

Faculty of Sciences and Technology <u>التحاو</u>ة والتحدود والتحدول وبينيا Department of Mechanical Engineering

قيكي المرحمة الميكان يكية

N° d'ordre : M....../GM/2022

MEMOIRE DE FIN D'ETUDES MASTER ACADEMIQUE

Filière : Génie Mécanique

Spécialité : Energétique

Thème

ÉTUDE D'ANALYSE DU TRANSFERT DE CHALEUR DES ECHANGEURS DE CHALEUR A DOUBLE ENVELOPPE ET TUBES CONCENTRIQUES

Présenté par :

- ✤ ABBASSA Souhila
- ABED Nabila

Soutenu le 13/07/2022 devant le jury composé de :

Président	Pr. HOUAT Samir	Université de Mostaganem UMAB
Examinateur	Dr. GUERMAT Abdelkader	Université de Mostaganem UMAB
Encadreur	Dr. MEDJAHED Bendida	Université de Mostaganem UMAB

Année Universitaire : 2021 / 2022

Remerciement

Nous remercions le bon Dieu pour le courage qu'il nous a donné pour surmonter toutes les difficultés durant nos années d'études.

Nous tenons à remercier notre encadreur le **Dr. MEDJAHED Bendida** pour ces conseils et son suivi continu durant toute la période de la réalisation de ce travail.

Nous adressons nos remerciements à Monsieur le Président de jury **Pr. HOUAT Samir** et le membre de jury **Mr. GUERMAT Abdelkader** pour l'intérêt qu'ils ont porté à notre recherche en acceptant d'examiner notre travail de l'enrichir par leurs propositions.

Enfin, nous adressons nos vives reconnaissances à toutes les personnes qui ont contribué de prêt ou de loin pour la réalisation de ce mémoire.

Je tiens à dédier ce modeste travail à tous ceux qui me sont chers à ceux qui ont fait de moi ce qui je suis mes très chers parents pour qui je n'oublierai jamais leur grande affection leur soutien et leur encouragement tout le long de ma vie

A tout ma famille

À tous mes collègues de la promotion

À tous mes amis

Et mon mari et ma petite fille.

SOMMAIRE *Sommaire*

Sommeric	
Remerciement	i
Dédicace	ii
Liste des figures	iV
Liste des tableaux	v.
Nomenclatures	V1
Résumé	01
Introduction generale	05
Chapitre VI :	06
1. Generalités sur les échangeurs de chaleur	06
2.2. Classification des échangeurs	00
1.2.1. Type de contact	00
1.2.1. Type de contact 1.2.2. Classement suivant les types d'échange	00
1.2.2. Classement survant les types à cenange	00
1 2 2 2 Échangeur avec changement de phase	06
1 2 3 Classement suivant la disposition des écoulements	07
1 3. Les modes de transfert de chaleur	07
1.3.1. La conduction	07
1.3.2. La convection	08
1.3.3. Le rayonnement	08
1.4. Déférence type d'échangeur	08
1.4.1. Echangeurs à plaques	08
1.4.2. Echangeurs à tubes	09
1.5. Échangeur a faisceau et calandre	10
1.5.1. Les éléments échangeur tubes et calandre	10
1.5.1.1. La calandre	10
1.5.1.2. Les Plaques tubulaires	11
1.5.1.3. Le Faisceau	11
1.5.1.4. Les chicanes	12
1.5.1.5. Boites de distribution ou chambres de distribution	13
1.5.1.6. Déflecteurs ou plaque de protection du faisceau	13
1.5.1.7. Les passe	14
1.5.2. Les types des échangeurs à tubes et calandre	14
1.5.2.1. Echangeur de chaleur à tête flottante	14
1.5.2.2. Echangeur à plaque tubulaires fixes	15
1.5.2.3. Echangeur a tubes en U	15
Chapitre 02 :	16
2. Formulation mathematique 2.1 Description la principa de fonction de l'échangeur de chaleur	10
2.1 Description le principe de fonction de l'échangeur de chaleur	10
2.2 Fremier configuration .(double tube)	10
2.2.1 Tremier cas (cau-cau) 2.2.2 Deuvième cas (kérosène _eau)	10
2.3. Deuxième Configuration (triple tube):	10
2.3.1 Premier cas (eau –eau)	19
2.3.2. Deuxième cas : (kérosène –eau)	20
Chanitre 03 :	20
3. Introduction	23
3.1Méthodologie	23
3. Résultats et discussions	25
3.1. Première partie : (Eau- Eau)	25
3.1.1 Première configuration	26
3.1.2 Deuxième configuration	30
3.2. Deuxième partie : (Kérosène- Eau)	33
3.2.1 Première configuration	34
3.2.2 Deuxième configuration	36
Conclusion générale	

Conclusion

SOMMAIRE

Liste des figures

Liste des figures

Chapitre 01:

Chapter VI.	
Figure 1.1 : Différents modes de circulation des fluides	07
Figure 1.2 : Différents types d'échangeurs tubulaires	09
Figure 1.3 : Schéma typique d'un échangeur tubes calandre	10
Figure 1.4 : La calandre d'un échangeur faisceau et calandre	11
Figure 1.5:Plaques tubulaires	11
Figure 1.6: Disposition des tubes	12
Figure 1 7:Type de chicane	13
Figure 1. 8: Type de chembre de distribution	12
Figure 1. 6. Type de chambre de distribution	13
Figure 1.9: Flaque de protection du faisceau	14
Figure 1.10 : Echangeur de chaleur a tete flottante	15
Figure 1.11 : Echangeur a plaque tubulaires fixes	15
Figure 1.12 : Echangeur à tubes en U	15
Chapitre 03:	
Figure 3.1: Vue en coupe de l'échangeur de chaleur à double tubes concentrique (ECDT).	23
Figure 3.2 : Vue en coupe de l'échangeur de chaleur à triple tubes concentrique (ECTT).	24
Figure 3.3 : Densités de flux de chaleur échangée en fonction de débit d'eau chaude cas contre courant.	40
Figure 3.4 : Coéfficient déchange global en fonction de débit d'eau chaude cas co-courant.	40
Figure 3.5 : Densités de flux de chaleur échangée en fonction de débit d'eau froide cas	41
contre courant	• •
contre courant.	
Figure 3.6 : Coéfficient déchange global en fonction de débit d'eau froide cas co-courant.	41
Figure 2.7 : Coéfficient déchange global en fonction de débit d'eque chaude cas concourant	12
Figure 5.7. Coefficient dechange global en fonction de debit d'éau chaude cas co-courant.	42
	40
Figure 3.8 : Coefficient dechange global en fonction de debit d'eau froide cas co-courant.	42
Figure 3.9 : Densités de flux de chaleur échangée en fonction de débit d'eau chaude cas	43
contre courant.	
Figure 2 10 . Cafficient dishance slabel on fonction de dihit d'any should and a	12
Figure 3.10 : Coefficient dechange global en fonction de debit d'eau chaude cas co-	43
courant.	
Figure 3.11 : Densités de flux de chaleur échangée en fonction de débit d'eau froide cas	44
contre courant.	
Figure 2.12. Coéfficient déchange clabel en fonction de débit d'aqu fucide ace en courant	11
Figure 3.12 : Coefficient dechange global en fonction de debit d'éau froide cas co-courant	44
Figure 3.13 : Coéfficient déchange global en fonction de débit d'eau chaude cas co-	45
	-
courant.	

Figure 3.14 : Coéfficient déchange global en fonction de débit d'eau froide cas cocourant. 45 Liste des figures

Liste des tableaux

Liste des tableaux

Chapitre 03: Tableau 3.1.Les dimensionne pour l'échangeur de chaleur (ECDT)	24
Tableau 3.2.Les dimensionne pour l'échangeur de chaleur (ECTT)	25
Tableau 3.3 Les propriétés physiques de l'eau sont rassemblées dans le tableau suivant	26
Tableau 3.4 Résultats de calcul les valeurs de eau froid concernant le lereconfiguration (eau – eau).	29
Tableau 3.5 Les propriétés physiques de l'eau sont rassemblées dans le tableau suivant	29
Tableau 3.6 Résultats de calcul les valeurs de eau chaud concernant le 1ere configuration (cas : eau – eau).	30
Tableau 3.7 Les propriétés physiques de l'eau froide sont rassemblées dans le tableau suivant:	30
Tableau 3.8 Résultats de calcul les valeurs de eau froid concernant le 1ere configuration (eau – eau).	31
Tableau 3.9 Les propriétés physiques de l'eau sont rassemblées dans le tableau suivant:	31
Tableau 3.10 Résultats de calcul les valeurs de eau chaud concernant la 2 éme configuration (eau – eau).	32
Tableau 3.11 Les propriétés physiques de l'eau sont rassemblées dans le tableau suivant	32
Tableau 3.12 Résultats de calcul les valeurs de eau froid concernant la 2 éme configuration (eau – eau).	33
Tableau 3.13 :Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant	34
Tableau 3.14 Résultats de calcul les valeurs de eau froid concernant le 1ere configuration (kérosène-eau).	35
Tableau 3.15 Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant:	35
Tableau 3.16 Résultats de calcul les valeurs de eau froid concernant le 1ere configuration (kérosène-eau).	36

Liste des tableaux

Tableau 3.17 Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant:	36
Tableau 3.18 Résultats de calcul les valeurs de eau froid concernant la 2ème configuration	37
(kérosène-eau)	
Tableau 3.19 Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant:	37
Tableau 3.20 Résultats de calcul les valeurs de concernant la 2 eme configuration (kérosène- eau).	38
Tableau 3.21Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant	38
Tableau 3.22 Résultats de calcul les valeurs de eau froid concernant la 2eme configuration (kérosène-eau).	39

NOMENCLATURE :

SYMBOLES	UNITES	DESIGNATION
А	$[m^2]$	Surface d'échange
D	[m]	Diamètre
d	[m]	Diamètre
Κ	[W/m ² °C]	Coefficient d'échange global
L	[m]	Longueur
0	โพ้า	Flux de chaleur
R	[m]	Rayonne externe
r	[m]	Rayonne interne
S	$[m^2]$	sections de passage
Т	[°C]	Température
V	[1/h]	Débit volumique
W	[m/s]	Vitesse
C_p	[J/Kg °C]	Chaleur Spécifique du fluide
Nu	[-]	Nombre de Nusselt
Re	[-]	Nombre de Reynolds
Pr	[-]	Nombre de Prandtl
f	[-]	Facteur de friction
λ	[Ŵ/m °C]	Conductivité thermique
ρ	$[Kg/m^3]$	Masse Volumique
μ	[Pa.S]	Viscosité Dynamique du fluide
α	[W/m ² °C]	Coefficient de convection
	NDICE	
c_1		fluide froide dans le tube central
c_2		fluide froide dans le tube externe
Н		fluides chauds dans le tube intermédiaire
i		interne
0		externe
in		inlet
out		outlet
W		parois
h		hydraulique
moy		moyenne
1		tube central
2		tubes intermédiaires
3		tube externe
	ABREVIATI	ONS
ECTT		Echangeur de Chaleur à Triple Tube
		Concentrique
ECDT		Echangeur de Chaleur à Double Tube
		Concentrique

Étude d'analyse du transfert de chaleur des échangeurs de chaleur à double enveloppe et tubes concentriques

Résumé :

Le travail présente les résultats de l'analyse du transfert de chaleur pour refroidir de l'eau comme cas référence et un produit pétrolier dans deux types d'échangeurs de chaleur à tubes concentriques : les échangeurs de chaleur à tubes concentriques doubles et triples L'agent refroidissant est l'eau. L'échangeur de chaleur à triple tube concentrique est une version constructive modifiée de l'échangeur de chaleur à double tube concentrique en ajoutant un tube intermédiaire. Ce tube intermédiaire renforce le transfert thermique en augmentant la surface calorifique par unité de longueur. L'analyse du transfert de chaleur est faite à partir des données que nous avons proposé et à peu près équivalentes aux données expérimentales obtenues lors des essais dans un échangeur de chaleur à double et triple tubes concentriques dans les travaux se trouvant dans la littérature. Les débits, les températures d'entrée et de sortie de l'eau et des produits pétroliers servent à déterminer la performance des deux échangeurs de chaleur. Principalement, pour les deux dispositifs les coefficients de transfert par convection, les coefficients de transfert de chaleur globaux et les surfaces d'échange de chaleur sont calculés.

