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Introduction

In the literature, numerous mathematical models of invariant time degenerate systems

in infinite-dimension, known also as singular dynamical systems with operators coeffi-

cients, can be described by differential equations, wherein abstract forms are written as

differential operator equations in Hilbert space. These models can be extracted from elec-

trodynamics, social sciences fields, micro and macro economy, biology, communication,

and information science, industrial processors involving chemical reactors to name a few

[7, 8, 17, 20, 32, 42] and [44].

However, in the last few years, considerable attention has been paid to infinite-dimen-

sional degenerate systems, also called the degenerate Cauchy problem, by the develop-

ment of a mathematical framework for generalizing finite dimensional results to infinite

dimension since it is one of the main research problems in control theory and its effec-

tiveness in modelling many practical problems of physics, geometry, and applied mathe-

matics [4, 10, 15, 16, 20, 28, 30] and [40].

It must be emphasized that the first results in the infinite-dimensional case were ex-

tended by Lions in [29], and, later, in other monographs [4, 15] and [35].

Many efforts have been done to develop degenerate dynamical systems in finite di-

mension, originated in 1976 with the fundamental paper of Campbell [9], and later on the

paper of Luenberger [31], since, unlike the non-singular case, models of this form have

some important advantages in comparison with models in the standard case, more de-

tails can be found in many books and papers as [15, 18, 20] and [22].

It is important to note that several research areas on degenerate dynamical systems

in finite dimension remain uncompleted, among them the problem of minimum energy

control which belongs to the field of control theory appears. This problem is the first

contribution of the present thesis.

Moreover, the problem of minimum energy control for infinite-dimensional degen-

erate Cauchy problem with skew-hermitian pencil and bounded input will be addressed

and resolved. The key idea is the use of the concept exact controllability, since it plays

an essential role in the development of modern mathematical control theory, and some

notions of operator theory as the orthogonal decomposition. Furthermore, a procedure

for computing the minimum energy control will be proposed.
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Introduction

In addition, the problem of stability, which has been founded by the Russian scien-

tist Aleksandr Mikhailovich Lyapunov in his famous work [34], is essential and crucial

problem in control theory whether in finite or infinite dimension. Recently, the stabil-

ity and robustness of such a class of systems have been extensively studied from both

an algebraic and analytical point of view. Despite intensive research, many difficult and

unresolved problems with the stability and stabilization for infinite-dimensional systems

remain open issues. Another contribution of this thesis is to introduce some new results

on the analysis of the condition of stability and stabilization for systems with different

types of operators.

The remainder of this thesis is organized as follows;

• The first chapter is devoted to a remainder of the general definitions and important

results in operator and semi-group theories. Then, we will present few interesting

concepts of a skew-hermitian pencil which will be used for the decomposition of a

degenerate systems.

• In the second chapter, we will begin by recalling the definitions of some particular

matrices. Next, we will present some examples of modelling real problems in fi-

nite and infinite-dimensional cases to motivate the readers for the interest of their

studies. Then, some definitions and properties of positive systems followed by the

different concepts of controllability and characterizations for the both cases will be

given.

• The problem of minimum energy control for a finite dimensional singular dynami-

cal system with rectangular inputs will be studied in the third chapter. We will start

by presenting the main problem, then, we will transform the control that is used for

the formulation of the minimum energy control problem in order to determine the

minimal energy of the system and the minimum control. A procedure for calculat-

ing the optimal control and the minimal energy for this problem is proposed in the

last part of this chapter.

• In the fourth chapter, a formulation of the minimum energy control for a degenerate

Cauchy problem with variable operator coefficients, skew-hermitian pencil taking

into account the bounded input condition will be processed. Then, the solution

to our problem is obtained thanks to some techniques. Finally, we will propose an

algorithm to calculate the minimum energy of the system and the minimum energy

control.

• The last chapter will be dedicated to the problem of stability and stabilization of

infinite-dimensional dynamical systems. The general definitions and properties of

stability will be recalled, followed by few important results of the weak, asymptotic,

2



Introduction

and exponential stabilities. Finally, we will focus on the stabilization problem in

infinite-dimensional dynamical systems with bounded operators.

The last part of this manuscript presents a general conclusion of our work, followed by

some perspectives of our future research. The different papers and books that have been

used in the development of our research are described in the bibliography which closes

the manuscript.
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Chapter 1

Mathematical background

1 Introduction

In this chapter, we recall the general definitions, concepts, and characterizations related

to linear operators, and semi-group theory.

2 Basic mathematical tools for linear operators

Let us start by recalling some definitions, and characterizations of operators, we will base

ourselves on [2, 6, 14, 15, 21, 45] and [47].

2.1 Norm and normed space

Definition 2.1 [41] Let X be a vector space over F. A norm on X is a function ‖.‖ : X → R

such that for all x, y ∈ X and for all α ∈ F, we have

i) ‖x‖X ≥ 0;

ii) ‖x‖X = 0, if and only if, x = 0X;

iii) ‖αx‖ = |α|‖x‖X;

iv) ‖x + y‖X ≤ ‖x‖X +‖y‖X.

If such function exists, then, X is called a normed vector space or just a normed space

and noted by (X,‖.‖) or simply by X.

Definition 2.2 [41] Let X be a normed space over F. The space B(X,F) is called the dual

space of X and is denoted by X∗.

4



2. BASIC MATHEMATICAL TOOLS FOR LINEAR OPERATORS

Definition 2.3 A sequence (xn)n of elements of normed space X is said to be convergent, if

there exists x ∈ X such that

∀ε> 0, ∃Nε ∈N : n > Nε⇒‖xn −x‖ < ε.

In this case, we write x = lim
n→+∞xn .

Definition 2.4 A sequence (xn)n of elements of normed space X is said to be of Cauchy, if

there exists x ∈ X such that

∀ε> 0, ∃Nε ∈N : n,m > Nε⇒‖xn −xm‖ < ε. (1.1)

It is well known that every convergent sequence is a Cauchy one. The converse is

generally not true.

Definition 2.5 A normed space X in which every Cauchy sequence is convergent is called

Banach space.

2.2 Inner product spaces and Hilbert spaces

Definition 2.6 [2] Let X be a complex vector space. An inner product on X, denoted by 〈., .〉,
is a function

〈., .〉 : X×X −→ C

(x, y) 7−→ 〈., .〉,
such that for all x, y, z ∈ X and for all α,β ∈C, we have

i) 〈x, x〉 ≥ 0;

ii) 〈x, x〉 = 0 ,if and only if, x = 0;

iii) 〈αx +βy, z〉 = α〈x, z〉+β〈y, z〉;

iv) 〈x, y〉 = 〈y, x〉.

Remark 2.7 If 〈., .〉 is an inner product on X, then, we obtain a norm on X by setting

‖x‖ =
√
〈x, x〉. (1.2)

Thus, we say that the norm (1.2) derives from the inner product of X.

Definition 2.8 A Banach space X is called a Hilbert space if, its norm derives from an inner

product.

5



2. BASIC MATHEMATICAL TOOLS FOR LINEAR OPERATORS

Remark 2.9 [41] In a Hilbert space X, the Cauchy-Schwarz inequality holds

∀x, y ∈ X : |〈x, y〉| ≤ ‖x‖‖y‖.

In the case of Hilbert space, we have the following result, stating that X and X∗ are

isometrically identifiable to each other.

Theorem 2.10 [41] If X is a Hilbert space and f ∈ X∗, then, there is a unique y ∈ X such

that

f (x) = 〈x, y〉,

for all x ∈ X. Moreover,

‖ f ‖ = ‖y‖.

2.3 Linear operators

Definition 2.11 [41] Let X and Y be normed spaces and let T : X → Y be a linear transfor-

mation. T is said to be bounded if there exists a positive real number k, such that

‖T(x)‖ ≤ k‖x‖, for all x ∈ X.

If T is bounded, then, the set of all positive constant k satisfying the precedent in-

equality is minored and we have

N (T) = inf
{

k ≥ 0 : ‖Tx‖ ≤ k‖x‖
}

, for all x ∈ X.

It is clear that the mapping T 7−→N satisfies all conditions of a norm. For this reason,

it is called the norm of operator T and noted ‖T‖. It is well known that equipped with

this norm, B(X,Y) stands a normed space [41]. Moreover, if Y is a Banach space, then,

T ∈ B(X,Y). Thus,

‖T‖ = sup
‖x‖≤1

‖Tx‖,

= sup
‖x‖=1

‖Tx‖,

= sup
‖x‖6=0

‖Tx‖
‖x‖ .

Lemma 2.12 [41] Let X and Y be normed linear spaces and let T : X → Y be a linear trans-

formation. The following assertions are equivalent :

i) T is uniformly continuous;

ii) T is continuous;

iii) T is continuous at 0;

6



2. BASIC MATHEMATICAL TOOLS FOR LINEAR OPERATORS

iv) T is bounded.

Remark 2.13 By definition, elements of B(X,Y) are supposed defined on the whole space

X. In other words,

T ∈ B(X,Y) ⇒ D(T) = X.

An example of bounded operators is given in the following.

Example 2.14 Let us consider X = Y = l p (N,C) (for 1 ≤ p ≤+∞), where

l p (N,C) =

{
(x1, x2, · · · , xn) ∈Cn :

n∑
i =1

|xi |p <+∞
}

, for 1 ≤ p <+∞,

and

l∞(N,C) =

{
(x1, x2, · · · , xn) ∈Cn : sup

i =1,n

|xi | < +∞
}

.

Now, we define the operator of shift to the right Td and the operator of shift to left Tg of

domain l p (N,C) respectively by

Td (x1, x2, · · · , xn) = (0, x1, x2, · · · , xn),

and

Tg (x1, x2, · · · , xn) = (x2, x3, · · · , xn).

Td and Tg are two bounded operators, therefore,

‖Td x‖ = ‖x‖, for all x ∈ l p (N,C),

and if x = (0,1,0, · · · ,0), we have

‖Td‖ = 1.

Moreover, for the operator of the shift to the left Tg , we note

‖Tg x‖ ≤ ‖x‖,

and if x = (0,1,0, · · · ,0), we have

‖Tg‖ = 1.

Definition 2.15 [41] Let T be an operator defined on D(T). Its range is defined by

rank(T) = Im(T) =
{

y ∈ Y
∣∣ ∃x ∈ D(A), y = Tx

}
,

and its kernel is

ker(T) =
{

x ∈ D(T)
∣∣ Tx = 0

}
.

7



2. BASIC MATHEMATICAL TOOLS FOR LINEAR OPERATORS

The operator T is

• Injective : if and only if,

ker(T) =
{
0
}
;

• Surjective : if and only if,

rank(T) = Y;

• Bijective : if and only if, T is injective and surjective in the same time.

In the following, we recall the definition of the inverse operator.

Definition 2.16 [41] Let X and Y be a normed linear spaces. An operator T ∈ B(X,Y) is said

to be invertible if there exists an operator S ∈ B(Y,X) such that ST = IX and TS = IY.

In this case, the operator S is called the inverse of T and it is noted by T−1.

Remark 2.17 It is well-known by the Banach theorem for the inverse operator [41] that if

T ∈ B(X,Y) is a bijection, then, T is invertible.

2.4 Adjoint operator

Definition 2.18 [41] Let X and Y be two Hilbert spaces and let T ∈ B(X,Y). The adjoint T∗

of T is the unique linear operator that satisfies the conditions T∗ ∈ B(X,Y) and

∀x ∈ X, ∀y ∈ Y : 〈Tx, y〉Y = 〈x,T∗y〉X.

Some useful properties of the adjoint are listed by in the following theorem.

Theorem 2.19 [41] Let X, Y, and Z be complex Hilbert spaces and let T ∈ B(X,Y), and S ∈
B(Y,Z). Then,

i) ‖T∗‖ = ‖T‖;

ii) ker(T) =
(
Im

(
T∗))⊥;

iii) Im(T) = (ker(T∗))⊥;

iv) ker(TT)∗ = ker(T)∗;

v) If T is invertible, then,
(
T−1)∗ =

(
T∗)−1;

vi) (ST)∗ = (T)∗ (S)∗ and ‖ST‖ ≤ ‖S‖‖T‖;

vii) The function f : B(X,Y) → B(Y,X) defined by f (T) = T∗ is continuous.

8



2. BASIC MATHEMATICAL TOOLS FOR LINEAR OPERATORS

2.5 Spectrum of operators

Definition 2.20 [41] Let X be a complex Hilbert space and let IX ∈ B(X) be the identity op-

erator. The spectrum of T ∈ B(X), denoted by σ(T), is defined as

σ(T) =
{
λ ∈C : T−λIX is not invertible

}
. (1.3)

Remark 2.21 If T ∈ B(X), then,

i) σ(T) is a nonempty and compact subset of C contented in the closed ball with radius

‖T‖ and centered at the origin;

ii) The complement inC of the spectrumσ(T) of T is called the resolvent set and is noted

by ρ(T). So, according to the Banach theorem for the inverse operator, a complex

number λ belongs to the resolvent set ρ(T), if and only if, the operator T−λIX is bijec-

tive.

iii) Form the relation
(
T∗−λIX

)−1 =

((
T−λIX

)−1
)∗

, it is follows that

σ
(
T∗)

=σ(T) =
{
λ : λ ∈σ(T)

}
. (1.4)

If λ ∈σ(T), then, one of the following three situations holds:

Situation 1 : If the operator (T −λIX) is not injective, then, there exists at least one

vector xλ 6= 0 such that Txλ = λxλ. xλ is called the eigenvector of the operator T associated

with the eigenvalue λ. The set of all eigenvalues σp (T) is called the punctual spectrum of

the operator T.

Situation 2 : If the operator (T−λIX) is injective and rank(T−λIX) 6= X, then, λ belongs

to the residual spectrum σr es(T).

Situation 3 : If the operator (T−λIX) is injective and rank(T−λI) = X, then, λ belongs

to the continuous spectrum σc (T).

Some characterizations on the residual and continuous spectrums are presented in

the following.

Theorem 2.22 [41] Let X be a Hilbert space and let T ∈ B(X). Then,

i)

λ ∈σr es(T) ⇐⇒ [
λ ∉σp (T) and λ ∈σp (T∗)

]
;

ii)

λ ∈σc (T) ⇐⇒ [
λ ∉σp (T), λ ∉σp (T∗) and λ ∈σ(T)

]
.

9



2. BASIC MATHEMATICAL TOOLS FOR LINEAR OPERATORS

Definition 2.23 [41] Let X be a Hilbert space and let T ∈ B(X). T is called self-adjoint oper-

ator if,

T = T∗.

Remark 2.24 For a bounded self-adjoint operator T, we have

‖T‖ = sup
‖x‖=1

|〈Tx, x〉|. (1.5)

Example 2.25 IX is self-adjoint operator.

For a bounded self-adjoint operator, we have the following characterizations of the

resolvent set and spectrum.

Theorem 2.26 [41] Let T be a bounded self-adjoint operator in the Hilbert space X. Then,

i) λ ∈ ρ(T) ⇐⇒ rank(T−λIX) = X;

ii) σc (T) ⊂R and σr es(T) = ;;

iii) λ ∈σc (T) ⇐⇒ rank(T−λIX) 6= rank(T−λIX) = X;

iv) λ ∈σc (T) ⇐⇒ rank(T−λIX) 6= X;

v) Two eigenvectors corresponding to two distinct eigenvalues are orthogonal;

vi) At least one of real numbers ‖T‖ and −‖T‖ belongs to σp (T).

