

الج معورية الجائرية الحيمة وإطبة المعرية People's Democratic Republic of Algeria وزارة التعالي و البديد العالي و Ministry of Higher Education and Scientific Research جامعة عبد الحميد حابي واحيس – مستغاني Abdelhamid Ibn Badis University of Mostaganem <u>212</u> I العالو و التكنول وي التكنوا وجار Faculty of Sciences and Technology قسو المنحسة الميكانيكية

N° d'ordre : M....../GM/2021

MEMOIRE DE FIN D'ETUDE MASTERACADEMIQUE

Department of Mechanical Engineering

Filière : Génie Mécanique

Spécialité : Construction Mécanique

Thème

ANALYSE DES CONTRAINTES SUR LES ENGRENAGES CYLINDRIQUES

Présenté par :

- ✤ KHOUSSA HADJA
- ✤ SEDDAOUI NESSERINE

Soutenu le 07/07/2021 devant le jury composé de :

		0000 / 0001
Encadreur	Dr : S. BENKABOUCHE	Université de Mostaganem UMAB
Examinateur	Dr	Université de Mostaganem UMAB
Examinateur	Dr : M. BENDOUKHA	Université de Mostaganem UMAB
Président	Pr: H.GUECHICHI	Université de Mostaganem UMAB

Année Universitaire : 2020 / 2021

Remerciement :

Je remercie Dieu avant tout,

puis ma famille et surtout mes parents.

Comme je tiens à remercier très chaleureusement mon encadreur : Dr : S. BENKABOUCHE pour son aide et ses conseils tout au long de ce travail ainsi que les membres de jury d'avoir évalué ce travail.

Nos remerciements s'adressent également à tout nos professeurs pour leurs générosités et la grande patience dont ils ont su faire preuve malgré leurs charges académiques et professionnelles.

Enfin, je remercie mes amies Rania, Chahira, Samiha, Aicha, Daoyia, Amina qui ont participé avec nous de près ou de loin pour la concrétisation de ce mémoire.

Dédicace :

Je dédie ce modeste travail A mes chers parents pour le soutien, Leur patience, leur encouragement durant mon parcours jusqu'à ma réussite. Ainsi qu'à mes sœurs et mes frères et spécialement mon frère ainé Boukhoussa A tous mes amis, et à l'ensemble des étudiants de la promotion Master LMD/CM de l'année 2020/2021

NOMENCLATURE

- M : module
- Z : nombre de dent
- p : pas
- H: hauteur de la dent
- h_a : saillie de la dent
- h_{r} : creux de la dent
- b : largeur de denture

 d_{p} : diamètre primitif

 d_{s} : diamètre de tête

 d_{f} : diamètre de pied

- a : entraxe
- α : angle de pression
- $\eta_{_p}$: vitesse de rotation de pignon
- $\eta_{_r}$: vitesse de rotation de roue
- m_n : module réel
- β : angle d'hélice
- m_{t} : module apparent
- p_{t} : pas apparent
- p_n : pas réel
- ω : vitesse angulaire
- *n* : nombre de Toure
- δ : angle primitif
- δ_{a} : angle de tête

 $\delta_{_f}$: angle de pied θ_{a} : angle saillie θ_{f} : angle de creux θ : angle de hauteur Z_{V} : nombre de filets $\beta_{_{V}}$: angle d'hélice $m_{_{z}}$: module axial l: longueur du linge de contact entre les cylindres. B : largeur de contact. F : force appliquée. σ_{c} : la contrainte de contact F_{n} : la force normale. F_{t} : la force tangentielle E_{i} : le module d'élasticité des matériaux des dents. \mathcal{U}_i : coefficients de poisson. ρ_{i} : Les rayons de courbure des deux surfaces des dents en contact k_{i} : facteur de forme k_{m} : facteur de distribution de charge $k_{\rm v}$: facteur dynamique.

 $\sigma_{_f}$: contrainte de flexion.

- Y : facteur de forme de Lewis
- k_a : facteur de surcharge.

Liste des tableaux :

Tableau (I.1) : Caractéristiques des engrenages à denture droite	6
Tableau (I.2) : Modules normalises	7
Tableau (I.3) : Les caractéristiques des engrenages cylindriques à denture hélicoïdales. Tableau (I.4) : les paramètres géométriques des engrenages coniques.	13 15
Tableau (I.5): Les caractéristiques des engrenages roues et vis sans fin	17
Tableau (II.1) : Valeurs du facteur de forme de Lewis Y du nombre de dent	22
Tableau (II.2) : Valeurs Recommandées pour K_a	23
Tableau (II.3) : Facteur de distribution de charge, K_m	23
Tableau (II-4) : numéro de la qualité AGMA recommandée	24
Tableau (II-5) : Paramètres de calcul.	25
Tableau (III-6) : les caractéristiques du matériau	26
Tableau (III-7) : les valeurs de contrainte de contact hertz et AGMA	28
Tableau (II-8) : les valeurs de contrainte de flexion (analytique et AGMA)	29
Tableau (III-1) : les coordonnées du nœud critique	33
Tableau (III-2) : les résultat de contrainte de flexion	34
Tableau (III-3) : les valeurs de contraintes de V .M et de contraintes de contact (hertz).	38

Liste des figures

Figure (I.1) : la roue à aube
Figure (I.2) : Schéma d'engrenage (roue et pignon)03
Figure (I.3): Déférente type d'engrenages04
Figure (I.4) : les engrenages cylindriques à denture droite
Figure (I.5) : Caractéristiques d'une denture05
Figure (1.6): expression de l'entraxe06
Figure (1.7) : Exemple de différents modules07
Figure (I.8) :Angle de pression α 07
Figure (I.9) :Profil d'une dent en comparaison avec une droite et un arc de cercle08
Figure (I.10) :la développante de cercle
Figure (I.11) :profil en développante de cercle09
Figure (I.12) :Propriétés de la développante de cercle10
Figure (I.13) :Cercles de base et cercles primitifs10
Figure (I.14) : Ligne d'engrènement ou ligne de pression T1T211
Figure (1.15): Différents types d'engrenages hélicoïdaux12
Figure (1.16) : Caractéristiques des engrenages à denture hélicoïdale12
Figure (I.18) : Principaux types des engrenages coniques à dentures droite14
Figure (I.19) : Caractéristiques des engrenages coniques à denture droite14
Figure (I.20) : l'engrenage roue et vis15
Figure (I.21) : Principaux engrenages roue et vis16
Figure (I.22) : Principaux paramètres du système roue et vis16
Figure (I.23) : Caractéristiques des engrenages roues et vis sans fin16
Figure (II.1) : Modèle de Hertz pour deux cylindres parallèles en contact 18
Figure (II.2) : Notation pour la contrainte de contact entre deux engrenages

Figure(II.3) : Forces sur les dents de l'engrenage : (force tangentielle), (f);(Force normale, <i>Fn</i>)	orce radiale, 21
Figure(II.4): Facteur dynamique, Kv (Adapté de la norme AGMA 2001, d'évaluation fondamentaux et méthodes de calcul pour engrenage droit [°] .	, Facteurs 24
Figure(II-5): Forces sur les dents de l'engrenage : (force tangentielle), (force tangen	orce radiale)l ; (Force
Figure (II-6) : L'évolution de la courbe des contraintes de contact et AGN couple	AA en fonction de
Figure (II-7) : L'évolution de la courbe des contraintes de flexion et AGN couple	IA en fonction de 30
Figure (III-1) : Géométrie et Maillage d'une dent d'engrenage	31
Figure (III-2) : Différentes contraintes de VM	
Figure (III-3): Position du point critique	
Figure (III-4): coordonnées du nœud critique	
Figure (III-5): Variation des contrainte de Von-Misès et contrainte de fle fonction du couples	exion analytique en 34
Figure (III-6): Géométrie de deux dents (SolidWorks)	35
Figure(III-7) : maillage des deux engrenages	35
Figure (III-9): les conditions aux limites de deux engrenages en 3D	36
Figure (III-8) :Contrainte équivalent V. mises (c=300)	36
Figure (III-8) :Contrainte équivalent V. mises (c=350)	
Figure (III-9) :Contrainte équivalent V. mises (c=400)	
Figure (III-10) :Contrainte équivalent V. mises (c=450)	

