(τ))− hi(τ, χ(τ))|dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1|ki(τ, χ(τ))− ki(τ, y(τ))|dτ
]
ds

)

(3.27)
Thanks to (H1) and (H2), we get:

‖Qiχ−Qiy‖Xi ≤ Fi

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1dτ
n∑
j=1

ξij‖χj − yj‖Xj

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ
n∑
j=1

ζij‖χj − yj‖Xj

+
Fi|θi|

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

∫ βi

0

sup
s∈J
|ϕi(s)|

×
[

1

Γ(αi)

∫ s

0

(s− τ)αi−1dτ
n∑
j=1

ξij‖χj − yj‖Xj

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1dτ
n∑
j=1

ζij‖χj − yj‖Xj

]
ds

)

(3.28)
This leads to
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3. EXISTENCE : FIRST APPROACH

‖Qiχ−Qiy‖Xi ≤

(
Fi

Γ(αi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+1

i

Γ(αi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

×

(
n∑
j=1

ξij‖χj − yj‖Xj

)

+

(
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+δi+1

i

Γ(αi + δi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

×

(
n∑
j=1

ζij‖χj − yj‖Xj

)

= Φi

(
n∑
j=1

ξij‖χj − yj‖Xj

)
+ Ψi

(
n∑
j=1

ζij‖χj − yj‖Xj

)
(3.29)

From (3.29), we have:

‖Qiχ−Qiy‖Xi ≤

(
Φi

n∑
j=1

ξij + Ψi

n∑
j=1

ζij

)
×

(
n∑
j=1

‖χj − yj‖Xj

)
(3.30)

for i = 1, ..., n.

Therefore,

‖Qχ−Qy‖∑n
i=1Xi

≤
n∑
i=1

(
Φi

n∑
j=1

ξij + Ψi

n∑
j=1

ζij

)
×

(
n∑
j=1

‖χj − yj‖Xj

)
(3.31)

Since (H3) assures that
∑n

i=1

(
Φi
∑n

j=1 ξij + Ψi
∑n

j=1 ζij

)
< 1, then the operator Q

is contractive. According to Banach contraction principle, the system (3.1 ) has a
unique solution on [0, 1].

3 Existence : First Approach

Let us introduce the following hypotheses:
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3. EXISTENCE : FIRST APPROACH

H4. For i = 1, ..., n, the functions fi, hi, and ki are continuous in J ×Rn.

H5.There exist nonnegative constants Hi and Ki, for i = 1, ..., n, such that for all
t ∈ J and χ ∈ Rn, |hi(t, χ)| ≤ Hi and |ki(t, χ)| ≤ Ki .

H6. There exist constants γij , for i, j = 1, ..., n, when for all t ∈ J and χ, y ∈ Rn,
we have:

|fi(t, χ)− fi(t, y)| ≤
n∑
j=1

γij|χj − yj|.

Theorem 3.2 [18] Under the hypotheses (H2), (H4) and (H5), the problem (3.1) has at
least one solution.

Proof.
We use Schaefer fixed point theorem to prove that (3.1) has at least a solution. To

do that, we go through the following steps:

Step.1 : We show that Q is a continuous operator.
Due to the fact that fi, hi and ki are continuous functions on J × Rn, then Qi is a

continuous operator for i = 1..., n. As a consequence, Q is continuous.
Step.2 : We make sure that the operator Q maps a bounded set into another

bounded set.

Let Br be given by Br = {χ ∈
∏n

i=1Xi : ‖χ‖∏n
i=1Xi

≤ r}. Therefore, for χ ∈ Br,
for t ∈ J , we have:

|Qiχ(t)| ≤ |fi(t, χ(t))|

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, χ(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, χ(τ))|dτ

+
|θi|

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

∫ βi

0

|fi(s, χ(s))||ϕi(s)|

×

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1|hi(τ, χ(τ))|dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1|ki(τ, χ(τ))|dτ

]
ds

)

(3.32)
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Thanks to (H2) and (H5), we can write:

|Qiχ(t)| ≤ Fi

(
Hi

Γ(αi)