2.6 Positive operators

Definition 2.27 [41] Let X be a Hilbert space and let T ∈ B(X). T is positive operator if T is

self-adjoint operator and

〈Tx, x〉 ≥ 0, ∀x ∈ X. (1.6)

Proposition 2.28 [20, 41] For positive operators, we have

i) The spectrum of a bounded positive operator is contained in the real half-line [0,+∞[;

ii) A finite sum of positive operators (acting in the same Hilbert space) is positive;

iii) If T is a positive operator on X, then,

〈Tx, y〉 ≤ 〈Tx, x〉→ 〈Ty, y〉, ∀x, y ∈ X;

iv) The product of positive operators is positive;

10



3. SEMI-GROUPS OF LINEAR OPERATORS

v) The inverse of a positive and invertible operator is also positive.

It must be emphasized that for all the previous results the domain D(T) of the opera-

tor T coincides with the whole space X. However, in the following, we will introduce an

important class of operators which do not necessarily satisfy this domain condition.

2.7 Graph and closed operators

Definition 2.29 [41] Let X and Y be two normed spaces and let the sequence (xn)n of ele-

ments of normed space X. A linear operator T : X −→ Y with domain D(T) is called closed

if, it satisfies the following implication
(xn)n ⊂ D(T)

lim
n→+∞xn = x

lim
n→+∞Txn = y

⇒
{

x ⊂ D(T).

y = Tx.

It is well known that every bounded operator is closed. The converse is, in general, not

true. However, we have the following result called the closed graph theorem.

Theorem 2.30 [41] If X and Y are Banach spaces, then, every closed operator T : X −→ Y

satisfying the condition D(T) = X is bounded.

We have also the following useful result.

Definition 2.31 [41] Let X and Y be a normed spaces and let T : X → Y be a linear operator.

Then, the operator T is closed, if and only if, its graph

G(T) =
{

(x,Tx) : x ∈ X
}

,

is a closed subspace of the cartesian product X×Y.

3 Semi-groups of linear operators

In this section, we will present some results on the semi-group theory for linear operators

which we will use them latter.

Definition 3.1 [36] A family (S(t ))t≥0 of bounded linear operators acting in the Banach

space X is called a semi-group if the following conditions are satisfied

i) S(t +τ) = S(t )S(τ), for all t ,τ≥ 0;

ii) S(0) = IX, where IX is the identity operator in X.

11



3. SEMI-GROUPS OF LINEAR OPERATORS

Definition 3.2 [36] A semi-group of bounded linear operators (S(t ))t≥0 is uniformly con-

tinuous if

lim
t→0+

‖S(t )x − IX‖ = 0.

(S(t ))t≥0 is called strongly continuous, or C0 semi-group if

lim
t→0+

‖S(t )x −x‖ = 0, ∀x ∈ X.

Proposition 3.3 [36]

i) Every uniformly continuous semi-group is a C0 semi-group;

ii) If (S(t ))t≥0 on X is a uniformly continuous semi-group, then, there exists a unique

linear operator A ∈ B(X) such that

S(t ) = e t A : =
+∞∑
n=0

t n An

n!
.

The following theorem is one of the most important results in the theory of C0 semi-

groups.

Theorem 3.4 [36] If (S(t ))t≥0 is a C0 semi-group, then, there exists two real numbers ω≥ 0

and M ≥ 1 such that

‖S(t )‖ ≤ Meωt , ∀t ≥ 0.

If (M,ω) = (1,0), then, the semi-group (S(t ))t≥0 is called contractive.

Definition 3.5 Let (S(t ))t≥0 be a semi-group on X. The generate of (S(t ))t≥0 is the linear

operator A defined in X by

Ax = lim
t→0+

S(t )x −x

t
, for x ∈ D(A),

where,

D(A) =

{
x ∈ X : lim

t→0+
S(t )x −x

t
exists

}
.

Example 3.6 If X = L2 (]−∞,+∞[),then, the family S(t ) f (x) = f (x + t ), t ≥ 0 is a C0 semi-

group.

Its generator is the operator A with domain D(A) = H1(]−∞,+∞[) and acting the rule

A f = f ′.

The following result, known as Hille-Yosida theorem, gives a characterization of the

generator operator of contractive semi-group.

12
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Theorem 3.7 [36] Let (S(t ))t≥0 be a contractive C0 semi-group such that

‖S(t )‖ ≤ Meωt , ∀t ≥ 0, ω≥ 0, M ≥ 1.

A linear (not necessarily bounded) operator A in X is the generator of (S(t ))t≥0, if and

only if, the following conditions are satisfied :

i) A is closed operator and D(A) = X;

ii) For every real number λ> 0, the operator (A−λIX)−1 exists and it is bounded from X

into D(A) ⊂ X and

‖(A−λIX)−1‖ ≤ 1

λ
.

For the general case, we have the Feller-Miyadera-Phillip theorem.

Theorem 3.8 [36] Let (S(t ))t≥0 be a contractive C0 semi-group such that

‖S(t )‖ ≤ Meωt , ∀t ≥ 0, ω≥ 0, M ≥ 1. (1.7)

A linear (not necessarily bounded) operator A in X is the generator of (S(t ))t≥0, if and

only if, the following conditions are satisfied :

i) The operator A is closed and D(A) = X;

ii) For every real number λ> 0, the operator (A−λIX)−1 exists, it is bounded from X into

D(A) ⊂ X, and

‖(A−λIX)−n‖ ≤ M

(ω−λ)n
, ∀n ∈N∗. (1.8)

Some useful properties of C0 semi-groups are given below.

Theorem 3.9 [10] Let A : D(A) ⊂ X −→ X be the generator operator of a C0 semi-group

(S(t ))t≥0. Then,

i) For each t ≥ 0 and each x ∈ X, we have

lim
t→0+

1

h

∫ t+h

t
S(τ)xdτ = S(t )x; (1.9)

ii) For each t ≥ 0 and each x ∈ X, we have(∫ t

0
S(τ)xdτ

)
∈ D(A), and A

∫ t

0
S(τ)xdτ = S(t )x −x;

13
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iii) For each t ≥ 0 and each x ∈ D(A), we have S(t )x ∈ D(A). Moreover, the mapping

t 7−→ S(t )x is of class C 1 on [0,+∞[, and satisfies

d

d t

(
S(t )x

)
= AS(t )x = S(t )Ax; (1.10)

iv) For each x ∈ D(A) and each 0 ≤ s ≤ t <+∞, we have∫ t

s
AS(τ)xdτ =

∫ t

s
S(τ)Axdτ = S(t )x −S(s)x. (1.11)

There is no doubt that the most important application of semi-group theory is in res-

olution of linear abstract differential equations.

Theorem 3.10 [10] Let A : D(A) ⊂ X −→ X be the generator of a C0 semi-group of linear

operators. Let f : [0,T0] −→ X be a function of class C 1. Then, for every x0 ∈ D(A), the

Cauchy problem 
d x(t )

d t
= Ax(t )+ f , for 0 ≤ t ≤ T0,

x(0) = x0,

where T0 ∈R∗+, has the unique solution of the form

x(t ) = S(t )x0 +
∫ t

0
S(t −τ) f (τ)dτ, for 0 ≤ t ≤ T0.

4 Skew-hermitian pencil

The main goal of this section is present some concepts of skew-hermitian pencil.

For this purpose, let us consider the two Hilbert spaces X and Y and let E and A be two

linear closed operators from X into Y with domains D(E) and D(A) respectively, such that

D = X and D∗ = Y,

where

D = D(E)∩D(A) and D∗ = D(E∗)∩D(A∗).

Note that, the operators E∗ and A∗ are well-defined since their domains are dense in

X and Y respectively. Moreover, we have

E∗ : D(E∗) ⊆ Y −→ X and A∗ : D(A∗) ⊆ Y −→ X.

Definition 4.1 The set of all operators of the form

(λE+A), λ ∈C,

14



4. SKEW-HERMITIAN PENCIL

is called the pencil generated by E and A. The conjugate pencil is the set of all operators of

the form

(µE∗+A∗), µ ∈C,

it is generated by the operators E∗ and A∗.

Definition 4.2 [40] We say that the complex numberα is a regular point for the pencil (λE+
A) if the operator (αE+A)−1 exists, is bounded, and its domain is the whole space Y.

The set of all regular points for the pencil (λE+A) will be noted by ρ(E, A). Its comple-

mentary in C, which is called the spectrum of the pencil (λE+A), is noted by σ(E, A).

Remark 4.3 For X = Y and E = IX, one retrieves the classical concepts of resolvent set and

spectrum of the operator A.

Now, we consider the bilinear form

ψ(x, y) = 〈Ex, Ay〉 + 〈Ax,Ey〉, (x, y) ∈ D×D. (1.12)

Definition 4.4 [40] The pencil (λE+A) is said to be skew-symmertric if the bilinear form

(1.12) is identically null.

Remark 4.5 Since the operators E and A are densely defined, then, it is not difficult to see

that the pencil (λE+A) is skew-hermitian, if and only if,

E∗A+A∗E = 0.

Analogically, the pencil (µE∗+A∗) is skew-hermitian, if and only if,

EA∗+AE∗ = 0.

Theorem 4.6 [40] Suppose that there exists at least one complex number α, such that

Re(α) > 0, α ∈ ρ (E, A) , and α ∈ ρ(
E∗, A∗)

. (1.13)

Then, all point of the complex half plan Re(λ) > 0 are regular for (λE+A) and (µE∗+A∗).

In addition, if the complex half plan Re(µ) < 0 contains at least one regular value of

the pencil (µE∗+A∗), then, all point of this half plan
(
Re(µ) < 0

)
are, also, regular for the

pencils (λE+A) and (µE∗+A∗).

Definition 4.7 The pencil (λE+A) is called skew-hermitian if,

herm1. The pencil (λE+A) is skew-symmetric;
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4. SKEW-HERMITIAN PENCIL

herm2. The complex half-plan Re(µ) < 0 meets ρ(E∗, A∗);

herm3. The complex half-plan Re(µ) < 0 contains at least one value α, satisfying (1.13).

Remark 4.8 It follows from theorem 4.6 that for a skew-hermitian pencil (λE+A) all com-

plex numbers δ satisfying the condition Re(δ) 6= 0 are regular for (λE+A) and (λE∗+A∗),

i.e.,

Re(δ) 6= 0 ⇒ δ ∈ ρ(E, A)∩ρ(E∗, A∗).

Moreover, if E or A is bounded, then,

ρ(E, A) = ρ(E∗, A∗).

Proposition 4.9 If the pencil (µE∗+A∗) is skew-hermitian, then,

[Re(α) 6= 0 ∧ x ∈ D(E)] ⇒
∥∥∥(
αE+A

)−1A(x)
∥∥∥≤ ‖x‖

|Re(α)| .

Proposition 4.10 Suppose that the conjugate pencil (µE∗+A∗) is skew-hermitian. If

C : X −→ D(E) is continuous operator, then, the perturbation Ã = A+EC of A defines

a pencil (λE + Ã) whose spectrum ρ(E, Ã) is contained in the strip |Re(λ)| < ‖C‖
q

, for all

0 < q < 1.

Moreover,

|Re(λ)| ≥ ‖C‖
q

⇒
∥∥∥(
αE+ Ã

)−1E(x)
∥∥∥≤ (1−q)−1

|Re(α)| ‖x‖, ∀x ∈ D(E). (1.14)

Let us suppose that the pencil (µE∗+A∗) is skew-hermitian, by the orthogonal decom-

position, we get

X = X1 ⊕X2, X1 = ker(E), Y = Y1 ⊕Y2, and Y1 = ker(E∗). (1.15)

Then, the operators A and E can be represented as

E =

[
0 0

0 E22

]
and A =

[
A11 0

A21 A22

]
.

As the pencil (µE∗+A∗) is skew-hermitian, then, the operator A21 : X2 −→ Y1 is a null

operator. Therefore,

λE+A =

[
A11 0

A21 λE22 +A22

]
and E22A∗

22 +E∗
22A22 = 0.

Consequently,
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5. CONCLUSION

i) The operator A11 is invertible;

ii) ρ(E, A) = ρ(E22, A22), and the pencil µE∗
22 +A∗

22 is, also, skew-hermitian.

The use of the method defect indices for the symmetric operators [40] shows that the

operator Ê, defined from X2 into X2 by Ê = −i E−1
22 A−1

22 , is self-adjoint. This result will be

used for the resolution of the singular systems.

5 Conclusion

The basic definitions, theorems, and properties in operators and semi-group theories

have been recalled in this chapter, followed by some concepts on the skew-hermitian pen-

cil. We will use these tools in the following chapters.
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Chapter 2

Positivity and controllability of finite

dimensional dynamical systems and

infinite-dimensional dynamical systems

1 Introduction

Positive linear systems are of great partial importance for control theory and their appli-

cations, they are linear dynamical systems whose state trajectories are positive for each

positive initial state and for all positive inputs functions. A variety of models with positive

linear behavior can be found in economics, social sciences, biology, engineering, man-

agement science, and medicine [7, 8, 17, 42] and [44].

Nevertheless, the importance of the positivity property for infinite-dimensional sys-

tems has been revealed by the storage and industrial systems which involve chemical re-

actions and heat exchangers, for instance, distributed parameter models of tubular reac-

tors [26] and [27].

In this chapter, firstly, we introduce definitions of some particular positives matri-

ces, then, we present examples of modelling real problems in finite and infinite dimen-

sions. Next, we define the positivity property for finite dimensional dynamical systems

and infinite-dimensional dynamical systems. Finally, important properties of exact con-

trollability, exactly null controllable, approximately controllable and their characteriza-

tions are given for both cases.

2 Particular positive matrices

Definitions and properties of some particular positive matrices will be introduced in this

section.
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2.1 Non-negative matrices

Definition 2.1 [20] A matrix A ∈ Rn×m is called non-negative if its entries ai j are non-

negative. The non-negative matrix A will be denoted by A ≥ 0.

Example 2.2 The matrix A given by

A =


0 1 2

3 4 5

0 0 0

 , (2.1)

is non-negative matrix.

Remark 2.3 The null matrix is considered non-negative matrix.

2.2 Positive matrices

Definition 2.4 [20] A non-negative matrix A ∈ Rn×m is called positive if at least one of its

entries ai j is strictly positive . The positive matrix A will be denoted by A > 0.

Example 2.5 The matrix A

A =


0 0 0

0 0 0

0 0 1

 , (2.2)

is a positive matrix.

2.3 Strictly positive matrices

Definition 2.6 [20] A matrix A ∈ Rn×m is called strictly positive if all its entries ai j are

strictly positive. The strictly positive matrix A will be denoted by A >> 0.

Example 2.7 The matrix A

A =


1 4 7

2 5 8

3 6 9

 ,

is a strictly positive matrix.

2.4 Metzler matrices

Definition 2.8 [20] A matrix A ∈ Rn×m is called Metzler if its off diagonal entries ai j are

non-negative.
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3. EXAMPLES OF FINITE DIMENSIONAL DYNAMICAL SYSTEMS AND
INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS

Example 2.9 The matrix A defined by

A =


−1 0 0

2 −2 4

3 0 −6

 ,

is a Metzler matrix.