Finalement une comparaison entre l'échangeur à triple tube concentrique et l'échangeur de chaleur à double tube concentrique est menée pour différentes combinaisons des diamètres et des positions des fluides chauds et froids. Les résultats montrent que l'échangeur à double tube sous des conditions des diamètres est plus efficace que l'échangeur de chaleur à triple tube concentrique de même longueur concentrique concernant le chauffage et refroidissement de l'eau. Par contre les résultats présentés montrent que les échangeurs de chaleur à triple tube concentrique offrent de meilleures efficacités de transfert de chaleur par rapport aux échangeurs de chaleur à double tube concentrique concernant le refroidissement un produit pétrolier.

Mots clés : échangeur de chaleur, triple tube concentrique, double tube concentrique, coefficient d'échange par convection, coefficient d'échange global.

Heat Transfer Analysis Study of Jacketed Heat Exchangers and Concentric Tubes

Abstract:

The work presents the results of the heat transfer analysis to cool water as a reference case and a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The concentric triple tube heat exchanger is a constructively modified version of the concentric double tube heat exchanger by adding an intermediate tube. This intermediate tube improves heat transfer by increasing the heat surface per unit length. The analysis of the heat transfer is made from the data which we have proposed and has approximately equivalent the experimental data obtained during the tests in a heat exchanger with double and triple concentric tubes in works which are published in years. Fluid flow rates, inlet and outlet water and petroleum product temperatures are used to determine the performance of the two heat exchangers. Mainly, for both devices are calculated the convection transfer coefficients, the global heat transfer coefficients and the heat exchange surfaces.

Finally a comparison between the concentric triple tube heat exchanger and the concentric double tube heat exchanger is carried out for different combinations of diameters and positions of hot and cold fluids. The results show that the jacketed heat exchanger under diameter conditions is more efficient than the concentric triple tube heat exchanger of the same concentric length regarding the heating and cooling of water. On the other hand, the results presented show that the heat exchangers with triple concentric tube offer better efficiencies of heat transfer compared to the heat exchangers with double concentric tube concerning the cooling of a petroleum product.

Keywords: heat exchanger, triple concentric tube, doubles concentric tube, convection exchange coefficient and global exchange coefficient.

دراسة تحليل انتقال الحرارة للمبادلات الحرارية المغلفة والأنابيب متحدة المركز

ملخص:

يعرض العمل نتائج تحليل نقل الحرارة لتبريد الماء كحالة مرجعية ومنتج بترولي في نوعين من المبادلات الحرارية الأنبوب الأنبوبية متحدة المركز : مبادلات حرارية ثنائية وثلاثية المركز . عامل التبريد هو الماء. إن المبادل الحراري ثلاثي الأنبوب متحد المركز هو نسخة معدلة بشكل بناء من المبادل الحراري ذي الأنبوب المزدوج متحد المركز عن طريق إضافة أنبوب وسيط. يعمل هذا الأنبوب الوسيط على تحسين نقل الحرارة عن طريق زيادة سطح الحرارة لكل وحدة طول. يتم إجراء وسيط. يعمل هذا الأنبوب الوسيط على تحسين نقل الحرارة عن طريق زيادة سطح الحرارة الكل وحدة طول. يتم إجراء تحليل انتقال الحرارة من البيانات التي اقترحناها ولديها ما يعادل تقريبًا البيانات التجريبية التي تم الحصول عليها أثناء تحليل انتقال الحرارة من البيانات التي اقترحناها ولديها ما يعادل تقريبًا البيانات التجريبية التي تم الحصول عليها أثناء الاختبارات في مبادل حراري مع أنابيب مزدوجة وثلاثية المركز في الأعمال التي تم نشرها في السنوات. يتم استخدام معدلات تدفق السوائل ومدخل ومخرج المياه ودرجات حرارة المنتجات البترولية لتحديد أداء المبادلات الحراري مع أنابيب مزدوجة وثلاثية المركز في الأعمال التي تم نشرها في السنوات. يتم استخدام معدلات تدفق السوائل ومدخل ومخرج المياه ودرجات حرارة المنتجات البتي تم نشرها في السنوات. يتم استخدام معدلات تدفق السوائل ومدخل ومخرج المياه ودرجات حرارة المنتجات البترولية لتحديد أداء المبادلات الحرارية. بشكل معدلات بيم حمال الحراري بعالي الحراري ومعاملات نقل الحرارة العالمية وأسلح التبادل الحراري لكلا الجهازين.

أخيرًا، يتم إجراء مقارنة بين المبادل الحراري ثلاثي الأنبوب متحدة المركز والمبادل الحراري للأنبوب المزدوج متحد المركز لتوليفات مختلفة من الأقطار ومواضع السوائل الساخنة والباردة. أوضحت النتائج أن المبادل الحراري المغلف تحت ظروف القطر يكون أكثر كفاءة من المبادل الحراري ثلاثي الأنبوب متحد المركز له نفس الطول المتحد المركز فيما يتعلق بتسخين وتبريد الماء. من ناحية أخرى ، أظهرت النتائج المقدمة أن المبادلات الحرارية ذات الأنبوب الثلاثي المركز تقدم كفاءة أفضل في نقل الحرارة مقارنة بالمبادلات الحرارية ذات الأنبوب المزدوج المركز فيما يتعلق بتبريد المنتج المتحد

الكلمات المفتاحية: المبادل الحراري ، الأنبوب الثلاثي المركز ، الأنبوب المزدوج المركز ، معامل التبادل الحراري ، معامل التبادل العالمي.

Introduction générale

Introduction générale

Nous présentons dans ce mémoire une étude d'analyse du transfert de chaleur des échangeurs de chaleur à double enveloppe et tubes concentriques, pour les deux régimes de fonctionnement transitoire et permanent. Les systèmes d'équations qui gouvernent le phénomène à étudier sont réalisés pour déterminer les variations des températures (fluides et parois), les coefficients d'échange par convection, ainsi que les coefficients d'échange globaux.

Ce chapitre contient un résumé de certains travaux de recherche dans ce domaine.

Ünal A., ont présenté des études de cas pour les [ETTC] en circulation contre-courant, ils ont démontré que la performance thermique est fortement liée aux rapports des diamètres de l'échangeur de chaleur, leurs résultats ont été limités au point que l'écoulement des trois fluides peut être soit laminaire ou turbulent [1].

Ünal A., a complété son étude théorique approfondie menée sur [ETTC] en (1998) par plusieurs études de cas sur un échangeur de chaleur liquide-liquide d'une manière systématique, y compris toutes les combinaisons de type de flux des trois fluides. Les résultats ont été représentés graphiquement afin de mieux comprendre l'influence des rayons des tubes sur la performance et la taille de l'échangeur de chaleur [2].

Idrissi A., ont présenté la variation spatiale de la réponse transitoire de la température le long d'un échangeur de chaleur double tube à contre-courant quand un échelon de débit est appliqué sur le fluide chaud dans le tube intérieur [3].

Sahoo P. et al., ont développé une technique itérative pour l'estimation précise des coefficients de transfert de chaleur et des coefficients globaux de transfert de chaleur concernant la surface intérieure du tube intermédiaire et surface externe du tube interne dans un [ETTC] hélicoïdal [4].

Batmaz E. et al, ont déterminé les coefficients d'échange globaux des fluides dans un [ETTC] en utilisant les équations de bilan énergétique dans un volume de contrôle. En 2008 les mêmes auteurs, ont comparé l'efficacité de l'échangeur [ETTC] à celle d'un échangeur de chaleur à double tube concentrique, ils ont observé que pour des essais à contre courant, la valeur de l'éfficacité de l'échangeur de chaleur [ETTC] est plus élevée que celle de l'échangeur de chaleur [EDTC] ayant les mêmes diamètres que le tube interne et le tube externe de l'échangeur de chaleur [ETTC] [5.6].

Quadir G. et al., ont mené une étude numérique pour décrire le comportement thermique de l'échangeur de chaleur à triple tube concentrique par la méthode des

Introduction générale

Éléments finis sous les conditions de l'état stationnaire pour les mêmes arrangements cités dans leur étude de (2013). La performance de l'échangeur de chaleur à triple tube concentrique est étudiée pour différents débits et dans les deux cas : échangeur isolé et non isolé de son environnement [7, 8].

Behera V. et al.,ont réalisé une simulation numérique à l'aide de ANSYS14 sur un échangeur de chaleur à triple tube concentrique pour étudier le transfert de chaleur se produisant entre les trois fluides à des températures différentes pour les deux arrangements contre-courant et co-courant. Les résultats obtenus sont donnés sous forme de profils de température en fonction de la longueur de l'échangeur de chaleur et du coefficient de transfert de chaleur en fonction du nombre de Reynolds i.e. pour des débits différents [9].

Le contexte et les résultats de cette étude sont présentés ici en détails. Le premier chapitre a été réservé à la présentation de l'étude bibliographique sur le principe d'échangeur, le deuxième chapitre présente une description le principe de fonction de l'échangeur de chaleur à tube et calandre (double et triple tube) et les formulations de base. Une étude détaillée sur les calculs du dimensionnement de l'échangeur est présentée dans le troisième chapitre. Une conclusion générale est donnée à la fin de ce document.

1. Généralités sur les échangeurs de chaleur

1.1.Définition de l'échangeur de chaleur

Un échangeur de chaleur est un dispositif permettant de transférer de l'énergie thermique d'un fluide vers un autre, sans les mélanger. Le flux thermique traverse la surface d'échange qui sépare les fluides. La plupart du temps, on utilise cette méthode pour refroidir ou réchauffer un liquide ou un gaz qu'il est impossible ou difficile de refroidir ou chauffer directement [10].

2.2. Classification des échangeurs

Il existe plusieurs critères de classement des différents types d'échangeurs. Énumérons les principaux.

1.2.1. Type de contact

- Échangeurs à contact direct : Le type le plus simple comprend un récipient ou Canalisation dans lequel les deux fluides sont directement mélangés et atteignent le Même température finale.
 - Échangeurs à contact indirect : les deux fluides s'écoulent dans des espaces séparés par une paroi

1.2.2. Classement suivant les types d'échange

1.2.2.1. Échangeur sans changement de phase :

Les échangeurs de chaleur sans changement de phase correspondent aux échangeurs Dans lesquels l'un des fluides se refroidit pour réchauffer le deuxième fluide sans qu'il y ait changement de phase .les températures des fluides sont donc variables, tout le long de l'échangeur.

1.2.2.2. Échangeur avec changement de phase: [11]

Les échanges avec changement de phase sont caractérisés par trois cas différents:

- l'un des fluides se condense alors que l'autre se vaporise : ces échangeurs sont rencontrés dans les machines frigorifiques.
- le fluide secondaire se vaporise en recevant de la chaleur du fluide primaire, lequel ne subit pas de changement d'état. Ils sont appelés évaporateurs.
- le fluide primaire se condense en cédant sa chaleur latente au fluide secondaire plus froid, lequel ne subit pas de transformation d'état.

1.2.3. Classement suivant la disposition des écoulements[12]

Dans les échangeurs à fluide séparés, les modes de circulation des fluides peuvent se ranger en deux catégories :

- Même sens « Co-courants ».
- Sens contraire « contre-courant ».
- Ou bien les vecteurs vitesses sont perpendiculaire l'un à l'autre ; il s'agit cette fois de «courant croisés » [12]

Figure 1.1 : Différents modes de circulation des fluides [12]

1.3. Les modes de transfert de chaleur

On définit un transfert de chaleur ou transfert thermique entre 2 corps comme une interaction énergétique qui résulte d'une différence de température entre les deux corps. On distingue habituellement trois modes de transfert de chaleur :

- La conduction thermique (diffusion thermique)
- Le rayonnement thermique
- La convection (libre / forcée)

Ces trois modes sont régis par des lois spécifiques, seuls la conduction et le rayonnement sont les modes fondamentaux de transmission de la chaleur, sachant que la convection est très importante et ne fait que combiner la conduction avec un déplacement de fluide.

