
وزارة التعليم العالى والبحث العلمي

Ministère de l'Enseignement Supérieur et de la Recherche scientifique

Université Abdelhamid Ibn Badis de Mostaganem

Faculté des sciences et de la technologie

Département de Génie Civil

MEMOIRE DE FIN D'ETUDE DE MASTER ACADEMIQUE

Filière: Génie Civil

Spécialité : Structure

Thème

Etude d'un bâtiment en béton armé (S/Sol+RDC+7 étages) à usage multiple contreventé par des voiles porteurs

Présente par :

• KALAI ABDELKADER

Président: Mr BELGUESMIA KHALIL

Examinatrice: Mme DJIALI NASSIRA

Encadreur: Mme BELBACHIR NASRINE

Année universitaire: 2021/2022

REMERCIEMENTS

Tout d'abord je remercie le bon Dieu notre créateur qui m'a donné la force et la volonté pour accomplir ce modeste travail.

Remercîments spéciaux du fond du cœur pour mes parents, ma mère et mon père رُحِمهُ الله pour tout leur soutien et leurs sacrifices depuis ma naissance.

Un grand merci pour mon encadrante Mme Belbachir Nesrine pour tous ses efforts, ses conseils et remarques pour finaliser ce projet.

J'adresse mes sincères remerciment aux professeurs Mr Sadki Nizar et Mr Bahar Sadek pour leurs aides et leurs conseils.

Merci à tous les professeurs du département Génie civil.

Merci pour toute ma famille qui m'a aidée.

Résumé

Ce projet présent une étude technique d'un bâtiment bloc barre à usage commerciale et d'habitation, composé d'un sous-sol et Rez de chaussée + 7 étages contreventé par des voiles et implanté à Kharouba Mostaganem.

Le bâtiment est implanté dans une zone sismique (**zone IIa**) selon le règlement parasismique Algérien en vigueur (**RPA 99 V 2003**).

Le dimensionnement et le calcul du ferraillage des éléments structuraux et non structuraux sont fait a partir le règlement parasismique Algérien en vigueur (RPA 99 V 2003) et le B.A.E.L 91 et pour les charges permanente et charges d'exploitation à partir le DTR B.C.2.2 notre projet est compose de Cinque partie :

La première partie est description général du projet avec la présentation des caractéristique (géométrique, géotechnique, technique) et la fin les caractéristiques des matériaux et hypothèse de calcul.

La deuxième partie est le pré dimensionnement des éléments résistants (les planchers, les poutres, l'escalier, les voiles).

La troisième partie est l'étude des éléments non structuraux (poutrelle, l'escalier, l'acrotère, balcon, plancher en dalle pleine haut sous-sol)

Quatrième partie est l'étude dynamique en utilisant le logiciel **ROBOT ANALYSIS STRUCTURAL** (version 2014) pour la modélisation de la structure.

Cinquième partie est l'étude des éléments structuraux les voiles et les poutres d'après la détermination des sollicitations depuis le logiciel robot analysis structural.

La dernière partie est le dimensionnement et d'étude de l'infrastructure et à la fin une conclusion générale.

Mots clé : bâtiment, bloc barre, ROBOT ANALYSIS STRUCTURAL, B.A.E.L 91, DTR B.C.2.2, RPA 99 V 2003, zone IIa, pré dimensionnement, étude des éléments non structuraux, étude dynamique, étude des éléments structuraux, étude de l'infrastructure.

الملخص

يقدم هذا المشروع دراسة فنية لمبنى كتلة بار للاستخدام التجاري والسكني ، ويتكون من قبو وطابق أرضي + 7 طوابق محصنة بالبجدار الحاجب ويقع في خروبة مستغانم.

يقع المبنى في منطقة زلزالية (المنطقة IIa) وفقًا للوائح الزلازل الجزائرية المعمول بها (RPA 99 V 2003).

يتم تحديد حجم وحساب تقوية العناصر الهيكلية وغير الهيكلية من اللوائح الجزائرية السارية (RPA 99 V 2003) و B.A.E.L 91 مشروعنا يتكون من خمسة أجزاء:

الجزء الأول هو وصف عام للمشروع مع عرض للخصائص (هندسية ، جيوتقنية ، تقنية) وانتهاء خصائص المواد وفرضية الحساب.

الجزء الثاني هو التحجيم المسبق للعناصر المقاومة (أرضيات، الروافد، سلالم، الجدار الحاجب).

الجزء الثالث هو دراسة العناصر غير الهيكلية (رافدة، سلم، حواشي السطوح العلوية، شرفة، البلاطات الصماء أعلى الطابق السفلي)

الجزء الرابع مخصص للدراسة الديناميكية باستخدام برنامج التحليل الإنشائي ROBOT ANALYSIS الجزء الرابع مخصص للدراسة الايناميكية باستخدام برنامج المجال STRUCTURAL (version 2014)

الجزء الخامس هو دراسة العناصر الهيكلية للجدران والروافد حسب تحديد الالتماسات من التحليل الهيكلي للروبوت البرمجي.

الجزء الأخير هو أبعاد ودراسة البنية التحتية وفي النهاية استنتاج عام.

الكلمات الرئيسية: مبنى ، كتلة بار ،RPA ، DTR B.C.2.2 ، B.A.E.L 91 , ROBOT ANALYSIS STRUCTURAL ، التحجيم المسبق للعناصر المقاومة، دراسة العناصر غير الهيكلية، الدراسة الديناميكية، دراسة العناصر الهيكلية، دراسة البنية التحتية.

Abstract

This project presents a technical study of a bar block building for commercial and residential use, consisting of a basement and ground floor + 7 floors braced by sails and located in Kharouba Mostaganem. The building is located in a seismic zone (zone IIa) according to the Algerian earthquake regulations in force (RPA 99 V 2003).

The sizing and the calculation of the reinforcement of the structural and non-structural elements are made from the Algerian paraseismic regulations in force (RPA 99 V 2003) and the B.A.E.L 91 and for the permanent loads and operating loads from the DTR B.C.2.2 our project is composed of five parts:

The first part is a general description of the project with the presentation of the characteristics (geometric, geotechnical, technical) and the end of the characteristics of the materials and the calculation hypothesis.

The second part is the pre-sizing of the resistant elements (floors, beams, stairs, sails).