2.5 Monomial matrices

Definition 2.10 [20] A matrix A ∈ Rn×m is called monomial or generalized permutation if

its every row and its every column contains only one strictly positive entry and the remain-

ing entries are zero.

Example 2.11 The matrix

A =


2 0 0

0 0 4

0 1 0

 ,

is a monomial matrix.

3 Examples of finite dimensional dynamical systems and

infinite-dimensional dynamical systems

In the section, we will give some examples of finite dimensional dynamical systems and

infinite-dimensional dynamical systems.

3.1 Finite dimensional dynamical systems

Example 3.1 [5] Let us consider the electrical circuit represented by the following figure

Figure 2.1: RCL circuit.

where
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• R j , j = 1,2, · · · ,8 are the voltage on the resistance given;

• L j , j = 1,2 are the inductances;

• e j , j = 1,2 are the voltages on the sources.

Denote the current intensities in the four meshs by i1, i2, i3, and i4. The application of

the Kirchoff laws to the circuit give



L1
di1(t )

d t
= −(

R1 +R3 +R5
)
i1(t )+R3i3(t )+R5i4(t ),

L2
di2(t )

d t
= −(

R4 +R6 +R7
)
i2(t )+R4i3(t )+R7i4(t ),

0 = R3i1(t )+R4i2(t )− (
R2 +R3 +R4

)
i3(t )+e1,

0 = R5i1(t )+R7i2(t )− (
R5 +R7 +R8

)
i4(t )+e2.

(2.3)

The system (2.3) can be written in the following form

Eẋ(t ) = Ax(t )+Bu(t ), (2.4)

where

E =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , A =



−R11

L1
0

R3

L1

R5

L1

0
−R22

L2

R4

L2

R7

L2

R3 R4 −R33 0

R5 R7 0 −R44

 , B =


0 0

0 0

1 0

0 1

 ,

x(t ) =


i1(t )

i2(t )

i3(t )

i4(t )

 , and u(t ) =

[
e1(t )

e2(t )

]
,

with,

R11 = R1 +R3 +R5, R22 = R4 +R6 +R7, R33 = R2 +R3 +R4, and R44 = R5 +R7 +R8.

We chosse

y1(t ) = L1
di1(t )

d t
+R11i1(t ) and y2(t ) = R6i2(t ),
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as the output. Then, the output equation has the form

y = Cx(t )+Du(t ),

where

y(t ) =

[
y1(t )

y2(t )

]
, C =

[
0 0 R3 R5

0 R6 0 0

]
, and D =

[
0 0

0 0

]
.

The system (2.4) is known as a finite dimensional singular dynamical system.

Example 3.2 [20] The following figure represents an electrical circuit

Figure 2.2: The electrical circuit

with a given resistances R1, R2, and R3, the two capacitances C1 and C2, and the source

voltage e(t ).

Thanks to the Kirchhoff ’s laws, this electrical circuit can be represented by the following

equations

R1C1u̇1(t )+u1(t )+R3
(
C1u̇1(t )+C2u̇2(t )

)
= e(t ),

R3
(
C1u̇1(t )+C2u̇2(t )

)+u2(t )+R2C2u̇2(t ) = e(t ),
(2.5)

and

y(t ) = u1(t )+u2(t ). (2.6)

Note that u1(t ) and u2(t ) are the state variables, e(t ) is the input, and y(t ) presents the

output.

From the equations (2.5) and (2.6), yields

[ (
R1 +R3

)
C1 R3C2

R3C1
(
R2 +R3

)
C2

][
u̇1(t )

u̇2(t )

]
=

[
−1 0

0 −1

][
u1(t )

u2(t )

]
+

[
1

1

]
e(t ),

and

y = [1 1]

[
u1(t )

u2(t )

]
,
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or even by [
u̇1(t )

u̇2(t )

]
= A

[
u1(t )

u2(t )

]
+Be(t ), and y = C

[
u1(t )

u2(t )

]
,

where,

A =


− R2 +R3

C1

[
R1

(
R2 +R3

)+R2R3

] R3

C1

[
R1

(
R2 +R3

)+R2R3
]

R3

C2

[
R1

(
R2 +R3

)+R2R3

] − R1 +R3

C2

[
R1

(
R2 +R3

)+R2R3
]

 ,

B =


− R2

C1

[
R1

(
R2 +R3

)+R2R3

]
R1

C2

[
R1

(
R2 +R3

)+R2R3

]

 , and C =
[

1 1
]

.

Note that A ∈ R2×2 is a Metzler matrix, B ∈ R2×1+ , and C ∈ R1×2+ . Therefore, the RCL

circuit presented by the figure 2.2 is the best example of the positive continuous-time dy-

namical system for all u1(0) ≥ 0, u2(0) ≥ 0, and e(t ) ≥ 0. Note that for t > 0, we have

u1(t ) ≥ 0, u2(t ) ≥ 0, and y(t ) ≥ 0.

The next part is dedicated for the presentation of the most important examples of con-

trol theory problems in infinite dimension [11, 12, 13] and [14]. Among these problems,

we can find those who arise to the delay and the distributed parameter and are modelled

by partial differential equations. Many open problems and questions remain to be dis-

cussed, among them, the problems of positivity, controllability, and the minimum energy

control appear and will be covered later.

3.2 Infinite-dimensional dynamical systems

Example 3.3 [15] Let us consider a stretched nonuniform string whose motion is described

by 
ρ(x)

∂2z(x, t )

∂t 2
−α(x)

∂2z(x, t )

∂x2
= v(x, t ),

z(0, t ) = 0,

z(1, t ) = u(t ),

(2.7)

where

• z(x, t ) : is the displacement of the string at position x;

• ρ(x) : represents the density of the string;

• α(x) : is the scaled tensile parameter;

• v(x, t ) : represents the distributed control;
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• u(t ) : is the control that we can apply along the length of the string.

The problem presented by the system (2.7) is an infinite-dimensional dynamical system

and the question to be asked is can we find the control u(t ) that brings the string to rest.

Example 3.4 [15] The evolution of the population of a country can be described by the fol-

lowing linear hyperbolic partial differential equation (PDE).


∂P(x, t )

∂t
+ ∂P(x, t )

∂x
= −µ(x, t )P(x, t ),

P(x,0) = P0(x), x ≥ 0,

P(0, t ) = u(t ), t ≥ 0,

where

• P(x, t ) : is the number of individuals of age x at time t ;

• µ(x, t ) : represents the mortality function;

• P0(x) : is the initial age distribution;

• u(t ) : represents the number of individuals born at time instant t .

In this example, the problem to be asked is can we find the control u(t ) to achieve a

desired age profile q(x) at the final time t1. Mathematically, it can be interpreted as mini-

mizing the expression

J(u) =
∫ 1

0

∣∣P(x, t1)−q(x)
∣∣2 d x +

∫ t1

0
λ|u(s)|2d s,

where the second term measures the social cost of controlling birth-rate. This is again a

linear quadratic control problem, but with a boundary control input, for more detail see

[15].

Example 3.5 [15] In steel making plants, it is necessary to estimate the temperature distri-

bution of metal slabs based on measurements at certain points on the surface. A possible

model for the temperature distribution is


ρC1

∂z(x, t )

∂t
= K

∂2z(x, t )

∂x2
−α[

z(x, t )− z0(x, t )
]
, 0 < x < 1,

∂z(0, t )

∂x
= 0,

∂z(l , t )

∂x
= 0,

where

• ρ : is the density;
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• C1 : represents the heat capacity;

• K : is the effective thermal conductivity of the metal slab;

• α : is the heat transfer parameter;

• z0 : represents the average coolant temperature.

The main problem is to estimate the temperature profile z(x, t ) with 0 ≤ x ≤ l and t ≥ 0

based on the noisy measurements

Yi (t ) = z(xi , t )+ni (t ), i = 1,2, · · · ,k,

where xi , i = 1,2, · · · ,k are points on the surface of the slab and ni (t ) represents the mea-

surement error.

4 Various concepts of positivity

The main objective of this section is to present, on the one hand, the fundamental defi-

nitions, properties, and results of the positivity of finite dimensional dynamical systems.

In another hand, the most important outcomes of the positivity of infinite-dimensional

dynamical systems will be described.

4.1 Positivity of finite dimensional dynamical systems

4.1.1 Solvability of dynamical systems

Consider the linear continuous dynamical system described by following equations


Eẋ(t ) = Ax(t )+Bu(t ),

y(t ) = Cx(t )+Du(t ),

x(0) = x0,

(2.8)

where x(t ) ∈ Rn is the state vector, u(t ) ∈ Rm is the input, and y(t ) ∈ RP is the output.

E, A, B, C, and D are real matrices of appropriate dimensions. x0 is the initial condition at

t = 0.

To ensure the solution of the system (2.8), the condition of regularity must be satisfied.

Definition 4.1 The system described by (2.8) is called regular, if and only if, for some s ∈C,

we have

det
[
sE−A

] 6= 0. (2.9)

In order to deal with to solvability of the system (2.8), two cases may arise.
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• First case : If detE 6= 0, then, the system (2.8) turns into


ẋ(t ) = E−1Ax(t )+E−1Bu(t ),

y(t ) = Cx(t )+Du(t ),

x(0) = x0.

(2.10)

The system (2.10) is called standard linear continuous-time dynamical system. Its

solution has the form

x(t ) = eE−1At x0 +
∫ t

0
eE−1A(t−τ)E−1Bu(τ)dτ,

and its response is

y(t ) = CeE−1At x0 +
∫ t

0
CeE−1A(t−τ)E−1Bu(τ)dτ+Du(t ).

• Second case : If detE = 0, then, the system


Eẋ(t ) = Ax(t )+Bu(t ),

y(t ) = Cx(t )+Du(t ),

x(0) = x0,

(2.11)

is called singular linear continuous-time dynamical system. Its state has the form

x(t ) = eφ0Atφ0Ex0 +
∫ t

0
eφ0A(t−τ)φ0Bu(τ)d(τ)+

ν∑
i =1
φ−i

(
Bu(i−1)(t )+Ex0δ

(i−1)(t )
)
,

(2.12)

where φi , obtained using the Laurent series in the neighborhood of ∞

[
sE−A

]−1 =
∞∑

i =−ν
φi s−i−1, (2.13)

are known as fundamental matrices, ν = rank(E)−deg
[

det[sE−A]
]+1 is the nilpo-

tent index of pencil (E, A), u(i )(t ) =
d i u(t )

d t i
, i = 0, · · · ,ν−1, and δ represents the Dirac

delta function.

The output of the singular system (2.11) is given by

y(t ) =Ceφ0Atφ0Ex0 +
∫ t

0
Ceφ0A(t−τ)φ0Bu(τ)dτ

+
ν∑

i =1
Cφ−i

(
Bu(i−1)(t )+Ex0δ

(i−1)(t )
)+CDu(t ).

(2.14)

Substituting x0 = 0 and u(t ) = δ(t ) into (2.14), we obtain the impulse response g (t )
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of the system (2.11)

g (t ) =


Ceφ0Atφ0B for t > 0,

Ceφ0Atφ0B+
ν∑

i =1
Cφ−i Bδ(i−1)(t )+CDδ(t ) for t = 0.

(2.15)

4.1.2 Externally and internally positive dynamical systems

Definition 4.2 [17] A linear system described by the representation (2.10) is said to be posi-

tive, if and only if, for every non-negative initial state and for every non-negative input, its

state and output are non-negative.

Definition 4.3 [20] The standard system (2.10) is called externally positive if for every x0 =

x(0) = 0 and every u(t ) ∈Rm+ , t ≥ 0, we have, y(t ) ∈Rp
+, for t ≥ 0.

Theorem 4.4 [19] The standard system (2.10) is externally positive, if and only if, its matrix

of impulse response

g (t ) =

{
CeE−1At E−1B for t > 0,

Dδ(t ) for t = 0,
(2.16)

is non-negative, i.e., g (t ) ∈Rp×m
+ for t ≥ 0, where δ(t ) is the Dirac delta function.

Definition 4.5 [19] The standard system (2.10) is called internally positive if for every x0 ∈
Rn+ and all inputs u(t ) ∈Rm+ , t ≥ 0, we have x(t ) ∈Rn+ and y(t ) ∈Rp

+ for t ≥ 0.

Theorem 4.6 [19] The standard system (2.10) is internally positive, if and only if, A is a

Metzler matrix, B ∈Rn×m+ ,C ∈Rp×n
+ , and D ∈Rp×m

+ .

Remark 4.7 [19] The standard internally positive system (2.10) is always externally posi-

tive.

Definition 4.8 [19] The singular system (2.11) is called externally positive if for x0 = 0, and

any non-negative input u(t ) ≥ 0 with u(i )(t ) ≥ 0, i = 1, · · · ,ν−1 for t ∈R+, the output y(t ) is

also non-negative, i.e., y(t ) ≥ 0 for t > 0.

Theorem 4.9 [5] The singular system (2.11) with D = 0 is externally positive, if and only if,

its impulse response g (t ), given by the expression (2.15), is non-negative, i.e., g (t ) ∈ R+ for

t ∈R+.

Definition 4.10 [19] The singular system (2.11) is called internally positive if for every ad-

missible x0 ∈ Rn+ and any non-negative input u(t ) ≥ 0 with u(i )(t ) ≥ 0, i = 1, · · · ,ν− 1 for

t ∈R+, the state vector x(t ) ∈Rn+ and the output y(t ) ∈Rp
+ for t > 0.

Definition 4.11 [19] The singular system described by (2.11) is weakly positive if A is Met-

zler matrix, E ∈Rn×n+ , B ∈Rn×m+ , C ∈Rp×n
+ , and D ∈Rp×m

+ .

Remark 4.12 [5] The singular internally positive system (2.11) is always externally positive.
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4.2 Positivity of infinite-dimensional dynamical systems

4.2.1 Solvability of dynamical systems

Consider the continuous-time dynamical system described by the following abstract dif-

ferential equation {
Eẋ(t ) = Ax(t )+Bu(t ),

x(0) = x0,
(2.17)

where X is a Hilbert space provided with the inner product 〈., .〉 and associated with the

norm ‖.‖X. E, A are two operators defined from X to X, and B ∈ B(U,X), where U is a Hilbert

space called control space.

In order to solve of the above problem, we need to estimate the resolvent Rλ = (λE+
A)−1E on half-plans Reλ> α, for α<∞, since, it plays a significant role during the analysis

of the system (2.17). It can be solved by different methods, as the Laplace transform or the

decomposition of spaces and operators [25, 39] and [40].

It should be noted that the system (2.17) admits several solutions depending on the

operators E, A, and B and their natures. Among them, we can find the two following cases.

• First case : If E, A, and B are bounded operators with E invertible operator, then, the

system (2.17) becomes

{
ẋ(t ) = E−1Ax(t )+E−1Bu(t ),

x(0) = x0.
(2.18)

The trajectory of the system (2.18) is [4, 14]

x(t ) = eE−1At x0 +
∫ t

0
eE−1A(t−τ)Bu(τ)dτ.

• Second case : If A is an infinitesimal generator of a strongly continuous semi-group

S(t ) on X, E is the identity operator on X, and B ∈ B(U,X). Then, the system (2.17)

turns into {
ẋ(t ) = Ax(t )+Bu(t ),

x(0) = x0.
(2.19)

The solution of the system (2.19) is written as following [14]

x(t ) = S(t )x0 +
∫ t

0
S(t −τ)Bu(τ)dτ.

4.2.2 Positivity of dynamical systems

The study of the positivity of infinite-dimensional dynamical systems requires various

specific spaces like ordered vector space and ordered Banach space, with positive cone.
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For more details, we refer the reader to [3].