∫ t

0

(t− τ)αi−1dτ +
Ki

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ

+
Fi|θi|

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

∫ βi

0

|ϕi(s)|

×

[
Hi

Γ(αi)

∫ s

0

(s− τ)αi−1dτ +
Ki

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1dτ

]
ds

)
,

(3.33)
The above step leads to having the following estimation

‖Qiχ‖Xi ≤ Hi

(
Fi

Γ(αi + 1)
+

F 2
i |θi|β

αi+1
i sup

s∈J
|ϕi(s)|

Γ(αi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

+Ki

(
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|β

αi+δi+1
i sup

s∈J
|ϕi(s)|

Γ(αi + δi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

:= HiΦi +KiΨi < +∞
(3.34)

for i = 1, ..., n.

From (3.34), we can deduce that

‖Qiχ‖∏n
i=1Xi

≤
∑n

i=1HiΦi +KiΨi < +∞.

Consequently, Q is bounded.
Step.3: We prove that Qmaps bounded sets into equicontinuous sets.

Let t1, t2 ∈ J, such that t1 ≤ t2. We have:
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3. EXISTENCE : FIRST APPROACH

|Qiχ(t2)−Qiχ(t1)| =

∣∣∣∣∣fi(t2, χ(t2))

(
1

Γ(αi)

∫ t2

0

(t2 − τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t2

0

(t2 − τ)αi+δi−1ki(τ, χ(τ))dτ

+
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

∫ βi

0

fi(s, χ(s))ϕi(s)

×

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)

−fi(t1, χ(t1))

(
1

Γ(αi)

∫ t1

0

(t1 − τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t1

0

(t1 − τ)αi+δi−1ki(τ, χ(τ))dτ

+
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

∫ βi

0

fi(s, χ(s))ϕi(s)

×

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)∣∣∣∣∣
(3.35)
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Therefore, we get

|Qiχ(t2)−Qiχ(t1)| ≤ max(|fi(t2, χ(t2))|, |fi(t1, χ(t1))|)

∣∣∣∣∣
(

1

Γ(αi)

∫ t2

0

(t2 − τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t2

0

(t2 − τ)αi+δi−1ki(τ, χ(τ))dτ

−

(
1

Γ(αi)

∫ t1

0

(t1 − τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t1

0

(t1 − τ)αi+δi−1ki(τ, χ(τ))dτ

)∣∣∣∣∣
Using some easy integral calculations and manipulations, we obtain:

|Qiχ(t2)−Qiχ(t1)| ≤ max(|fi(t2, χ(t2))|, |fi(t1, χ(t1))|)
( 1

Γ(αi + 1)

(
tαi2 − t

αi
1

)
Hi

+
1

Γ(αi + δi + 1
)
(
tαi2 − t

αi
1

)
Ki

)

We can see that when t1 → t2, it follows as a natural consequence that |Qiχ(t2) −
Qiχ(t1)| −→ 0, for all i = 1, ..., n. From this, we can say that Q is equicontinuous.
Thanks to the steps 1, 2 and 3, and according to Arzela-Ascoli theorem, the operator
Q is completely continuous.

Step.4: Now, what we shall do is to prove that the set

∆ = {χ ∈
n∏
i=1

Xi : χ = λQ(χ), λ ∈]0; 1[} (3.36)

is bounded.
For i = 1, ..., n and t ∈ J , we have

|χi(t)| = |λ||Qiχ(t)| (3.37)
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Taking in consideration that λ has her values in ]0, 1[, then, we can find that

|χi(t)| ≤ |Qiχ(t)|

≤ Hi

(
Fi

Γ(αi + 1)
+

F 2
i |θi|β

αi+1
i sup

s∈J
|ϕi(s)|

Γ(αi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

+Ki

(
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|β

αi+δi+1
i sup

s∈J
|ϕi(s)|

Γ(αi + δi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

and so, for all i = 1, ..., n, we have:

‖χi‖Xi ≤ HiΦi +KiΨi < +∞ (3.38)

which implies that

‖χ‖∏n
i=1Xi

≤
∑n

i=1HiΦi +KiΨi < +∞ (3.39)

We conclude that ∆ is a bounded set.
Thanks to steps (1) to (4), and according to Schaefer fixed point theorem, (3.1) has at
least one solution χ, for t ∈ J .