The third part is to study non-structural elements (beam, staircase, parapet, balcony, full slab floor high basement)

Fourth part is for dynamic study use ROBOT ANALYSIS STRUCTURAL (2014 version) for structural modeling.

Fifth part is study of the structural elements the walls and the beams according to the determination of the solicitations from the software robot structural analysis.

The last part is the dimensioning and study of the infrastructure and at the end a general conclusion.

Keywords: building, bar block, ROBOT ANALYSIS STRUCTURAL, B.A.E.L 91, DTR B.C.2.2, RPA 99 V 2003, zone Iia, pre-sizing of the resistant elements, study non-structural elements, dynamic study, study of the structural elements, study of the infrastructure.

Sommaire:

D				
Rem	Δr	cim	ıΔn	tc
IVCIII	CI	CIII.		ເວ

Resumé

الملخص

Abstract

CHAPITRE I: Présentation du projet

I.1 Présentation du projet
I.2 Caractéristiques géométriques du projet
L3 Caractéristiques géotechniques
I.4 Caractéristiques techniques2
I.4.1 Système du contreventement2
I.4.2 Les planchers2
I.4.3 Les escaliers
I.4.4 Maçonnerie2
I.4.5 Murs extérieurs2
I.4.6 Murs intérieurs2
I.4.7 Revêtement2
I.4.8 Isolation
I.4.9 Locale d'ascenseur3
I.4.10 Acrotères
I.4.11 Les fondations
I.5 Caractéristiques mécaniques des matériaux et hypothèses de calcul
I.5.1.Béton Armé3
I.5.2 Béton
I.5.2.1 Composition du béton3
I.5.2.2 Résistance du béton3
I.5.2.3 Coefficient de poisson4
I.5.2.4 Résistance à la traction4
I.5.2.5 Contraintes limites de compression5
I.5.2.6 La contrainte ultime de cisaillement5
I.5.2.7 Module de déformation longitudinale du béton6
I.5.3 Acier
I.5.3.1 Caractéristique de l'acier6
I.5.3.2.Contraintes limites
I.5.4 Les combinaisons fondamentales8
CHAPITRE II : Pré dimensionnements des éléments résistants
II.1 Introduction
II.2 Pré dimensionnements des planchers
II.2.1 Plancher à corps creux9
II.2.2 Détermination des dimensions des poutrelle
II.2.3 Plancher en dalle pleine
II.2.3.1 Haut sous-sol
II.2.3.2 Balcon

II.3 Pré dimensionnements des poutres	13
II.3.1 Les poutres principales	14
	16
	19
II.4.1 Voiles étages courants	19
II.4.2 Voile périphérique	19
	20
	20
II 6 Descente des charges	
,	22
CHAPITRE III : Etude des éléments non structuraux	
<u> </u>	
III.1 Etude du Plancher à corps creux	30
	30
	32
	33
	33
A A	33
	37
0 1	37
	38
0	30 40
	43
	43 43
	43 44
	44 46
	46
	47
	47
	47
G I	51
	52
	52
	54
	58
	58
1	58
O I	59
.	60
III.2 Plancher en dalle pleine:	61
	63
	64
III.2.1.2 Calcul de l'enrobage	69
	69
	70
	71
	72
	73
	75

III.2.1.3.7 Vérification de la flèche	75
	80
III.3 Etude d'escalier	81
III.3.1 Types 1	83
III.3.1.1 Ferraillage de l'escalier	
III.3.1.1.1 Condition de non fragilité	84
III.3.1.1.2 L'espacement minimal des armatures	84
III.3.1.1.3 Les armatures de répartition	85
III.3.1.1.4 Condition de non fragilité	85
III.3.1.1.5 L'espacement minimal des armatures	85
III.3.1.1.6 Les armatures de répartition	86
III.3.1.2 Vérification de l'effort tranchant	86
III.3.2 Types 02	87
III.3.2.1 Calcul des réactions des appuis de vole 01	87
III.3.2.2 Ferraillage de l'escalier	90
III.3.2.2.1 Condition de non fragilité	90
III.3.2.2.2 L'espacement minimal des armatures	90
III.3.2.2.3 Les armatures de répartition	91
III.3.2.2.4 Condition de non fragilité	91
III.3.2.2.5 L'espacement minimal des armatures	92
III.3.2.2.6 Les armatures de répartition	92
III.3.2.3 Vérification de l'effort tranchant	92
III.3.3. Type02	93
III.3.3.1 Calcul des réactions des appuis de vole 01	94
III.3.3.2 Ferraillage de l'escalier	95
III.3.3.2.1 Condition de non fragilité	96
III.3.3.2.2 L'espacement minimal des armatures	96
III.3.3.2.3 Les armatures de répartition	97
III.3.3.2.4 Condition de non fragilité	97
III.3.3.2.5 Les armatures de répartition	98
II.3.3.3Vérification de l'effort tranchant	98
III.4 Etude de balcon	101
III.4.1 Exemple de calcul	102
III.4.1.1 Calcul des moments fléchissant	102
III.4.1.2 Ferraillage de balcon	102
III.4.1.2.1 Calcul de l'enrobage	102
III.4.1.2.2 Condition de non fragilité	102
III.4.1.2.3 L'espacement des armatures	103
III.4.1.2.4 Les armatures de répartition	105
III.4.1.3 Vérification de l'effort tranchant	105
III.4.1.4 Vérification de la flèche	105
	103
III.4.1.4 Calcul de contre poids	
III.5 Etude de l'acrotère	112
	112
III.5.2 Vérification de l'effort dû au séisme	113
III.5.3 Calcul des sollicitations	113
III.5.4 Ferraillage de l'acrotère	113
III.5.4.1 L'excentricité totale de calcul	114
III.5.4.2 Condition non fragilité	114
III.5.4.3 Armature de répartition	115