From now, we assume that X, Y, and U are ordered Banach spaces with positive cones

X+, Y+, and U+ respectively, such that

X+ =
{

x ∈ X
∣∣ x ≥ 0

}
, Y+ =

{
y ∈ Y

∣∣ y ≥ 0
}

, and U+ =
{

u ∈ U
∣∣ u ≥ 0

}
,

and int(X+) = ;, where int(X+) is the interior of X+ (for the strong topology).

Let
{
en

}
n≥1 be a positive Schauder basis of X, i.e., each element x of X has a unique

representation of the from x =
∞∑

n=1
αnen , such that the linear functional

αn : X −→ F

x 7−→ αn = : 〈x,en〉,

is bounded, where αn denotes the nth coordinate of x with respect to the basis
{
en

}
n≥1

[46] and

X+ =

{
x =

∞∑
n=1

αnen
∣∣ α≥ 0, ∀n

}
.

Consider a closed linear operator A defined by

A : D(A) ⊂ X −→ X,

where
{
en

}
n≥1 ⊂ D(A) and A is the infinitesimal generator of a C0 semi-group SA(t )t≥0

Definition 4.13 [1]

i) The operator A is said to be Metzler if

ank = 〈Aek ,en〉 ≥ 0, ∀n 6= k;

ii) The system ẋ(t ) = Ax(t ) is said to be positive if X+ is SA(t )-invariant, i.e.,

SA(t )X+ ⊂ X+, ∀t ≥ 0.

Definition 4.14 [1] The system (2.19), i.e., the pair (A,B), is said to be positive if for every

∀x0 ∈ X+ and all inputs u ∈U +, i.e., ∀u ∈U such that u(t ) ∈ U+, ∀t ≥ 0, the state trajecto-

ries x(t ) remain in X+ for all t ≥ 0.

Remark 4.15 Note that U =
{
u : R+ −→ U, continuous

}
.

Definition 4.16 [1] A C0 semi-group (S(t ))t≥0 is said to be positive if all the operators S(t ),

t ≥ 0, are positive, i.e., S(t )X+ ⊂ X+ for all t ≥ 0.
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Proposition 4.17 [1] A C0 semi-group (S(t ))t≥0 is positive, if and only if, its resolvent R(λ, A) :=

(λI−A)−1 is positive for all λ>ω0, where

ω0 := inf
t>0

log‖S(t )‖
t

,

= lim
t→∞

log‖S(t )‖
t

,

is the growth constant of (S(t ))t≥0.

Theorem 4.18 [1] The system (2.19) is positive, if and only if, A is the infinitesimal genera-

tor of a C0 positive semi-group and B is a positive operator.

Inspired by [20], we get the following lemma.

Lemma 4.19 A is a Metzler operator, if and only if, ∀t ≥ 0, eAt x0 ∈ X+.

5 Various concepts of controllability

In this section, various concepts of controllability for finite dimensinal dynamical systems

and infinite-dimensional dynamical systems will be presented. It is question of defining

the controllabilibilty matrix and controllability notions for finite dimensinal dynamical

systems and the controllability operator, exact contronllability, null contronllability, and

approximate contronllability for infinite-dimensional dynamical systems case.

5.1 Controllability of finite dimensional dynamical systems

5.1.1 Controllability matrix

Consider the linear finite dimensional dynamical system

{
ẋ(t ) = Ax(t )+Bu(t ) in [0,T],

x(0) = x0,
(2.20)

where the state x(t ) ∈Rn , the input u(t ) ∈Rm , A ∈Rn×n , B ∈Rm×n , and the initial condition

x0 = 0.

The solution of the linear differential equation (2.20) can be written as

Lt u := x(t ,u(t )) =
∫ t

0
eA(t−τ)Bu(τ)dτ, (2.21)

where Lt is a linear bounded transformation from L2(0, t ;Rm) into Rn .
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The controllability matrix W(0,T), also called Gramian matrix, can be obtained using

the expression (2.21) and its adjoint. Indeed, from (2.21) and

L∗
t : Rn −→ L2(0, t ;Rm)

x 7−→ L∗
t (x) = B∗eA∗(t−τ)x,

we get

W(0,T) : = LTL∗
T,

=
∫ T

0
eA(T−τ)BB∗eA∗(T−τ)dτ,

(2.22)

which is symmetric and positive definite matrix.

5.1.2 Controllability notions

Definition 5.1 [4] The system (2.20) is controllable (from x0 ∈ Rn) in [0,T] if given any x ∈
Rn , there exists a control function u(.) ∈ L2(0,T;Rm) such that

x(T,u(.)) = x.

Theorem 5.2 [4] The system (2.20) is controllable in [0,T], if and only if, W(0,T) > 0, i.e.,

W(0,T) is positive definite matrix.

Theorem 5.3 [4] The following conditions are equivalent

i) The system (2.20) is controllable in [0,T];

ii) W(0,T) > 0, i.e., W(0,T) is positive definite matrix;

iii) rank[B : AB : · · · : An−1B] = n.

Remark 5.4 When the system is controllable, we will refer to (A,B) as a controllable pair.

Proposition 5.5 [48] Assume that for some T > 0 the matrix W(0,T) is nonsingular. Then,

i) For arbitrary x0, x f ∈Rn the control

û(τ) = −B∗eA∗(T−τ)W−1(0,T)(eATx0 −x f ), τ ∈ [0,T],

transfers x0 to x f at time t ;

ii) Among all controls u(.) steering x0 to x f at time T the control û minimizes the integral∫ T

0
|u(τ)|2dτ. Moreover,

∫ T

0
|û(τ)|2dτ = 〈W−1(0,T)(eATx0 −x f ),eATx0 −x f 〉.
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Theorem 5.6 [48] The following conditions are equivalent

i) An arbitrary state x f ∈Rn is attainable from 0;

ii) The system (2.20) is controllable;

iii) The system (2.20) is controllable at a given time T > 0;

iv) The matrix W(0,T) is nonsingular for some T > 0;

v) The matrix W(0,T) is nonsingular for an arbitrary T > 0;

vi) rank[B : AB : · · · : An−1B] = n.

Remark 5.7 The condition (vi) is called the Kalman rank condition.

In this paragraph, we are interested to present some notions of the controllability for

a singular dynamical system described by

{
Eẋ(t ) = Ax(t )+Bu(t ) in [0,T],

x(0) = x0,
(2.23)

where the state x(t ) ∈ Rn , the input u(t ) ∈ Rm , E, A ∈ Rn×n , B ∈ Rm×n with detE = 0, and

the initial condition x0 = 0.

In order to simplify the study of controllability, the system (2.23) must be transformed.

For this purpose, we will use the Weierstrass decomposition [20]. Hence, the differential

equation associated with the system (2.23) turns into

{
ẋ1(t ) = A1x1(t )+B1u(t ),

Nẋ2(t ) = x2(t )+B2u(t )
(2.24)

where x1 ∈ Rn1 , x2 ∈ Rn2 with n1 +n2 = n, u ∈ Rm , A1 ∈ Rn1×n1 , B1 ∈ Rn1×m , B2 ∈ Rn2×m ,

N ∈Rn2×n2 is nilpotent matrix of the index ν, and

QEP = diag(In1 ,N), QAP = diag(A1, In2 ), QB =

(
B1

B2

)
, and P−1x =

(
x1

x2

)
.

Then, the system (2.23) can be written as two subsystems by

{
ẋ1(t ) = A1x1(t )+B1u(t ),

x1(0) = x01,
(2.25)

and {
Nẋ2(t ) = x2(t )+B2u(t ),

x2(0) = x02.
(2.26)
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Definition 5.8 [16] The system (2.24) is called controllable if, for any t > 0, x0 ∈ Rn and

x ∈Rn , there exists a control input u(t ) ∈Rν−1 such that x(t ) = x.

Then, we have the following theorem

Theorem 5.9 [16]

i) The subsystems (2.24)is controllable, if and only if,

rank[sE−A,B] = n, ∀s ∈C, s finite;

ii) The following statements are equivalent

• The subsystem (2.26) is controllable.

• rank[B2 : NB2 : · · · : Nν−1B2] = n2;

• rank[N B2] = n2;

• rank[E B] = n;

• for any nonsingular matrices Q1 and P1 satisfying E = Q1 diag(Id ,0)P1, and Q1B =

[B̃1/B̃2]. Then, B̃2 is of full row rank,

rankB̃2 = n − rankE.

iii) The following statements are equivalent.

• System (2.24) is controllable;

• Both its two subsystems (2.25) and (2.26) are controllable;

• rank[B1 : A1B1 : · · · : An1−1
1 B1] = n1 and rank[B2 : NB2 : · · · : Nν−1B2] = n2;

• rank[sE−A B] = n, ∀s ∈C, s finite, and rank[E B] = n.

5.2 Controllability of infinite-dimensional dynamical systems

5.2.1 Controllability operator

Consider the linear system described by the following abstract Cauchy problem on a Hilbert

space X {
ẋ(t ) = Ax(t )+Bu(t ), T > 0,

x(0) = x0 ∈ X,
(2.27)

where A : D(A) ⊂ X −→ X is linear operator generator a C0 semi-group S(t ) on X, and B is

a bounded linear operator, such that

D(A) =
{

x ∈ X
∣∣ Ax ∈ X

}
.
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The trajectory of the dynamical system (2.27) is

x(T) = S(T)x0 +
∫ T

0
S(T−τ)Bu(τ)dτ. (2.28)

Let us consider the operator LT as defined in [15] by

LT : L2(0,T;U) −→ X

u 7−→ LT(u) =
∫ T

0
S(T−τ)Bu(τ)dτ.

Note that LT is a bounded linear operator, then, its adjoint operator is written as

L∗
T : X −→ L2(0,T;U)

x 7−→ L∗
T(x) = B∗S∗(T−τ)x.

Consequently, the controllability operator is defined by the following equation [48]

QTx = LTL∗
T(x),

=
∫ T

0
S(τ)BB∗S∗(τ)xdτ, ∀x ∈ X,

(2.29)

where the function S(τ)BB∗S(τ)x,τ ∈ [0,T] is continuous and the integral is well defined.

Moreover, for a constant c > 0∫ T

0
|S(τ)BB∗S∗(τ)x|dτ≤ c|x|, x ∈ X. (2.30)

Hence, the operator QT is linear and continuous. It is also self-adjoint and nonnega-

tive define, such that

〈QTx, x〉 =
∫ T

0
|B∗S∗(τ)x|2dτ≥ 0; x ∈ X. (2.31)

In what follows, we will denoted by
(
QT

) 1
2 the unique self-adjoint and non-negative

operator whose square is equal to QT. There exists exactly one such operator. Well defined

are the pseudoinverse operators
(
QT

)−1 and
(
Q

1
2
T

)−1
:=

(
QT

)− 1
2 .

Theorem 5.10 [48]

i) There exists a strategy u(.) ∈ U transferring x0 ∈ X to x f ∈ X in time T, if and only if,

[
S(T)x0 −x f

]
∈ Im

(
QT

) 1
2 ;

ii) Among the strategies transferring x0 to x f in time T, there exists exactly one strategy
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û which minimizes the functional

JT(u) =
∫ T

0
|u(τ)|2dτ.

Moreover,

JT(û) = |(QT
)− 1

2 (S(T)x0 −x f )|2;

iii) If (S(T)x0 −x f ) ∈ ImQT, then, the stategy û is given by

û(t ) = −B∗S∗(T− t )Q−1
T (S(T)x0 −x f ), t ∈ [0,T].

5.2.2 Exact controllability

Definition 5.11 [14] Given any two points x0, x f ∈ X, we say the system (2.27) is exactly

controllable on [0,T] if there exists a control u ∈ Lp (0,T;U) such that x(T) = x f , i.e.,

∀x0 ∈ X, ∀x f ∈ X, ∃u ∈ Lp (0,T;U) such that x(T) = x f .

Definition 5.12 [15] The system (2.27) is exactly controllable [0,T] (for some finite T > 0) if

all points in X can be reached from origin at time T, i.e., if

ImLT = X.

Theorem 5.13 [15] The system (2.27) is exactly controllable from 0 in time T, if and only if,

ImLT = X,

which means that the operator LT is surjective.

Theorem 5.14 [15] The system (2.27)is exactly controllable from 0 to T, if and only if,

∃γ> 0, such that : ‖L∗
Tx‖L2(0,T;U) ≥ γ‖x‖X, ∀x ∈ X.

where L∗
T is the adjoint operator of LT.

Theorem 5.15 [48] The following conditions are equivalent

i) The system (2.27) is exactly controllable from an arbitrary state in time T > 0;

ii) There exists c > 0 such that for arbitrary x ∈ X

∫ T

0
|B∗S∗(τ)x|2dτ≥ c|x|2; (2.32)
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iii) Im
(
QT

) 1
2 = X.

Theorem 5.16 [15] The system (2.27) is exactly controllable from 0 to T, if and only if,

Ker L∗
T =

{
0
}

and ImL∗
T is closed.

Lemma 5.17 [15]

• The system (2.27) is exactly controllable on [0,T], if and only if, the system

{
ẋ(t ) = (sIX −A)x(t )+Bu(t ),

x(0) = x0,

is for any s ∈C;

• The system (2.27) is exactly controllable on [0,T], if and only if, the system

{
ẋ(t ) = (A+BF)x(t )+Bu(t ),

x(0) = x0,

is for any s ∈C and for any feedback F ∈L (X,U).

5.2.3 Exact null controllability

Definition 5.18 [48] The system (2.27) is exactly null controllable on [0,T], if for

∀x0 ∈ X, ∃u ∈ L2(0,T;U) such that x(T) = 0.

Definition 5.19 [48] The system (2.27) is null controllable on [0,T] if an arbitrary state can

be transferred to 0 in time T or, equivalent, if and only if,

ImS(T) ⊂ ImLT.

Theorem 5.20 [48] The following conditions are equivalent

i) The system (2.27) is null controllable in time T > 0;

ii) There exists c > 0 such that for all x ∈ X

∫ T

0
|B∗S∗(τ)x|2dτ≥ c|S∗(T)x|2; (2.33)

iii) Im
(
QT

) 1
2 ⊃ ImS(T).
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5.2.4 Approximate controllability

Definition 5.21 [14] The system (2.27) is approximately controllable for any x f ∈ X, and

any ε> 0, if there exists a control u ∈ L2(0,T;U) such that ‖x(t )−x f ‖X ≤ ε, i.e.,

∀ε> 0, ∀x f ∈ X, ∃u ∈ L2(0,T;U) such that ‖x(t )−x f ‖X ≤ ε.

Definition 5.22 [15] The system (2.27) is approximately controllable on [0,T] (for some fi-

nite T > 0) if given an arbitrary ε > 0, it is possible to steer from the origin to within a

distance ε from all points in the state space at time T , i.e., if

ImLT = X.

Theorem 5.23 [48] If ImLT = X. Then, the system (2.27) is approximately controllable on

[0,T].

Theorem 5.24 [15] The system (2.27) is approximately controllable on [0,T], if and only if,

kerL∗
T =

{
0
}
.