4 Existence: Second Approach

Theorem 3.3 [18] Let’s suppose that the hypotheses (H2), (H4), (H5) and (H6) are satis-
fied.

If γM < 1; where: γ =
∑n

i=1

∑n
j=1 γij , and M =

∑n
i=1

1
Fi

(HiΦi +KiΨi),
then, (3.1) has at least one solution χ over J.

Proof.
let S = {χ ∈

∏n
i=1Xi : ‖χ‖∏n

i=1 χi
≤ R} be a subset of

∏n
i=1Xi, where R is given

by:

R =
F 0M

1− γM
, (3.40)

such that, F 0 =
∑n

i=1 sup
s∈J
|fi(t, 0, ..., 0)|.

We define the operators A :
∏n

i=1Xi −→
∏n

i=1Xi and B : S −→
∏n

i=1Xi by:

Aχ(t) = (A1χ(t), A2χ(t), ..., Anχ(t))
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and,
Bχ(t) = (B1χ(t), B2χ(t), ..., Bnχ(t)),

where, for i having the values from 1 to n, we have

Aiχ(t) = fi(t, χ(t))

Biχ(t) =
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ(τ))dτ +
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ(τ))dτ

+
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

∫ βi

0

fi(s, χ(s))ϕi(s)

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ +
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

We proceed the proof through the following steps:
Step.1: We show that the operator A is lipschitzian operator, with the lipschitz con-
stant γ.

Let χ, y ∈
∏n

i=1Xi. For t ∈ J , using (H6.), we have :

|Aiχ(t)− Aiy(t)| = |fi(t, χ(t))− fi(t, y(t))|

≤
n∑
j=1

γij|χj(t)− yj(t)|

which leads to

‖Aiχ− Aiy‖Xi ≤
n∑
j=1

γij‖χj − yj‖Xj (3.41)

for i = 1, ..., n.
This implies that

‖Aχ− Ay‖∏n
i=1Xi

≤ γ‖χ− y‖∏n
i=1Xi

, (3.42)

where, γ =
n∑
i=1

n∑
j=1

γij .

Hence, A is a lipschizian operator.

Step.2: We show that B is a completely continuous operator.
To satisfy that, we just need to prove that B is: a) continuous, b) bounded, and c)
equicontinuous operator.
a)- According to the second hypothesis, it is clear that the operatorB is a continuous
operator.
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b)- For χ ∈ S, for all t ∈ J , we have

|Biχ(t)| ≤ 1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, χ(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, χ(τ))|dτ

+
|θi|

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

∫ βi

0

|fi(s, χ(s))||ϕi(s)|

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1|hi(τ, χ(τ))|dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1|ki(τ, χ(τ))|dτ
]
ds

(3.43)

Then, thanks to (H2.) and (H5.), (3.43) can be written as:

|Biχ(t)| ≤ Hi

Γ(αi)

∫ t

0

(t− τ)αi−1dτ +
Ki

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ

+
|θi|Fi

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

∫ βi

0

sup
s∈J
|ϕi(s)|

[
Hi

Γ(αi)

∫ s

0

(s− τ)αi−1dτ +
Ki

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1dτ

]
ds

(3.44)

which leads to

‖Biχ‖Xi ≤
Hi

Γ(αi + 1)
+

Hi|θi|Fiβαi+1
i sup

s∈J
|ϕi(s)|

Γ(αi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

+
Ki

Γ(αi + δi + 1)
+

Ki|θi|Fiβαi+δi+1
i sup

s∈J
|ϕi(s)|

Γ(αi + δi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

≤ 1

Fi

(
HiΦi +KiΨi

)
:= Mi < +∞

(3.45)

and that for i = 1, ..., n.
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Therefore,
‖Biχ‖∏n

i=1Xi
= M < +∞, (3.46)

where, M =
n∑
i=1

Mi.