1.3.1. La conduction :

C'est le transfert de chaleur au sein d'un milieu opaque, sans déplacement de matière, sous l'influence d'une différence de température. La propagation de la chaleur par conduction à l'intérieur d'un corps s'effectue selon deux mécanismes distincts : une

Chapitre 1 Généralités sur les échangeurs de chaleur

transmission par les vibrations des atomes ou molécules et une transmission par les électrons libres.

La théorie de la conduction repose sur l'hypothèse de Fourier

1.3.2. La convection : [13]

C'est le transfert de chaleur entre un solide et un fluide, l'énergie étant transmise par déplacement du fluide. Ce mécanisme de transfert est régi par la loi de Newton

On distingue deux types de convection :

- Convection naturelle: Dans laquelle le mouvement du fluide est créé par des différences de densité et de température.
- **Convection forcée** : Où le mouvement du fluide est provoqué par des actions mécaniques extérieures (pompe, ventilateur...).

1.3.3. Le rayonnement :

C'est un transfert d'énergie électromagnétique entre deux surfaces (même dans le vide). Dans les problèmes de conduction, on prend en compte le rayonnement entre un solide et le milieu environnant.

1.4. Déférence type d'échangeur :

Les principaux types d'échangeurs rencontrés sont les suivants :

1.4.1. Echangeurs à plaques:

à surface primaire ou à surface secondaire (avec des ailettes). Les échangeurs à plaques ont les meilleures performances thermiques. Cependant leur efficacité importante a fait qu'ils sont actuellement largement utilisés pour des applications diverses. On les rencontre dans l'industrie du froid et de la cryogénie, dans l'industrie chimique et pétrochimique, dans l'industrie pharmaceutique, dans l'industrie alimentaire...

1.4.2. Echangeurs à tubes: (monotubes, coaxiaux ou multitubulaires). [12]

Pour des raisons économiques, les échangeurs utilisant les tubes comme constituant principal de la paroi d'échange sont les plus répandus.

On peut distinguer trois catégories suivant le nombre de tubes et leur arrangement, toujours réalisés pour avoir la meilleure efficacité possible pour une utilisation donnée:

a. Échangeur monotube (figure 2a), dans lequel le tube est placé à l'intérieur d'un réservoir et a généralement la forme d'un serpentin.

b. Échangeur coaxial (figure 2b), dans lequel les tubes sont le plus souvent cintrés, en général, le fluide chaud ou le fluide à haute pression s'écoule dans le tube intérieur.

c. Échangeur multitubulaire, existant sous quatre formes :

- échangeur à tubes séparés (figure 2c) : à l'intérieur d'un tube de diamètre suffisant se trouvent placés plusieurs tubes de petit diamètre maintenus écartés par des entretoises.
- échangeur à tubes rapprochés (figure 2d) : pour maintenir les tubes et obtenir un passage suffisant pour le fluide extérieur au tube, on place un ruban enroulé en spirale autour de certains d'entre eux. Les tubes s'appuient les uns sur les autres par l'intermédiaire des rubans,
- échangeur à tubes ailettes (figure 2e) : ces tubes permettent d'améliorer le coefficient d'échange thermique.
- échangeur à tubes et calandre (figure 2f) : c'est l'échangeur actuellement le plus répandu.

Figure 1.2 : Différents types d'échangeurs tubulaires [12].

1.5. Échangeur a faisceau et calandre

Figure 1.3 : Schéma typique d'un échangeur tubes calandre [14].

1	Faisceau tubulaire	4	Chicane	7	Plaque tubulaire
2	Enveloppe (calandre)	5	Raccord évent	8	Raccord vidange
3	Intérieur tube	6	Intérieur boite à eau	9	Intérieur enveloppe

Ce type d'échangeurs est de loin le plus répandu dans les unités de transformations des industries chimiques et pétrochimiques. Un faisceau de tubes est situé à l'intérieur d'une calandre dans laquelle circule le deuxième fluide. Cette conception se retrouve également dans les condenseurs, les rebouilleurs et les fours multitubulaires [14].

1.5.1. Les élément échangeur tubes et calandre

1.5.1.1. La calandre :

C'est l'enveloppe métallique entourant le faisceau tubulaire, et généralement l'acier au carbone est le matériau le plus couramment utilisé pour la construction des calandres. Pour un diamètre nominal inférieur à 24", la calandre est constituée par un tube d'acier, pour des pressions de service inférieures à 20 kg/cm2. Au-delà de 24 la calandre est réalisée à partir de plaques d'acier roulées et soudées chaque extrémité

Chapitre 1 Généralités sur les échangeurs de chaleur

sont soudées les brides qui porteront le couvercle et la boite de distribution. Les tubulures d'entrée et de sortie sont soudées avec plaque de renforcement ou non, selon la pression de service.

Enfin la calandre pourra être équipée d'anneaux pour le levage et portera la plaque d'identité de l'appareil [15].

Figure 1.4. La calandre d'un échangeur faisceau et calandre [15]

1.5.1.2. Les Plaques tubulaires

Ce sont des plaques percées supportant les tubes à leurs extrémités, leurs épaisseurs varient entre 5 et10 cm. Les tubes généralement sont fixés par : mandrinage, dudgeon nage, et par soudage dans les applications à haute pression [14].

Figure 1.5: Plaques tubulaires [14].

Chapitre 1 Généralités sur les échangeurs de chaleur

C'est l'ensemble des tubes constituant le faisceau .Les épaisseurs de tubes sont normalisées selon le calibre BWG (Birmingham wire Gage) .La perforation des trous dans les plaques tubulaires est normalisée; elle s'effectue selon une disposition soit au pas carré, soit au pas triangulaire. Le pas est la distance centre à centre de deux tubes voisins.

Figure 1.6: Disposition des tubes [14].

Le pas triangulaire permet de placer environ 10% de tubes de plus que le pas carré sur une plaque tubulaire de diamètre donné, mais en contrepartie, la disposition des tubes rend impossible leur nettoyage extérieur par insertion de grattoirs ou de racloirs à travers le faisceau. Pour ces appareils, il faut avoir recours au nettoyage chimique et réserver leu remploi pour des fluides propres [14].

1.5.1.4. Les chicane

Les chicanes peuvent avoir deux rôles :

- Augmenter la rigidité du faisceau, pour éviter les phénomènes de vibration
- Augmenter la vitesse du fluide

Il existe deux types de chicanes

1. Les Chicanes transversales

Sont généralement constituées par un disque ayant un diamètre légèrement inférieur à celui de la calandre et comportant un segment libre dont la surface représente 20à45% de la section totale. Ces chicanes ont pour but d'allonger le chemin du fluide circulant dans la calandre, et d'améliorer ainsi le transfert à l'extérieur du tube. Dans le cas des échangeurs horizontaux, une échancrure est aménagée à la partie inférieure des chicanes pour faciliter la vidange et le nettoyage et vite l'encrassement par stagnation à la partie inférieure.

Les chicanes transversales assurent la rigidité du faisceau tubulaire, elles sont solidaires à la plaque tubulaire fixe au moyen de tirant et entretoise qui occupent la place de tube les standards (TEMA) imposent un nombre de tirants entre 4à10.

2. Les Chicanes longitudinales

Chapitre 1

Sont généralement constituées par une simple tôle insérée au milieu du faisceau cette disposition oblige le fluide à effectuer un aller et un retour dans la calandre.

Longitudinales

Transversale

Figure 1.7: Type de chicane [14].

1.5.1.5. Boites de distribution ou chambres de distribution :

La chambre de distribution ou boites de distribution permet de distribuer le fluide en vue de réaliser 1, 2, 4,6 ou 8 passes. Le nombre de passe est généralement limité par la perte de charge admissible. Le second facteur limitant est si la différence de température à l'entrée et à la sortie est importante ; pour une différence de 150 °C une seule passe s'impose [14].

Figure 1. 8: Type de chambre de distribution [14].

1.5.1.6. Déflecteurs ou plaque de protection du faisceau :

Chapitre 1 Généralités sur les échangeurs de chaleur

Pour éviter ou du moins minimiser l'érosion de tube du faisceau, des déflecteurs de protection peuvent être installés faces aux tubulures d'entrée du fluide côté calandre, l'obligation de leur mise en place est définie dans les standards (TEMA) en fonction de la nature, de l'état du fluide et du produit ρ u2 (ρ : masse volumique, u vitesse du fluide) ces déflecteurs, d'une épaisseur de l'ordre de 1/2in, sont circulaires, carrés ou rectangulaires, soudés sur des tirants ou entretoise [14].

Figure 1.9 : Plaque de protection du faisceau [14].

1.5.1.7. Les passe :

Dans la disposition la plus simple, les fluides côté tubes et côté calandre entrent à une extrémité et sortent à l'autre. On dit alors qu'il n'y a qu'une seule passe (un seul passage) côté tubes et côté calandre. Les fluides peuvent entrer du même côté, (co-courant) ou aux côtés opposés (contre-courant) [16].

1.5.2. Les types des échangeurs à tubes et calandre :

1.5.2.1. Echangeur de chaleur à tête flottante :

L'une des plaques tubulaires est fixe, bloquée entre les brides de la calandre et de la boîte de distribution. La seconde plaque, d'un diamètre inférieur, porte la boîte de retour et peut coulisser librement à l'intérieur du capot qui ferme la calandre [17].

Figure 1.10 : Echangeur de chaleur à tête flottante [17].

1.5.2.2. Echangeur à plaque tubulaires fixes :

Chapitre 1

Dans ce cas, les plaques tubulaires peuvent être directement soudées sur la calandre [17].

Figure 1.11 : Echangeur à plaque tubulaires fixes [17].

1.5.2.3. Echangeur à tubes en U :

Le faisceau est constitué de tubes coudés en forme d'épingle, il n'est donc porté que par une seule plaque tubulaire. Ce système permet la libre dilatation du faisceau. En revanche, le nettoyage des tubes est difficilement réalisable autrement que par voie chimique [17].

Figure 1.12 : Echangeur à tubes en U [17].

2. Formulation mathématique :

2.1 Description le principe de fonction de l'échangeur de chaleur

Echangeur à double tube concentrique (EDTC) :

L'échangeur de chaleur est un tube échangeur de chaleur continus où le fluide circule dans le tube centrale et l'autre dans l'espace annulaire, les deux fluide capables circuler dans le même sens (parallèle où Co-courant) ou en sens contraire (Contre – courant) [18] ;

Echangeur à triple tube concentrique (ETTC) :

C'est un nouveau type d'échangeur de chaleur continu, dans lequel un fluide circule dans le tube annulaire médian, les deux autres fluide circule l'espace annulaire et central, et trois fluide peuvent circuler dans le même sens (parallèle où Co-courant) ou en sens contraire (Contre – courant) [18].

2.2 Première configuration :(double tube)

2.2.1 Première cas (eau-eau) :

- Diamètre hydraulique :

$$d_h = D - d \tag{2.1}$$

- La vitesse :

La vitesse d'écoulement peut être donnée comme suite :

$$W_c = \frac{4*V_c}{\pi*(d_{2o}^2 - d_{2i}^2)}$$
(2.2)

$$W_H = \frac{4*V_H}{\pi * d_{1i}^2}$$
(2.3)

- Flux thermique :

Le flux de chaleur est donné par la relation suivant :

$$Q_H = Q_c + Q_L \tag{2.4}$$

$$Q_c = m_c * Cp_c * (t_{cout} - t_{cin})$$

$$(2.5)$$

Formulation mathématique

$$Q_{H} = m_{H} * C p_{H} * (t_{Hin} - t_{Hout})$$
(2.6)

- Coefficients de convection :

Chapitre 2

La convection (thermique) fait référence au transfert d'énergie thermique dans un fluide en mouvement ou entre un fluide en mouvement et une paroi solide ; le coefficient de la convection est donné par la relation suivant :

$$\alpha_c = \frac{N_{uc}*\lambda}{(d_{2o}-d_{2i})} \tag{2.7}$$

$$\alpha_H = \frac{N_{uH} * \lambda}{d_{1i}} \tag{2.8}$$

- Surface d'échange :

La relation de la surface d'échange peut être donnée comme suite :

$$A = \pi * d * L \tag{2.9}$$

- Température de paroi :

C'est une grandeur thermique qui représenté la variation de la température moyenne et le rapport entre le flux de chaleur et coefficient de convection on donne :

$$T_W = T_C + \frac{Q_C}{\alpha * A} \tag{2.10}$$

- Coefficient d'échange de chaleur global :

Le coefficient d'échange global est donne par l'expression suivante :

$$K = \frac{1}{\frac{1}{\alpha^{*} \frac{d_{10}}{d_{1i}} + \frac{d_{10}}{2*\lambda_{Cu}} \ln \frac{d_{10}}{d_{1i}} + \frac{1}{\alpha_{2}}}}$$
(2.11)

Avec la conductivité thermique de cuivre est : $\lambda_{Cu} = 372.16$ W/m °C.