Theorem 5.25 [48] The following conditions are equivalent

i) The system (2.27) is approximately controllable in time T > 0 from an arbitrary state;

ii) If B∗S∗(τ)x = 0 for almost all τ ∈ [0,T], then, x = 0;

iii) Im
(
QT

) 1
2 is dense in X.

Lemma 5.26 [15]

• The system (2.27) is approximately controllable on [0,T], if and only if, the system

{
ẋ(t ) = (sIX −A)x(t )+Bu(t ),

x(0) = x0,

is for any s ∈C;

• The system (2.27) is approximately controllable on [0,T], if and only if, the system

{
ẋ(t ) = (A+BF)x(t )+Bu(t ),

x(0) = x0,

is for any s ∈C and for any feedback F ∈L (X,U).
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6 Conclusion

The first part of this chapter was dedicated to the presentation of some particular posi-

tives matrices followed by some real examples for different problems in the finite dimen-

sional dynamical systems and infinite-dimensional dynamical systems. Then, we have

recalled some notions of positivity for both dynamical systems. Finally, various results

on controllability for finite dimensional dynamical systems and for infinite-dimensional

dynamical systems has been given.
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Chapter 3

Minimum energy control of finite

dimensional singular dynamical systems

with rectangular inputs

1 Introduction

The problem of controllability, reachability and minimum energy control of finite dimen-

sional singular dynamical systems with rectangular type inputs vector will be studied in

this chapter. Necessary and sufficient conditions for the existence of such type of rect-

angular inputs that steers the system from zero initial conditions to the desired state will

be established and proved by the use of the solution of the singular dynamical systems

with rectangular type inputs and the application of the pseudo-inverse of the command

matrix where the expression of the inputs vector can be found. Then, a new formulation

of the minimum energy control problem for the singular dynamical systems with rectan-

gular inputs using the Weierstrass-Kronecker decomposition is discussed followed by a

procedure to solve the problem. Finally, in the last section, the computation of the opti-

mal input and the minimal value of the performance index that represents the minimum

energy of dynamical systems are presented and illustrated using a numerical example.

2 Position of the problem

Let us consider the singular continuous-time linear dynamical systems described by the

following state equation

{
Eẋ(t ) = Ax(t )+Bu(t ), t ∈ [0,+∞[,

x(0) = 0,
(3.1)
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where x(t ) ∈Rn is the state vector, u(t ) ∈Rm is the input vector, E, A ∈Rn×n , and B ∈Rn×m

with detE = 0. We assume that the system (3.1) is regular, i.e., for some λ ∈C

det
[
λE−A

] 6= 0. (3.2)

The rectangular input u(t ) has the form

u(t ) =

{
U for (i −1)T ≥ t ≥ (i −1)T+∆T,

0 for (i −1)T+∆T > t > i T,
(3.3)

for i = 1, 2, · · · . U ∈Rm is a vector of m constant, T is the period of the periodic signal and

∆T is the pulse width.

As the expression (3.2) is well defined, then, the Weierstrass-Kronecker decomposi-

tion theorem [20] can be applied to the system (3.1). Hence, there exist a non singular

matrices P ∈ Rn×n and R ∈ Rn×n that can be determined by the use the procedure give in

[20]. Thus, thanks to the Weierstrass-Kronecker decomposition and some manipulations

on the equation associated with the system (3.1), we get

{
˙̃x1(t ) = Ã1x̃1(t )+ B̃1u(t ),

x̃1(0) = 0,
(3.4)

and {
N ˙̃x2(t ) = x̃2(t )+ B̃2u(t ),

x̃2(0) = 0,
(3.5)

where, the new state vector is

x̃(t ) =

[
x̃1(t )

x̃2(t )

]
= R−1x(t ), x̃1(t ) ∈Rn1 , x̃2(t ) ∈Rn2 , (3.6)

and

Ẽ = PER =

[
In1 0

0 N

]
, Ã = PAR =

[
Ã1 0

0 In2

]
, B̃ = PB =

[
B̃1

B̃2

]
, (3.7)

with Ã1 ∈ Rn1×n1 , B̃1 ∈ Rn1×m , B̃2 ∈ Rn2×m , n1 +n2 = n, and N ∈ Rn2×n2 is nilpotent matrix

with the index µ such that, for some λ ∈C

µ = rank(E)−deg
(

det
[
λE−A

])+1. (3.8)

The solution of the standard subsystem (3.4) has the from

x̃1(t ) = e Ã1t x̃1(0)+
∫ t

0
e Ã1τB̃1u(t −τ)dτ, (3.9)
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and the one of the singular subsystem (3.5) is

x̃2(t ) =
µ−1∑
i =0

N(i )B̃2u(i )(t ). (3.10)

Finally, the general solution of the singular dynamical system (3.1) can be written as

x(t ) =


Re Ã1t x̃1(0)+

∫ t

0
Re Ã1τ B̃1 u(t −τ)dτ

µ−1∑
i =0

RN(i ) B̃2 u(i )(t )

 . (3.11)

Let us recall that the main goal of this chapter is to minimize the integral performance

index

I(u(t f )) =
∫ t f

0
uT(τ)Qu(τ)dτ, (3.12)

of the system (3.1) where Q ∈ Rm×m is a symmetric positive definite matrix, i.e., Q = QT

and vTQv > 0 for nonzero vector v ∈Rm . To deal with this problem, we will determine the

input vector for each subsystem (3.4) and (3.5), that minimizes their performance index

I1(u(t f )) and I2(u(t f )) respectively

I1(u(t f )) =
∫ t f

0
uT(τ)Q1u(τ)dτ, (3.13)

and

I2(u(t f )) =
µ−1∑
i =0

(
u(i )

)T
(t f )Q2u(i )(t f ), (3.14)

where Q1, Q2 ∈Rm×m are a symmetric positive definite matrices.

However, before to deal with this problem, we need to ensure the existence of the

inputs. This is the first goal of the next section.

3 Minimum energy control problem

In this section, we will determine the minimum energy control and the optimum values

of the performance index for each subsystems (3.4) and (3.5), and the singular dynamical

system (3.1).

3.1 Control problem

To find the minimum energy control of the subsystems (3.4) and (3.5), we must check

whether the inputs that minimize the performance index (3.13) and (3.14) respectively,

exist.
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First, let us emphasized that our subsystems (3.4) and (3.5) must be controllable. In

order to establish the input that steer the first system

{
˙̃x1(t ) = Ã1x̃1(t )+ B̃1u(t ),

x̃1(0) = 0,
(3.15)

with the rectangular inputs

u(t ) =

{
U1 for (i −1)T ≥ t ≥ (i −1)T+∆T,

0 for (i −1)T+∆T > t > i T,
(3.16)

where U1 ∈ Rm is a vector of m constant, T is the period of the periodic signal and ∆T is

the pulse width with for i = 1,2, · · · , from zero initial condition to desired final state in time

t f = q∆T, we will use the expression of its solution.

Indeed,

x̃1 f = x̃1(t f ) = e Ã1t f x̃01 +
∫ t f

0
e Ã1τB̃1u(t f −τ)dτ, (3.17)

then,

x̃1(t f ) =
∫ t f

0
e Ã1τB̃1u(t f −τ)dτ,

=
∫ T

T−∆T
e Ã1τB̃1U1dτ+

∫ 2T

2T−∆T
e Ã1τB̃1U1dτ+·· ·+

∫ qT

qT−∆T
e Ã1τB̃1U1dτ.

(3.18)

Hence,

Ã1x̃1 f = Ã1

[∫ T

T−∆T
e Ã1τdτ+

∫ 2T

2T−∆T
e Ã1τdτ+·· ·+

∫ qT

qT−∆T
e Ã1τdτ

]
B̃1U1,

=

[
e Ã1T −e Ã1

(
T−∆T

)
+e2Ã1T +·· ·+eq Ã1T −e Ã1

(
qT−∆T

)]
B̃1U1, (3.19)

multiplying both sides of the expression (3.19) by
[

In1 −e−Ã1∆T
]−1

, we get

[
In1 −e−Ã1∆T

]−1
Ã1x̃1 f =

[
e Ã1T +e2Ã1T +·· ·+eq Ã1T

]
B̃1U1,

=

[
q∑

k=1

(
e Ã1T

)k
]

B̃1U1.
(3.20)

Thus, [
q∑

k=1

(
e Ã1T

)k
]−1 [

In1 −e−Ã1∆T
]−1

Ã1x̃1 f = B̃1U1. (3.21)

Because of the invertibility of the exponential function for any matrix and since the

subsystem (3.15) is controllable, then, the input U1 can be calculated by the following
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3. MINIMUM ENERGY CONTROL PROBLEM

formula

U1 = B̃+
1

[
q∑

k=1

(
e Ã1T

)k
]−1 [

In1 −e−Ã1∆T
]−1

Ã1x̃1 f , (3.22)

where B̃+
1 ∈Rm×n1 is the right pseudo-inverse of the rectangular matrix B̃1 ∈Rn1×m , which

can be calculated by

B̃+
1 = B̃T

1

[
B̃1B̃T

1

]−1
+

[
Im − B̃T

1

[
B̃1B̃T

1

]−1
B̃1

]
K1, for an arbitrary K1 ∈Rm×n1 , (3.23)

or even by

B̃+
1 = K2

[
B̃1K2

]−1
, for an arbitrary K2 ∈Rm×n1 , with det

[
B̃1K2

] 6= 0.

Now, let us consider the subsystem

{
N ˙̃x2(t ) = x̃2(t )+ B̃2u(t ),

x̃2(0) = 0,
(3.24)

with the rectangular inputs

u(t ) =

{
U2 for (i −1)T ≥ t ≥ (i −1)T+∆T,

0 for (i −1)T+∆T > t > i T,
(3.25)

where U2 ∈ Rm is a vector of m constant, T is the period of the periodic signal and ∆T is

the pulse width with for i = 1,2, · · · . To find the input U2 that steer the subsystem (3.24)

from the initial condition to final state in time t f = q∆T, we will use the solution of the

subsystem (3.24).

Hence, the use of the solution of the subsystem (3.24) and taking in account the fact

that the input u(t ) is a constant function, it yields

x̃2(t f ) = −
µ−1∑
i =0

N(i )B̃2u(i )(t ), (3.26)

= −B̃2u(0)(t f ),

= −B̃2U2.

As the subsystem (3.24) is controllable in time t f = q∆T, then, the input U2 can be

computed as following

U2 = −B̃+
2 x̃2(t f ), (3.27)

where the right pseudo-inverse B̃+
2 of the rectangular matrix B̃2 ∈Rn2×m , can be obtained
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3. MINIMUM ENERGY CONTROL PROBLEM

using

B̃+
2 = B̃T

2

[
B̃2B̃T

2

]−1 +
[

Im − B̃T
2

[
B̃2B̃T

2

]−1
B̃2

]
K1, for an arbitrary K1 ∈Rm×n2 , (3.28)

or

B̃+
2 = K2

[
B̃2K2

]−1
, for an arbitrary K2 ∈Rm×n2 , with det

[
B̃2K2

] 6= 0. (3.29)

Note that, the input U2 expressed by the formula (3.27) steers the subsystem (3.24)

from x̃02 = 0 to x̃2 f ∈Rn2 .

The problem of minimum energy control for each subsystems (3.15) and (3.24) require

to find an optimum input vector from the whole set, i.e., we need to find the values of ma-

trices K1 and K2 such that the performance indexes given by (3.13) and (3.14) respectively

take the minimal value. This will be dealt in the following part.

3.2 Index of the performance problem

In order to get the optimum value of inputs vector for the subsystems (3.15) and (3.24) we

need to find their performance indexes (3.13) and (3.14) respectively.

It is well know that, the performance index (3.13) for the first subsystem (3.15) in the

case of rectangular type input signal (3.16) takes the form [38]

I1(u(t f )) = q∆TUT
1 Q1U1. (3.30)

Let us denote

M =

[
q∑

k=1

(
e Ã1T)k

]−1 [
In1 −e−Ã1∆T

]−1
Ã1x̃1 f . (3.31)

Substituting (3.22) and (3.30) with the use of the right pseudo-inverse (3.23) for arbi-

trary matrix K1, yields

I1(u(t f )) = q∆TUT
1 Q1U1,

= q∆TMT [
B̃+

1

]
Q1B̃+

1 M,

= q∆TMT
[[

B̃1B̃T
1

]−1
B̃1 +KT

1

[
Im − B̃T

1

[
B̃1B̃T

1

]−1
B̃1

]]
Q1

×
[

B̃T
1

[
B̃1B̃T

1

]−1
+

[
Im − B̃T

1

[
B̃1B̃T

1

]−1
B̃1

]
K1

]
M.

Consequently, the performance index takes the minimum value for any positive defi-
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3. MINIMUM ENERGY CONTROL PROBLEM

nite matrix Q1 ∈Rm×m and K1 = 0m×n1 . Hence,

I1opt = I1(u(t f )),

= q∆TMT
[[

B̃1B̃T
1

]−1
B̃1

]
Q1

[
B̃T

1

[
B̃1B̃T

1

]−1
]

M. (3.32)

And by the formula (3.22), the optimal value of the input U1 is

U1opt = B̃T
1

[
B̃1B̃T

1

]−1

[
q∑

k=1
(e Ã1T)k

]−1 [
In1 −e−Ã1∆T

]−1
Ã1x̃1 f ,

= B̃T
1

[
B̃1B̃T

1

]−1
M.

(3.33)

Furthermore, let us recall that for the subsystem (3.24), the performance index takes

the form

I2(u(t f )) =
µ−1∑
i =0

(
u(i )

)T
(t f )Q2u(i )(t f ),

= UT
2 Q2U2.

(3.34)

Using (3.27) and (3.34), we get

I2(u(t f )) =
[−B̃+

2 x̃2(t f )
]T

Q2
[−B̃+

2 x̃2(t f )
]

,

= x̃T
2 (t f )

[
B̃T

2

[
B̃2B̃T

2

]−1 +
[

Im − B̃T
2

[
B̃2B̃T

2

]−1
B̃2

]
K1

]T

×Q2

[
B̃T

2

[
B̃2B̃T

2

]−1 +
[

Im − B̃T
2

[
B̃2B̃T

2

]−1
B̃2

]
K1

]
x̃2(t f ).

Finally, the minimal value of the performance index (3.34) takes the form

I2opt = x̃T
2 (t f )

[[
B̃2B̃T

2

]−1
B̃2

]
Q2

[
B̃T

2

[
B̃2B̃T

2

]−1
]

x̃2(t f ), (3.35)

and the optimal value of the input can be calculated by the use of the formula (3.27) with

the right pseudo-inverse B̃+
2 and K1 = 0m×n2 as

U2opt = −B̃T
2

[
B̃2B̃T

2

]−1
x̃2 f . (3.36)

Combining the above results, it follows

Uopt = U1opt +U2opt ,

= B̃T
1

[
B̃1B̃T

1

]−1
Fx̃1 f + B̃T

2

[
B̃2B̃T

2

]−1
x̃2 f ,

= B+Lx̃ f , (3.37)
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that represents the optimal value of the input for the general singular system (3.1) with

L =

[
F 0

0 In2

]
, F =

[
q∑

k=1

(
e Ã1T)k

]−1 [
In1 −e−Ã1∆T

]−1
Ã1,

B+ =

[
B̃T

1

[
B̃1B̃T

1

]−1
B̃T

2

[
B̃2B̃T

2

]−1
]

, and x̃ f =

[
x̃1 f

x̃2 f

]
.