Then B is bounded.
c)- Let t1, t2 ∈ J with t1 ≤ t2. Then:

|Biχ(t2)−Biχ(t1)| =

∣∣∣∣∣ 1

Γ(αi)

∫ t2

0

(t2 − τ)αi−1hi(τ, χ(τ))dτ

− 1

Γ(αi)

∫ t1

0

(t1 − τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t2

0

(t2 − τ)αi+δi−1ki(τ, χ(τ))dτ

− 1

Γ(αi + δi)

∫ t1

0

(t1 − τ)αi+δi−1ki(τ, χ(τ))dτ

∣∣∣∣∣.
As a consequence, we can obtain

|Biχ(t2)−Biχ(t1)| ≤

(
1

Γ(αi)

∫ t1

0

(t2 − τ)αi−1dτ − 1

Γ(αi)

∫ t1

0

(t1 − τ)αi−1dτ

+
1

Γ(αi)

∫ t2

t1

(t2 − τ)αi−1dτ

)
Hi

(
1

Γ(αi + δi)

∫ t1

0

(t2 − τ)αi+δi−1dτ − 1

Γ(αi + δi)

∫ t1

0

(t1 − τ)αi+δi−1dτ

1

Γ(αi + δi)

∫ t2

t1

(t2 − τ)αi+δi−1dτ

)
Ki.

(3.47)
Logically speaking, through some calculations, we easily get

|Biχ(t2)−Biχ(t1)| ≤
1

Γ(αi + 1)

(
tαi2 − t

αi
1

)
Hi

1

Γ(αi + δi + 1)

(
tαi+δi2 − tαi+δi1

)
Ki

(3.48)
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Accordingly, when t1 −→ t2, we get that |Biχ(t2)−Biχ(t1)| −→ 0, for i = 1, ..., n,
for χ ∈ S. Therefore, B is equicontinuous.

With a), b), and c) and thanks to Arzela-Ascoli theorem, we can state that B is
completely continuous.

Step.3: We show that if χ = AχBy with y ∈ S, then we have χ is in S.
Let χ ∈

∏n
i=1Xi and y ∈ S. So, for i = 1, ..., n, t ∈ J , the following formula takes

place :

|χi(t)| = |Ai(χ(t))||Bi(y(t))|

= |fi(t, χ(t))|

∣∣∣∣∣ 1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, y(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, y(τ))dτ

+
θi

fi(0, y(0))− θi
∫ βi
0
fi(s, y(s))ϕi(s)ds

∫ βi

0

fi(s, y(s))ϕi(s)

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, y(τ))dτ +
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, y(τ))dτ

]
ds

∣∣∣∣∣
(3.49)

We get

|χ(t)| ≤
(
|fi(t, χ(t))− fi(t, 0, ..., 0)|+ |fi(t, 0, ..., 0)|

)
×

[
1

Γ(αi)

∫ t

0

(t− τ)αi−1|hi(τ, y(τ))|dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1|ki(τ, y(τ))|dτ

+
|θi|

|fi(0, y(0))− θi
∫ βi
0
fi(s, y(s))ϕi(s)ds|

∫ βi

0

|fi(s, y(s))||ϕi(s)|

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1|hi(τ, y(τ))|dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1|ki(τ, y(τ))|dτ
]
ds

]
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Noting F 0
i = |fi(t, 0, ..., 0)|, and thanks to (H6.), it follows that

‖χ(t)‖Xi ≤
( n∑
j=1

γij‖χj‖Xj + F 0
i

)( Hi

Γ(αi + 1)

+

Hi|θi|Fiβαi+1
i sup

s∈J
|ϕi(s)|

Γ(αi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

+
Ki

Γ(αi + δi + 1)
+

Ki|θi|Fiβαi+δi+1
i sup

s∈J
|ϕi(s)|

Γ(αi + δi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)
≤

( n∑
j=1

γij‖χj‖Xj + F 0
i

)
Mi

(3.50)
Therefore, we observe that

‖χ‖∏n
i=1Xi

≤ (γ‖χ‖∏n
i=1Xi

+ F 0)M. (3.51)

That is to say that

‖χ‖∏n
i=1Xi

≤ F 0M

1− γM
= R. (3.52)