- Nombre de Reynolds:

Le nombre de Reynolds est donne par l'expression suivante :

$$R_{ec} = \frac{w_c(d_{2i} - d_{1o})\,\rho}{\mu} \tag{2.12}$$

-

$$R_{eH} = \frac{w_H d_{1i}\rho}{\mu} \tag{2.13}$$

Nombre de Prandtl:

Le nombre de Prandtl est le rapport de la viscosité cinématique à la diffusivité thermique.

$$P_{rc} = \frac{cp_{C}\,\mu}{\lambda_{C}} \tag{2.14}$$

$$P_{rH} = \frac{c_{p_H}\mu}{\lambda_H} \tag{2.15}$$

- Nombre de Nusselt:

Le nombre de Nusselt est calculé par la forme suivante :

Concernant le fluide froid

$$Nu_{c} = 0.67 \left(\frac{r}{R}\right)^{0.13} R_{e}^{0.5} P_{r}^{0.21}$$
(2.16)

Concernant le fluide chaud

$$Nu_{H} = 0.67 \left(\frac{r}{R}\right)^{0.13} R_{e}^{0.5} P_{r}^{0.21}$$
(2.17)

2.2.2. Deuxième cas (kérosène -eau) :

Pour calcules les paramètres ($d_h w Q \alpha A T_W K R_e P_r$) nous avons les même équations que dans le Premier cas :

$$Nu_{H} = 2.40 \left(Re * Pr * \frac{d}{L} \right)^{\frac{1}{3}}$$
(2.18)

$$Nu_{C} = 3.66 + 1.2 \cdot \left(\frac{D_{i}}{d_{o}}\right)^{0.8} + \frac{0.19 \cdot \left[1 + 0.14 \cdot \left(\frac{D_{i}}{d_{o}}\right)^{0.5}\right] \cdot \left[Re.Pr.\frac{d_{h}}{L}\right]^{0.8}}{1.0.117 \cdot \left[Re.Pr.\frac{d_{h}}{L}\right]}$$
(2.19)

2.3. Deuxième Configuration (triple tube) :

2.3.1. Première cas (eau -eau) :

- La vitesse:

$$W_{c1} = \frac{4*V}{\pi*d_{1i}^2} \tag{2.20}$$

$$W_{C2} = \frac{4*V_{C1}}{\pi*(d_{3i}^2 - d_{2o}^2)}$$
(2.21)

$$W_H = \frac{4*V_H}{\pi * (d_{2i}^2 - d_{1o}^2)}$$
(2.22)

- Flux thermique:

$$Q_H = Q_{c2} + Q_{c1} + Q_L \tag{2.23}$$

$$Q_{c1} = m_{c1} * Cp_{c1} * (t_{c1out} - t_{c1i})$$
(2.24)

$$Q_{c2} = m_{c2} * Cp_{c2} * (t_{c2out} - t_{c2in})$$
(2.25)

$$Q_{H} = m_{H} * C p_{H} * (t_{Hin} - t_{Hout})$$
(2.26)

- Coefficients de convection:

$$\alpha_1 = \frac{N_u * \lambda}{d_{1i}} \tag{2.27}$$

$$\alpha_H = \frac{Q_H}{(T_H - T_W)^* A} \tag{2.28}$$

$$\alpha_3 = \frac{N_u * \lambda}{(d_{3i} - d_{2o})} \tag{2.29}$$

- Section de passage:

$$A_{1i} = \pi * d_{1i} * L_1 \tag{2.30}$$

$$A_{2o} = \pi * d_{2o} * L_2 \tag{2.31}$$

- Température de paroi:

$$T_{W1} = T_{C1} + \frac{Q_{C1}}{\alpha_{c1} * A_{1i}}$$
(2.32)

Formulation mathématique

$$T_{W2} = T_{C2} + \frac{Q_{C2}}{\alpha_{c2} * A_{20}}$$
(2.33)

- Coefficient d'échange de chaleur global:

$$K_{1} = \frac{1}{\frac{1}{\alpha_{1}} * \frac{d_{10}}{d_{1i}} + \frac{d_{10}}{2 * \lambda_{Cu}} ln \frac{d_{10}}{d_{1i}} + \frac{1}{\alpha_{H}}}$$
(2.34)

$$K_{2} = \frac{1}{\frac{1}{\alpha_{H}} * \frac{d_{20}}{d_{2i}} + \frac{d_{20}}{2 * \lambda_{Cu}} ln \frac{d_{20}}{d_{2i}} + \frac{1}{\alpha_{3}}}$$
(2.35)

- Nombre de Reynolds:

$$R_{ec1} = \frac{w_{c1}*d_{1i}*\rho_{c1}}{\mu} \tag{2.36}$$

$$R_{eH} = \frac{w_{H^*}(d_{2i} - d_{1o})*\rho_H}{\mu} \tag{2.37}$$

$$R_{ec2} = \frac{w_{c^*}(d_{3i} - d_{2o})_* \rho_{c2}}{\mu}$$
(2.38)

- Nombre de Prandtl:

$$P_{rc1} = \frac{c_{p*c_1*\mu}}{\lambda_{c_1}}$$
(2.39)

$$P_{rH} = \frac{c_{p_H*\,\mu}}{\lambda_H} \tag{2.40}$$

$$P_{rc2} = \frac{Cp_{*c2}*\mu}{\lambda_{c2}}$$
(2.41)

- Nombre de Nusselt:

$$Nu_{C1} = 0.022 * R_{eC1}^{0.8} * P_{rC1}^{0.4}$$
(2.42)

$$Nu_{H} = 2.718 R_{eH}^{0.597} * P_{rH}^{1/3} * \left(\frac{d_{h2}}{L_{1}}\right)^{2/3}$$
(2.43)

$$Nu_{c2} = 3.66 + \frac{0.0668 \binom{d_{h3}}{L_2} * R_{ec2} * P_{rc2}}{1 + 0.04 \left[\binom{d_{h3}}{L_2} * R_{ec2} * P_{rc2} \right]}$$
(2.44)

2.3.2. Deuxième cas : (kérosène -eau)

Pour calcules les paramètres $(d_h w Q \alpha_1 \alpha_2 A_{1i} A_{2i} T_{w1} T_{w2} R_e P_r N u_{c2})$ nous avons les même équations dansque le Premier cas :

- Coefficients de convection :

$$\alpha_{2i} = \frac{Q_{c1}}{A_{1o} \left[t_H - t_{w1i} + \frac{Q_{c1}}{2\pi L_1 \lambda_{Cu}} ln \frac{d_{1o}}{d_{1i}} \right]}$$
(2.45)

$$\alpha_{2o} = \frac{Q_{c2}}{A_{2i} \left[t_{w1i} - t_H + \frac{Q_{c1}}{2\pi L_1 \lambda_{cu}} ln \frac{d_{2o}}{d_{2i}} \right]}$$
(2.46)

- Section de passage:

$$A_{1i} = \pi * d_{1i} * L_1 \tag{2.47}$$

$$A_{2e} = \pi * d_{2o} * L_2 \tag{2.48}$$

- Température de paroi:

$$T_{W1i} = T_{C1} + \frac{Q_{C1}}{\alpha_{c1} * A_{1i}}$$
(2.49)

$$T_{W1e} = T_H + \frac{Q_{C1}}{\alpha_{2i} * A_{1e}}$$
(2.50)

$$T_{W2i} = T_H + \frac{Q_{C2}}{\alpha_{2o} * A_{2i}}$$
(2.51)

$$T_{W2e} = T_{C2} + \frac{Q_{C2}}{\alpha_2 * A_{2e}}$$
(2.52)

- Coefficient d'échange de chaleur global:

$$K_{1} = \frac{1}{\frac{1}{\alpha_{1}} * \frac{d_{10}}{d_{1i}} + \frac{d_{10}}{2 * \lambda_{Cu}} ln \frac{d_{10}}{d_{1i}} + \frac{1}{\alpha_{2i}}}$$
(2.53)

$$K_2 = \frac{1}{\frac{1}{\alpha_{20}} * \frac{d_{10}}{d_{1i}} + \frac{d_{10}}{2 * \lambda_{Cu}} ln \frac{d_{10}}{d_{1i}} + \frac{1}{\alpha_3}}$$
(2.54)

- Nombre de Reynolds:

Formulation mathématique

$$R_{ec1} = \frac{w_{c1}*d_{1i}*\rho_{c1}}{\mu}$$
(2.55)

$$R_{ec} = \frac{w_{c}*(d_{3i}-d_{2o})*\rho_{c2}}{\mu}$$
(2.56)

$$R_{eH} = \frac{w_{H}*(d_{2i}-d_{1o})*\rho_{H}}{\mu}$$
(2.57)

- Nombre de Prandtl:

 $P_{rc} = \frac{c_{p_c*\,\mu}}{\lambda_c} \tag{2.58}$

$$P_{rH} = \frac{c_{p_H*\,\mu}}{\lambda_H} \tag{2.59}$$

$$P_{rc} = \frac{Cp_{C^*}\mu}{\lambda_C}$$
(2.60)

Nombre de Nusselt:

$$Nu_{c1} = \frac{(f/8)*(R_{ec} - 10)*P_{rc}}{1 + 12.7\sqrt{f/8}(P_{rc1}^{2/3} - 1)} Nu_{H} = \frac{(f/8)*(R_{eH} - 1000)*P_{rH}}{1 + 12.7\sqrt{f/8}(P_{rH}^{2/3} - 1)}$$
(2.61)

$$f = (0.782LnRe - 1.51)^{-2}$$
(2.62)

3. Introduction

Nous présentons dans cette mémoire une étude d'analyse du transfert de chaleur des échangeurs de chaleur à double enveloppe et tubes concentriques, pour les deux régimes de fonctionnement transitoire et permanent. Les systèmes d'équations qui gouvernent le phénomène à étudier sont réalisés pour déterminer les variations des températures (fluides et parois), les coefficients d'échange par convection, ainsi que les coefficients d'échange globaux.

3.1 Méthodologie

Première configuration :

L'échangeur de chaleur proposé à étudier est constitué de deux tubes coaxiaux. Le premier fluide noté «H» passe dans le tube central de diamètres intérieur et extérieur d_{1i} et d_{1o} respectivement et le deuxième fluide noté « C1 » passe dans l'espace annulaire de diamètres intérieur et extérieur d_{2i} et d_{2o} respectivement. Les deux fluides pourront circuler dans sens contraire (contre-courant). Ces deux fluides sont séparés par de paroi en cuivre notées « 1 » à travers lesquelles les échanges de chaleur se font par conduction. La transmission de chaleur entre les fluides et la paroi relève de la convection thermique comme le montre la figure (3.1).

Figure 3.1. Vue en coupe de l'échangeur de chaleur à double tubes concentrique (ECDT).

Dimension	Unité	ECDT
Diamètre intérieur du tube intérieur	d _{1i} , mm	26
Diamètre extérieur du tube intérieur	d ₁₀ , mm	28
Diamètre intérieur du tube extérieur	d _{2i} , mm	40
Diamètre extérieur du tube extérieur	d ₂₀ , mm	42
Longueur du tube intérieur	L_1 , mm	1193
Longueur du tube extérieur	L ₂ , mm	1193

Tableau 3.1. Les dimensionne pour l'échangeur de chaleur (ECDT).