III.5.4.4 L'espacement des armatures1	115
	115
III.5.4.6 Calcul des contraintes1	116
III.5.5Vérification des contraintes de cisaillement	117
CHAPITRE IV : Etude dynamique	
IV.1 Introduction	118
IV.2 Les méthodes du calcul	118
IV.3 Présentation du logiciel	121
	125
IV.5 Vérification risque de torsion (RPA Art 4.3.7)	126
	127
IV.6.1 Facteur de qualité	127
	128
IV.6.3 Facteur de correction d'amortissement1	128
IV.6.4 Facteur d'amplification dynamique moyen1	128
1	129
IV.7 Vérification le renversement	130
,	131
,	132
IV.8 Vérification de la rigidité de la structure1	133
CHAPITRE V : Etude des éléments structuraux	
V.1 Ferraillage des poutres 1	136
V.1 Ferraillage des poutres	137
V.1 Ferraillage des poutres	137 137
V.1 Ferraillage des poutres	137 137 138
V.1 Ferraillage des poutres	137 137 138 139
V.1 Ferraillage des poutres1V.1.1 Détermination des sollicitations des poutres1V.1.2 Exemple de calcul1V.1.2.1 Vérification à l'ELS1V.1.2.2 Vérification à l'ELS1V.1.2.3 Calcul des armatures minimales1	137 137 138 139 140
V.1 Ferraillage des poutres 1 V.1.1 Détermination des sollicitations des poutres 1 V.1.2 Exemple de calcul 1 V.1.2.1 Vérification à l'ELS 1 V.1.2.2 Vérification à l'ELS 1 V.1.2.3 Calcul des armatures minimales 1 V.1.2.4 Vérification de l'effort tranchant 1	137 138 139 140 141
V.1 Ferraillage des poutres	137 138 139 140 141
V.1 Ferraillage des poutres	137 138 139 140 141 141
V.1 Ferraillage des poutres 1 V.1.1 Détermination des sollicitations des poutres 1 V.1.2 Exemple de calcul 1 V.1.2.1 Vérification à l'ELS 1 V.1.2.2 Vérification à l'ELS 1 V.1.2.3 Calcul des armatures minimales 1 V.1.2.4 Vérification de l'effort tranchant 1 V.1.2.5 calcul des armatures transversales 1 V.1.2.5.1 Calcul de l'espacement des armatures transversales 1 V.1.2.6 Vérification de la contrainte de compression (bielle) 1	137 138 139 140 141 141
V.1 Ferraillage des poutres	137 138 139 140 141 141
V.1 Ferraillage des poutres	137 138 139 140 141 141 143
V.1 Ferraillage des poutres	137 137 138 139 140 141 141 143 143
V.1 Ferraillage des poutres	137 137 138 139 140 141 141 143 143
V.1 Ferraillage des poutres	137 138 139 140 141 141 143 143 143
V.1 Ferraillage des poutres	137 137 138 139 140 141 141 143 143 144 152 152
V.1 Ferraillage des poutres	137 137 138 139 140 141 141 143 143 144 152 152
V.1 Ferraillage des poutres	137 137 138 139 140 141 141 143 143 152 152 153 154
V.1 Ferraillage des poutres	137 137 138 139 140 141 141 143 143 152 152 152 153
V.1 Ferraillage des poutres V.1.1 Détermination des sollicitations des poutres V.1.2 Exemple de calcul V.1.2.1 Vérification à l'ELS V.1.2.2 Vérification à l'ELS V.1.2.3 Calcul des armatures minimales V.1.2.4 Vérification de l'effort tranchant V.1.2.5 calcul des armatures transversales V.1.2.5.1 Calcul de l'espacement des armatures transversales V.1.2.6 Vérification de la contrainte de compression (bielle) V.1.2.7 Vérification de l'effort tranchant sur les armatures longitudinales inférieures V.1.2.8 Vérification de l'effort tranchant V.2 Etude des voiles du contreventement V.2.1 Introduction V.2.2 Ferraillage des voiles V.2.3.1 Procédure de ferraillage V.2.3.2 Armatures verticales Art 7.7.4.1 du RPA 99 version 2003 V.2.3.3 Armatures horizontales Art 7.7.4.2 du RPA 99 version 2003	137 137 138 139 140 141 141 143 143 143 152 152 152 154 154
V.1 Ferraillage des poutres	137 137 138 139 140 141 141 143 143 152 152 152 153 154 154
V.1 Ferraillage des poutres	137 137 138 139 140 141 141 143 143 144 152 152

V.2.4.2.2 Calcul de la contrainte moyenne	157
V.2.4.2.3 Détermination la contrainte moyenne de la bande d ₁	157
V.2.4.2.4 L'effort normal appliqué sur la bande d ₁	157
V.2.4.2.5 Calcul de l'effort limite ultime	157
V.2.4.3 Calcul du ferraillage	158
V.2.4.3.1 Ferraillage verticale	158
V.2.4.3.2 Calcul des contraintes	158
V.2.4.3.3 Calcul de la longueur de la zone tendue	158
V.2.4.3.4 Détermination de la contrainte moyenne dans la zone d'about	159
V.2.4.3.5 Détermination de la valeur de l'effort normal moyen (traction)	133
sollicitant la zone d'about	159
V.2.4.3.6 Calcul des armatures verticales	159
V.2.4.3.7 Calcul des armatures de couture	159
V.2.4.3.8 Détermination de la contrainte moyenne de la deuxième bande	160
V.2.4.3.9 Détermination de la valeur de l'effort normal moyen (traction) de la	100
	160
deuxième bandeV.2.4.3.10 Calcul des armatures verticales	160
V.2.4.3.11 Calcul des armatures de couture	160
V.2.4.3.12 Armatures minimal RPA	160
V.2.4.3.13 Armatures courantes	160
V.2.4.3.14 Calcul des contraintes	161
V.2.4.3.15 Calcul de la longueur de la zone tendue	161
V.2.4.3.16 Détermination de la contrainte moyenne dans la zone d'about	161
V.2.4.3.17 Détermination de la valeur de l'effort normal moyen (traction)	162
sollicitant la zone d'about	160
V.2.4.3.18 Calcul des armatures verticales	162
V.2.4.3.19 Calcul des armatures de couture	162
V.2.4.3.20 Détermination de la contrainte moyenne de la deuxième bande	162
V.2.4.3.21 Détermination de la valeur de l'effort normal moyen (traction) de la	162
deuxième bande	4.60
V.2.4.3.22 Calcul des armatures verticales	162
V.2.4.3.23 Calcul des armatures de couture	162
V.2.4.3.24 Armatures minimales RPA	163
V.2.4.3.25 Armatures courantes	163
V.2.4.3.26 Espacement des armatures verticales	163
V.2.4.3.27 Choix d'armature	163
V.2.4.3.28 Vérification de la contrainte de cisaillement	163
V.2.4.3.29 Ferraillage horizontale	164
V.2.5 Vérification de la contrainte de cisaillement	165
V.2.6 Vérification de la contrainte de compression à l'ELS	166
V.2.6.1 Calcul des contraintes	166
V.2.6.2 Contrainte de compression à l'ELS	166
V.2.7 Ferraillage du voile avec ouverture	173
V.2.7.1 Ferraillage du linteau	176
V.2.7.1.1 D'après le ROBOT ANALYSIS STRUCTURAL on détermine les moments	176
et L'efforts tranchants max du linteau	
V.2.7.1.2 Vérification de la contrainte de cisaillement	177
V.2.7.1.3 Calcul du ferraillage	177
V.2.7.1.4 Armatures en diagonales	178