Introduction générale	
Chapitre I : Généralité sur les engrenages	
• 1.1. Introduction	
• 1.2. L'histoire des engrenage	
• 1.3. Définition	
• 1.4. Fonction globale	
1.5. Avantages et inconvénients des engrenages4	
• 1.6. Les types d'engrenages	
1.6.1 Engrenages cylindriques à denture droite	
I.6.1.1.Caractéristiques des dentures	
I.6.1.2.Caractéristiques et formule des engrenages cylindriques à dentur droite	e
• I.6.1.3 le diamètre primitif	
• I.6.1.4 Expression de l'entraxe	
I.4.1.5 Dimensions normalisées	
1.6.1.5.1 la modula (m) 7	
$- 1-6-1-5-2-4 \text{ ngle de pression } \alpha = 7$	
- 1-0-1-3-2-Angle de pression d	
• I.6.1.6. Profil des dents	
I.6.1.7. Profil en développement de cercle	
- 1-6-1-7-1-Propriétés de la développante de cercle9	
I.6.1.8. Cercles de base et cercles primitifs	
• I.6.1.9. Ligne d'engrènement ou ligne de pression T1T211	
1-6-1-10. Le rapport de réduction	
• 1-6-1-11. Matériaux utilisés	
1.6.2 Engrenages cylindriques à denture hélicoïdale	
- I.6.2.1 Caractéristiques des engrenages à denture hélicoïdale12	
1.6.3 Engrenage conique ou à axes concourants 13	
- 1-6-3-1-Principaux types des engrenages conique	
• 1-6-3-1-1-Engrenages coniques à denture droite13	
• 1-6-3-1-2-ngrenages coniques à denture hélicoïdale ou	
spirale	
 1-6-3-1-3-Engrenages hypoïdes14 	
 1-6-3-2-Caractéristiques des engrenages coniques à denture 	
droite14	
1.6.4 Engrenages à roue et vis sans fin	
1-6-4-1-Caractéristiques cinématiques et géométriques16	
• 1-6-4-2-Principales caractéristiques des engrenages roues et vis san	S
fin	

Sommaire

•	II.1 Introduction	18
•	II.2 Pression de contact entre deux cylindres pas la théorie de hertz	
	II.2.1 Contact de pression des engrenages à denture droite	19
•	II-3-Définition de AGMA	20
•	II.4- Contrainte de flexion	21
•	II-5-Facteur de surcharge K_a	23
•	II-6-Facteur de distribution de charge, <i>K_m</i>	23
•	II-7-Facteur de forme Ks	23
•	II-8-Facteur dynamique K_v	24
•	II-9- Analyse des contraintes dans les engrenages cylindriques à denture	
	droite	25
	II -9-1- Calcul analytique des contraintes	
	- II -9-1-1- Calcul des paramètres des contraintes	25
	- II -9-1-2-Caractéristiques du matériau	26
	- II-9-1-3-Paramètres de calcul	26
	II-9-2-Calcule de la contrainte de contact AGMA	27
	II-9-3-Calcul de la contrainte de flexion	29
	II-9-4-La contrainte de flexion AGMA	29

Chapitre III : Modélisation des contraintes dans les engrenages

• III-1-Introduction	31
III-2-1-La contrainte de flexion	31
III-2-1-1-Maillage	31
III-2-1-2-Condition aux limites	31
III -2-1-3-Les résultats d'Ansys APDL de la contrainte de flexion	32
III -2-1-4- Zone critique due à la contrainte de flexion	33
III-3- La contrainte de contact	.35
III-3-1-Maillage	.35
III-3-2-Condition aux limites	36
III -3-3-Les résultats d'Ansys (workbench) de la constrainte de contact .	36
Conclusion	39

Introduction Générale

Les engrenages jouent un rôle très important dans la transmission de mouvement, allant de petit mécanisme d'une montre traditionnelle à aiguilles, jusqu'aux grands réducteurs industriels. Leurs fonctionnements dépendent essentiellement de leurs études et réalisations.

Malgré l'importance de ce système d'engrènement, les roues dentées présentent quelques anomalies au niveau des surfaces et racines des dents ; tel que le matage des flans, fissures, et la rupture par endommagement des dents, cela est causé par plusieurs paramètres, tel que : la mauvaise prise des conditions de service, études insuffisantes, manque de lubrification ... etc.

Actuellement l'outil informatique à minimiser considérablement le temps de l'étude, par le développement des logiciels de simulation par éléments finis, dont le but de mieux analyser le système d'engrènement en détectant par exemple les zones de forte concentration de contraintes, exploitant les différents matériaux, déterminant les conditions de chargements, ... etc

Dans cette étude nous étudions les engrenages cylindriques à denture droite, un exemple de pignon et roue avec les conditions de marche, est pris comme modèle de calcul et analyse des contraintes de flexion et les pressions de contact. Deux procédures ont été utilisées dans ce travail : le calcul analytique avec la norme AGMA, et l'autre, modélisation par élément finis via le code Ansys,

Le premier chapitre est consacré aux différentes définitions sur les engrenages, commençant par un bref historique sur les mécanismes d'engrènement existés, suivi par leurs types, et caractéristiques géométriques, en présentant les avantages et les inconvénients de ces genres d'éléments de machine.

Le deuxième chapitre est réservé aux calculs analytiques selon la norme AGMA des contraintes de flexion et les pressions de contact, d'un système pignon-roue avec un matériau de type AISI 4140, et une puissance et vitesse de rotation comme conditions de service.

Le dernier chapitre est destiné à la simulation des roues dentées. La contrainte de flexion est modélisée via le code Ansys (2D), sous forme d'une seule dent encastrée, avec l'application des intensités variables du coupe d'entré. La pression de contact est simulée par le code Ansys Workbench (3D), sous mêmes conditions de chargement.

Le travail est finalisé par une conclusion et quelques perspectives

Chapitre I

Généralites sur les engrenages

I-1-Introduction :

Aujourd'hui les engrenages occupent une place spéciale dans les systèmes mécaniques. C'est la façon la plus économique pour transmettre de la puissance et un mouvement de rotation dans des conditions uniformes. Comme les exigences sont vastes et avec des difficultés variées, les engrenages sont très complexes et d'une grande diversité.

L'importance de l'engrenage, comme élément mécanique nécessaire et idéal, est démontrée par la vaste gamme qu'on trouve dans toutes les industries. Le développement des nouvelles technologies, comme l'électronique, a remplacé quelques applications de l'engrenage, mais il reste toujours un élément mécanique dont l'utilisation croît continuellement.

I-2-L'histoire des engrenages :

On trouve, chez les grecs, une mention de roues dentées dès le 4ème siècle avant Jésus Christ. C'est souvent l'entraînement hydraulique de machines rudimentaires qui a conduit à l'utilisation de secteurs dentés.

La technologie des engrenages a peu évolué pendant de longs siècles et, dans les dessins de l'ingénieur italien Agostino RAMELLI (1531-1590)[1], on trouve un croquis de pompe à eau avec un engrènement à doigts.

C'est cette solution que l'on trouve également dans les moulins dont l'eau des rivières actionnait la roue à aubes (voir illustration). Le pignon était dans ces systèmes appelé "lanterne" du fait de sa forme en cage d'écureuil.

Un peu plus tard, la pendule de GALILEE

(1564-1642) montre une évolution vers des roues à dentures plus proches de celles que nous connaissons aujourd'hui [1]

Il faudra attendre le 19ème siècle et la maîtrise du taillage des dentures sur machines-outils pour que se développe la technologie des engrenages, qui est aujourd'hui totalement maîtrisée même pour des solutions de formes très complexes.

Figure (I.1) :la roue à aube.

I-3-Définition :

Un engrenage est un mécanisme composé de deux roues dentées mobiles autour d'axes de position fixe et dont l'une entraîne l'autre par l'action de dents successivement en contact et on dit que les deux roues sont conjuguées. La petite roue se nomme le pignon, la grande roue extérieure s'appelle la roue, la grande roue intérieure s'appelle la couronne. L'une des roues peut avoir un rayon infini, elle s'appelle alors une crémaillère, voir la figure :

Figure (I.2) : Schéma d'engrenage (roue et pignon) [2]

Remarque : une roue à rayon infini est une crémaillère.

I-4-Fonction globale :

La fonction globale d'un engrenage est de transmettre un mouvement de rotation par obstacles en changeant ses caractéristiques.