Deuxième configuration :

L'échangeur de chaleur proposé à étudier est constitué de trois tubes coaxiaux. Le premier fluide noté «C1 » passe dans le tube central de diamètres intérieur et extérieur d_{1i} et d_{1o} respectivement et le deuxième fluide noté « H » passe dans l'espace annulaire 1 de diamètres intérieur et extérieur d_{2i} et d_{2o} respectivement, le troisième fluide noté « C2 » circule dans l'espace annulaire 2 de diamètres intérieur et extérieur d_{1i} et d_{1o} respectivement. Les deux fluides froid (C1 et C2) pourront circuler la même sens par contre les fluides froid et le fluide chaud circuler dans sens contraire (contre-courant).

Ces trois fluides sont séparés par des parois en cuivre notées « 1», « 2» à travers lesquelles les échanges de chaleur se font par conduction. La transmission de chaleur entre les fluides et les parois relève de la convection thermique comme le montre la figure (3.2).

Figure 3.2. Vue en coupe de l'échangeur de chaleur à triple tubes concentrique (ECTT).

Dimension	Unité	ECTT
Diamètre intérieur du tube intérieur	d _{1i} , mm	12
Diamètre extérieur du tube intérieur	d ₁₀ , mm	14
Diamètre intérieur du tube intermédiaire	d _{2i} , mm	26
Diamètre extérieur du tube intermédiaire	d ₂₀ , mm	28
Diamètre intérieur du tube extérieur	d _{3i} , mm	40
Diamètre extérieur du tube extérieur	d ₃₀ , mm	42
Longueur du tube intérieur	L_1 , mm	1193
Longueur du tube intermédiaire	L ₁ , mm	1193
Longueur du tube extérieur	L ₂ , mm	935

Tableau 3.2. Les dimensionne pour l'échangeur de chaleur (ECTT).

3. Résultats et discussions

3.1. Premier partie : (Eau- Eau)

Dans les tableaux 3.4, 3.6, 3.8, 3.10, et 3.12 sont présentées de manière comparative la vitesse moyenne linéaire et les valeurs des coefficients de transfert de chaleur obtenues pour les deux échangeurs de chaleur.

Dans ECDT, les valeurs du nombre Re varient entre 1023 - 2484 pour l'eau chaude et 643 - 776 pour l'eau froide. Dans le ECTT, les valeurs du nombre Re varient entre 1952 - 2882 pour le flux C1, 1119 - 1561 pour l'eau chaud et 247 - 427 pour le flux C2.

Dans le ECDT, les valeurs du nombre Pr varient entre 2.591 et 5.49 pour l'eau chaude et entre 6.928 et 7.375 pour l'eau froide.

Dans le ECTT, les valeurs du nombre Pr varient entre 7.272 et 8.129 pour le flux C1, 5.298 – 5.646 pour l'eau chaude et 7.152 – 7.973 pour le flux C2.

Dans le ECDT, les valeurs du nombre Nu varient entre 30.202 et 40.403 pour l'eau chaude et entre 25.695 et 27.909 pour l'eau froide.

Dans le ECTT, les valeurs du nombre Nu varient entre 21.219 et 29.8 pour le flux C1, 14.595 – 17.829 pour l'eau chaude et 7.028 – 12.396 pour le flux C2.

Chapitre 03 Résultats et discussions

3.1.1 Première configuration :

Déterminer le bilan énergétique de l'échangeur double tube.

• Côté eau froid:

Tableau 3.3 : Les propriétés physiques de l'eau sont rassemblées dans le tableau suivant:

N°	T _{c1in} °C	T _{c1out} °C	T _{c1m} °C	ρ kg/m ³	C _p J/ (kg. °C)	λ W/ (m.°C)	μ Pa.S
01	16	21	18,5	998,2	4184,2	0,59525	0,0010493
02	16	22	19	998,35	4183,8	0,59655	0,0010342
03	16	23	19,5	998,275	4183,4	0,59775	0,0010191
04	16	24	20	998,2	4183	0,5999	0,001004
05	16	24	20	998,2	4183	0,5999	0,001004
06	16	25	20,5	998,075	4182,55	0,59995	0,0009938
07	16	24	20	998,2	4183	0,5999	0,001004
08	16	23,25	19,625	998,256	4183,3	0,598062	0,00101523
09	16	22	19	998,35	4183,8	0,59655	0,0010342
10	16	21	18,5	998,225	4184,2	0,59525	0,0010493

• La temperature moyenne

Tmoy =
$$\frac{(T_{c1.1} + T_{c1.2})}{2} \Rightarrow$$
 Tmoy = $\frac{(16 + 21)}{2}$

On fait l'application numérique :

$$\Rightarrow$$
 T_{c1}moy = 18.5°C

Les propriétés physiques de l'eau chaude par l'interpolation linéaire :

• La masse volumique : (voir le tableau)

$$\frac{(\rho \max - \rho \min)}{(\rho \max - \rho_{c1})} = \frac{(Tmax - Tmin)}{(Tmax - Tmoy)} \Rightarrow \frac{(20 - 10)}{(20 - 18.5)} = \frac{(998.2 - 999.7)}{(998.2 - \rho_{c1})}$$

On fait l'application numérique :

$$\Rightarrow \rho_{c1} = 998.2 \ kg/m^3$$

Chapitre 03 Résultats et discussions

• La chaleur massique : (voir le tableau)

$$\frac{(\text{Cpmax} - \text{Cpmin})}{(\text{Cpmax} - \text{Cp}_{c1})} = \frac{(\text{Tmax} - \text{Tmin})}{(\text{Tmax} - \text{Tmoy})} \Rightarrow \frac{(20 - 10)}{(20 - 18.5)} = \frac{(4.183 - 4.191)}{(4.183 - \text{Cp}_{c1})}$$

On fait l'application numérique :

$$\Rightarrow Cp_{c1} = 4.184 \, KJ/(Kg \, ^{\circ}C) \Rightarrow Cp_{c1} = 4.184 \, .10^3 \, J/(Kg \, ^{\circ}C)$$

• La conductivité thermique : (voir le tableau)

$$\frac{(\lambda \max - \lambda \min)}{(\lambda \max - \lambda_{c1})} = \frac{(Tmax - Tmin)}{(Tmax - Tmoy)} \Rightarrow \frac{(20 - 10)}{(20 - 18.5)} = \frac{(59.9 - 57.4)}{(59.9 - \lambda_{c1})}$$

On fait l'application numérique :

$$\Rightarrow \lambda_{c1} = 59.525. \ 10^{-2} w/(m^{\circ}C)$$

• La viscosité dynamique : (voir le tableau)

$$\frac{(\mu \max - \mu \min)}{(\mu \max - \mu_{c1})} = \frac{(Tmax - Tmin)}{(Tmax - Tmoy)} \Rightarrow \frac{(20 - 10)}{(20 - 18.5)} = \frac{(1004 - 1306)}{(1004 - \mu_{c1})}$$

On fait l'application numérique :

$$\Rightarrow \mu_{c1} = 1049.3.10^{-6} Pa.S$$

• La vitesse:

$$w_{c1} = \frac{4 V_{c1} \ 0.001}{\pi * \ 3600 \ \left(d_{3i}^2 - d_{2o}^2\right)} = \frac{4 * \ 150 * 0.001}{3.14 * 3600 * \ (0.040^2 - 0.028^2)} = \ 0.065 m/s$$

• Le flux de chaleur :

$$Q_{c1} = \rho_{c1} V_{c1} Cp_{c1} (T_{c1s} - T_{c1e}) = 998.2 * \frac{150 * 0.001}{3600} (21 - 16) = 870.139 W$$

• Nombre de Reynolde :

$$R_{ec1} = \frac{\rho_{c1} w_{c1} (d_{2i} - d_{1o})}{\mu_{c1}} = \frac{998.2 * 0.065 * (0.04 - 0.028)}{1049.3 \ 10^{-6}} = 742.554$$

Résultats et discussions

• Le Nombre de Prandtl :

$$P_{rc1} = \frac{\mu_{c1} Cp_{c1}}{\lambda_{c1}} = \frac{1205.10^{-6} * 4188}{58.2.10^{-2}} = 7.375$$

• Le Nombre de Nusselt :

$$Nu_{c1} = 0.67 \left(\frac{r}{R}\right)^{0.13} R_{ec1}^{0.5} P_{rc1}^{0.21}$$
$$Nu_{c1} = 0.67 \left(\frac{0.04}{0.042}\right)^{0.13} 742.554^{0.5} 7.375^{0.21} = 27.601$$

• Le coefficient d'échange par convection :

$$\alpha_{c1} = \frac{\lambda_{c1} \ Nu_{c1}}{(d_{2i} - d_{1o})}$$
$$\alpha_{c1} = \frac{59.525.10^{-2} * 27.601}{(0.04 - 0.028)} = 995.368 \ \text{W/(m^2 °C)}$$

• Le coefficient d'échange global :

$$K = \frac{1}{\frac{1}{\alpha^* \frac{d_{10}}{d_{1i}} + \frac{d_{10}}{2*\lambda_{Cu}} \ln \frac{d_{10}}{d_{1i}} + \frac{1}{\alpha_2}}}$$

$$K = \frac{1}{\frac{1}{995.368} * \frac{0.04}{0.028} + \frac{0.028}{2 * 372.16} \ln \frac{0.04}{0.028} + \frac{1}{955,923}} = 878,638 \text{W/m} \,^{\circ}\text{C}$$

• Température de parois :

$$T_W = T_C + \frac{Q_C}{\alpha * A} = 18.5 + \frac{870.139}{955,923*0.104} = 24,559$$
 °C

Chapitre 03

N°	V _{c1}	W _{c1}	Q _{c1}	Re _{c1}	Pr _{c1}	Nu c1	α_{c1}	K	$T_{\rm w}$
	(l/h)	(m/s)	(W)	(-)	(-)	(-)	$W/(m^2. °C)$	(W/m^2)	(°C)
								°C)	
01	150	0,065	870,139	742,554	7,3758	27,601	1369,124	878,638	24,559
02	150	0,065	1044,224	753,509	7,253	27,706	1377,339	966,700	26,228
03	150	0,065	1218,053	764,616	7,132	27,811	1385,344	1058,635	27,882
04	150	0,065	1391,823	776,057	7,000	27,909	1395,226	1154,601	29,510
05	150	0,065	1391,823	776,057	7,000	27,909	1395,226	1154,601	29,510
06	140	0,060	1461,074	731,663	6,928	27,040	1351,888	1171,746	30,803
07	140	0,060	1299,035	724,320	7,000	26,962	1347,917	1034,474	29,188
08	140	0,060	1177,401	716,348	7,101	26,894	1340,380	945,319	27,999
09	130	0,052	904,994	653,041	7,253	25,792	1282,233	720,683	25,729
10	130	0,056	754,139	643,562	7,375	25,695	1274,601	604,801	24,140

Tableau 3.4 : Résultats de calcul les valeurs de eau froid concernant le 1^{ere} configuration (eau- eau).