We deduce that χ is in S.
Since M = ‖B(S)‖∏n

i=1Xi
and γM < 1, then the 4th hypothesis of Lemma 4 is

also fulfilled.
Since all conditions are satisfied, so according to Lemma 4, the problem (3.1) has at
least one solution.
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5 Illustrative Examples

First approach:

For t ∈ [0, 1], let us have the following system:

D1/2
(
χ1(t)

(
1+|χ1(t)|+|χ2(t)|

t|χ1(t)|+|χ2(t)|+(1+|χ1(t)|+|χ2(t)|)sin(2|χ3(t)|)

))
=

2t− 1

24− sin(|χ1(t)|+ |χ2(t)|+ |χ3(t)|)

+I1/12
cos(|χ1(t)|+ |χ2(t)|+ |χ3(t)|)

e3t
,

D3/4
(
χ2(t)

(
3(1+sin(|χ2(t)|+|χ3(t)|))

(t2−3cos|χ2(t)|)(1+sin(|χ2(t)|+|χ3(t)|))|+3sin|χ2(t)|

))
=
t+ 10 + cos(|χ1(t)|+ |χ2(t)|)

2t2 + 1

−sin|χ3(t)|
2t2 + 1

+ I3/4
1

25
(24t2 − 1)sin(|χ1(t)|+ |χ2(t)|+ |χ3(t)|),

D2/3
(
χ3(t)

(
t2+4t+1

(t2+4t+1)sin|χ1(t)|−sin(|χ2(t)|+|χ3(t)|)

))
=

|χ1(t)|+ |χ2(t)| − |χ3(t)|
3(1 + |χ1(t)|+ |χ2(t)|+ |χ3(t)|)

+I4/7(
t

12
+ 1)cos(|χ1(t)|+ |χ2(t)|+ |χ3(t)|),

χ1(0) =
√

2

∫ π/4

0

sin(s))χ1(s)ds,

χ2(0) = 3

∫ 1/2

0

es)χ2(s)ds

χ3(0) = 12

∫ 3/4

0

(s+ 1)χ3(s)ds

(3.53)
We have that fi are given by

f1(t, χ1(t), χ2(t), χ3(t)) =
t|χ1(t)|+ |χ2(t)|

1 + |χ1(t)|+ |χ2(t)|
+ sin(2|χ3(t)|), (3.54)

f2(t, χ1(t), χ2(t), χ3(t)) =
t2

3
− cos|χ1(t)|+

sin|χ2(t)|
1 + sin(|χ2(t)|+ |χ3(t)|)

, (3.55)

f3(t, χ1(t), χ2(t), χ3(t)) = sin|χ1(t)| −
sin(|χ2(t)|+ |χ3(t)|)

t2 + 4t+ 1
, (3.56)

and for the hi,

h1(t, χ1(t), χ2(t), χ3(t)) =
2t− 1

24− sin(|χ1(t)|+ |χ2(t)|+ |χ3(t)|)
, (3.57)

h2(t, χ1(t), χ2(t), χ3(t)) =
t+ 10 + cos(|χ1(t)|+ |χ2(t)|)− sin|χ3(t)|

2t2 + 1
, (3.58)
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h3(t, χ1(t), χ2(t), χ3(t)) =
|χ1(t)|+ |χ2(t)| − |χ3(t)|

3(1 + |χ1(t)|+ |χ2(t)|+ |χ3(t)|)
, (3.59)

and for ki we have:

k1(t, χ1(t), χ2(t), χ3(t)) =
cos(|χ1(t)|+ |χ2(t)|+ |χ3(t)|)

e3t
, (3.60)

k2(t, χ1(t), χ2(t), χ3(t)) =
1

25
(24t2 − 1)sin(|χ1(t)|+ |χ2(t)|+ |χ3(t)|), (3.61)

k3(t, χ1(t), χ2(t), χ3(t)) = (
t

12
+ 1)cos(|χ1(t)|+ |χ2(t)|+ |χ3(t)|), (3.62)