Furthermore, the minimal value of the performance index for the general singular sys-

tem (3.1) is given by

Iopt = I1opt + I2opt ,

= q∆TUT
1opt Q1U1opt +UT

2opt Q2U2opt ,

=

[
U1opt

U2opt

]T [
q∆TQ1 0

0 Q2

][
U1opt

U2opt

]
.

(3.38)

4 Procedure for computing the minimum energy control

A procedure for computing the minimum energy control of the finite-dimensional singu-

lar dynamical systems with rectangular inputs will be presented in this section.

The following steps are used to find the optimal value of the rectangular inputs and

the minimal value of the performance index for the singular dynamical system (3.1).

• Step 1 : Knowing E, A ∈Rn×n , and B ∈Rn×m , find the matrices P, R ∈Rn×n , then, the

matrices Ã1 ∈ Rn1×n1 , N ∈ Rn2×n2 , B̃1 ∈ Rn1×m , and B̃2 ∈ Rn2×m will be computed by

the use of the decomposition presented by (3.7).

• Step 2 : Using the right pseudo-inverse (3.23), the input U1opt will be calculated.

• Step 3 : Using the input (3.33), the minimal value of the performance index of the

first subsystem (3.15) can be computed.

• Step 4 : Thanks to the right pseudo-inverse (3.28), the input U2opt can be calculated.

• Step 5 : Using the input (3.36), the minimal value of the performance index of the

second subsystem (3.24) can be computed.

• Step 6 : Knowing U1opt and U2opt compute the optimal input Uopt for the singular

dynamical system (3.1) through the formula (3.37).

• Step 7 : Using (3.38), the minimal value of the performance index of the singular

dynamical system (3.1) can be computed.
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5 Example

Consider the singular dynamical system (3.1) with the matrices

E =


1 0 0

0 1 0

0 0 0

 , A =


0 1 0

1 0 −1

0 0 1

 , B =


1 0 1 0

0 1 −1 −1

1 0 1 1

 ,

x0 = [0 0 0]T, x f = [1 1 1]T, t f = 1.25 s, T = 0.25 s, and ∆T = 0.15 s.

In this case, we have

P =


1 0 0

0 1 1

0 0 1

 , R =


1 0 0

0 1 0

0 0 1

 ,

Ẽ =

[
In1 0

0 N

]
, PER =


1 0 0

0 1 0

0 0 0

 , N =
[

0
]

, (3.39)

Ã =

[
Ã1 0

0 In2

]
, PAR =


0 1 0

1 0 0

0 0 1

 , Ã1 =

[
0 1

1 0

]
, (3.40)

B̃ =

[
B̃1

B̃2

]
, PB =


1 0 1 0

1 1 0 0

1 0 1 1

 , B̃1 =

[
1 0 1 0

1 1 0 0

]
, and B̃2 =

[
1 0 1 1

]
. (3.41)

It is clear that the system (3.1) is controllable for the rectangular inputs since the con-

ditions presented on theorem 5.9 are satisfied, then, we have

rank
(
Ã1

)
= rank

(
B̃1

)
= 2 and rank

(
λN− In2

)
= rank

(
B̃2

)
= 1. (3.42)

Thus, the subsystems (3.15) and (3.24) are controllable.

The use of the procedure presented in section 4, gives

• Step 1 : The matrices N ∈Rn2×n2 , Ã1 ∈Rn1×n1 , B̃1 ∈Rn1×m , and B̃2 ∈Rn2×m are given,

respectively, by (3.39), (3.40), and (3.41).

• Step 2 : Using the formula of U1opt together with the right pseudo-inverse of rect-
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angular matrix B̃1 and the performance index (3.30), we obtain

U1opt =


27.130

13.565

13.565

0

 . (3.43)

• Step 3 : The minimal value of the performance index for the first subsystem (3.15)

is

I1opt = 828.04. (3.44)

• Step 4 : Using (3.36) with (3.28), we obtain

U2opt =


−0.33

0

−0.33

−0.33

 . (3.45)

• Step 5 : The minimal value of the performance index for the second subsystem

(3.24) is

I2opt =
1

3
. (3.46)

• Step 6 : Using (3.37), we get

Uopt = U1opt +U2opt ,

=


26.797

13.565

13.232

−0.333

 .

(3.47)

• Step 7 : Using (4.11), we get the minimal value of the performance index for the

singular system

Iopt = I1opt + I2opt ,

= 828.04+0.33,

= 828.37.

(3.48)
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6 Conclusion

In this chapter, the problem of minimum energy control of the finite dimensional singu-

lar continuous-time linear dynamical systems with rectangular inputs has been studied.

First, thanks to Weierstrass-Kronecker decomposition, the singular system has been de-

composed on two subsystems. Then, the obtained subsystems help us to find the optimal

control and the minimal value of the performance index of the singular dynamical system.

Finally, a procedure for computing the minimum energy control of the finite dimensional

singular system with rectangular inputs has been presented, where its effectiveness has

been showed through an academic example.
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Chapter 4

Minimum energy control of

infinite-dimensional degenerate Cauchy

problem with skew-hermitian pencil

1 Introduction

The minimum energy control problem is strongly connected with the controllability con-

cept [22] and [23]. It is well know, in the state-of-the-art, that there exists, generally, many

different admissible controls u(t ), defined for t belongs to [0, t f ], which transfer the given

initial state x0 to the desired final state xt f at time t f . However, we must know which of

these possible admissible controls u(t ) are optimal according to the given a priori crite-

rion. This problem will be dealt in this chapter, where we will find the expression of the

minimum energy control for the infinite-dimensional degenerate Cauchy problem with

variable operator coefficients, skew-hermitian pencil, and bounded-input conditions.

2 Transformation of degenerate Cauchy problem by the use

of an orthogonal decomposition

This section is devoted to recall some mathematical background that are used along with

this chapter and to present a decomposition for an the infinite-dimensional degener-

ate dynamical system represented by Cauchy problem with operators coefficients, skew-

hermitian pencil, a given initial state, and bounded input in order to simplify its study.

Let us consider X, Y, U, and L2
(
0, t ;U

)
as Hilbert spaces with t ∈]0, +∞[, and the fol-
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ORTHOGONAL DECOMPOSITION

lowing infinite-dimensional degenerate Cauchy problem

{
Eẋ(t )+Ax(t ) = Bu(t ),

x(0) = x0,
(4.1)

where x(t ) and u(t ) are, respectively, the state and the input vectors. E ∈ L (X,Y), A ∈
L (X,Y), and B ∈L (X,Y) are bounded operators, with E a singular operator.

Based on [40], if the pencil (µE∗+A∗), for some µ ∈ C, is a skew-hermitian operator,

then, the condition

EA∗+AE∗ = 0,

holds where A∗ and E∗ are respectively the adjoint operators of the operators A and E.

The following paragraph prescribes the decomposition of the infinite-dimensional

degenerate Cauchy problem given by the system (4.1) to two dynamical subsystems. It

must be mentioned that the decomposition used has various advantageous in the field of

infinite-dimensional systems and help us to investigate them [40].

Indeed, by the use of an orthogonal decomposition for the spaces X and Y and a cor-

responding decomposition into blocks for the operators E, A, and B, it follows

X = X1 ⊕X2, Y = Y1 ⊕Y2,

and

E =

[
E11 E12

E21 E22

]
, A =

[
A11 A12

A21 A22

]
, and B =

[
B1

B2

]
,

with

X1 = ker(E), X2 = (ker(E))⊥ , Y1 = ker(E∗), and Y2 = (ker(E∗))⊥,

E∗ is the adjoint operator of the operator E, (ker(E))⊥ and (ker(E∗))⊥ represent, respec-

tively, the orthogonal of the kernel of E and the orthogonal kernel of E∗. Hence, the oper-

ator E becomes

E =

[
0 0

0 E22

]
.

However, the condition of the skew-hermitian of the pencil (µE∗+ A∗) and issue on

Rutkas [40] involve that A12 = 0. Then, the decomposition of the operator A becomes

A =

[
A11 0

A21 A22

]
.
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Finally, the system (4.1) is equivalent to the following system,
A11x1(t ) = B1u(t ),

E22ẋ2(t ) = −A21x1(t )−A22x2(t )+B2u(t ),

x1(0) = x01,

x2(0) = x02.

(4.2)

The relations

λE+A =

[
A11 0

A21 λE22 +A22

]
and E22A∗

22 +A22E∗
22 = 0,

where λ is the regular point of the pencil (λE22 +A22) and ensures that the operator A11 is

invertible allow as to turn the system (4.2) into
x1(t ) = A−1

11 B1u(t ),

E22ẋ2(t ) = −A21x1(t )−A22x2(t )+B2u(t ),

x1(0) = x01,

x2(0) = x02,

or even into 
x1(t ) = A−1

11 B1u(t ),

E22ẋ2(t ) = −A22x2(t )+ (
B2 −A21A−1

11 B1
)

u(t ),

x1(0) = x01,

x2(0) = x02.

Nevertheless, the operator’s invertibility of E22 is ensured by the density of the space

X2. Therefore, it follows {
x1(t ) = A−1

11 B1u(t ),

x1(0) = x01,
(4.3)

and {
ẋ2(t ) = Ãx2(t )+ B̃u(t ),

x2(0) = x02,
(4.4)

where Ã and B̃ are two bounded operators, such that

Ã = −E−1
22 A22, and B̃ = E−1

22

(
B2 −A21A−1

11 B1
)

.

The solutions of the systems (4.3) and (4.4) have the forms

x1(t ) = A−1
11 B1u(t ),

x2(t ) = e Ãt x02 +
∫ t

0
e Ã(t−τ)B̃u(τ)dτ,

(4.5)
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where t > 0.

3 Some results on exact controllability

In this section, some results on exact controllability of the infinite-dimensional degen-

erate Cauchy problem are established in order to find its minimum energy control and,

then, to get the optimal control. However, we start by recalling the definition and criteria

for the exact controllability.

Let us consider the operators L̂t f and Lt f as defined in [15] by

L̂t f : L2(0, t f ;U) −→ X2

u 7−→ L̂t f (u) =
∫ t f

0
e Ã(t f −τ)B̃u(τ)dτ,

and
Lt f : L2(0, t f ;U) −→ X

u 7−→ Lt f (u) =
∫ t f

0
eA(t f −τ)Bu(τ)dτ.

L̂t f and Lt f are two bounded linear operators, then, their adjoint operators are written,

respectively, as

L̂∗
t f

: X2 −→ L2(0, t f ;U)

y 7−→ L̂∗
t f

(y) = B̃∗e Ã∗(t f −τ) y,

and
L∗

t f
: X −→ L2(0, t f ;U)

z 7−→ L∗
t f

(z) = B∗eA∗(t f −τ)z.

Based on [4, 6, 15, 24, 35] and [48], we present, in the following, some fundamental

results that guarantee the exact controllability of the infinite-dimensional singular dy-

namical system (4.1). The obtained result, which helps us to solve the different problems

as minimum energy control, is established thanks to the decomposition of the degenerate

Cauchy problem (4.1) into standard Cauchy problem (4.4) together with the controllabil-

ity Gramian operator in time [0, t f ].

Definition 3.1 [15] The system (4.1) is exactly controllable at time t f if for all x0, x f ∈ X, it

exists u(t ) ∈ L2(0, t f ;U) such that

x
(
t f , x0,u(.)

)
= x f .

Theorem 3.2 [48] The system (4.4) is exactly controllable in the interval [0, t f ], if and only

if,

Im(L̂t f ) = X2.
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Theorem 3.3 [15] The system (4.4) is exactly controllable in the interval [0, t f ], if and only

if, any one of the following conditions hold for some γ> 0 and for all z ∈ X2

• 〈L̂t f L̂∗
t f

z, z〉 ≥ γ‖z‖2
X2

;

•
∫ t f

0
‖B̃∗e Ã∗(t f −τ)z‖2

Udτ≥ γ‖z‖2
X2

;

• ker(L̂∗
t f

) = {0} and Im(L̂∗
t f

) is closed.

Corollary 3.4 [41] Let X be a Hilbert space and let T ∈ L (X). Then, T is invertible, if and

only if,

∃α> 0 such that ‖Tx‖ ≥ α‖x‖, ∀x ∈ X,

and

ker(T∗) = {0},

where L (X) represents the space of all bounded linear operators in X.

Theorem 3.5 [43] Let X and Y be Banach spaces, and let P : X → Y be a continuous linear

operator. Then, P is surjective operator, if and only if, it exists γ> 0, for all y∗ ∈ Y∗, we have

‖P∗y∗‖ ≥ γ‖y∗‖.

Theorem 3.6 [14] Let F ∈L (X,Z) and G ∈L (Y,Z), where X, Y, and Z are Banach spaces. If

rank(F) ⊂ rank(G),

then, there exists γ> 0, such that

‖F∗z∗‖X∗ ≤ γ‖G∗z∗‖Y∗ .

The following proposition which investigates the exact controllability of the system

(4.1) arises from the above results.

Proposition 3.7 The system (4.1) is exactly controllable, if and only if, the subsystem (4.4)

is exactly controllable.

Proof. Let us suppose that the system (4.1) is exactly controllable and the system (4.4)

is not exactly controllable, that means that the operator L̂t f is not surjective. Then, by

theorem 3.2, we get ImL̂t f 6= X2; this is equivalent to

∀γ> 0, ∃x ∈ X2, such that ‖L̂∗
t f

x‖L2(0,t f ;U) < γ‖x‖X2 .
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3. SOME RESULTS ON EXACT CONTROLLABILITY

And, then, ∀γ> 0,∃x ∈ X

‖L∗
t f

x‖L2(0,t f ;U) < γ‖x‖X.

Thus, the system (4.1) is not exactly controllable, that contradicts our supposition.

Inversely and following the same partten, we suppose that the subsystem (4.4) is ex-

actly controllable and the system (4.1) is not exactly controllable on [0, t f ]. Hence,

∀α> 0, ∃x ∈ X, such that ‖L∗
t f

x‖L2(0,t f ;U) < α‖x‖X.

Since Im(L̂t f ) ⊂ Im(Lt f ), then, the application of theorem 3.6 implies that ∃ δ> 0 such

that

‖L̂∗
t f

x‖L2(0,t f ;U) < δ‖L∗
t f

x‖L2(0,t f ;U).

Thus,

‖L̂∗
t f

x‖L2(0,t f ;U) < δα‖x‖X,

i.e., ∃ β = δα, such that

‖L̂∗
t f

x‖L2([0,t f ],U) < β‖x‖X2 .

Consequently, by the application of theorem 3.5 L̂∗
t f

is not surjective, that means the

subsystem (4.4) is not exactly controllable, which contradicts our supposition.

Finally, the system (4.1) is exactly controllable, if and only if, the subsystem (4.4) is

exactly controllable.

Inspired by the results established in [4] and [15], the concept of the controllability

Gramian operator will be introduced followed by an additional test for the exact control-

lability that we will develop.