V.2.7.1.2.5 Armatures transversales	
V.2.7.2 Ferraillage du linteau	. 180
V.2.7.2.1 L'effort tranchant max du linteau	. 180
V.2.7.2.2 Vérification de la contrainte de cisaillement	. 180
V.2.7.2.3 Calcul le ferraillage	. 181
V.2.7.2.4 Armatures en diagonales	
V.2.7.2.5 Vérification de l'espacement	
V.2.7.2.6 Armature de peau (section courante)	
V.2.7.3 Ferraillage du trumeau	
V.2.7.3.1 Choix d'armature	
V.3 Etude du voile périphérique	
V.3.1 Détermination les sollicitations	
V.3.2 Calcul de la poussée des terres	
V.3.3 Calcul des contraintes	
V.3.4 Les combinaisons fondamentales	
V.3.5 Calcul des sollicitations	
V.3.5 Calcul des moments	
V.3.7 Calcul de l'enrobage	
V.3.8 Ferraillage de la dalle pleine	
V.3.8.1 Condition de non fragilité	
V.3.8.2 Condition exigée par le RPA99/2003	
V.3.8.3 Condition de non fragilité	
V.3.8.4 Condition exigée par le RPA99/2003	
V.3.8.5 Condition de non fragilité	
V.3.8.6 Condition exigée par le RPA99/2003	
V.3.8.7 Condition de non fragilité	
V.3.8.8 Condition exigée par le RPA99/2003	
visiolo dollardon exigee par le 14 117 5/ 2005 illiniminiminiminiminiminiminiminiminimi	197
CHAPITRE VI : Etude de l'infrastructure	
CHAITIRE VI. Etude de l'illitasti detule	
IV.1 Etude de l'infrastructure	. 200
VI.1.1 Introduction	
VI.1.1 Introduction	
VI.1.2 Les unierents types des fondations VI.1.3 Les combinaisons d'action	
VI.1.4 Dimensionnement des semelles	
VI.1.4.1 Calcul de la surface totale des semelles	
VI.1.4.1 Calcul de la surface totale des semenes	
VI.1.5.1 Dimensionnement du radier	
VI.1.5.1 Diffication du soulèvementVI.1.5.2 Vérification du soulèvement	
VI.1.5.2 Verification du soulevement	
VI.1.5.3 Modensation du l'adiei	
VI.1.5.4 Verification de la contrainte à l'état limite de service	
VI.1.5.6 Ferraillage du radier	
VI.1.5.6.1 Ferraillage de la dalle	
VI.1.5.6.2 Exemple de calcul	
VI.1.5.6.3 Calcul de l'enrobage	
VI.1.5.6.4 Les sections du ferraillage	
VI.1.5.6.5 Ferraillage de débordement	
VI.1.5.6.5.1 Calcul du moment fléchissant	. 229

VI.1.5.6.5.2 Calcul du ferraillage	229
VI.1.5.6.6 Vérification de l'effort tranchant	231
VI.1.5.6.7 Vérification de la contrainte de compression (bielle)	232
VI.1.5.7 Calcul des poutres de redressement	233
VI.1.5.7.1 Les dimensions des nervures	234
VI.1.5.7.2 Calcul du ferraillage	234
VI.1.5.7.3 Vérification de l'effort tranchant	241
VI.1.5.7.4 Vérification la contrainte de compression (bielle)	242
VI.1.5.7.5 Vérification de l'effort tranchant sur les armatures longitudinal inférieures	242
VI.1.5.7.6 Calcul des armatures transversales	243
VI.1.5.7.7 Calcul l'espacement des armatures transversales	243
VI.1.5.7.8 Vérification de l'effort tranchant	250
VI.1.5.7.9 Vérification la contrainte de compression (bielle)	251
VI.1.5.7.10 Vérification de l'effort tranchant sur les armatures longitudinal	252
supérieur	252
VI.1.5.7.11 Calcul des armatures transversales	252
VI.1.5.7.12 Calcul de l'espacement des armatures transversales	253
Conclusion	259
Bibliographie	260
Les plans d'architecture	262

Liste des figures :

CHAPITRE I

Figure I.1 : vu en satellite d'endroit du projet	1
Figure I.5.1 : Diagramme des déformations limites de la section (Règle des trois	
pivots)	4
Figure I.5.2 : Diagramme parabole-rectangle (béton)	5
Figure I.5.3 : Diagramme de la déformation d'acier	7
CHAPITRE II	
Figure II.2.1 : coupe transversale de plancher à corps creux	9
Figure II.2.2 : nervure de plancher à corps creux	-
Figure II.2.3 : Plancher en dalle pleine	
Figure II.3.1 : coupe transversale d'une poutre non armée	
Figure II.3.2 : vue en plan des poutres principales et secondaires	
Figure II.4.1 : coupe d'un voile	
Figure II.5.1 : schéma d'un escalier	
1 Igure 11.0.1 . Seriema a un escurier	20
CHAPITRE III	
Figure III.1.1: schéma statique de la travée type 01	30
Figure III.1.2: schéma statique de la travée type 02	
Figure III.1.3: schéma statique de la travée type 01	
Figure III.1.4: schéma statique de la travée type 02	34
Figure III.1.5: Diagramme des moments fléchissants en ELU	
Figure III.1.6: Diagramme des efforts tranchants	
Figure III.1.7: Diagramme des moments fléchissants en ELS	
Figure III.1.8: schéma statique de la poutrelle	
Figure III.1.9: Schéma du ferraillage de la poutrelle (étage courant)	
Figure III.1.10: schéma statique de travée type 01	
Figure III.1.11: schéma statique de travée type 02	
Figure III.1.12 Diagramme des moments fléchissants en ELU	
Figure III.1.13 Diagramme des efforts tranchants en ELU	
Figure III.1.14 Diagramme des moments fléchissants en ELS	
Figure III.1.15: schéma statique de la poutrelle	
Figure III.1.16 schéma de ferraillage de la poutrelle (terrasse)	
Figure III.1.17: schéma ferraillage de la dalle de compression	
Figure III.2.1: vue en plan des panneaux	
Figure III.2.2: schéma des panneaux	
Figure III.2.3: schéma statique du panneau	63
Figure III.2.4: Schéma statique des panneaux	67
Figure III.2.5: Les différents panneaux de dalle (panneau continue et panneau de rive)	67
Figure III.2.6 : l'enrobage	
Figure III.2.7: schéma de ferraillage de la dalle pleine (Haut sous sol)	