Figure (I.3): Différents types d'engrenages

1-5-Avantages et inconvénients des engrenages :

- > Les Avantages
- Transmission de puissances élevées sous fréquences de rotation élevées.
- Transmission à rapport rigoureusement constante (transmission synchrone).
- Transmission parfaitement homocinétique.
- Possibilités de transmissions entre plusieurs sabres.
- Rendement élevé.
- Durée de vie importante et Bonne fiabilité.
- > Les inconvénients :
- Nécessité d'un entraxe précis et constant.
- Niveau sonore variable suivant le type d'engrenage.
- Transmission des à-coups et vibrations.
- Nécessité d'une lubrification, souvent par fluide.
- Réversibilité possible suivant type d'engrenage.
- Coût très variable suivant type d'engrenage et classe de qualité

I-6-Les types d'engrenages :

Suivant la fonction qu'ils ont à réaliser, les engrenages peuvent avoir différentes formes et différentes caractéristiques de denture.

I-6-1-les engrenages cylindriques droits à denture droite :

De tous les engrenages, ceux sont les plus simples et les plus économiques. Ils permettent une transmission de mouvement entre deux arbres parallèles. Les dents des engrenages sont parallèles à l'axe de rotation des arbres.

Figure (I.4) :les engrenages cylindrique à denture.

I-6-1-1-Caractéristiques des dentures :

Les plus simples et les plus économiques, ils sont utilisés pour transmettre la puissance et le mouvement entre 2 arbres parallèles. Les dents des roues de l'engrenage sont parallèles à l'axe de rotation des arbres.il y a engrènement ((couple de dents)) par ((couple de dents)) ce qui entraine des chocs d'engrènement.

Leur utilisation est généralement bruyante et génère des vibrations.

Figure (I.5) : Caractéristiques d'une denture [2]

Désignation	symbole	Valeur
Module	Μ	la valeur permettant de définir les caractéristiques
		dimensionnelles de la roue dentée.
Nombre de dents	Z	Nombre entier positif lie aux conditions de
		fonctionnement et de fabrication.
Pas	Р	$p = \pi.m$
Saillie de la dent	h _a	$h_a = m$
Creux de la dent	h _r	$h_r = 1.25m$
Hauteur de la dent	Н	h = 2.25m
Largeur de denture	В	b = k m (k comprisentre 8 et 10, souvent 10)
Diamètre primitif	d _p	$d_p = m.Z$
Diamètre de tête	ds	$d_s = d + 2 h_a = m (Z + 2)$
Diamètre de pied	d _f	$d_f = d - 2h_f = m (Z - 2.5)$

1-6-1-2-Caractéristiques et formule des engrenages cylindriques à denture droite :

Tableau (I.1) : Caractéristiques des engrenages à denture droite.

I-6-1-3-le diamètre primitif (d_p) :

Les diamètres primitifs de deux roues dentées formant un engrenage sont des cercles fictifs tangents. $d_p = m.z$ (pour le pignon)

I-6-1-4-Expression de l'entraxe (a):

Figure I.6: expression de l'entraxe [2]

I-6-1-5-Dimensions normalisées : Deux valeurs permettent de définir les roues dentées, le module et l'angle de pression :

I-6-1-5-1-le module (m) : [2]

Le module d'une denture est la valeur qui permet de définir les caractéristiques d'une roue dentée. C'est le rapport entre le diamètre primitif de la roue et le nombre de ses dents. Le module est une grandeur normalisée.

Remarque : l'épaisseur de la dent et sa résistance dépendent du choix du module. Ce choix ne doit pas être improvisé mais doit se faire après un calcule de RDM.

Modules normalisés (mm) :		
Série principale		
0.5	1.25	3
0.6	1.5	4
0.8	2	5
1	2.5	6

Tableau (I.2) : Modules normalises.

I-6-1-5-2-Angle de pression α : autre caractéristique importante, il définit l'inclinaison de la droite de pression T₁T₂ de la forme de la dent. $\alpha = 20^{\circ}$ est la valeur la plus utilisée, $\alpha = 14^{\circ}30'$ est utilisé en remplacement d'engrenages anciens, $\alpha = 25^{\circ}$ est un standard aux USA.

Figure (I.8) : Angle de pression α .

I-6-1-6- Profil des dents :

Les dents doivent permettre de maintenir toujours les deux roues en contact, d'assurer une rotation continue d'une roue par rapport à l'autre et de ne pas bloquer le fonctionnement de l'engrenage. Le profil d'une dent de roue dentée n'est ni une droite ni un arc de cercle (figure 1.9)

I-6-1-7-Profil en développement de cercle :

La développante de cercle est donc la courbe dont les normales restent tangentes à un cercle fixe. Plus concrètement, c'est la courbe que trace une main déroulant une bobine de fil tenue dans l'autre main.

Si on considère deux cercles de base associés à deux roues d'un même engrenage, il est possible de faire rouler sans glisser une droite simultanément sur les deux cercles. De ce fait la vitesse circonférentielle des points des cercles est la même que ceux de la droite. Un point de la droite (point d'engrènement) va générer, sur les deux pignons, le flanc de dent ; la figure (1.10) représente la développante de cercle.

Figure (I.10) : la développante de cercle [2]

Le profil idéal définit par les mathématiciens est appelé profil en développante de cercle. Ce profil est obtenu en traçant la trajectoire d'un point « A » appartenant à une droite que l'on fait rouler sans glisser sur un cercle de diamètre db, appelé diamètre de base de la roue.

La développante est la courbe engendrée par un point M d'une droite TM qui roule sans glisser sur le cercle (O, R). Le profil des flancs et faces des dents suivent rigoureusement la géométrie de la développante.

I-6-1-7-1-Propriétés de la développante de cercle :

Quand on met deux surfaces en contact, il y a toujours une normale et une tangente communes au point de contact. Quand il s'agit de profils en développante de cercle, la normale et la tangente sont communes aux profils à tous les points de contact. Pour les profils en développante, la normale commune aux profils passe toujours par le point primitif. Par définition, la corde du profil 1 est normale à la tangente commune au point de contact de même que la corde du profil 2. Donc, les deux cordes sont continuées et forment la ligne AB que l'on appelle la ligne d'action ou ligne de contact. Cette ligne est tangente aux deux cylindres de base et coupe donc toujours la ligne qui joint les centres au même point P permettant ainsi de transmettre un mouvement uniforme. Le profil en développante remplit donc les exigences du théorème des rapports de vitesse constant

Figure (I.12) : Propriétés de la développante de cercle.

I-6-1-8-Cercles de base et cercles primitifs :

Pour un engrenage les cercles primitifs sont uniques. Ils définissent le rapport de la transmission. Les cercles de base définissent le profil de la denture, autrement dit la développante. À deux cercles primitifs peut correspondre, en théorie, une infinité de cercles de base et d'angles de pression possibles, seule condition : r2/r1=rb2/rb1.

Figure (I.13) : Cercles de base et cercles primitifs.

I-6-1-9-Ligne d'engrènement ou ligne de pression T1T2:

Tangente aux deux cercles de base, c'est la ligne qui porte (en permanence) l'effort de contact s'exerçant entre les deux roues. Le point de contact (M) entre les dents est toujours situé sur cette ligne. La tangente en M aux deux profils en contact est toujours perpendiculaire à T1T2. Le contact en M entre les deux dents se fait à la fois avec du roulement et du glissement

Figure (I.14) : Ligne d'engrènement ou ligne de pression T1T2

I-6-1-10-Le rapport de réduction :

On peut assimiler l'engrènement d'un pignon et d'une roue au roulement sans glissement de deux cercles primitifs l'un sur l'autre.

Le rapport de transmission de l'engrènement est alors :

Le rapport de transmission de l'engrènement est alors :
$$i = \frac{\eta_p}{\eta_r} = \frac{Z_r}{Z_p} = \frac{D}{d}$$

- η_{p} : Vitesse de rotation du pignon
- η : Vitesse de rotation de la roue
- Z_r : nombre de dents de la roue
- Z_n : nombre de dents du pignon
- D : diamètre de la roue
- d : diamètre du pignon

1-6-1-11-Matériaux utilisés : [2]

- Fonte à graphite sphéroïdal EN-GJS (ex « FGS ») : Roues des grandes dimensions.
- Aciers ordinaires type C : Engrenages peu chargés.
- Matières plastiques : Nylon, Téflon.