It is clear that fi, hi, and ki are continuous functions on J = [0, 1]. For the hy-
pothesis (H.4), it is also fulfilled since we have

|f1(t, χ1(t), χ2(t), χ3(t))| ≤ 2 := F1 (3.63)

|f2(t, χ1(t), χ2(t), χ3(t))| ≤
4

3
:= F2 (3.64)

|f3(t, χ1(t), χ2(t), χ3(t))| ≤ 2 := F3 (3.65)

and
|h1(t, χ1(t), χ2(t), χ3(t))| ≤

3

23
:= H1 (3.66)

|h2(t, χ1(t), χ2(t), χ3(t))| ≤ 12 := H2 (3.67)

|h3(t, χ1(t), χ2(t), χ3(t))| ≤
1

3
:= H3 (3.68)

and
|k1(t, χ1(t), χ2(t), χ3(t))| ≤ 1 := K1 (3.69)

|k2(t, χ1(t), χ2(t), χ3(t))| ≤
23

25
:= K2 (3.70)

|k3(t, χ1(t), χ2(t), χ3(t))| ≤
13

12
:= K3 (3.71)

Since, the hypothesis (H2), (H4), and (H5) are satisfied, then, as a direct conse-
quence, we can assume that by the means of Theorem 3.2 the system has at least
one solution.
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Chapter 4

Stability of a System of Fractional
Hybrid Differential Equations

1 About Ulam-Hyers Stability

Ulam-Hyers stability is a concept that was started around 1940s in a Mathematical
Colloquium at the University of Wisconsin. It was the result of answering a question
that was put out by S. M. Ulam about the stability of homomorphisms. [29]

A year later, around 1941, D. H. Hyers presented an answer to Ulam’s question
by his results about the stability of functional equations in the case where G1 and G2

are assumed to be Banach spaces. [29]

Theorem 4.1 (Hyers) [26]

Let f : E1 → E2 be a function between Banach spaces such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ (4.1)

for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) = lim
n→∞

2−nf(2nx) (4.2)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive function such that

‖f(x)− A(x)‖ ≤ δ (4.3)

for every x ∈ E1.

"From this result, the additive Cauchy equation f(x+y) = f(x)+f(y) is said to have
the Ulam-Hyers stability on (E1, E2) if for every function f : E1 → E2 satisfying the
inequality (4.1) for some δ ≥ 0 and for all x, y ∈ E1, there exists an additive function
A : E1 → E2 such that f − A is bounded on E1." [29]
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Based on this method, many works have been done and results have been found
that address the stability of functional equations. This extension has also covered
the differential equations with arbitrary order. It is the most used method to show
that a fractional differential equation is stable according to Ulam-Hyers theorem. We
can see many interesting works in [27], [29],[30],[31],[32][61], and so many others.

2 Stability of a System of Fractional Hybrid Differen-

tial Equations

The classical definition of Ulam-Hyers stability is always adjusted to the given prob-
lem. To be more clear, we give the following example:

Let us assume that we have the following problem:{
cDαv(t) = f(t, v(t)), 0 < α < 1, t ∈ J1 = [0, T ]

v(t0) = v0
(4.4)

where cDα is the Caputo derivative of order α, 0 < α < 1, t ∈ J1 = [0, T ], f ∈
C(J1 × R,R), and v0 ∈ R.

We consider that the solution of the problem (4.4) is in C(J1,R).

Definition 4.1 We say that the equation in (4.4) is Ulam-Hyers stable if there exists a
positive constant C (C > 0) such that for all ε > 0, and for every solution v ∈ C(J1,R)

that satisfies:

|cDαv(t)− f(t, v(t))| ≤ ε, 0 < α < 1, t ∈ J1 = [0, T ] (4.5)

there exists a solution v∗ ∈ C(J1,R) that satisfies:

|cDαv∗(t)− f(t, v∗(t))| = 0, 0 < α < 1, t ∈ J1 = [0, T ]v∗(0) = v0, (4.6)

such that
‖v − v∗‖ ≤ Cε, 0 < α < 1, t ∈ J1 = [0, T ]. (4.7)

where ‖.‖ represents the infinity norm.