Definition 3.8 [4] The controllability Gramian operator of the infinite-dimensional dy-

namical subsystem (4.4) for the initial time t0 = 0 and the final time t f is the operator

W(0, t f ) :=
∫ t f

0
e Ã(t f −τ)B̃B̃∗e Ã∗(t f −τ)dτ,

where

Ã = −E−1
22 A22 and B̃ = E−1

22

(
B2 −A21A−1

11 B1
)

.

Theorem 3.9 The subsystem (4.4) is exactly controllable in the interval [0, t f ], if and only

if, the controllability Gramian operator

W(0, t f ) =
∫ t f

0
e Ã(t f −τ)B̃B̃∗e Ã∗(t f −τ)dτ,

= L̂t f L̂∗
t f

,

is invertible.
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3. SOME RESULTS ON EXACT CONTROLLABILITY

Proof. Let us start our demonstration by proving the sufficiency of the condition and,

then, its necessity.

• Sufficiency

Let us assume that W(0, t f ) is invertible and show that the system (4.4) is exactly

controllable. In this case, we can define the input u(t ) by

u(t ) = B̃∗e Ã∗(t f −t )W−1(0, t f )(x2 f −e Ãt f x02),

for all x02, x2 f ∈ X2 that ensure u(t ) ∈ L2
(
0, t f ;U

)
.

The input u(t ) steers the state x2(t ) of system (4.4) from x02 to x2 f . Hence,

x2(t f ) = e Ãt f x02 +
∫ t f

0
e Ã(t f −τ)B̃u(τ)dτ,

= e Ãt f x02 +
∫ t f

0
e Ã(t f −τ)B̃B̃∗e Ã∗(t f −τ)W−1(0, t f )(x2 f −e Ãt f x02)dτ,

= e Ãt f x02 +W(0, t f )W−1(0, t f )(x2 f −e Ãt f x02),

= x2 f .

Thus, the system (4.4) is exactly controllable.

• Necessity

Now, we show that if the system (4.4) is exactly controllable, then, the Gramian op-

erator W(0, t f ) is invertible.

As the system (4.4) is exactly controllable on [0, t f ], then, by theorem 3.3 there exists

γ> 0 and for all z ∈ X2 we have

∫ t f

0
‖B̃∗e Ã∗(t f −τ)z‖2dτ≥ γ‖z‖2,

and

ker
(
L̂∗

t f

)
= {0}, and Im

(
L̂∗

t f

)
is closed.

Duo to lemma 3.4, we can, easily, prove that the operator L̂∗
t f

is invertible, which

ensures that L̂t f is, also, invertible. Consequently,

[
L̂∗

t f

]−1[L̂t f

]−1 =
[
L̂t f L̂∗

t f

]−1,

that means, the Gramian operator W(0, t f ) is invertible.

Finally, the system (4.4) is exactly controllable ⇐⇒ the Gramian operator W(0, t f ) is in-

vertible.
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4 Minimum energy control problem with bounded input

This section is designed to present one of the main results of this thesis that concerns the

minimum energy control problem for the infinite-dimensional degenerate Cauchy prob-

lem with variable operator coefficients, shew-hermitian pencil, and bounded input (4.1).

To achieve the desired result, we start by formulating the main problem, afterwards, the

optimal control of the system (4.1) is obtained by solving the problem (4.4) under some

assumptions on the exact controllability in time [0, t f ], followed by the determination of

the value of the performance index that ensures the value of the minimum energy control

of the system (4.4), and therefore the one of the system (4.1).

4.1 Problem formulation

Let us consider the system (4.4) which is the reduced form of the system (4.1). As it has

been shown in section 3, if the system is exactly controllable, then, there exist many inputs

that steer the state x2(t ) of the system (4.4) from x02 = 0 to the given final state x2 f ∈ X2.

Among these inputs, we are looking for an input u(t ) ∈ L2(0, t f ;U) satisfying the condition

u(t ) < u1 ∈ L2(0, t f ;U), (4.6)

with u1 ∈ U is a given control, and minimizing the performance index I(u),

I(u) =
∫ t f

0
u(τ)TQ2u(τ)dτ, (4.7)

where Q2 is hermitian, positive, and invertible operator such that

Q−1
2 ∈L (X2).

It is important to emphasize that the performance index I(u) defines the energy con-

trol in
[
0, t f

]
and the control u(t ) which minimizes the performance index I(u) is called

the minimum energy control.

Hence, the minimum energy control problem of the system (4.4) can be stated as fol-

lows : for a given operators E, A, and B associated with the degenerate Cauchy prob-

lem (4.1), u1 ∈ L2(0, t f ;U), Q2 ∈ L (X2), and a final state x f ∈ X with t f > 0, find an input

u(t ) ∈ L2(0, t f ;U) satisfying the condition (4.6) and steers the state x(t ) of the system (4.1)

from x0 = 0 to x f ∈ X that minimizes the performance index (4.7).
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4.2 Main results

To solve the problem of minimum energy control, we define the operator

W2(t f ,Q2) =
∫ t f

0
e Ã(t f −τ)B̃Q−1

2 B̃∗e Ã∗(t f −τ)dτ, (4.8)

where

Ã = E−1
22 A22 and B̃ = E−1

22

(
B2 −A21A−1

11 B1
)

.

By theorem 3.9, the operator W2(t f ,Q2) is invertible, if and only if, the system (4.1) is

exactly controllable in time [0, t f ]. In this case, the input can be defined as

u(t ) = Q−1
2 B̃∗e Ã∗(t f −t )W−1

2 (t f ,Q2)(x2 f −e Ãt f x02), (4.9)

for all t f > 0 and t ∈ [0, t f ], where

Q−1
2 ∈L (X2) and W−1

2 (x2 f −e Ãt f x02) ∈L (X2). (4.10)

The minimum value of the index of the performance which guarantees the minimum

energy control of the system (4.1) with skew-hermitian pencil and bounded input is pre-

sented by the following theorem.

Theorem 4.1 Let the degenerate Cauchy problem (4.1) be exactly controllable in time [0, t f ],

and let the conditions (4.10) be satisfied. Moreover, let u(t ) ∈ L2(0, t f ;U) be an input that

steers the state x(t ) of the system from x0 = 0 to x f ∈ X, and satisfying the condition (4.6).

Then, the input u(t ) defined by (4.9), also, steers the initial state of the system from x0 = 0 to

the final state x f ∈ X and minimizes the performance index (4.7), i.e.,

I(u) ≤ I(u).

Thereafter, the minimal value of the performance index (4.7) of the system (4.1) is given

by

∀t f > 0 : I(u) = xT
f W−1(t f ,Q2)x f , (4.11)

= xT
2 f W−1

2 (t f ,Q2)x2 f ,

Proof. If the conditions (4.10) are satisfied and the system (4.4) is exactly controllable,
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then, the input (4.9) is well-defined. Indeed, by the use of (4.5) and (4.9), we have

x2(t f ) = e Ãt f x02 +
∫ t f

0
e Ã(t f −τ)B̃u(τ)dτ,

= e Ãt f x02 +
∫ t f

0
e Ã(t f −τ)B̃Q−1

2 B̃∗e Ã∗(t f −τ)W−1
2 (t f ,Q2)(x2 f −e Ãt f x02)dτ,

= e Ãt f x02 +W2(t f ,Q2)W−1
2 (t f ,Q2)(x2 f −e Ãt f x02),

= x2 f .

As the expression (4.8) holds, we assume that the inputs u(t ) and u(t ), t ∈ [0, t f ] steer

the system state from x02 = 0 to x2 f ∈ X2, therefore,

x2(t f ) =
∫ t f

0
e Ã(t f −τ)B̃u(τ)dτ,

=
∫ t f

0
e Ã(t f −τ)B̃u(τ)dτ.

The subtraction of the two terms gives

∫ t f

0
e Ã(t f −τ)B̃

[
u(τ)−u(τ)

]
dτ = 0,

where its transposition is

∫ t f

0

[
u(τ)−u(τ)

]TB̃∗e Ã∗(t f −τ)dτ = 0. (4.12)

Post-multiplying the equality (4.12) by W−1
2 (t f ,Q2)

[
x2 f −e Ãt f x02

]
, gives

∫ t f

0

[
u(τ)−u(τ)

]TB̃∗e Ã∗(t f −τ)W−1
2 (t f ,Q2)

[
x2 f −e Ãt f x02

]
dτ = 0,

hence, ∫ t f

0

[
u(τ)−u(τ)

]TQ2u(τ)dτ = 0. (4.13)

As ∫ t f

0
< u(τ),Q2u(τ) >U dτ =

∫ t f

0
< [

u(τ)−u(τ)
]
,Q2

[
u(τ)−u(τ)

]>U dτ

+
∫ t f

0
< u(τ),Q2u(τ) >U dτ,

then, by the equation (4.13), it follows

∫ t f

0
u(τ)TQ2u(τ)dτ =

∫ t f

0
u(τ)TQ2u(τ)dτ,
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Hence,

I(u) ≤ I(u),

since the second term on the right-hand side of the inequality is positive.

The final step of the proof is about determining the minimum value of the perfor-

mance index. By the substitution (4.9) into (4.7), we obtain

I(u(t f )) =
∫ t f

0
uT(τ)Q2u(τ)dτ,

=
∫ t f

0

[
Q−1

2 B̃∗e Ã∗(t f −τ)W−1
2 (t f ,Q2)

(
x2 f −e Ãt f x02

)]T
Q2

×
[

Q−1
2 B̃∗e Ã∗(t f −τ)W−1

2 (t f ,Q2)
(
x2 f −e Ãt f x02

)]
dτ,

=
(
x2 f −e Ãt f x02

)TW−1
2 (t f ,Q2)

(
x2 f −e Ãt f x02

)
,

= xT
2 f W−1

2 (t f ,Q2)x2 f , since x02 = 0.

Finally, we define the controllability Gramian operator W−1(t f ,Q2) and the state vec-

tor x(t f ) by

W−1(t f ,Q2) =

[
0 0

0 W−1
2 (t f ,Q2)

]
, and x(t f ) =

[
x1 f

x2 f

]
.

Then, the minimal value of the performance index of the infinite-dimensional degen-

erate Cauchy problem (4.1) is

Iopt (u(t f )) = I(u(t f )),

= xT
2 f W−1

2 (t f ,Q2)x2 f ,

=
[

x1 f x2 f

][
0 0

0 W−1
2 (t f ,Q2)

][
x1 f

x2 f

]
,

= xT
f W−1(t f ,Q2)x f .

5 Procedure for computing the minimum energy control

In order to determine the optimal input u(t ) of infinite-dimensional degenerate Cauchy

problem with operators coefficients, skew-hermitian pencil, and bounded input (4.1), we

will present in this section a procedure. The optimal input u(t ), satisfies the condition

(4.6), steers the system (4.1) from the initial state x0 = 0 to the final state x f ∈ X and mini-

mizes the performance index (4.7).
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The steps are as follows

• Step 1 : Knowing the operators E, A, and B, compute the operators Ã, B̃, and e Ãt f .

• Step 2 : For a given operator Q2, compute the controllability Gramian operator

W2(t f ,Q2) using formula (4.8).

• Step 3 : For a given x f ∈ X and u1 ∈ L2(0, t f ;U), compute the input u satisfying the

condition (4.6). The obtained input u represents the minimum energy control of

system (4.1).

• Step 4 : Using (4.11), compute the minimal value of the performance index I(u) of

the system (4.1).

6 Conclusion

In this chapter, we investigated the interesting problem of minimum energy control for

an infinite-dimensional degenerate Cauchy problem with variable operator coefficients,

skew-hermitian pencil, a given initial state, and bounded input. First, we focused on the

orthogonal decomposition of degenerate Cauchy problem with a skew-hermitian pencil

in order to establish necessary and sufficient conditions for the exact controllability of

a degenerate Cauchy problem. Then, the minimum energy control problem for the de-

generate Cauchy system with bounded input is formulated and solved where sufficient

conditions for the existence of the solution of the problem has been given. Finally, a pro-

cedure for the computation of the optimal input satisfying the condition given above and

the minimum value of the performance index is proposed.
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Chapter 5

Stability and stabilization of

infinite-dimensional dynamical systems

1 Introduction

The general problems of stability and stabilization of linear dynamical systems in infinite

dimension with operator coefficients and initial condition are considered in this chapter.

It consists of designing a controller that uses informations on a measurable input to in-

fluence the behavior of the state considered as a deviation from the desired equilibrium.

One of the greatest important remarkable facts in modern control theory is the connec-

tion between stabilization and property of control systems named exact controllability.

In the next section, we will recall basic notions and some results of stability, the weak,

the exponential, the asymptotic stabilities, and Liaponov’s equation condition for infinite-

dimensional dynamical systems. Then, in the third section, we will present basic concepts

and properties of stabilization, and we deal with the stabilization problem of the infinite-

dimensional dynamical systems with bounded operator coefficients.

2 Stability problem

The most known and important definitions and properties of stability, weak stability,

asymptotic stability, exponential stability, and Liapunov’s equation condition for infinite-

dimensional dynamical systems are recalled in this section.
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2.1 Problem formulation

Consider the dynamical system described by the following equation

{
ẋ(t ) = Ax(t )+Bu(t ), t ∈R+,

x(0) = x0,
(5.1)

where A is an infinitesimal generator of a C0 semi-group (S(t ))t≥0 in a Hilbert space X, and

B ∈L (U,X) with U is the control space assumed to be a Hilbert space. x(0) = x0 represents

the initial condition.

The solution of the system (5.1) is given by

x(t ) = S(t )x0 +
∫ t

0
S(t −τ)Bu(τ)dτ. (5.2)

Now, we consider the dynamical system (5.1) without control, i.e., u(t ) = 0, we obtain

{
ẋ(t ) = Ax(t ),

x(0) = x0,
(5.3)

Then, the trajectory of the system (5.3) is

x(t ) = S(t )x0. (5.4)

2.2 Weak, asymptotic, and exponential stabilities

2.2.1 Basic definitions

Definition 2.1 [33] The system (5.3) is said to be

• Weakly stable if for every x ∈ X and y ∈ X∗, we have

〈S(t )x, y〉 −→ 0, as t −→∞;

• Asymptotically stable if for every x ∈ X, we

‖S(t )x‖ −→ 0, as t −→∞;

• Exponentially stable if there exist constants M ≥ 1 and ω> 0 such that,

‖S(t )‖ ≤ Me−ωt . (5.5)

Remark 2.2 [49]
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• In the case of finite dimension, the three types of stability coincide;

• In the case of infinite-dimension, we have

Exponential stability ⇒ Asymptotic stability ⇒ Weak stability.

However, the converse is not true.

The following example illustrated the remark

Example 2.3 [33] Let X = l 2 the Hilbert space of all square-summable sequences, and define

S(t )x =
(
e−t x1,e

−t
2 x2, · · · ,e

−t
n xn , · · ·

)
, t ≥ 0, (5.6)

for all (x1, x2, · · · , xn , · · · ) ∈ X. Then, S(t ) is a C0 semi-group on X and for every x ∈ X

‖S(t )x‖2 =
∞∑

n=1
e

−2t
n x2

n −→ 0, as t −→∞. (5.7)

Thus, S(t ) is asymptotically stable. However, for any t ∈ [0, +∞[

‖S(t )‖ = sup
||x||=1

‖S(t )x‖,

= sup
||x||=1

( ∞∑
n=1

e
−2t

n x2
n

) 1
2

,

= lim
n→∞e

−t
n ,

= 1.