I-6-2-Les engrenages cylindriques à denture hélicoïdale :

Les engrenages hélicoïdaux sont des types d'engrenages cylindriques avec une trace de dent inclinée. Par rapport aux engrenages droits, ils ont un rapport de contact plus important et excellent dans le silence et la réduction des vibrations et sont capables de transmettre une grande force. Une paire d'engrenages hélicoïdaux a le même angle d'hélice mais la main d'hélice est opposée. Lorsque la section de référence de l'engrenage est dans le plan normal, en inclinant l'outil de taillage, la machine à tailler les engrenages droits et l'outil de taillage peuvent être utilisés pour produire des engrenages hélicoïdaux. En raison de la torsion des dents, leur fabrication présente l'inconvénient d'une production plus difficile.

Figure 1.15 : Différents types d'engrenages hélicoïdaux

I-6-2-1-Caractéristiques des engrenages à denture hélicoïdale :

Toutes les roues à denture hélicoïdale de même module et de même angle d'hélice engrenant entre elles (quels que soient leurs diamètres ou leurs nombres de dents). Seules les hélices doivent être de sens contraire sur les roues.

Figure 1.16 : Caractéristiques des engrenages à denture hélicoïdale.

nencordure			
Désignation	Symbole	Formule	
Module réel	m _n	Par un calcul de RDM	
Nombre de dents	Z	Par un rapport de vitesse	
Angle d'hélice	β	Entre 20° et 30°	
Module apparent	m _t	$m_t = \frac{m_n}{\cos\beta}$	
Pas apparent	Pt	$p_t = \frac{p_n}{\cos\beta}$	
Pas réel	p _n	$p_n = \pi m_n$	
Diamètre primitif	d	$d = m_t Z$	
Diamètre de tête	da	$d_a = d + 2m_n$	
Diamètre de pied	df	d _{f=} d- 2.5m _n	
Saillie	ha	h _a =m _n	
Creux	h_{f}	$h_{f}=1.25m_{n}$	
Hauteur de dent	h	$h=2.25m_n$	
Largeur de denture	b	$b \ge \pi m_n / \sin \beta$	
Entraxe	а	$a = (d_1 + d_2)/2$	

Le tableau (1-4) : représente les caractéristiques et formule des engrenages droits à denture hélicoïdale

I-6-3-Engrenage conique ou à axes concourants :

C'est un groupe important utilisé pour transmettre le mouvement entre deux arbres non parallèles dont les axes sont concourants, les axes à 90° sont les plus courants. Les surfaces primitives ne sont plus des cylindres mais des cônes (cônes primitifs). Les cônes sont tangents sur une ligne de contact MM' et leur sommet commun est le point S, c'est aussi le point d'intersection des axes de rotation des deux roues.

I-6-3-1-Principaux types des engrenages coniques :

I-6-3-1-1-Engrenages coniques à denture droite :

Ce sont les plus simples, la direction des génératrices du profil de la denture passe par le sommet S. Aux vitesses élevées on retrouve les mêmes inconvénients que les engrenages droits à denture droite (bruits de fonctionnement, fortes pressions sur les dents...).

I-6-3-1-2-ngrenages coniques à denture hélicoïdale ou spirale : même démarche que pour les engrenages droits, pour diminuer les bruits aux grandes vitesses, assurer une plus grande progressivité et continuité de la transmission, la denture droite est remplacée par une denture spirale ou hélicoïdale (angle de pression usuel $\alpha n=20^{\circ}$ ou 14°30', angle de spirale $\beta=35^{\circ}$).

Tableau (I.3) : Les caractéristiques des engrenages cylindriques à denture hélicoïdales [9]

I-6-2-1-3-Engrenages hypoïdes : on peut les considérer comme une variante complexe des précédents avec les mêmes qualités générales. Ils sont à mi-chemin entre les engrenages coniques et les engrenages à roue et vis sans fin. Les axes des roues sont orthogonaux mais non concourants. Les surfaces primitives ne sont plus des cônes mais des hyperboloïdes (en forme d'hyperbole). Le glissement (ou frottement) entre les dents est élevé.

Figure (I.17) : Principaux types des engrenages coniques à dentures droite.

I-6-3-2-Caractéristiques des engrenages coniques à denture droite :

La taille et la forme de la dent (module m, pas p, d, da, df, h, ha, hf) sont définies à partir du plus grand cercle ou sur l'extrémité la plus large de la denture.

Figure (I.18) : Caractéristiques des engrenages coniques à denture droite [10]

Principales caractéristiques des engrenages coniques à denture droite Tableau 7				
Caractéristique	Symbole ISO	Observations, définitions formules		
vitesse angulaire	ω	en rad.s ⁻¹ ; ω = πN/30		
nombre de tours	n	n en tours par minute ou tr.min ⁻¹		
nombre de dents	Z	Z ₁ (roue1) et Z ₂ (roue 2)		
module	m	nombre normalisés : voir tableaux des valeurs des engrenages droits à dentures droites		
pas (pas primitif)	р	$p = \pi m$ (remarque $p_1 = p_2 = p$)		
angle primitif	δ	δ_1 (roue1), δ_2 (roue 2)		
rayon primitif	r	$r_1 = \frac{1}{2}mZ_1 = \frac{1}{2}d_1$; $r_2 = \frac{1}{2}mZ_2 = \frac{1}{2}d_2$		
diamètre primitif	d	$d_1 = mZ_1$; $d_2 = mZ_2$		
angle de pression	α	valeur usuelle: α = 20°		
angle de tête	δa	$\delta_a = \delta + \theta_a$		
angle de pied	δ _f	$\delta_{\rm f} = \delta - \Theta_{\rm f}$		
angle saillie	θ _a	$tan\theta_a = 2m.sin\delta/d$		
angle de creux	θ _f	$\tan\theta_{\rm f} = 2.5 \text{m.sin} \delta/d$		
angle de hauteur	θ	$\theta = \theta_a + \theta_f$		
diamètre de tête	da	$d_a = d + 2m.cos\delta$		
diamètre de pied	d _f	$d_f = d - 2,5m.cos\delta$		
saillie	h _a	h _a = m		
creux	h _f	h _f = 1,25m		
hauteur de dent	h	$h = 2,25m = h_a + h_f$		
Longueur génératrice primitive		$L = d_1/2\sin\delta_1 = d_2/2\sin\delta_2$		
largeur de dent	b	$L/4 \le b \le L/3$ (raisons de taillage)		
δ_1 Erreur ! Signet non défini. + δ_2 = 90°	$\delta_1 + \delta_2 < 90$	$\delta_1 + \delta_2 > 90$		
$\phi_1 = \delta_2$	$\phi_1 = 90 - \delta_1$	$\phi_1 = 90 - \delta_1$		
$\phi_2 = \delta_1$	$\phi_2 = 90 - \delta_2$	$\phi_2 = 90 - \delta_2$		

Le tableau (I.5) : les paramètres géométriques des engrenages coniques.

Tableau (I.4) : les paramètres géométriques des engrenages coniques

I-6-4-Engrenages à roue et vis sans fin :

Pour ces engrenages, la vis ressemble à une vis d'un système vis-écrou et la roue à une roue droite à denture hélicoïdale. La transmission de mouvement est effectuée entre deux arbres orthogonaux (axes non courants à 90°). Ces engrenages permettent de grands rapports de réduction (jusqu'à 1/200) et offrent des possibilités d'irréversibilité. Ils donnent l'engrènement le plus doux de tous les engrenages, silencieux et sans chocs. Contrepartie : un glissement et un frottement important provoquent un rendement médiocre. De ce fait, une bonne lubrification est indispensable ainsi que des couples de matériaux à faible frottement (exemple : vis acier avec roue en bronze...).

Figure (I.19) : l'engrenage roue et vis.

Figure (I.20) : Principaux engrenages roue et vis.

I-6-4-1-Caractéristiques cinématiques et géométriques : Contrairement aux autres engrenages, le rapport des nombres de dents est différent du rapport des diamètres primitifs, même remarque pour les engrenages hypoïdes. Les caractéristiques de la roue sont celles d'une roue droite à denture hélicoïdale. Zv représente le nombre de filets de la vis (Zv = 1, 2 ou 4 mais aussi 3, 5, 6, 8 filets et parfois plus). Le pas axial px, mesure la distance, suivant l'axe, entre deux filets consécutifs de la vis. Le pas de l'hélice pz représente le pas du filet (ou d'un des filets) de la vis : pz = Zv.px et tan βR = pz/ π dv. avec βR = 90° - β v La vis et la roue ont le même pas normal pn. De plus le pas axial de la vis est égal au pas apparent de la roue (px = ptR).