Figure III.3.1: vue en plan d'escalier (Etage courant)	
Figure III.3.2: schéma statique de la volée type 01	80
Figure III.3.3: schéma statique de la volée type 02	81
Figure III.3.4 : Diagramme de moments fléchissants en ELU	82
Figure III.3.5 : Diagramme des efforts tranchants en ELU	
Figure III.3.6 : Diagramme de moments fléchissants en ELS	83
Figure III.3.7 : Diagramme de moments fléchissants en ELU	
Figure III.3.8 : Diagramme des efforts tranchants en ELU	
Figure III.3.5 : Diagramme de moments fléchissants en ELS	89
Figure III.3.10 : Diagramme de moments fléchissants en ELU	94
Figure III.3.11 : Diagramme des efforts tranchants en ELU	
Figure III.3.12 : Diagramme de moments fléchissants en ELS	95
Figure III.3.13: schéma ferraillage de la volée 02	99
Figure III.3.14: schéma ferraillage de la volée 04	
Figure III.3.15: schéma ferraillage vole des volées	
Figure III.4.1: schéma statique du balcon type 01	
Figure III.4.2: schéma statique du balcon type 02	
Figure III.4.3: schéma statique du balcon type 03	
Figure III.4.4: schéma statique due balcon type 04	
Figure III.4.5: schéma statique du balcon type 01	
Figure III.4.6: schéma statique de contre poids	
Figure III.4.7: balcon type 01	
Figure III.4.8: balcon type 02	
Figure III.4.9: balcon type 03	
Figure III.4.10: balcon type 04	
Figure III.5.1 Schéma statique de l'acrotère	
Figure III.5.2 Coupe transversale de l'acrotère	
Figure III.5.3: schéma de ferraillage de l'acrotère (Terrasse inaccessible)	
CHAPITRE IV	
Figure IV.3.1: vue de structure en 3D	122
Figure IV.3.2: disposition des voiles de contreventement et les voiles	
périphérique	123
Figure IV.3.3: disposition des voiles de contreventement	123
CHAPITRE V	
Figure V.1 Les schémas de ferraillages des poutres principales	147
Figure V.2 : Les schémas de ferraillages des poutres secondaires	149
Figure V.3: dimensions de cadre et de l'étrier de la poutre (30×55)	151
Figure V.4: dimensions de cadre et de l'étrier de la poutre (30×40)	151
Figure V.5: dimensions de cadre et de l'étrier de la poutre (30×30)	151
Figure V.2.1: les moments et les efforts normaux et de cisaillement appliqués sur les voiles	152
Figure V.2.1: vue en 2D avec logiciel robot analysis structural	155
Figure V.2.2: Coupe horizontale du ferraillage des voiles sens X-X type (1; 2; 3; 4)	171
Figure V.2.3: Coupe horizontale du ferraillage des voiles sens Y-Y type (1; 2)	171

Figure V.2.4: Coupe horizontale du ferraillage des voiles sens Y-Y type (3; 4)	172
Figure V.2.5: Coupe horizontale du ferraillage des voiles sens Y-Y type (5; 6)	172
Figure V.2.13.1: vue en 3D avec robot analysis structural du voile avec ouverture	173
voile	
Figure V.2.13.2: schéma statique du calcul des moments et l'effort tranchant	175
Figure V.2.13.3: ferraillage des armatures diagonales	176
Figure V.2.13.4: linteau de sous sol	176
Figure V.2.13.5: Coupe transversale de ferraillage du linteau sous-sol	179
Figure V.2.13.6: linteau d'etage courant	180
Figure V.2.13.7: Coupe transversale de ferraillage du linteau étage courant	183
Figure V.2.13.8: la partie trumeau	184
Figure V.2.13.9: Coupe horizontale de ferraillage du trumeau	185
Figure V.3.1: les voiles périphériques (sous sol)	186
Figure V.3.2: schéma du panneau de dalle	188
Figure V.3.3: coupe transversale du ferraillage voile périphérique	199
CHAPITRE VI	
Figure VI.1.5.1: radier général	203
Figure VI.1.5.2: dimension de la	205
Figure VI.1.5.3: modélisation du radier nervuré	
Figure VI.1.5.4: cartographie des contraintes du sol de radier nervuré	
	212
Figure VI.1.5.6: schéma statique du mode d'encastrement du panneau	213
1 Igure 7 11 13.0. Senema statique da mode à encastrement da parmeda	210
Figure VI.1.5.7: schéma statique de débordement	229
Figure VI.1.5.8: diagramme des moments fléchissant en travées et en appuis	222
(poutre principale)	233
Figure VI.1.5.9: schéma de ferraillage du la poutre principale en travée	254
Figure VI.1.5.10: schéma de ferraillage du la poutre principale en appuis	255
Figure VI.1.5.11: schéma de ferraillage du la poutre secondaire en travée	256
Figure VI.1.5.12: schéma de ferraillage du la poutre secondaire en appuis	257
Figure VI.1.5.13:schema de ferraillage de radier nervuré	258

Liste des tableaux:

CHAPITRE I

CHAPITRE II

II.6.1 tableau des charges permanentes des murs extérieurs 22 II.6.2 tableau des charges permanentes des murs intérieurs 23 II.6.3 tableau des charges permanentes appliquées sur le plancher d'étage courant. 23 II.6.4 tableau des charges permanentes appliquées sur le plancher de la terrasse 24 II.6.5 tableau des charges permanentes appliquées sur le plancher en dalle pleine (haut sous-soi) 25 II.6.6 tableau des charges permanentes appliquées sur la paillasse: vole 01 et 03 26 II.6.7 tableau des charges permanentes appliquées sur la paillasse: vole 02 et 04 28 II.6.9 tableau des charges permanentes appliquées sur le palier 28 III.1.1 Tableau récapitulatif des moments fléchissants 36 III.1.2 Tableau récapitulatif des moments fléchissants 36 III.1.3 Tableau récapitulatif des valeurs des efforts et les moments fléchissant 36 III.1.5 Tableau récapitulatif des moments fléchissants 50 III.1.6 Tableau récapitulatif des valeurs des efforts et les moments fléchissants 50 III.1.2 Tableau récapitulatif des valeurs de ply, μx en ELU et ELS 64 III.2.1 Tableau récapitulatif des moments fléchissant et des efforts tranchants 66 III.2.2 Tableau récapitulatif des moments fléchissants maximum ELU 68 III.2.5 Tableau récapitulatif de
II.6.3 tableau des charges permanentes appliquées sur le plancher d'étage courant. II.6.4 tableau des charges permanentes appliquées sur le plancher de la terrasse
II.6.4 tableau des charges permanentes appliquées sur le plancher de la terrasse
II.6.5 tableau des charges permanentes appliquées sur le plancher en dalle pleine (haut sous-sol)
(haut sous-sol)
III.6.6 tableau des charges permanentes appliquées sur la dalle pleine du balcon
II.6.7 tableau des charges permanentes appliquées sur la paillasse: vole 01 et 03
III.6.8 tableau des charges permanentes appliquées sur la paillasse: vole 02 et 04
CHAPITRE III III.1.1 Tableau récapitulatif des moments fléchissants et les efforts tranchants
III.1.1 Tableau récapitulatif des moments fléchissants et les efforts tranchants
$\begin{array}{c} \text{III.1.2 Tableau récapitulatif des moments fléchissants} & 36 \\ \text{III.1.3 Tableau récapitulatif des valeurs des efforts et les moments fléchissant} \\ \text{maximums} & 36 \\ \text{III.1.4 Tableau récapitulatif des moments fléchissants et les efforts tranchants} & 50 \\ \text{III.1.5 Tableau récapitulatif des moments fléchissants} & 50 \\ \text{III.1.6 Tableau récapitulatif des valeurs des efforts et les moments fléchissants} \\ \text{maximums} & 51 \\ \text{III.2.1 Tableau recupilatif des valeurs de } \mu_{Y_i} \mu_{X} \text{ en ELU et ELS} & 64 \\ \text{III.2.2 Tableau récapitulatif des moments fléchissant et des efforts tranchants} & 66 \\ \text{III.2.3 Tableau récapitulatif des moments fléchissant en ELU} & 68 \\ \text{III.2.4 Tableau récapitulatif des moments fléchissants en ELS} & 68 \\ \text{III.2.5 Tableau récapitulatif des moments fléchissants maximum ELU} & 69 \\ \text{III.2.6 Tableau récapitulatif des moments fléchissants maximum ELS} & 69 \\ \text{III.2.7 Tableau récapitulatif du ferraillage de la dalle plein} & 74 \\ \text{III.3.1 Tableau récapitulatif des moments fléchissant et des efforts tranchants en} \\ \text{ELU} & 83 \\ \end{array}$
$\begin{array}{c} \text{III.1.2 Tableau récapitulatif des moments fléchissants} & 36 \\ \text{III.1.3 Tableau récapitulatif des valeurs des efforts et les moments fléchissant} \\ \text{maximums} & 36 \\ \text{III.1.4 Tableau récapitulatif des moments fléchissants et les efforts tranchants} & 50 \\ \text{III.1.5 Tableau récapitulatif des moments fléchissants} & 50 \\ \text{III.1.6 Tableau récapitulatif des valeurs des efforts et les moments fléchissants} \\ \text{maximums} & 51 \\ \text{III.2.1 Tableau recupilatif des valeurs de } \mu_{Y_i} \mu_{X} \text{ en ELU et ELS} & 64 \\ \text{III.2.2 Tableau récapitulatif des moments fléchissant et des efforts tranchants} & 66 \\ \text{III.2.3 Tableau récapitulatif des moments fléchissant en ELU} & 68 \\ \text{III.2.4 Tableau récapitulatif des moments fléchissants en ELS} & 68 \\ \text{III.2.5 Tableau récapitulatif des moments fléchissants maximum ELU} & 69 \\ \text{III.2.6 Tableau récapitulatif des moments fléchissants maximum ELS} & 69 \\ \text{III.2.7 Tableau récapitulatif du ferraillage de la dalle plein} & 74 \\ \text{III.3.1 Tableau récapitulatif des moments fléchissant et des efforts tranchants en} \\ \text{ELU} & 83 \\ \end{array}$
III.1.3 Tableau récapitulatif des valeurs des efforts et les moments fléchissant maximums
maximums
III.1.4 Tableau récapitulatif des moments fléchissants et les efforts tranchants
III.1.5 Tableau récapitulatif des moments fléchissants
III.1.6 Tableau récapitulatif des valeurs des efforts et les moments fléchissants maximums
III.2.1 Tableau recupilatif des valeurs de μ_{Y} , μ_{X} en ELU et ELS
III.2.2 Tableau récapitulatif des moments fléchissant et des efforts tranchants
III.2.3 Tableau récapitulatif des moments fléchissant en ELU
III.2.4 Tableau récapitulatif des moments fléchissants en ELS
III.2.5 Tableau récapitulatif des moments fléchissants maximum ELU
III.2.6 Tableau récapitulatif des moments fléchissants maximum ELS
III.2.7 Tableau récapitulatif du ferraillage de la dalle plein
III.3.1 Tableau récapitulatif des moments fléchissant et des efforts tranchants en ELU
ELU
111.5.2 Tableau recapitatati des moments necinssants en das
III.3.3 Tableau récapitulatif de choix des armatures et les espacements
III 3 4 Tableau récapitulatif des moments fléchissants et des efforts tranchants en
ELU
III.3.5 Tableau récapitulatif des moments fléchissants en ELS
III.3.6 Tableau récapitulatif de choix des armatures et les espacements
III 3.7 Tableau récanitulatif des moments fléchissants et des efforts tranchants en
ELU
III.3.8 Tableau récapitulatif des moments fléchissants en ELS
III.3.9 Tableau récapitulatif de choix des armatures et les espacements
III.4.1 Tableau récapitulatif de ferraillage des balcons