(5.8)

This indicates that S(t ) is not exponentially stable. The infinitesimal generator of S(t )

is found to be

Ax =
d+S(t )

d t

∣∣∣
t=0

= −
(
x1,

x2

2
, · · · ,

xn

n
, · · ·

)
, (5.9)

and

σ(A) =

{−1

n

∣∣∣ n ≥ 1

}
, (5.10)

where σ(A) is the spectrum of the operator A.

2.2.2 Characterizations of stabilities

Let us recall that, in infinite dimension, the point spectrum of A is noted by σ(A) and

σ0 = lim
t→∞

1

t
ln |||S(t )|||. (5.11)
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More than that, the upper stability index of the operator A is

σ− = sup{Re(λ) : λ ∈σ(A)} , (5.12)

and the lower stability index of the operator A is

σ+ = inf
{
µ | ∃M > 0; |||S(t )||| ≤ Meµt , ∀t ≥ 0

}
. (5.13)

For the study of the asymptotic stability of C0 semi-groups, we need to recall the fol-

lowing properties of C0 semi-group of isometrics on Banach spaces.

Note that, a C0 semi-group on a Banach space X is called a C0 semi-group of isometrics

if

‖S(t )x‖ = ‖x‖, for all x ∈ X and t ≥ 0. (5.14)

Lemma 2.4 [33] Let S(t ) be a C0 semi-group of isometrics on a Banach space X with gener-

ator A. Then,

i) If Re(λ) < 0, so,

‖(λI−A)x‖ ≥ |Re(λ)|‖x‖ for all x ∈ D(A);

ii) If S(t ) does not extend to a C0-group of isometrics on X, then, λ ∈ σ(A) for all λ with

Re(λ) ≤ 0 and λ ∈σr (A) if Re(λ) < 0;

iii) If X 6= {
0
}

and S(t ) is a C0-group of isometrics on X, then,

σ(A)∩ iR 6= ;.

Theorem 2.5 [33] Let S(t ) be a uniformly bounded C0 semi-group on a Banach space X

and let A be its generator. Then,

i) If S(t ) is asymptotically stable, then, σ(A)∩ iR⊂σc (A) which represents the continu-

ous spectrum of A;

ii) If σ(A)∩ iR⊂σc (A) and σc (A) is countable. Then, S(t ) is asymptotically stable;

iii) If ρ(A) is compact. Then, S(t ) is asymptotically stable, if and only if, Re(λ) < 0 for

all λ ∈σ(A).

The following proposition establishes the link between the weak stability and the asymp-

totic stability.
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Proposition 2.6 [33] Let X be a Hilbert space. Suppose that S(t ) is a weakly stable C0 semi-

group on X, i.e.,

〈S(t )x, y〉 −→ 0 as t −→∞ for all x, y ∈ X.

If its infinitesimal generator A has compact resolvent. Then, S(t ) is asymptotically sta-

ble, i.e.,

‖S(t )x‖ −→ 0 as t −→∞ for all x ∈ X.

Theorem 2.7 [49] The system (5.3) is exponentially stable, if and only if,∫ ∞

0
‖S(t )x‖2d t <∞ for all x ∈ X. (5.15)

Corollary 2.8 [49] If there exists t0 > 0 such that |||S(t0)||| ≤ 1, then, the system (5.3) is ex-

ponentially stable.

Remark 2.9 [49]

i) In the case of finite dimension, the exponential stability is examined from the spec-

trum of the system dynamics. So, the system (5.3) is exponentially stable, if and only

if,

sup{Re(λ), λ ∈σ(A)} ≤ 0; (5.16)

ii) In infinite-dimension, we always have the inequality

sup{Re(λ), λ ∈σ(A)} ≤σ0. (5.17)

However, we do not need equality to obtain exponential stability as shown in the above

theorem.

Theorem 2.10 [33] Let A be the infinitesimal generator of a C0 semi-group S(t ) on a Ba-

nach space X. If for some p ≥ 1∫ ∞

0
‖S(t )x‖p d t <∞, for every x ∈ X,

then, S(t ) is exponentially stable.

Theorem 2.11 [33] Let S(t ) be a C0 semi-group with infinitesimal generator A. The follow-

ing statements are equivalent

i) S(t ) is exponentially stable, i.e.,

‖S(t )‖ ≤ Me−ωt , for M ≥ 1, ω> 0; (5.18)
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ii) lim
t→∞‖S(t )‖ = 0;

iii) There exists a t0 > 0 such that

‖S(t0)‖ < 1. (5.19)

Remark 2.12 [33] We say that S(t ) is exponentially asymptotically stable if for every x ∈ X,

there exist Mx , ωx > 0 depending on x such that

‖S(t )x‖ ≤ Mxe−ωx t . (5.20)

2.3 Liapunov’s equation condition

Let us recall that a matrix A is stable, if and only if, the Liapunov equation

A∗Q+QA = −I, (5.21)

has a positive solution Q [48]. However, in infinite-dimensional case, the generalization

of this result is addressed by the following theorem.

Theorem 2.13 [48] Assume that X is a real Hilbert space. The infinitesimal generator A of

the semi-group S(t ) is exponentially stable, if and only if, there exists a non-negative, linear

and continuous operator Q such that

2〈QAx, x〉 = −|x|2 for all x ∈ D(A). (5.22)

If the generator A is exponentially stable, then, the equation (5.22) has exactly one non-

negative, linear and continuous solution Q.

3 Stabilization problem

In the first part of this section, we proceed to the stabilization problem of the system (5.1),

where, it is solution given by

x(t ) = S(t )x0 +
∫ t

0
S(t −τ)Bu(τ)dτ. (5.23)

Afterwards, the second the part is devoted to stabilization problem of infinite-dimensional

regular dynamical system with bounded operator coefficients.
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3.1 Definition and characterizations

Definition 3.1 [49] The system (5.1) is said to be weakly
(
respectively strongly and exponentially

)
stabilizable, if there exists a bounded operator K ∈L (X,U) such that the system

{
ẋ(t ) = (A+BK)x(t ),

x(0) = x0 ∈ X,
(5.24)

be weakly
(
respectively strongly and exponentially

)
.

Theorem 3.2 [49] The system (5.1) is exponentially stabilizable, if and only if,∫ ∞

0
‖S(t )x‖2d t <∞ for all x ∈ X, (5.25)

where S(t ) is a semi-group generated by the operator (A+BK).

Corollary 3.3 [49] If there exists t0 > 0 such that |||S(t0)||| ≤ 1, then, the system (5.1) is ex-

ponentially stabilizable.

An important characterization of the stabilization of the system (5.1) is given by the

following theorem.

Theorem 3.4 [37] The following conditions are equivalent

i) The system (5.1) is exponentially stabilizable;

ii) For every initial condition x0 ∈ X there exists a control u(.) such that for the corre-

sponding mild solution of (5.23)∫ ∞

0

(
‖x(t )‖2 +‖u(t )‖2

)
d t <+∞; (5.26)

iii) There exists a non-negative operator P satisfying the following Riccati’s equation

2〈PAx, x〉+〈x, x〉−〈P2x, x〉 = 0, x ∈ D(A); (5.27)

iv) For every initial condition x0 ∈ X there exists a control u(.) such that the control u(t )

and the corresponding mild solution x(t ) tend to zero exponentially as t −→+∞.

3.2 Stabilization problem for infinite-dimensional systems with bounded

operator coefficients

In this part, we consider the following dynamical system

{
ẋ(t ) = Ax(t )+Bu(t ),

x(0) = x0,
(5.28)
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with A and B are two bounded operators defined in L (X) and L (U,X) receptively.

Let us emphasize that the definition 3.1 remains valid for the system (5.28). Therefore,

The system (5.28) becomes {
ẋ(t ) = AKx(t ),

x(0) = x0,
(5.29)

where, AK = A+BK with the domain D(AK) = D(A) and u(t ) = Kx(t ), t ≥ 0 for the existence

of a linear continuous operator K : X −→ U.

Hence, the operator AK generates a semi-group SK(t ), such that

x(t ) = SK(t )x0 = e(A+BK)t x0. (5.30)

The application of different results and properties of stability and stabilization, which

have been presented in the previous part, to analyze the system (5.29) is straightforward.

4 Conclusion

In this chapter, we have been interested in the study of stability and stabilization prob-

lem for the infinite-dimensional dynamical systems. Firstly, we have presented several

results and properties of the stability within sens weak, asymptotic, exponential, and Lia-

punov’s equation condition. Secondly, we have recalled definitions and some characteri-

zations of stabilization problems for controlled infinite-dimensional dynamical systems.

Finally, we have applied the notions of stability and stabilization on dynamical systems

with bounded operator coefficients in infinite dimension.
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This thesis is devoted to extend and present new results on the minimum energy con-

trol, stability, and stabilization problems by the use of many concepts of operators theory,

semi-group theory, control theory, and matrix theory. The whole document is structured

around three themes:

• Minimum energy control problem for finite dimensional singular dynamical sys-

tems with rectangular inputs. To carry out our study, we have established sufficient

conditions for the formulations of the minimum energy control problem by involv-

ing the Weierstrass theorem. Then, we have presented rigorous proof of the sol-

vency of the minimum energy control problem using a new technique that we have

developed taking into account the rectangular inputs. A procedure for computing

the optimal control and the minimum values of the performance index has been

proposed. Finally, the effectiveness of our results has been illustrated through an

example.

• Minimum energy control problem for the infinite-dimensional degenerate Cauchy

problem with variables operator coefficients, skew-hermitian pencil, and bounded

input. To acquire the desired results, we firstly have used the orthogonal decom-

position combined with a new technique to handle the problem of solvability and

cover the problem of exact controllability. Then, the problem of minimum energy

control was solved thanks to the obtained solution, the Gramian operator, and suit-

able formula of the control. Finally, a procedure for calculating the optimal input

which satisfies a condition, and the minimum value of the performance index has

been proposed.

• Stability and stabilization problem for infinite-dimensional dynamical systems. We

have started by considering the case where the state coefficient is an infinitesimal

generator of a C0 semi-group and the input coefficient is a linear operator. Then,

the case where the coefficients are bounded operators has been processed.

Based on the results given by the present thesis, several perspectives should be con-

sidered, among them,
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• The study of the minimum energy control problem for other types of infinite-dimensional

dynamical systems by involving other conditions and types of inputs.

• The extension of existing results and a deep study of the stability and stabilization

of dynamical systems in the infinite dimension.
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 نهائية لا أبعاد في الإيجابية الأنظمة وتثبيت استقرار

 المتغيرة، المؤثرات المعاملات من نوع و اللانهائية الأبعاد ذات المشوهة كوشي لمشكمة الدنيا الطاقة في التحكم مسألة الأطروحة هو حل هذه  منالغرض :الممخص     
 مشكمة أخرى، دراسة ناحية ومن محدودة والإدخالات مستطيمة من ناحية، أبعاد ذات مفردة ديناميكية و أيضا لأنظمة المحدودة والإدخالات والحزمة الضد الهيرمايتية،

 المفاهيم وبعض وايرستراس نظرية بينها من والتقنيات، الأساليب من مجموعة الدراسة تتبع الأولى، لممشكمة بالنسبة. الأبعاد اللانهائية الديناميكية للأنظمة الاستقرار والتثبيت
 لحساب منهاج اقتراح تم ذلك، من أكثر. اللانهائي البعد حالة في لممدخلات مناسب وتعبير الجرامي، والمؤثر المتعامد، والتحميل المحدود، البعد حالة في التحكم لقابمية

 الأبعاد المحدودة غير الديناميكية للأنظمة والتثبيت الاستقرار حول الحالية النتائج بعض تمديد تم الثانية، لممشكمة بالنسبة. الحالتين لكمتا الأداء مؤشر وتقميل الأمثل الإدخال
اللانهائية  الأبعاد ذات الديناميكية للأنظمة الطاقة في التحكم من الأدنى الحد مشكمة دراسة عمى عميها المتحصل الواعدة النتائج شجعتنا. مؤاثرات محدودة معاملات ذات

 .واستقرارها تثبيتها وتحميل اخرى
 

 الأبعاد ذات المشوهة كوشي  الإدخالات مستطيمة، مشكمة،محدودة أبعاد ذات مفردة ديناميكية  أنظمة، التثبيت، الاستقرار،حد الأدنى من التحكمال :الكممات المفتاحية     
 .المحدودة الإدخالات الحزمة الضد الهيرمايتية، ،اللانهائية

 Stabilité et Stabilisation des Systèmes Positifs en Dimension-Infinie 

    Résumé : Cette thèse explore, d'une part, le problème du contrôle de l'énergie minimale pour un problème de Cauchy 
dégénéré de dimension infinie à coefficients opérateurs variables, avec un faisceau anti-hermitien et une entrée bornée, et pour un 
système dynamique singulier de dimension finie avec des entrées rectangulaires, et d'autre part, le problème de stabilité et de 
stabilisation pour les systèmes dynamiques de dimension infinie. Pour le premier problème, l’étude suit un ensemble de méthodes 
et de techniques, parmi lesquelles, le théorème de Weierstrass et quelques concepts de contrôlabilité dans le cas de dimension 
finie, et la décomposition orthogonale, l'opérateur de Gramien, et une expression appropriée de l'entrée pour le cas de la 
dimension infinie. Plus que cela, une procédure pour calculer l'entrée optimale et minimiser l'indice de performance est proposée 
pour les deux cas. Ensuite, pour le deuxième problème, nous étendons certains résultats existant de la stabilité et de la 
stabilisation pour les systèmes dynamiques de dimension infinie à coefficients opérateurs bornés. Les résultats prometteurs que 
nous avons obtenus nous ont  encouragés à étudier le problème du contrôle de l'énergie minimale pour d’autres systèmes 
dynamiques de dimension infinie et à analyser leurs stabilités et stabilisations. 
 

    Mots-Clés : Contrôle de l'énergie minimale, Stabilité, Stabilisation, Systèmes dynamiques singuliers de dimension finie, Entrées 
rectangulaires, Problème de Cauchy dégénéré de dimension infinie, Faisceau anti-hermitien, Entrée bornée. 
 

 Stability and Stabilization of Positive Infinite-Dimensional Systems 

    Abstract : This thesis explores, on one hand, the minimum energy control problem for an infinite-dimensional degenerate 
Cauchy problem with variable operator coefficients, skew-hermitian pencil, and bounded input and for a finite dimensional singular 
dynamical systems with rectangular inputs, and on the other hand, the problem of stability and stabilization for the infinite-
dimensional dynamical systems. For the first problem, the investigation follows a set of methods and techniques, among them, the 
Weierstrass theorem and some concepts of controllability in the case of finite dimension, and the orthogonal decomposition, the 
Gramian operator, and a suitable expression of the input in the case of infinite dimension. More than that, a procedure for 
computing the optimal input and minimizing the performance index is proposed for both cases. Then, for the second problem, some 
existing results on stability and stabilization have been extended for infinite-dimensional dynamical systems with bounded operator 
coefficients. The promising results that we have obtained encouraged us to study the problem of minimum energy control for 
infinite-dimensional dynamical systems and to analyse their stabilities and stabilizations. 
 

    Key Words : Minimum energy control, Stability, Stabilization, Finite dimensional singular dynamical systems, Rectangular inputs, 
Infinite-dimensional degenerate Cauchy problem, Skew-hermitian pencil, Bounded input. 
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