Figure (I.21) : Principaux paramètres du système roue et vis.

Figure (I.22) : Caractéristiques des engrenages roues et vis sans fin.

Désignation	Symbole	Valeur
Angle d'hélice	$\beta_{\rm v}$	Fonction de la réversibilité de la transmission
Module réel	m _n	Déterminé par un calcul de résistance des matériaux .
Module axial	mz	$m_z = m_n / \cos \gamma_{vis}$
Pas réel	p _n	$p_n = \boldsymbol{\pi} \cdot m_n$
pas axial	p _x	$p_x = p_n / \cos \gamma_{vis}$
Pas de l'hélice	pz	$p_z = p_x \cdot Z_{vis}$
Diamètre primitif	d	$d = p_z / \pi$. tan γ_{vis}
Diamètre extérieur	d _a	$d_a = d + 2 m_n$
Diamètre intérieur	d _f	$d_{f} = d - 2,5 m_{n}$
Longueur de la vis	L	$L = 5 p_x environ$

Le tableau (I.6) : les calculs concernant des engrenages roues et vis sans fin.

Tableau (I.5): Les caractéristiques des engrenages roues et vis sans fin

Chapitre II

Analyse et Calcul des contraintes dans les engrenages cylindriques à denture droite

II-1-Introduction

De nombreux contacts intervenant dans les ensembles mécaniques correspondent à un contact, suivant un point ou une ligne, si l'on idéalise les pièces en présence des supposant rigides ; ce type de contact constitue la famille des contacts hertziens pour lesquels les premiers éléments de solution ont été proposés par Heinrich Hertz entre 1881 et 1895 [3]. En pratique, sous l'effet d'une force normale au plan tangent commun entre deux pièces, une surface de contact se crée à travers laquelle les efforts sont transmis d'une pièce à l'autre. Ces efforts surfaciques génèrent une répartition spécifique de contraintes (efforts de cohésion) dans la région du contact qui peut entraîner des déformations permanentes ou des endommagements ; il est important de pouvoir les prévoir.

II-2-Pression de contact entre deux cylindres par la théorie de hertz :[4]

L'application de la théorie de Hertz à ce contact permet de prévoir la forme et les dimensions de la surface de contact (dans nos cas est un contact linéique entre deux cylindre). La surface formée par le contact de deux cylindres est une surface rectangulaire (fig II.1)

Figure II.1 : Modèle de Hertz pour deux cylindres parallèles en contact

La largeur de contact est donnée par la formule suivante :

$$b = 2\sqrt{\frac{F(k_1+k_2)}{l(\frac{1}{R_1}+\frac{1}{R_2})}}$$
(II-1)

Avec :
$$k_i = \frac{(1-v_i^2)}{\pi E_i}$$
 (II-2)

 v_i , E_i :Coefficients de poisson et modules d'Young des matériaux des cylindres.

- *l* : Longueur de la ligne de contact entre les cylindres.
- **b** : largeur de contact.
- *F* : force appliquée.

La répartition des contraintes suivant les directions x, y et z sont données par les formules suivantes :

Pour
$$x=0$$
 on a: $P_{max} = \frac{2F}{\pi bl}$ (II-3)

$$\sigma_x = -P_{max} \left\{ \left[2 - \frac{1}{1 + \frac{y^2}{b^2}} \right] \sqrt{1 + \frac{y^2}{b^2}} - 2\frac{y}{b} \right\}$$
(II-4)

$$\sigma_y = \frac{-P_{max}}{\sqrt{1 + \frac{y^2}{b^2}}} \tag{II-5}$$

$$\sigma_z = -2\nu P_{max}(\sqrt{1 + \frac{y^2}{b^2} - \frac{y}{b}}) \tag{II-6}$$

II-2-1-Contrainte de contact entre les engrenages à denture droite :

Les dents d'engrenage doivent également pouvoir fonctionner pendant la durée de vie requise, sans trop piquer la forme des dents. La piqûre est un phénomène dans lequel de petites particules sont retirées de la surface des faces des dents en raison d'une pression de contact élevée, ce qui provoque la fatigue. La figure II.2 montre une pression de communication locale élevée. Un processus prolongé après le début du forage provoque une rugosité des dents et, éventuellement, la forme se détériore. Une défaillance rapide suit. A noter que les dents d'entraînement et les dents entraînées sont soumises à ces pressions de haute intensité de manière uniforme. La référence [5] fournit un traitement complet contre l'usure des engrenages. Travailler au point de contact sur les dents de l'engrenage est infiniment rigide, la connexion est une simple ligne. En effet, du fait de l'élasticité du matériau, la forme de la dent change légèrement, ce qui conduit la force transmise à agir sur une petite zone rectangulaire.

La contrainte résultante est appelée contrainte tangentielle ou hertz. La référence [6] donne la formule de contrainte de contact d'Hertz :

$$\sigma_{c} = \sqrt{\frac{F_{n}}{B}} \frac{1}{\pi \left\{ \left[\left(1 - v_{1}^{2} \right) / E_{1} \right] + \left[\left(1 - v_{2}^{2} \right) / E_{2} \right] \right\}} \left(\frac{1}{\rho_{1}} + \frac{1}{\rho_{2}} \right)$$
(II-7)

Où les indices 1 et 2 renvoient aux matériaux des deux corps en contact.

Fn: la force normale fournie par la dent d'entraînement sur la dent entraînée.

- *B* : la largeur de face des dents d'engrenage.
- Ei : Le module d'élasticité des matériaux des dents.
- vi : Les coefficients de Poisson.
- ρi : Les rayons de courbure des deux surfaces des dents en contact.
- $\rho i = Dpi \ 2 \sin(\alpha)$

Avec : $Fn = Ft \cos(\alpha)$

Ft : la force tangentielle α : angle de pression

Figure (II.2): Notation de la contrainte de contact entre deux dents.

II-3-Définition de AGMA :

L'approche AGMA (American Gear Manufacturers Association) pour concevoir des dents d'engrenage pour résister à la rupture par fatigue de flexion, tout en étant basée sur l'équation de Lewis idéalisée, implique une longue liste de facteurs d'ajustement empiriques (parfois appelés facteurs de déclassement) pour tenir compte de l'influence de diverses fabrications, variabilités d'assemblage, géométriques, de chargement et de matériaux.

De nombreux graphes et expressions de données sont publiées par l'AGMA. La présentation dans ce texte ne représente qu'un synopsis de la procédure AGMA, avec une sélection abrégée de données

Justificatives pour démontrer l'approche de base ; tout concepteur responsable de la conception ou du développement des engrenages est bien avisé de consulter les normes AGMA les plus récentes.

La formule (II.8) est une formule statique, en pratique elle sera multipliée par des autres facteurs, dépendant des conditions de service. La pression de contact réelle est donnée par la formule suivante :

$$\sigma_{c} = \sqrt{\frac{F_{n}}{B}} \frac{1}{\pi \left\{ \left[\left(1 - v_{1}^{2}\right)/E_{1} \right] + \left[\left(1 - v_{2}^{2}\right)/E_{2} \right] \right\}} \left(\frac{1}{\rho_{1}} + \frac{1}{\rho_{2}} \right) \times K_{v} \times K_{m} \times K_{s} \times K_{a}}$$
(II-8)

Avec :

Ka : Facteur de surcharge

Ks : facteur de forme

Km : facteur de distribution de charge

 $K\nu$: facteur dynamique.

II-4-Contrainte de flexion : L'analyse des contraintes des dents d'engrenage est facilitée par la prise en compte des composantes de force orthogonale, Ft, comme le montre la figure (II.3)

Figure II.3 : Forces sur les dents de l'engrenage : (force tangentielle), (force radiale,);(Force normale, *Fn*)

La force tangentielle, produit un moment de flexion sur la dent d'engrenage similaire à celui sur une poutre en porte-à-faux.

La contrainte de flexion qui en résulte est maximale à la base de la dent dans le congé, qui relie le profil de la développante au bas de l'espace dentaire. En tenant compte de la géométrie détaillée de la dent, Wilfred Lewis a développé l'équation de la contrainte à la base du profil de développante, qui est maintenant appelée l'équation de Lewis

Équation de Lewis pour la contrainte de flexion dans les dents d'engrenage :

$$\sigma_f = \frac{F_t}{m.B.Y} -$$
(II-9)

 F_t : force tangentielle.