IV.1.1 Tableau de coefficient d'accélération de zone	120
IV.1.2 tabelau de période caractéristique, associée à la catégorie du site	120
IV. 3.1 tabelau de résultat d'analyse modale	124
IV.6.1: tableau de facteur de correction d'amortissement	128
CHAPITRE V	
V.1.1 tableau des sollicitations des poutres	137
V.1.2 Tableau récapitulatif de vérification des efforts tranchant en ELU	
V.1.3 Tableau récapitulatif de vérification des efforts tranchant en ACC	
V.1.4 Tableau récapitulatif de vérification de l'effort tranchant sur les armatures	
longitudinales inférieur	145
V.1.5 Tableaux récapitulatif de choix d'armatures	146
V.2.1 Tableau récapitulatif des contraintes gauche et droit et les longueurs des	
zones tendues	156
V.2.2 Tableau recapulatif de vérification de cisaillement sens X-X	165
V.2.3 Tableau recapulatif de vérification de cisaillement sens Y-Y	
V2.4 Tableau récapitulatif de vérification des contraintes de compression à ELS	
sens X-X	167
V2.5 Tableau récapitulatif de vérification des contraintes de compression à ELS	1.67
sens Y-Y	167
V.2.6 Tableaux récapitulatif de ferraillage des voiles les plus sollicités	168
V.2.7 Tableaux récapitulatif de choix d'armature	
V.2.7.1 Tableaux récapitulatifs de ferraillage de voile le plus sollicité	184
V.3.1 Tableau recupilatif des valeurs de μ_{Y} , μ_{X} en ELU et ELS	
V.3.2 Tableau récapitulatif des moments en travées et en appuis	
V.3.3 Tableau récapitulatif des moments fléchissants	
V.3.4 Tableau récapitulatif des moments fléchissant a ELU	
V.3.5 Tableau récapitulatif des moments fléchissant a ELS	
V.3.6 Tableau récapitulatif des moments fléchissant maximum a ELU	
V.3.7 Tableau récapitulatif des moments fléchissant maximum ELS ELS	193
CHAPITRE VI	
VI.1.5.1 Tableau recapitulatif des dimmesnions des poutres principales et	
secondaires	206
VI.1.5.2 Tableau recupilatif des valeurs de μ_{Y_i} μ_{X} en ELU	214
VI.1.5.3 Tableau recupilatif des valeurs de µ _Y , µ _X en ELU et ELS	
VI.1.5.4 Tableau récapitulatif des moments fléchissant et les efforts tranchant	
VI.1.5.5 Tableau récapitulatif des moments fléchissant en ELU	
VI.1.5.6 Tableau récapitulatif des moments fléchissant en ELS	
VI.1.5.7 Tableau récapitulatif des moments fléchissant maximum ELU	
VI.1.5.8 Tableau récapitulatif des moments fléchissant maximum ELS	
VI.1.5.9 tableau récapitulatif des sollicitations des poutres	
VI.1.5.10 Tableau recapitulatif des dimmesnions des poutres principales et	
secondaires	234

Introduction générale:

Le séisme ou tremblement de terre se traduit en surface par des vibrations du sol. Il provient de la fracturation des roches en profondeur; celle-ci est due à l'accumulation d'une grande énergie qui se libère, créant des failles, au moment où le seuil de rupture mécanique des roches est atteint. Les dégâts observés en surface sont fonction de l'amplitude, la fréquence et la durée des vibrations.

Les séismes peuvent avoir des conséquences sur la vie humaine, l'économie et l'environnement.

Le séisme est le risque naturel majeur le plus meurtrier tant par ses effets directs (chutes d'objets effondrements de bâtiment) que par les phénomènes induit (mouvements de terrain, tsunami, ect) donc il ya un seul moyen de protéger de ce danger naturel est de construire des bâtiments qui supportent les vibrations terrestres sans s'effondrer la technique est maitrisée.

A ce effet l'Algérie a réalisé un règlement parasismique qui nous parmi d'éviter les dégâts de séisme et la protection des vies humaines en le respectant.

Notre projet consiste à étudier un bâtiment RDC+ 7 étages à usage multiple contreventé par des voiles porteurs et implanté à Kharrouba Mostaganem classée dans une zone sismique (**zone IIa**).

Présentation du projet

CHAPITRE I

Présentation du projet

Présentation du projet

I.1 Présentation du projet:

Notre projet c'est 84 logements promotionnels + 24 locaux commerciaux + 8 service, on a pris un bloc barre à étudier à usage commerciale et d'habitation, composé d'un sous – sol et Rez de chaussée + 7 étages contreventé par des voiles porteurs et implanté à Kharouba Mostaganem.

Le bâtiment est implanté dans une zone sismique (**zone IIa**) selon le règlement parasismique Algérien en vigueur (**RPA 99 V 2003**).

Figure I.1: vu en satellite d'endroit du projet

I.2 Caractéristiques géométriques du projet:

Caractéristiques géométriques du projet		
Longueur en plan	18,97 m	
Largeur en plan	10,11 m	
Hauteur du RDC	3,40 m	
Hauteur étage courant	3,40 m	
Hauteur sous - sol	2,90 m	
Hauteur totale	30,1 m	

Présentation du projet

I.3 Caractéristiques géotechniques:

- L'ouvrage appartient au **groupe d'usage 3** le site est considéré comme **site meuble (S3)**
- Contrainte admissible du sol : $\sigma_{sol} = 2$ bars .
- Poids volumique du sol : $\gamma = 18 \text{ KN/m}^2$

I.4 Caractéristiques techniques:

I.4.1 Système du contreventement :

Notre système de construction est un système voiles porteurs, la raison est que les voiles outre leur rôle porteur vis-à-vis des charges verticales sont très efficaces pour assurer la résistance aux forces horizontales. En reprenant la plus grande partie de l'effort sismique ils conditionnent le comportement des structures et jouent un rôle primordial pour la sécurité, par rapport à d'autres éléments des structures, les voiles jouent d'autres rôles :

- Augmenter la rigidité de l'ouvrage ;
- Diminuer l'influence des phénomènes du second ordre et éloigner la possibilité d'instabilité ;
- Diminuer les dégâts des éléments non porteurs dont le coût de réparation est souvent plus grand que celui des éléments porteurs et
- Rendre le comportement de la structure plus fiable que celui d'une structure ne comportant que des portiques.