• Côté eau chaud:

Tableau 3.5 : Les propriétés physiques de l'eau sont rassemblées dans le tableau suivant:

N°	T _{Hin} °C	T _{Hout} °C	T _{Hm} °C	Рн kg/m ³	C _{pH} J/ (kg. °C)	λ _H W/ (m ² . °C)	µ _н Pa.S
01	35	22	28,5	996,075	4175,35	0,61515	0,00038188
02	35	24	29,5	995,825	4174,45	0,61705	0,00081163
03	35	26	30,5	995,525	4174.00	0,61885	0,00079409
04	35	28	31,5	995,175	4174.00	0,62055	0,00077927
05	35	28	31,5	995,175	4174.00	0,62055	0,00077927
06	35	30	32,5	994,825	4174.00	0,62225	0,00076445
07	35	29	32.0	995.000	4174.00	0,62140	0,00077186
08	35	28	31,5	995,175	4174.00	0,62055	0,00077927
09	35	27	31.0	995,350	4174.00	0,61970	0,00078668
10	35	26	30,5	995,520	4174.00	0,61885	0,00079409

Chapitre 03 Résultats et discussions

N°	V _H	W_{H}	Q _H	Re _H	Pr _H	Nu _H	α H	А	$T_{\rm w}$
	(l/h)	(m/s)	(W)	(-)	(-)	(-)	$W/(m^2. °C)$	(m ²)	(°C)
01	70	0,036	1051,293	2484,982	2,591	40,403	955,923	0,104	24,559
02	70	0,036	889,140	1168,907	5,490	32,441	769,929	0,104	26,228
03	70	0,036	727,181	1194,359	5,355	32,622	776,472	0,104	27,882
04	70	0,036	565,386	1216,645	5,241	32,776	782,282	0,104	29,510
05	70	0,036	565,386	1216,645	5,241	32,776	782,282	0,104	29,510
06	60	0,031	346,033	1062,682	5,127	30,491	729,744	0,104	30,803
07	60	0,031	415,313	1052,665	5,184	30,417	726,984	0,104	29,188
08	60	0,031	484,617	1042,838	5,241	30,344	724,252	0,104	27,999
09	60	0,0310	553,9	1033,197	5,298	30,273	721,549	0,104	25,729
10	60	0,031	623,29	1023,731	5,355	30,202	718,871	0,104	24,140

Tableau 3.6 : Résultats de calcul les valeurs de eau chaud concernant le 1ere configuration (cas : eau – eau).

3.1.2 Deuxième configuration :

Détermination du bilan énergétique de l'échangeur triple tube.

• Côté eau C1:

 Tableau 3.7 : Les propriétés physiques de l'eau froide sont rassemblées dans le tableau suivant:

N°	T _{c1e} °C	T _{c1s} °C	T _{c1m} °C	ρ kg/m ³	C _p J/ (kg.°C)	λ W/ (m². °C)	μ Pa.S
01	16	20,5	18,25	998,462	4183,875	0,582	0,0010553
02	16	22	19	998,350	4183,500	0,584	0,0010325
03	16	23	19,5	998,275	4183,250	0,585	0,0010172
04	16	18	17	998,650	4184,500	0,580	0,0010935
05	16	18,25	17,125	998,631	4184,437	0,580	0,0010896
06	16	18,5	17,25	998,612	4184,375	0,580	0,0010859
07	16	17	16,5	998,725	4185,000	0,578	0,0011240
08	16	17,25	16,625	998,706	4184,687	0,579	0,0011049
09	16	17,5	16,75	998,687	4184,625	0,580	0,0011011

Chapitre 03 Résultats et discussions

10 16 17,65 16,825 998,676 4184,587 0,580	0,0010988
---	-----------

Tableau 3.8: Résultats de calcul les valeurs de eau froid concernant le 1ere configuration (eau
— eau).

N°	V_{c1}	W _{c1}	Q _{c1}	Re _{c1}	Pr _{c1}	Nu _{c1}	α_{c1}	K	$T_{\rm w}$
	(l/h)	(m/s)	(W)	(-)	(-)	(-)	$W/(m^2.°C)$	$(W/m^2 \circ C)$	(°C)
01	70	0,172	365,526	1952,853	7,576	21,2195	1030,612	570,624	26,139
02	70	0,172	487,269	1995,893	7,393	21,383	1041,054	826,839	29,412
03	70	0,172	568,404	2025,662	7,272	21,495	1048,186	872,938	31,563
04	90	0,221	208,942	2423,726	7,882	25,625	1239,624	689,973	20,749
05	90	0,221	235,052	2432,160	7,851	25,656	1241,631	727,438	21,336
06	90	0,221	261,160	2440,598	7,821	25,687	1243,635	715,366	21,921
07	110	0,270	127,711	2882,165	8,129	29,800	1436,935	683,513	18,477
08	100	0,245	145,116	2665,303	7,975	27,778	1342,149	661,837	19,030
09	100	0,245	174,130	2674,481	7,944	27,812	1344,303	663,371	19,631
10	100	0,245	191,539	2680,018	7,925	27,832	1345,600	663,353	19,991

• Côté eau chaud :

Tableau 3.9 : Les propriétés physiques de l'eau sont rassemblées dans le tableau suivant:

N°	T _{Hin} °C	T _{Hout} °C	T _{Hm} °C	Рн kg/m ³	C _{Ph} J/(kg.°C)	λ _H W/ (m ² .°C)	µ _н Pa.S
01	35	27	31.00	995,350	4174.000	0,6197	0,0007866
02	35	25	30.00	995,700	4174.000	0,6180	0,0008015
03	35	26,6	30,80	995,420	4174.000	0,6193	0,0007896
04	35	24,5	29,75	995,275	4179,287	0,6165	0,0008330
05	35	25	30.00	995,200	4179,287	0,6170	0,0008286
06	35	26,2	30,60	995,020	4179,287	0,6180	0,0008181
07	35	26,3	30,65	995,005	4179,287	0,6181	0,0008173
08	35	26,5	30,75	994,975	4179,287	0,6183	0,0008155
09	35	26,8	30,9	994,930	4179,287	0,6186	0,0008129

N°	V _H (l/h)	W _H (m/s)	Q _H °C	Re _H (-)	Pr _H (-)	Nu _H (-)	$\alpha_{\rm H}$ W/(m ² .°C)	A (m ²)	Tw (°C)	K2 (W/m ² °C)
01	100	0,073	923,242	1119,411	5,298	14,595	1619,293	0,149	27,194	300,728
02	120	0,088	1385,350	1318,785	5,413	16,212	11645,994	0,149	29,206	357,977
03	140	0,103	1357,261	1561,331	5,321	17,829	33756,921	0,149	30,531	365,344
04	110	0,081	1334,519	1162,675	5,646	15,250	1979,078	0,149	25,249	403,859
05	130	0,095	1501,943	1381,263	5,612	16,868	2313,940	0,149	25,668	416,152
06	140	0,103	1423,122	1506,334	5,531	17,678	2188,774	0,149	26,260	411,921
07	140	0,103	1406,929	1507,785	5,525	17,682	1542,696	0,149	24,563	454,309
08	140	0,103	1374,544	1511,068	5,511	17,690	1565,451	0,149	24,890	456,263
09	140	0,103	1325,971	1515,832	5,491	17,702	1570,615	0,149	25,265	456,701
10	140	0,103	1293,591	1519,150	5,478	17,710	1568,456	0,149	25,495	456,519

Tableau 3.10: Résultats de calcul les valeurs de eau chaud concernant la 2 ^{éme} configuration (eau – eau).

• Côté eau C2:

Tableau 3.11 : Les propriétés physiques de l'eau sont rassemblées dans le tableau suivant:

N°	T _{c2in} °C	T _{c2out} °C	T _{c2m} °C	ρ _{C2} kg/m ³	C _{Pc2} J/(kg.°C)	λ_{c2} W/ (m ² .°C)	μ _{c2} Pa.S
01	16	20,75	18,37	998,443	4183,8125	0,583	0,00105156
02	16	22,50	19,25	998,312	4183,8125	0,584	0,00102488
03	16	24.00	20.00	998,200	4183,8125	0,586	0,00100200
04	16	17,50	16,75	998,687	4183,8125	0,580	0,00110112
05	16	18,25	17,12	998,631	4183,8125	0,580	0,00108969
06	16	19,50	17,75	998,537	4183,8125	0,581	0,00107063
07	16	17,25	16,62	998,706	4183,8125	0,579	0,00110494
08	16	17,5	16,75	998,687	4183,8125	0,580	0,00110112
09	16	17,75	16,87	998,668	4183,8125	0,580	0,00109731

N°	V _{c2}	W _{c2}	Q _{c2}	Re _{c2}	Pr _{c2}	Nu c2	α3	Tw
	(l/h)	(m/s)	(W)	(-)	(-)	(-)	W/ (m ² . °C)	
01	50	0,021	275,585	247,045	7,545	7,064	343,265	18,415
02	50	0,021	377,067	253,445	7,333	7,045	343,277	19,290
03	50	0,021	464,031	259,202	7,152	7,028	343,288	20,040
04	70	0,030	121,867	330,377	7,942	9,760	471,779	16,790
05	70	0,030	182,791	333,825	7,850	9,748	471,783	17,165
06	70	0,030	284,315	339,737	7,697	9,729	471,791	17,790
07	90	0,039	130,579	423,312	7,973	12,396	598,947	16,666
08	90	0,039	156,687	424,770	7,942	12,391	598,948	16,791
09	90	0,039	182,798	426,238	7,911	12,386	598,949	16,916
10	90	0,039	208,908	427,716	7,881	12,381	598,951	17,041

Tableau 3.12 : Résultats de calcul les valeurs de eau froid concernant la 2 ^{éme} configuration (eau – eau).

3.2. Deuxième partie : (Kérosène- Eau)

Dans ECDT, les valeurs du nombre Re varient entre 1643 - 2194 pour le kérosène et 687 - 1243 pour l'eau. Dans le ECTT, les valeurs du nombre Re varient entre 2273 - 2689 pour le flux C1, 1487 - 1669 pour le kérosène et 265 - 524 pour le flux C2. Les valeurs du nombre Pr sont similaires pour les deux échangeurs de chaleur et varient entre 7 - 9 pour l'eau et 10- 12 pour le kérosène. Dans ECDT, les valeurs du nombre Nu varient entre 17.653 et 20.335 pour le kérosène et entre 8.824 et 10.538 pour l'eau.

Dans le ECTT, les valeurs du nombre Nu varient entre 15.814 et 20.523 pour le flux C1, 7.274 - 9.593 pour le kérosène et 8.751 - 10.44 pour le flux C2.

Dans les tableaux 3.14, 3.16, 3.18, 3.20, et 3.22 sont présentées de manière comparative la vitesse moyenne linéaire et les valeurs des coefficients de transfert de chaleur obtenues pour les deux échangeurs de chaleur.

Comme le montre les tableaux 3.14, 3.16, 3.18, 3.20, et 3.22, les valeurs de α_1 dans ECTT sont supérieures à celles de α_2 dans ECDT (w_{C1} dans ECTT > w_C dans ECDT), les valeurs de α_2 dans ECDT sont supérieures à celles de α_3 dans ECTT ((w_{C2} dans ECTT < w_C dans

Chapitre 03 Résultats et discussions

ECDT)) et les valeurs de α_{2i} et α_{2o} dans ECTT sont supérieures à celles de α_1 dans ECDT (wH dans ECTT > w_H dans ECDT). Dans ECTT, le transfert de chaleur se produit simultanément dans deux directions opposées. Un sens est le transfert de chaleur entre le kérosène et le flux C1 et l'autre sens est le transfert de chaleur entre le kérosène et le flux C2. Par conséquent, contrairement à ECDT où le transfert de chaleur se produit dans une direction et il peut calculer le coefficient de transfert de chaleur global k, pour ECTT, il peut calculer deux coefficients de transfert de chaleur globaux, k₁ et k₂. Les coefficients de transfert de chaleur globaux peuvent être calculés avec les équations suivantes (sans tenir compte des résistances thermiques de l'encrassement) :

Pour ECTT.

Dans les tableaux sont présentées de manière comparative les valeurs de la principale d'évaluation du transfert de chaleur entre les deux échangeurs de chaleur : débits de chaleur transférés, surfaces de transfert de chaleur et coefficients de transfert de chaleur globaux $(W/(m^2 \circ C))$.

Comme indiqué dans ce tableau :

- Les débits thermiques pour ECTT sont plus élevés que pour ECDT ;

- Pour une même unité de longueur, la surface de transfert de chaleur pour ECTT est plus grande que pour ECDT ;

- Les coefficients de transfert de chaleur globaux pour ECTT sont plus élevés que pour ECDT.

3.2.1 Premier configuration :

Déterminer le bilan énergétique de l'échangeur double tube

• Côté eau froid:

Tableau 3.13 : Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant:

N°	T _{c1in} °C	T _{clout} °C	T _{c1m} °C	ρ kg/m ³	C _p J/(kg.°C)	λ W/ (m ² .°C)	μ Pa.S
01	12,1	14,1	13,1	999,235	4189	0,58175	0,00121238
02	12,6	14,6	13,6	999,160	4188	0,58300	0,00119728
03	11,3	13,3	12,3	999,355	4189	0,57975	0,00123654

04	10,9	12,9	11,9	999,410	4189	0,57870	0,00124862
05	11,3	13,3	12,3	999,355	4189	0,57970	0,00123654
06	13,4	15,4	14,4	999,040	4187	0,58500	0,00117312
07	17,2	19,2	18,2	999,470	4184	0,59450	0,00105836
08	19,3	21,3	20,3	998,125	4182	0,59957	0,00099792

Tableau 3.14 : Résultats de calcul les valeurs de eau froid concernant le 1^{ere} configuration (kérosène-eau).