B: largeur du visage de la dent.

Y: Facteur de forme de Lewis, qui dépend du nombre de dents dans l'engrenage.

Le tableau II.1 représente des valeurs du facteur de Lewis en fonction du nombre de dents

Nombre de dents	Y	Nombre de dents	Y
12	0.245	28	0.353
13	0.261	30	0.359
14	0.277	34	0.371
15	0.290	38	0.384
16	0.296	43	0.397
17	0.303	50	0.409
18	0.309	60	0.422
19	0.314	75	0.435
20	0.322	100	0.447
21	0.328	150	0.460
22	0.331	300	0.472
24	0.337	400	0.480
26	0.346		

Tableau II.1 : Valeurs du facteur de forme de Lewis Y du nombre de dent.

L'équation de base de la contrainte de flexion AGMA peut s'écrire :

$$\sigma_f = \frac{F_t}{mBY} \times K_v \times K_m \times K_s \times K_a$$
(II-10)

 F_t : La force tangentielle

 K_a : Facteur de surcharge.

 K_m : Facteur de distribution de charge.

K_{v} : Facteur dynamique.

II-5-Facteur de surcharge K_a :

caractéristiques de	Valeurs du coefficient d'application		
la machine menante			
		Chocs	Chocs
	Uniforme	modérés	importants
Uniforme	1,00	1,25	1,75
Chocs légers	1,25	1,50	2 ou plus
Chocs moyens	1,50	1,75	2,25 ou plus

Tableau II.2 : Valeurs Recommandées pour K_a

II-6-Facteur de distribution de charge , K_m :

	L	argeur de la	face, <i>mm</i>	
Condition de support	≤ 50	150	225	≥ 400
Précis, rigide, peu de jeux dans les paliers	1,3	1,4	1,5	1,8
Précision et rigidité moins bonne, contact probable sur toute la largeur de la face	1,6	1,7	1,8	2,0
Précision et rigidité telles que le contact ne se fait pas sur toute la largeur de la face	≥ 2,0			

Tableau II.3 : Facteur de distribution de charge K_m

II-7-Facteur de forme Ks : AGMA indique que le facteur de forme peut être considéré comme étant de 1,00 pour la plupart des engrenages

II-8-Facteur dynamique K_v : Le facteur dynamique tient compte du fait que la charge est assumée par une dent avec un certain degré d'impact et que la charge réelle soumise à la dent est plus élevée que.la charge transmise seule. La valeur de K_v dépend de la précision du profil dentaire, des propriétés élastiques de la dent et de la vitesse à laquelle les dents entrent en contact. Le graphe de la figure II.4 présente la variation du coefficient d'application en fonction de la vitesse de la ligne circonférentielle, ou les courbes *Ai* représentent les facteurs de qualité, qui sont montrés dans le tableau (II-4)

Vitesse de la ligne de pitch, Vt, (m/s)

Figure II.4 : Facteur dynamique, K_v (Adapté de la norme AGMA 2001, Facteurs d'évaluation fondamentaux et méthodes de calcul pour engrenage droite [7]

Application	Quality number	Application	Quality number
Cement mixer drum drive	A11	Small power drill	A9
Cement kiln	A11	Clothes washing machine	A8
Steel mill drives	A11	Printing press	A7
Grain harvester	A10	Computing mechanism	A6
Cranes	A10	Automotive transmission	A6
Punch press	A10	Radar antenna drive	A5
Mining conveyor	A10	Marine propulsion drive	A5
Paper-box-making machine	A9	Aircraft engine drive	A4
Gas meter mechanism	A9	Gyroscope	A2

Tableau II -4 : numéro de la qualité AGMA recommandée[7]

II-9- Analyse des contraintes dans les engrenages cylindriques à denture droite

L'analyse des contraintes dans les engrenages a un rôle important dans l'étude et la conception de tous les types d'engrenage. Les contraintes des pressions de contact entre les roues dentées, ainsi que les contraintes de flexion au fond de pied de la dent, sont déterminées par des méthodes analytiques, en se basant sur la théorie de Hertz, et sur les études de grandes sociétés d'engineering telles que : AGMA et ANSI. Afin de réaliser ce travail, nous prenons un système d'engrenage composé d'un pignon et roue dentée, entrainé par un moteur dont les paramètres de fonctionnement sont connus.

II-9-1-Calcul analytique des contraintes :

En se basant sur les données suivantes :

Un engrenage cylindrique à denture droite, transmis une puissance de 75KW à 1500tr/min, d'un pignon A (Z1 = 20 dents) à une à roue dentée B (Z2 =40 dents), avec un module de m= 8 mm et angle de pression de 20°. Les roues dentées ont la nuance d'acier 40Cr4, avec un module d'élasticité E= 200 GPa, et coefficient de poisson v = 0.3.

II-9-1-1Calcul des paramètres des contraintes :

Désignation	Symbole	Formule de calcul	Valeurs
Couple de torsion	C (N.m)	$C = \frac{P}{\omega}$	400
Diamètre primitif	DP _A (mm)	$DP_A = m.Z_A$	160
Diamètre primitif	DP_{B} (mm)	$DP_B = m.Z_B$	320
Le Pas	P (mm)	$P = m.\pi$	25.12
La force tangentielle	$F_t(N)$	$F_t = \frac{2C}{DP_A}$	5000
La force normale	$F_n(N)$	$F_n = \frac{F_t}{\cos(\alpha)}$	5320
Le rayon de courbure	$\rho_{1,2}(mm)$	$\rho_{1,2} = \frac{DP_{A,B}}{2}\sin(\alpha)$	27,36 54,72
La largeur de dent	B(mm)	b = (6 a 10)m	30
Le pas diamétral	P_d (mm)	$P_d = \frac{Z_A}{D_{pA}}$	0.125
Matériau utilisé	AISI 4140 (matériau pour pignon et roue)		

L'ensemble des paramètres calculés sont récapitulés sont le tableau (II.5)

Tableau II-5: Paramètres de calcul.

II-9-1-2-Caractéristiques du matériau [8].

Limite d'élasticité	655 MPa
Module de Young	2×10^5 MPa
Coefficient de Poisson	0.3

Tableau II-6 : les caractéristiques du matériau

II-9-1-3-Paramètres de calcul :

-Couple de service :

Le couple est déterminé par la relation suivante

$$P = C.w \tag{II-1}$$

Donc :

$$C = P/w \tag{II-2}$$

Le couple varie de 300(N .m) à 450(N.m)

-Les forces exercées sur la dent :

$$F_t = \frac{C}{r_p} = \frac{400}{0.08} = 5000N \tag{II-3}$$

$$F_n = \frac{F_t}{\cos \alpha} = \frac{5000}{\cos 20} = 5320.88N \tag{II-4}$$

$$v_1 = v_2 \quad et \qquad E_1 = E_2 \tag{II-5}$$

Figure II-5: Forces sur les dents de l'engrenage : (force tangentielle), (force radiale,); (Force normale, *Fn*)

La contrainte de contact est calculée selon la théorie d'hertz permettant la détermination des pressions de contact entre deux corps solide.

Le contact entre les dents d'engrenage cylindrique est considéré comme un contact entre deux cylindres, ou la pression de contact est donnée par la formule (III-6) suivante :

$$\sigma_{c} = \sqrt{\frac{F_{n}}{B}} \frac{1}{\pi \left\{ \left[\left(1 - v_{1}^{2} \right) / E_{1} \right] + \left[\left(1 - v_{2}^{2} \right) / E_{2} \right] \right\}} \left(\frac{1}{\rho_{1}} + \frac{1}{\rho_{2}} \right)}$$
(II-6)
$$\sigma_{c} = \sqrt{\frac{5320.88}{30}} \frac{1}{2\pi \left[\left(1 - 0.3^{2} \right) / 200000 \right]} \left(\frac{1}{27.36} + \frac{1}{54.72} \right)} = 583.207 MPa$$

II-9-2-Calcule de la contrainte de contact AGMA :

$$\sigma_{c} = \sqrt{\frac{F_{n}}{B}} \frac{1}{\pi \left\{ \left[\left(1 - v_{1}^{2}\right)/E_{1} \right] + \left[\left(1 - v_{2}^{2}\right)/E_{2} \right] \right\}} \left[\frac{1}{\rho_{1}} + \frac{1}{\rho_{2}} \right] \times Kv \times Km \times Ks \times Ka$$
(II-7)

$$\sigma_{c} = \sqrt{\frac{5320.88}{30} \frac{1}{2\pi \left[\left(1 - 0.3^{2} \right) / 200000 \right]} \left(\frac{1}{27.36} + \frac{1}{54.72} \right) \times 1.12 \times 1.6 \times 1 \times 1.5}$$

$$\sigma_{c} = 956.1483 MPa$$

 K_v : 1.12(figureII-4... A_6 transmission automobile $v = \pi (2 \times 0.08 \times \pi \times 1500)/60 = 12.57 m/s$ K_m : 1.6 (tableaux II-3... $b \prec 50$ et contact probable sur toute la largeur de la face).