Since hybrid differential equations are not conventional equations in their form,
an adjustment needed to take place in the definition. We see this as well in the work
of [32]. We give the following customized definition:
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Definition 4.2 [18] For i = 1, ..., n, the problem (3.1) is Hyers-Ulam stable if there exists
a positive constant C, such that for every εi > 0, if:

∣∣∣∣∣χi(t)− fi(t, χ(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ(τ))dτ +
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

×
∫ βi

0

fi(s, χ(s))ϕi(s)

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)∣∣∣∣∣ ≤ εi,

(4.8)
then, there exists χ∗ ∈

∏n
i=1Xi, for t ∈ J , satisfying:

χ∗i (t) = fi(t, χ
∗(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ
∗(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ
∗(τ))dτ +

θi

fi(0, χ∗(0))− θi
∫ βi
0
fi(s, χ∗(s))ϕi(s)ds

×
∫ βi

0

fi(s, χ
∗(s))ϕi(s)

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ
∗(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ
∗(τ))dτ

]
ds

)
(4.9)

for i = 1, ..., n, such that
‖χ− χ∗‖∑n

i=0Xi
≤ Cε (4.10)

where, ε =
∑n

i=1 εi.

Theorem 4.2 [18] Under the hypothesis of Theorem 3.1, the problem (3.1) is Ulam-Hyers
stable.

Proof. Let εi > 0 and χi that satisfy (4.8), for all i = 1, ..., n and t ∈ J . Let also
χ∗ ∈

∏n
i=1Xi solutions of (4.9), for all i = 1, ..., n and t ∈ J . We mention that

Theorem 3.1 establishes conditions for the existence and uniqueness of the solution
χ∗ for(3.1).
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So, let’s consider the following mathematical statement:∣∣∣∣∣χi(t)− χ∗i (t) + χ∗i (t)− fi(t, χ(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ(τ))dτ +
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

×
∫ βi

0

fi(s, χ(s))ϕi(s)

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)∣∣∣∣∣ ≤ εi

which implies:

|χi(t)− χ∗i (t)| −

∣∣∣∣∣− χ∗i (t) + fi(t, χ(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ(τ))dτ +
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

∫ βi

0

fi(s, χ(s))ϕi(s)×

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)∣∣∣∣∣ ≤ εi

(4.11)
From this, we can write the above inequality in the following form:

|χi(t)− χ∗i (t)| ≤ εi + Y, (4.12)
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where:

Y =

∣∣∣∣∣− χ∗i (t) + fi(t, χ(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ(τ))dτ +
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

×
∫ βi

0

fi(s, χ(s))ϕi(s)

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)∣∣∣∣∣.
(4.13)

In order to keep the process of reasoning as clear as possible, we work on Y

separately. Then, we finish the steps of the proof. For this reason, we have

Y =

∣∣∣∣∣− χ∗i (t) + fi(t, χ(t))

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1ki(τ, χ(τ))dτ +
θi

fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds

×
∫ βi

0

fi(s, χ(s))ϕi(s)

[
1

Γ(αi)

∫ s

0

(s− τ)αi−1hi(τ, χ(τ))dτ

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1ki(τ, χ(τ))dτ

]
ds

)∣∣∣∣∣
(4.14)

for i = 1, ..., n and t ∈ J . We replace χ∗i (t) by its value in (4.9) and by using (H1.)
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and (H2.) and some calculations, we get:

Y ≤ Fi

(
1

Γ(αi)

∫ t

0

(t− τ)αi−1dτ
n∑
j=1

ξij‖χj − χ∗j‖Xj

+
1

Γ(αi + δi)

∫ t

0

(t− τ)αi+δi−1dτ
n∑
j=1

ζij‖χj − χ∗j‖Xj

+
Fi|θi|

|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

∫ βi

0

sup
s∈J
|ϕi(s)|

×
[

1

Γ(αi)

∫ s

0

(s− τ)αi−1dτ
n∑
j=1

ξij‖χj − χ∗j‖Xj

+
1

Γ(αi + δi)

∫ s

0

(s− τ)αi+δi−1dτ
n∑
j=1

ζij‖χj − χ∗j‖Xj

]
ds

)

(4.15)