N°	V _{c1}	W _{c1}	Qc1	Re _{c1}	Pr _{c1}	Nu _{c1}	α_{c1}	K
	(l/h)	(m/s)	(W)	(-)	(-)	(-)	$W/(m^2.°C)$	$(W/m^2 \circ C)$
01	290	0,125	674,378	1243,786	8,729	10,481	106,151	505,674
02	220	0,095	511,436	955,390	8,600	10,124	92,571	489,330
03	250	0,108	581,430	1051,406	8,934	10,537	100,064	506,510
04	250	0,108	581,462	1041,291	9,038	10,543	99,828	505,8770
05	250	0,108	581,430	1051,406	8,935	10,538	99,531	506,47054
06	210	0,091	488,014	930,633	8,396	9,975	91,206	483,78076
07	140	0,060	325,249	687,991	7,448	8,849	92,506	436,387
08	140	0,060	324,656	728,678	6,960	8,824	440,921	438,857

• Côté Kérosènes:

Tableau 3.15 : Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant:

N°	T _{c1in} °C	T _{c1out} °C	T _{c1m} °C	ρ kg/m ³	C _p J/(kg.°C)	λ W/ (m².°C)	μ Pa.S
01	54.0	45,2	49,60	771,7	2003,89	0,13572	0,000776
02	54.0	50,3	52,15	769,8	2015,59	0,13514	0,000750
03	52.0	42,2	47,10	773,5	1992,18	0,13631	0,000801
04	52.0	49,3	50,65	770,9	2008,90	0,13549	0,000764
05	60,4	50,4	55,40	767,4	2031,48	0,13444	0,000714
06	60,2	51,4	55,80	767,1	1957,91	0,13433	0,000710
07	60,5	45,4	52,95	769,2	2019,77	0,13491	0,000740
08	60,5	46,4	53,45	768,8	2018,94	0,13479	0,000764

1.10						Ът			-
N°	V _H	W _H	Q _H	Re _H	Pr _H	Nu _H	$\alpha_{\rm H}$	A	$\Gamma_{\rm w}$
	(l/h)	(m/s)	(W)	(-)	(-)	(-)	$W/(m^2.°C)$	(m^2)	(°C)
01	180	0,094	680,416	2436,204	11,457	20,335	508,152	0.104	25,752
02	120	0,062	191,364	1676,302	11,186	17,810	491,894	0,104	23,512
03	150	0,078	629,221	1971,394	11,706	19,086	509,105	0,104	23,188
04	150	0,078	174,224	2059,920	11,327	19,156	508,469	0,104	22,802
05	150	0,078	649,565	2194,165	10,789	19,248	509,075	0,104	23,189
06	120	0,062	440,561	1764,531	10,348	17,653	486,314	0,104	23,967
07	120	0,062	781,982	1697,631	11,078	17,827	438,426	0,104	25,273
08	120	0,062	729,515	1643,447	11,443	17,827	440,921	0,104	27,320

 Tableau 3.16 : Résultats de calcul les valeurs de eau froid concernant le 1^{ere} configuration (kérosène-eau).

3.2.2 Deuxième configuration :

Déterminer le bilan énergétique de l'échangeur triple tube

• Côté eau C1:

Tableau 3.17 : Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant:

N°	T _{c1in} °C	T _{clout} °C	T _{c1m} °C	ρ kg/m ³	C _p J/(kg.°C)	λ W/ (m ² .°C)	μ Pa.S
01	12,1	14,6	13,35	999,2	4188	0,582	0,001205
02	12,6	15,1	13,85	999,1	4188	0,584	0,001190
03	11,3	13,8	12,55	999,2	4189	0,580	0,001229
04	10,9	13,4	12,15	999,3	4189	0,579	0,001241
05	11,3	13,8	12,55	999,3	4189	0,580	0,001229
06	13,4	15,9	14,65	998,9	4187	0,586	0,001166
07	17,2	19,7	18,45	998,4	4184	0,595	0,001051

08 19.3 21.8 20.55 998.1 4183 0.600 0.00098

 Tableau 3.18 : Résultats de calcul les valeurs de eau froid concernant la 2^{ème} configuration (kérosène-eau).

N°	V _{c1}	W _{c1}	Q _{c1}	Re _{c1}	Pr _{c1}	F	Nu _{c1}	α_{c1}	K	T_{w1i}	T _{w1e}
	(l/h)	(m/s)	(W)	(-)	(-)	(-)	(-)	$W/(m^2.°C)$	$(W/m^2 \circ C)$	(°C)	(°C)
01	110	0,270	319,660	2689,705	8,671	0,045	20,523	995,368	167,934	20,494	20,511
02	100	0,245	290,571	2475,760	8,533	0,047	18,140	882,859	144,919	21,171	21,187
03	100	0,245	290,670	2397,436	8,876	0,047	17,526	847,092	160,130	20,183	20,199
04	100	0,245	290,699	2374,491	8,978	0,047	17,339	836,651	144,003	19,879	19,895
05	100	0,245	290,699	2397,676	8,876	0,047	17,528	847,219	129,563	20,183	20,199
06	90	0,221	261,399	2273,592	8,331	0,048	15,814	772,265	121,483	22,179	22,194
07	90	0,221	261,081	2521,105	7,390	0,046	17,743	879,760	145,228	25,051	25,066
08	90	0,221	260,940	2683,774	6,881	0,045	18,914	945,705	151,792	26,688	26,702

• Côté Kérosène:

Tableau 3.19 : Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant:

N°	T _{c1in} °C	T _{c1out} °C	T _{c1m} °C	ρ kg/m ³	C _p J/(kg.°C)	λ W/ (m².°C)	μ Pa.S
01	54.0	45,23	49,61	771,7	2007,151	0,1357221	0,000776
02	54.0	50,11	52,05	769,9	2018,874	0,1351406	0,000742
03	52.0	42,26	47,13	773,5	1995,428	0,1363036	0,000810
04	52.0	49,22	50,61	771.0	2011,757	0,1354895	0,000762
05	60,4	50,20	55,30	767,6	2033,947	0,1344428	0,000696
06	60,2	50,19	55,65	767,3	2035,622	0,1343265	0,000691
07	60,5	44,90	52,70	769,5	2021,805	0,1350243	0,000732
08	60,5	46,10	53,30	769.0	2024,736	0,1349080	0,000724

N°	$V_{\rm H}$	W _H	Q _H	Re _H	\Pr_{H}	${ m f}_{ m H}$	Nu _H	$\alpha_{ m H2i}$	α_{H2o}	k2
	(l/h)	(m/s)	(W)	(-)	(-)	(-)	(-)	$W/(m^2.°C)$	W/ ($m^2.^{\circ}C$)	$(W/m^2 \circ C)$
01	180	0,132	679,201	1583,533	11,476	0,0553	8,710	209,217	2104,961	152,222
02	180	0,132	302,317	1652,231	11,084	0,0544	9,536	179,339	508,197	120,367
03	180	0,132	751,667	1520,602	11,858	0,0561	7,924	205,560	872,013	133,117
04	180	0,132	215,598	1611,164	11,314	0,0549	9,046	180,280	503,232	119,600
05	170	0,125	752,005	1658,603	10,529	0,0543	9,461	157,771	450,419	118,245
06	170	0,125	738,316	1669,951	10,471	0,0542	9,593	148,854	521,113	121,310
07	160	0,117	1078,673	1487,939	10,960	0,0566	7,274	179,963	823,665	134,128
08	160	0,117	996,494	1503,403	10,865	0,0564	7,466	186,867	138,885	70,104

Tableau 3.20: Résultats de calcul les valeurs de concernant la 2 eme configuration (kérosène-

eau).

• Côté eau C2:

Tableau 3.21 : Les propriétés physiques de cette eau sont rassemblées dans le tableau suivant:

N°	T _{clin} °C	T _{c1out} °C	T _{c1m} °C	ρ kg/m ³	C _p J/(kg.°C)	λ W/ (m².°C)	μ Pa.S
01	12,10	15,1	13,6	999,1	4188	0,584	0,001190
02	12,60	15,6	14,1	999,1	4188	0,584	0,001182
03	11,30	14,3	12,8	999,3	4189	0,581	0,001221
04	10,90	13,9	12,40	999,3	4189	0,580	0,001234
05	11,30	14,3	12,80	999,0	4189	0,581	0,001221
06	13,14	16,4	14,77	998,4	4187	0,586	0,001158
07	17,20	20,2	18,70	998,4	4184	0,596	0,001043
08	19,30	22,3	20,80	998,1	4182	0,601	0,000980

N°	V _{c2} (l/h)	W _{c2} (m/s)	Q _{c2} °C	Re _{c2} (-)	Pr _{c2} (-)	Nu _{c2} (-)	α ₃ W/ (m ² .°C)	Tw2i	Tw2e
01	120	0,052	418,423	524,278	8,533	10,440	152,432	47,005	46,991
02	100	0,043	348,685	439,855	8,476	10,035	146,518	43,061	43,049
03	100	0,043	348,838	425,891	8,803	10,047	145,938	41,889	41,877
04	100	0,043	348,838	421,404	8,912	10,051	145,740	41,528	41,516
05	110	0,047	383,607	468,340	8,803	10,254	148,946	44,142	44,129
06	100	0,043	378,549	448,657	8,273	10,026	146,884	46,133	46,120
07	100	0,043	348,108	498,125	7,322	9,989	148,836	47,163	47,151
08	50	0,021	173,918	264,994	6,819	8,751	131,496	36,895	36,889

 Tableau 3.22 : Résultats de calcul les valeurs de eau froid concernant la 2^{eme} configuration (kérosène-eau).

Primé partie : (Eau- Eau)

Première configuration : Cas Contre courant à débit eau froide fixé

Figure 3.3 : Densités de flux de chaleur échangée en fonction de débit d'eau chaude cas contre courant.

Figure 3.4 : Coéfficient déchange global en fonction de débit d'eau chaude cas co-courant

Cas Contre courant à débit eau chaude fixé

Figure 3.5 : Densités de flux de chaleur échangée en fonction de débit d'eau froide cas contre courant.

Figure 3.6 : Coéfficient déchange global en fonction de débit d'eau froide cas co-courant

Deuxième configuration : Cas Contre courant à débit eau froide fixé

Figure 3.7 : Coéfficient déchange global en fonction de débit d'eau chaude cas co-courant

Chapitre 03 Résultats et discussions

Cas Contre courant à débit eau chaude fixé

Figure 3.8 : Coéfficient déchange global en fonction de débit d'eau froide cas co-courant.

Deuxième partie : (Kérosène- Eau)

Cas Contre courant à débit eau froide fixé

Figure 3.9 : Densités de flux de chaleur échangée en fonction de débit d'eau chaude cas contre courant.

Figure 3.10 : Coéfficient déchange global en fonction de débit d'eau chaude cas co-courant.

Cas Contre courant à débit eau chaude fixé

Figure 3.11 : Densités de flux de chaleur échangée en fonction de débit d'eau froide cas contre courant.

Figure 3.12 : Coéfficient déchange global en fonction de débit d'eau froide cas co-courant.

Deuxième configuration : Cas Contre courant à débit eau froide fixé

Figure 3.13 : Coéfficient déchange global en fonction de débit d'eau chaude cas co-courant.

Chapitre 03 Résultats et discussions

Figure 3.14 : Coéfficient déchange global en fonction de débit d'eau froide cas co-courant.

L'interprétation des résultats :

• Flux de chaleur

Les graphiques (3.3) (3.5) (3.9) (3.11) représentent les densités de flux de chaleur échangée pour type d'échangeur contre courant. Ces courbes ont été tracées en fonction du débit d'eau chaude et pour un débit d'eau froide fixé.