 K_s : 1.00 pour la plupart des engrenages.

 K_{a} : 1.5(tableaux II-2...chocs légers)

Couple(N.m)	Contrainte de contact AGMA (<i>MPa</i>)	Contrainte de contact(<i>MPa</i>)
450	1014	618.5672
400	956.4752	583.1908
350	894.3948	545.5250
300	828.0487	505.0580

Le tableau (II-7) récapitule la variation des valeurs des contraintes de contact (hertz et AGMA)

	Tableau II-7	' : les valeurs de	contrainte de contact	hertz et AGMA
--	--------------	--------------------	-----------------------	---------------

La variation des valeurs de contraintes de contact (hertz et AGMA), en fonction du couple appliqué est représenté sur la figure (III-6). La figure montre que l'allure des contraintes AGMA est une allure linéaire, elle superpose l'allure de la contrainte analytique. Cette différence est due aux nombres de facteurs introduits dans la formule de la contrainte de contact analytique

II-9-3-Calcul de la contrainte de flexion :

La contrainte de flexion est donnée par l'équation(III-8)

$$\sigma_f = \frac{F_t}{m \times B \times y} \tag{II-8}$$

$$\sigma_f = \frac{F_t}{m \times B \times y} = \frac{5000}{8 \times 30 \times 0.322} = 64.69 MPa$$

Et Y=0.322 (tableau II-1)

II-9-4-La contrainte de flexion AGMA :

$$\sigma_f = \frac{5000}{8 \times 30 \times 0.322} \times 1.6 \times 1 \times 1.5 \times 1.12 = 173.91 MPa$$

Le tableau(II-8) récapitule la variation des valeurs des contraintes de flexion (analytique et AGMA)

Couple(N.m)	Contrainte de flexion	Contrainte de
	AGMA(MPa)	flexion Lewis (
		MPa)
450	195.65	72.7873
400	173.9130	64.6998
350	152.1739	56.6123
300	130.4348	48.5248

Tableau (II-8) : les valeurs de contrainte de flexion (analytique et AGMA)

Figure (II-7) : L'évolution de la courbe des contraintes de flexion (Lewis et AGMA) en fonction de couple

La variation des valeurs de contraintes de flexion (analytique et AGMA), en fonction du couple appliqué est représenté sur la figure (II-7). La figure montre que l'allure des contraintes AGMA est une allure linéaire, elle superpose l'allure de la contrainte analytique. Cette différence est due aux nombres de facteurs introduits dans la formule de la contrainte de contact analytique.

Chapitre III : Modélisation des contraintes dans les engrenages

Chapitre III

Modélisation des contraintes dans les engrenages

III-1-Introduction :

Le développement de l'outil informatique à favoriser les recherches dans différents domaines. Les modélisations par éléments finis des structures soumises à des chargements, ont permet de localiser les zones de fortes concentration de contraintes, de déterminer les intensités des contraintes appliquées, et bonne étude en terme de tenue en fatigue.

La simulation consacrée dans ce chapitre est basée sur le code Ansys : 2D et 3D, en premier lieu le logiciel est exploité en 2D pour modéliser une dent d'un système d'engrènement, en se basant sur la modélisation structurale, pour déterminer les contraintes dues à l'application de l'effort tangentiel. En deuxième lieu nous avons utilisé Ansys Workbench pour la modélisation des pressions de contact.

III-2-1-La contrainte de flexion :

III-2-1-1-Maillage :

Nous avons pris une seule dent dont sa géométrie est obtenue selon les caractéristiques de l'engrenage cylindrique. Le maillage est la division de l'ensemble du modèle en petites cellules. Le choix de l'élément type de maillage est indispensable pour avoir de bons résultats, l'élément type 183 est un élément quadratique à 8 nœuds est opté pour cette simulation. La figure III-1 représente la géométrie et le maillage de la dent.

III-2-1-2-Condition aux limites :

Basé sur les hypothèses de l'équation de Lewis, les conditions limites sont définies dans ANSYS APDL (2D). La dent est supposée comme poutre encastrée à son extrémité, la charge appliquée est l'effort tangentiel (flèche en rouge) par unité de surface, voir figure III-1

Figure III-1 : Géométrie et Maillage d'une dent d'engrenage

III-2-1-3-Les résultats d'Ansys APDL de la contrainte de flexion :

a)

Nous avons appliqué différentes valeurs de couples, pour le calcul analytique et l'autre de la simulation, le tableau III-1 récapitule les résultats obtenus

Chapitre III : Modélisation des contraintes dans les engrenages

III -2-1-4-Zone critique due à la contrainte de flexion :

L'endommagement par flexion est simulé dans cette partie par la détermination de la zone de forte concentration de contrainte, en indiçant sa position (nœud 152) avec ces coordonnées (tableau III-1), et la valeur de contrainte équivalente de Von-Misés (figure III-2(a,b,c,d)) selon le couple appliqué et par conséquent la force tangentielle

Figure (III-3) : position du nœud critique

PRNSO	L Command		
🔥 NLIST	Command		
File			
150	8.63638068823	71.8180965589	0.0000000000
151	8.76576728913	71.3620997355	0.0000000000
152	8.96536090450	70.9321737138	0.0000000000
153	9.23017892378	70.5390510712	0.000000000
154	9.55361048891	70.1925456339	0.0000000000
155	9.92758152634	69.9013074863	0.0000000000
156	10.3427563064	69.6726070328	0.0000000000
157	7.17904560319	79.1047719841	0.000000000

Tableau (III-4) : coordonnées du nœud critique

Couple	Contraint de (vm)	Contraint de flexion	Pourcentage
(N.m)	Ansys (MPa)	Lewis (MPa)	
450	70.34	72.7873	3.35
400	62.5	64.6998	3.38
350	54.7	56.6123	3.37
300	46.87	48.5248	3.40

Tableau III-2 : représenter la comparaison entre les résultats de contrainte de flexion analytique et ansys :

Suivant l'ordre d'application du couple, nous avons représenté la variation des contraintes (analytique et simulation) en fonction du couple. Nous contactons que l variation des deux contraintes présente des droites ou celle de la contrainte de VM se positionne au-dessus de la droite des contraintes analytiques. La figure III-5 montre cette variation.

Figure (III-5): Variation de la contrainte de Von-Misés et contrainte de flexion analytique en fonction des couples.

Chapitre III : Modélisation des contraintes dans les engrenages

III-3-La contrainte de contact :

Afin de modéliser la pression de contact, nous avons utilisé le code Ansys Workbench (3D). pour ce faire nous avons suivre les démarches suivantes :

Modélisation de la geometries de deux d'engrenage en exploitante le logiciel Soliworks, ou tous les paramètres sont pris suivant les caractéristiques de l'engrenage cylindriques à dentures droites. La figure III-6- montre la géométrie.

Figure (III-6)- Géométrie de deux dents (Solidworks)

III-3-1-Maillage :

Transmettre la géométrie au code Ansys W et application d'un maillage des deux engrenages, la figure suivante montre le maillage

Figure (III-7) : maillage des deux engrenages

III-3-2-Condition aux limites:

- Introduction des conditions aux limit (voir figure III-8) :
- Fixation de l'alasage de la roue et du pignon
- Application du couple au niveau de l'alésage du pignon

Figure (III-8) :les conditions aux limites de deux engrenages en 3D

III-3-3-Les résultats d'Ansys (workbench) de la contrainte de contact :

Les contraintes de VM sont représentées sur les figures III-8 au III-11, pour différentes valeurs de couples.