As a direct consequence, we have

Y ≤

(
Fi

Γ(αi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+1

i

Γ(αi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

×

(
n∑
j=1

ξij‖χj − χ∗j‖Xj

)

+

(
Fi

Γ(αi + δi + 1)
+

F 2
i |θi|sup

s∈J
|ϕi(s)|βαi+δi+1

i

Γ(αi + δi + 2)|fi(0, χ(0))− θi
∫ βi
0
fi(s, χ(s))ϕi(s)ds|

)

×

(
n∑
j=1

ζij‖χj − χ∗j‖Xj

)

= Φi

(
n∑
j=1

ξij‖χj − χ∗j‖Xj

)
+ Ψi

(
n∑
j=1

ζij‖χj − χ∗j‖Xi

)
(4.16)

Thanks to (4.16), we observe that:

Y ≤

(
Φi

n∑
j=1

ξij + Ψi

n∑
j=1

ζij

)
×

(
n∑
j=1

‖χj − χ∗j‖Xj

)
, (4.17)

for i = 1, ..., n.
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Replacing Y by its value in the inequality (4.12), we get

‖χi − χ∗i ‖Xi ≤ εi +

(
Φi

n∑
j=1

ξij + Ψi

n∑
j=1

ζij

)
×

(
n∑
j=1

‖χj − χ∗j‖Xj

)
. (4.18)

By mathematical means, we get

n∑
i=1

‖χi − χ∗i ‖Xi ≤
n∑
i=1

(
εi +

(
Φi

n∑
j=1

ξij + Ψi

n∑
j=1

ζij

)
×

(
n∑
j=1

‖χj − χ∗j‖Xj

))
.

(4.19)
Hence, we have

‖χ− χ∗‖∏n
i=1Xi

≤ ε

1−
∑n

i=1

(
Φi
∑n

j=1 ξij + Ψi
∑n

j=1 ζij

)
:= Cε.

(4.20)

Considering C = 1

1−
∑n
i=1(Φi

∑n
j=1 ξij+Ψi

∑n
j=1 ζij)

, such that (H3.) is verified, the problem

(3.1) is Ulam-Hyers stable.
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Conclusion

In this thesis, we have seen the concept of applications of integral inequalities to a
certain class of hybrid differential equations of fractional order.

First, we have explored some of the basics of fractional calculus by addressing
different approaches of integration and differentiation. We have also highlighted
some necessary tools for the logical progress of each chapter.

Then, we have seen some generalizations of certain theorems based on Gronwall-
Ballman type inequalities for the purpose of adjusting them to hybrid differential
equations. Moreover, we have applied those generalizations to a certain class of
hybrid differential equations with Hdamard derivative.

After that, we have presented a boundary value problem that consists of n-
fractional hybrid differential equations with nonlocal conditions. The existence and
uniqueness of solution of the system has been addressed. In addition to that, we
have presented two different approaches that lead to the existence of one solution
at least.

Finally, the stability of the studied system has been addressed. According to
Ulam-Hyers stability theorem, the boundary value problem with nonlocal condi-
tions is stable.

As for future perspectives, this work opens some new possibilities for us to
explore. For instance, the achieved approximations through applying Gronwall-
Ballman type inequalities, is there a possibility for them to be useful in some nu-
merical methods? Does these approximations have a meaning in a more concrete
way? There are many aspects that still need to be investigated, hopefully for the
next coming works.
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PhD degree yourself to give this modest work a look. Or you might be a researcher. Whatever it is, you 

did a great job so far so allow yourself a moment to appreciate the efforts you made to reach where you 

are right now.  
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people, you were selected for this task. So when days get darker, and the nights so full of shadows and 
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chose but you also been chosen. You made the decision and the decision was made for you as well.  

The point of all of this is: you have something unique to offer that no other person has. I wish 

you’d keep that in mind as you go through the sea of articles, original results, and the waves of new 
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sea but your are not seeing the drops of water that made the sea. And you yourself is part of the sea and 
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work. So do your best, be yourself, and let what's meant to happen flow through you and let your drops 

of water find their way to enlarge the sea that they came from and which they always belonged to.  
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