• Coefficient déchange global :

Les figures (3.4) (3.6) (3.7) (3.8) (3.10) (3.12) (3.13) (3.14) illustrent l'évolution du coefficient global d'échange avec l'augmentation du débit d'eau froide et pour un débit d'eau chaude fixé et l'augmentation du débit d'eau chaude et pour un débit d'eau froide fixé respectivement. Ce coefficient est représenté pour l'échangeur type U et l'écoulement Co-courant.

Une augmentation significative du coefficient global d'échange est constatée en présence d'ultrasons. Par contre, comme signalé lors des bilans énergétiques, l'influence des ultrasons est moins marquée (les courbes se rapprochent) avec l'augmentation du débit d'eau froide. Cela est expliqué par une moins bonne propagation des ultrasons dans l'eau circulant à une vitesse élevée, d'où des effets (cavitation, micro-turbulence, etc.) réduits.

Pour les graphiques qui affichent la densité de flux de chaleur en fonction du débit d'eau, nous constatons une augmentation de la densité à mesure que le débit d'eau augmente.

Et pour les graphiques du coefficient d'échange global en terme de débit d'eau, on voit aussi que plus le débit est important, plus la valeur du coefficient est élevée, et cela est dû à la faible résistance ou à l'écart important entre les températures.

Chapitre 03 Résultats et discussions

Nous concluons de ces résultats que la quantité de débit d'eau est très importante pour l'échange de chaleur. Plus la vitesse d'écoulement est élevée, plus la vitesse d'échange de chaleur est élevée.

Conclusion générale

Conclusion générale :

Ce travail présente les résultats de l'analyse du transfert de chaleur pour le refroidissement de l'eau comme cas de référence et un produit pétrolier dans deux types d'échangeurs de chaleur à tubes concentriques : les échangeurs de chaleur à tubes concentriques doubles et triples. Le fluide de refroidissement est l'eau. L'échangeur de chaleur à triple tube concentrique est une version constructive modifiée de l'échangeur de chaleur à double tube concentrique en ajoutant un tube intermédiaire. Ce tube intermédiaire améliore le transfert de chaleur en augmentant la surface d'échange par unité de longueur.

Pour cela, nous avons calculé le coefficient partiel de transfert de chaleur pour un fluide, qui s'écoule à travers un espace annulaire interne d'un échangeur de chaleur à trois tubes concentriques. Les débits dans l'échangeur thermique sont : la transition dans le tube central et l'espace annulaire interne et laminaire dans l'espace annulaire externe.

Une nouvelle corrélation développée à des fins de conception sur des dispositifs de transfert de chaleur, tels que des échangeurs de chaleur à triple tube concentrique ou à double tube concentrique a été obtenue.

La corrélation obtenue nous aide à exprimer l'échange de chaleur en termes de nombre de Nusselt pour des valeurs de Reynolds allant de 1023 à 2484 et pour des valeurs de vitesses comprises entre 0,17 et 0,27 m/s. L'applicabilité pratique de la corrélation obtenue dans l'étude s'applique pour des valeurs de Prandtl comprises entre 2.59 et 5.49, espace caractérisé par le rapport de diamètre 14/26 et des longueurs de tube relativement petites. Pour ces conditions d'applicabilité, le coefficient de transfert de chaleur obtenu, $\alpha_{\rm H}$ pour l'eau chaude, a des valeurs comprises entre 1274.6 et 1395.226 W/m2°C.

Dans la deuxième partie, nous avons analysé le transfert de chaleur effectué durant le refroidissement du kérosène avec de l'eau dans un ECDT et un ECTT. Les valeurs des principaux paramètres ont été comparées pour évaluer les différences de transfert de chaleur dans les deux échangeurs de chaleur. Les résultats montrent que pour une même longueur d'échangeur de chaleur, la surface de transfert de chaleur et les coefficients de transfert de chaleur globaux pour ECTT sont plus élevés que pour ECDT. Ces résultats sont en accord avec les avantages théoriques d'un ECTT versus un ECDT.

Références bibliographiques:

Références bibliographiques:

[1] A.Ünal, Theoretical analysis of triple concentric-tube heat exchangers Part 1: Mathematical modelling, International Communications in Heat and Mass Transfer 25 (7) (1998) 949-958.

[2] A. Ünal, Theoretical analysis of triple concentric-tube heat exchangers Part 2: Case studies, International Communications in Heat and Mass Transfer 28 (2) (2001) 243-256.

[3] A. Idrissi, Analytical and experimental response time to flow rate step along a counter flow double pipe heat exchanger. Int. J. Heat and mass transfer (44) (2001) 3721-3730.

[4] P. Sahoo, M. Ansari, A. Datta, A computer based iterative solution for accurate estimation of heat transfer coefficients in helical tube heat exchanger. J Food Eng (58) (2003) 211–214.

[5] E. Batmaz, K. Sandeep, Calculation of overall heat transfer coefficients in a triple tube heat exchangers. Heat and Mass Transfer (41) (2005) 271–279.

[6] E. Batmaz, K. Sandeep, Calculation of overall heat transfer coefficients and axial temperature distribution in a triple tube heat exchangers. J Food Process Eng (31) (2008) 260–279.

[7] G. Quadir, I. Badruddin, N. Salman, Numerical investigation of the performance of a triple concentric pipe heat exchanger. Int J Heat Mass Transf (75) (2014) 165–172.

[8] G. Quadir, S. Jarallah, N. Salman, I. Badruddin, Experimental investigation of the performance of a triple concentric pipe heat exchanger. Int J Heat Mass Transf (62) (2013) 562–566.

[9] V. Behera, D. Das, A. Nayak, Numerical analysis of triple tube heat exchanger using ANSYS. Int J Sci Eng Res 5 (11) (2014) 1226–1231.

[10] T. Slimane ; la remise en services de l'échangeur E1505 comme palliatif à l'arrêt de la colonne de stabilisation DA4501 ; projet de formation d'induction (2015).

[11] D. Nadjemeddine, Simulation d'une conception d'un échangeur a faisceau et calandre, mémoire de master en génie mécanique énergétique et l'environnement, université de Annaba (2017).

[12] T. Farid, étude comportement dynamique et thermique de deux écoulements du fluide dans un échangeur de chaleur, Mémoire de Master en Génie Energétique- (2013).

[13] M. Maroua -Dimensionnement dune changeur a tube et calandre de l'unité décarbonatation du complexe GL1 Skikda, universités de Annaba (2017)

Références bibliographiques:

[14] S. Sall ; Introduction général échangeur de chaleur ; Mémoire de fin d'étude ; université de Tlemcen (2014).

[15] P.Wuithier- Le Raffinage et génie chimique, Tome II- 2emeEdition-Edition TECHIP-Paris -France (1972).

[16] A. Nehari- Étude thermo-énergétique d'un échangeur de chaleur à plaques et joints : Application aux fluides géothermiques, Mémoire fin d'étude, Université de Tlemcen département de physique (2011).

[17] R. Sinziana et al ;Heat transfert coefficient solver for a triple concentric-tube heat exchanger in transitionregime. Revista de chimie-Bucharest. Vol 63, N° 8 (2012).

Annexe

A	nn	e	re
1			I.

	Proprié	etés pl	nysiques	s de l'e	eau su	ır la l	igne d	e satur	ation	2 et 13	
t, °C	p.10-5, Pa	ρ, kg/m ³	i, kJ/kg	°p, kJ/(kg.°C)	$\frac{\lambda \cdot 10^2}{W/(m^{\circ}^{\circ}C)}$	$a \cdot 10^8$, m ² /s	u.106, Pa·s	v • 10 ⁶ , m ² /s	β.10 ⁴ , K-1	σ · 10 ⁴ , N/m	Ŀ
0	1.013	999.9	0.00	4.212	55.1	13.1	1788	1 789	-0.63	756.4	13.67
10	1.013	999 7	42.04	4 191	57 4	13.7	1306	1,306	+0.70	741.6	9 52
- 20	1.013	998.2	83.91	4,183	59.9	14.3	1004	1,006	1.82	726.9	7.02
	1.013	995.7	125.7	4,174	61.8	14.9	801.5	0.805-	- 3.21	712.2	5.42
40	1.013	992.2	167.5	4.174	63.5	15.3	653.3	0,659	3.87	696.5	4.31
50	1.013	988.1	209.3	4.174	64.8	15.7	549.4	0.556	4.49	676.9	3.54
60	1.013	983.2	251.1	4,179	65.9	16.0	469.9	0.478	5.11	662.2	2.98
70	1.013	977.8	293.0	4.187	66.8	16.3	406.1	0.415	5.70	643.5	2.55
80	1.013	971.8	335.0	4,195	67.4	16.6	355.1	0.365	6.32	625.9	2.21
90	1.013	965.3	377.0	4.208	68.0	16.8	314.9	0,326	6,95	607.2	1,95
100	1,013	958.4	419,1	4,220	68.3	16,9	282.5	0,295	7,52	588.6	1,75
110	1,43	951,0	461,4	4,233	68,5	17,0	259,0	0,272	8,08	569,0	1,60
420	1 02	0/2 /	502 7	1 950	00 0	47.4	997 4	0.050	0 61	=101	1 17
120	2 70	945,1 02% 8	5/6 /	4,200	00,0 69 6	17,1	201,4	0,202	0,04	599 9	1,47
130	3.64	026 1	580 4	4,200	68 5	17,2	211,0	0,200	9,19	507 9	1,50
140	4 76	947 0	632 2	4,207	68 4	17,2	486 4	0,217	10 3	486 6	1,20
160	6.18	907 4	675 4	4,315	68 3	17,3	173 6	0,401	10,5	466 0	1 10
170	7,92	897 3	719 3	4,040	67 9	17,3	162 8	0,131	11 3	400,0	1,10
• 180	10.03	886.9	763.3	4,000	67.4	17,0	153.0	0,101	11,9	422 8	1,00
190	12,55	876.0	807.8	4 459	67 0	17.1	144.2	0 165	12.6	400 2	0.96
200	15.55	863.0	852.5	4,505	66.3	17.0	136.4	0,158	13.3	376.7	0.93
210	19.08	852.8	897.7	4,555	65.5	16.9	130.5	0,153	14.1	354.1	0.91
220	23,20	840.3	943.7	4.614	64.5	16.6	124.6	0.148	14.8	331.6	0.89
230	27,98	827.3	990.2	4.681	63.7	16.4	119.7	0.145	15.9	310.0	0.88
2/0	22.40	040 0	1007 5	1 750	00,0	10,0		0,210	10,0	005 5	0,07
240	33,48 20,79	813,6 700 0	1037,5	4,756	62,8	16,2	114,8	0,141	16,8	285,5	0,87
250	39,10 46 04	799,0	1000,1	4,044	60 5	15,9	109,9	0,137	18,1	201,9	0,80
200	40,94	767 9	1100,1	4,949	50,5	15,0	105,9	0,135	19,7	231,4	0,01
280	64 19	750 7	1936 8	5,070	57 4	15,1	102,0	0,155	21,0	404 2	0,00
200	74 45	732 3	1200,0	5 485	55 8	14,0	04.9	0,151	20,1	191,5	0,90
300	85 92	749 5	1230,0	5 736	54 0	13,9	04,2	0,120	20,2	100,7	0,93
310	98.70	691.4	1402 2	6 074	52 3	19,2	88 2	0,120	32 0	144,2	1 02
320	112,90	667.4	1462 1	6 574	50 6	14 5	85.2	0,120	38 9	98 40	1 1 1
330	128.65	640.2	1526.2	7.244	48 4	10 4	81 4	0,120	43 3	76 74	1 99
340	146.08	610.1	1594.8	8,165	45 7	9.17	77 5	0,127	53 4	56 70	1 30
350	165.37	574.4	1671.4	9.504	43.0	7 88	72 6	0,126	66 8	38 16	1,00
360	186.74	528.0	1761.5	13,984	39.5	5.36	66.7	0,120	109	20 24	2 35
370	210.53	450.5	1892.5	40.321	33.7	1.86	56.9	0,126	264	4 709	6 79
					,.		0,0	0,120		1,.00	0,.0