Figure III-8-Contrainte équivalent Von.Mises pour un couple de (300N.m)

Chapitre III : Modélisation des contraintes dans les engrenages

Figure III-9- Contrainte équivalent Von. Mises pour un couple de (350N.m)

Figure III-10- Contrainte équivalent Von.Mises pour un couple de (400N.m)

Chapitre III : Modélisation des contraintes dans les engrenages

Figure III-11- Contrainte équivalent Von.Mises pour un couple de (450N.m)

Tableaux (III-3) : les valeurs de contrainte équivalente de VM et contrainte de contact hertz

Après résolution du problème par le logiciel, et suivant l'application des différentes valeurs de couples, nous avons déterminés les contraintes de VM pour. Le tableau III-3 montre les résultats obtenus par la simulation en comparaison avec ceux obtenus par les calculs analytiques.

Le couple	Contrainte	Contrainte contact	Pourcentage d'erreur %
(N .m)	équivalent	hertz (MPa)	
	VM (MPa)		
300	489.5	505.5	3.16
350	551.46	545.8	1.04
400	585.73	583.5	0.3
450	658.9	618.9	6.46

Figure III-12 :Variation de la contrainte de Von-Misés et contrainte de contact (analytique) en fonction des couples.

Dans le présent chapitre, nous avons présenté une étude par éléments finis s'appuyant sur Ansys pour estimer les contraintes de contact et les contraintes de contact sur les dents d'engrenages droits en utilisant un modèle 3D. Nous avons aussi procédé à une comparaison pour un couple variable avec les résultats obtenus par des formules de Hertz équation et la marge de différence a montré que la précision de la méthode était assez bonne.

Conclusion

Dans ce chapitre nous avons entamé la modélisation des engrenages cylindrique, par éléments finis via le code Ansys. Les roues dentées ont un matériau de nuance AISI 4140, acier utilisé dans la conception de ce type d'organes de machines.

En premier lieu nous avons modélisé la contrainte de flexion en appliquant des charges sur une seule dent sous le code Ansys 2D. les résultats obtenus sont comparés avec ceux déterminés par les calculs analytiques. Une légère différence est remarquée sur les deux types de résultats, cela est dû à la forme des dents, le raffinement du maillage.

En deuxième lieu nous avons vérifié les résultats de calculs analytiques des pressions de contact, par ceux réalisés par le code Ansys Workbench (3D) selon la contrainte équivalente

Chapitre III : Modélisation des contraintes dans les engrenages

de Von-Misès. Une comparaison est établie pour vérifier l'analyse des contraintes entres les deux démarches

Conclusion générale

Le but de ce travail est d'établir une analyse sur les contraintes de flexion et les pressions de contact, d'un système d'engrenage cylindrique, à denture droite, composé d'un pignon et une roue, de nuance AISI 4140, engendrées par, les charges causées par les conditions de service, comme puissance et vitesse de rotation.

En premier lieu, nous avons déterminé les contraintes citées si dessus, par les méthodes analytiques. Les contraintes de flexion sont calculées sur la base de l'équation de Lewis, et les pressions de contact sont déterminées par la théorie de Hertz, par la suite, nous avons introduit un ensemble de facteurs correcteurs préconisés par AGMA, dans chaque type de contrainte (flexion, pression de contact).

En deuxième lieu, nous avons, modélisé ces contraintes par la méthode des éléments finis, via le code Ansys. Dans le cas de la contrainte de flexion, nous avons considéré une dent comme une poutre encastrée, sollicitée par une succession de charges (différentes valeurs de couples) sous forme de pressions exercé sur la dent, la simulation par le code en 2D, nous a permet de localiser les zones de forte concentration de contraintes, ainsi que les valeurs de la contrainte équivalente de Von-Misès. Les pressions de contact sont modélisées par Ansys Workbench (3D), afin de mieux visualiser l'impact de ce genre de contraintes sur les dents de l'engrenage, sous les mêmes charges que précédents.

Une comparaison entre les résultats de calculs AGMA et ceux obtenus par le code Ansys, est réalisée, la différence entre les valeurs des deux contraintes semble acceptable, et peuvent être exploitées dans des traitement thermiques ou de surfaces.

En perspectives, il sera intéressant de poursuivre cette étude, en traitant les points suivants :

- Application d'un traitement thermique ou de surface dont le but d'améliorer la résistance des dents à la fatigue.
- Recherches des essais expérimentaux et les confrontés avec nos résultats.
- Elargir cette étude sur autre types d'engrenages.

Résumé

Le but de ce travail est le calcul des contraintes au niveau des dents d'un engrenage cylindrique à denture droite. Les pressions de contact réelles ont des valeurs importantes contrairement aux valeurs des contraintes statiques. Dans les deux cas nous avons appliqué la théorie de Hertz qui détermine les pressions de contact entre deux solides. Les facteurs de correction ont une influence remarquable sur ces types de contraintes, puisque les résultats sont proches de la réalité. Les contraintes de flexion sont calculées suivant la formule de Lewis, nous avons obtenu des contraintes statiques et des contraintes réelles aussi en introduisant les facteurs de correction

Les zones de contacts entre les dents, sont généralement les zones les plus chargées, cela est montré par les valeurs importantes des pressions de contact au niveau de ces zones. Un traitement de surface approprié est recommandé en vue d'améliorer la teneur en fatigue des engrenages.

Mots clés : engrenage, pressions, contact, Hertz, contraintes.

Abstract

The purpose of this work is to calculate the stresses at the teeth of a cylindrical gear with a straight toothing. The actual contact pressures have significant values unlike the static stress values. In both cases we applied the Hertz theory determining the contact pressures between two solids. Correction factors have an influence on these types of constraints, since they have results close to reality. The bending stresses are calculated according to the Lewis formula, we obtained static stresses and real stresses also by introducing the correction factors

The zones of contact between the teeth, are generally the most charged zones, this is shown by the important values of the contact pressures at the level of these zones. An appropriate surface treatment is recommended to improve the fatigue content of the gears.

Keywords: gearing, pressures, contact, Hertz, constraints

ملخص

الغرض من هذا العمل هو حساب الضغوط على أسنان الترس الأسطواني مع شيء مستقيم. قيم ضغوط الاتصال الفعلية لها قيمة كبيرة بخلاف قيم الضغط الثابت. في كلتا الحالتين طبقنا نظرية هيرتز لتحديد ضغوط الاتصال بين مجسمين. وتؤثر عوامل التصحيح على هذه الأنواع من القيود، حيث أن لها نتائج قريبة من الواقع. يتم حساب ضغوط الانحناء وفقًا لصيغة لويس (Lewis)، وقد حصلنا على ضغوط ثابتة وإجهادات حقيقية أيضًا من خلال تقديم عوامل التصحيح

المناطق الملامسة بين الأسنان هي عادة أكثر المناطق شحنةً، وهذا يظهر من خلال القيم المهمة لضغوط الملامسة على مستوى هذه المناطق. يوصى باستخدام علاج مناسب للسطح لتحسين محتوى كلال التروس.

المفاتيح الرئيسية : التروس، الضغوط، الاتصال، هرتز، القيود.

Bibliographie :

[1] *colbertserv.lyceecolbert-tg.org:3007.*(s.d.).Récupéré sur http://colbertserv.lyceecolbert-tg.org:3007/cours_transformateurs_et_transmetteurs/viewer/visu.php?fiche*eduscol.education. fr.* (s.d.)

[2] MELIH Miloud, OUNADJELA Bachir, « Automatisation du calcul des dimensions géométriques d'un engrenage », faculté de Technologie, Université Aboubekr BELKAID Tlemcen, MEMOIRE En vue de l'obtention du diplôme de MASTER, 2017-2018.

[3] Techniques De L'Ingénieur, extrait gratuits, « Frottement, usure et lubrification ; SURFACES », 4^{ème} édition, p55-57.

[4]DERGAL Moundhir Abdou Essamed.Modélisation du Contact dans un Engrenage à Denture Droite. 2011- 2012.

[5] American Gear Manufacturers Association. Standard 908-B89 (R2015). *Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical, and Herringbone Gear Teeth.* Alexandria, VA.: American Gear Manufacturers Association, 2015.

[6] American Gear Manufacturers Association. Standards2001-D04 (R2016) (based on *Pd*) and 2101-D04 (R2016) (based on Metric Module, *m*). *Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth*. American Gear Manufacturers Association Alexandria, VA: American Gear Manufacturers Association,2016. [7]MACHINE ELEMENTS IN MECHANICAL DESIGN. [auteur du livre] Robert L. Mott. 2004.

[8] an analytical method for calculating the tooth surface contact stress of spur gears with tip relief. **zhai, Xiaochen.** 2018