I.4.2 Les planchers :

Les types de planchers adoptés sont un plancher semi-préfabriqué (poutrelles+corps creux +dalle de compression) pour l'étage courant et la terrasse et un plancher en dalle pleine pour le plancher haut du sous-sol.

I.4.3 Les escaliers :

Dans notre projet nous avons un seul type d'escalier à quatre volés et quatre paliers du repos encastrés dans les voiles.

I.4.4 Maçonnerie :

Elles sont réalisée en brique creuse selon deux types :

I.4.5 Murs extérieurs :

- Brique creuse 10 cm.
- L'âme d'aire 5 cm.
- Brique creuse 10 cm.

I.4.6 Murs intérieurs :

• Brique creuse 10 cm.

I.4.7 Revêtement:

- Enduit en plâtre pour les plafonds et les cloisons ;
- Enduit en ciment pour les murs extérieurs ;
- Revêtement en carrelage pour les planchers ;
- Le plancher de terrasse sera recouvert par une étanchéité multicouche.

Présentation du projet

I.4.8 Isolation:

Isolation en polystyrène pour les plancher terrasse.

Isolation thermique par vide d'air pour les murs extérieurs.

I.4.9 Locale d'ascenseur:

L'ascenseur est un appareil élévateur permettant le déplacement vertical et accès aux différents niveaux du bâtiment, il est composé essentiellement de la cabine et de sa machinerie.

I.4.10 Acrotères:

La terrasse étant non accessible le dernier niveau est entouré d'un acrotère en béton arme d'une hauteur 0,6 m.

I.4.11 Les fondations:

La transmission des charges par la superstructure au sol est assurée par un radier général.

I.5 Caractéristiques mécaniques des matériaux et hypothèses de calcul:

I.5.1.Béton Armé:

- La résistance du béton est très faible en traction. En revanche, l'acier résiste très bien à la traction.
- Aussi, le principe du béton armé est d'insérer dans la matrice de béton des aciers dans les zones tendues.

Cette association est efficace car:

• L'acier adhère au béton ce qui permet la transmission des efforts d'un matériau à l'autre.

I.5.2 Béton :

I.5.2.1 Composition du béton :

Le béton est constitué par un mélange intime de matériaux inertes, appelés "granulats" (sables et graviers) avec du ciment et de l'eau. Grâce à réaction du ciment, le mélange ainsi obtenu, appelé "béton frais", commence à durcir après quelques heures et acquiert de la résistance progressivement.

I.5.2.2 Résistance du béton:

D'après le (C.B.A 93, A2.1.1.1):

Pour l'établissement des projets dans les cas courant un béton est défini par une valeur de sa résistance de la compression a l'âge de 28 jours dite valeur caractéristique requise (ou spécifie) celle-ci notée f $_{\rm c28}$ est choisie a priori compte tenu des possibilités locale et des règles de control qui permettent de vérifier qu'elle est atteinte.

Lorsque des sollicitation s'exercent sur un béton dont l'âge de j jours (en cours d'exécution) est inferieur a 8 on se réfère a la résistance caractéristique f_{cj} obtenue au jour considère.

On peut admettre que pou j<28 résistances f_{cj} des bétons non traites thermiquement suivent approximativement les lois suivant :

Présentation du projet

$$f_{cj} = \frac{j}{4,76 + 0,83 j} \times f_{c28}$$
 Pour $f_{c28} \le 40 \text{ MPa}$
 $f_{cj} = \frac{j}{1,40 + 0,95 j} \times f_{c28}$ Pour $f_{c28} > 40 \text{ MPa}$

Pour notre projet, il a été choisi de travailler avec f_{c28} =25 MPa (béton à usage courant) pour un béton d'âge inférieur à 28 jours, la résistance à la compression peut être obtenue par la formule suivante :

$$f_{cj} = \frac{j}{4,76 + 0,83 j} \times f_{c28}$$
 Pour $f_{c28} \le 40 \text{ MPa}$

Avec : $j \le 28$ jours

Poids volumique du béton : y béton = 25 KN/m³

I.5.2.3 Coefficient de poisson:

Pour le calcul des éléments bidimensionnels (dalles, coques...), on prendra :

- $v = 0 \implies$ états limites ultimes (béton fissuré).
- $v = 0.2 \implies$ états limites de service (béton non fissuré).

Avec:

- **Pivot A**: traction simple ou composée, flexion avec état limite ultime atteint dans l'acier.
- **Pivot B**: flexion avec état limite ultime atteint dans béton.
- **Pivot C** : compression simple ou composée.

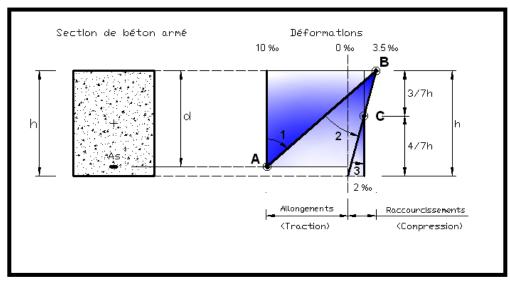


Figure I.5.1 : Diagramme des déformations limites de la section (Règle des trois pivots)

I.5.2.4 Résistance à la traction (C.B.A 93, A.2.1.1.2):

La résistance caractéristique à la traction d'un béton est donnée par la formule :

$$f_{t28} = 0.6 + 0.06 f_{c28} \Rightarrow f_{t28} = 0.6 + 0.06.(25) \Rightarrow f_{t28} = 2.1 \text{ MPa.}$$

Présentation du projet

 \rightarrow Cette formule étant valable pour les valeurs de : $f_{ci} \le 60$ MPa.

I.5.2.5 Contraintes limites de compression :

La contrainte limite ultime du béton comprimé est donnée par :

$$\sigma_{bc} = 0.85 \frac{f_{c28}}{\theta.\gamma_b}$$
 (C.B.A 93, A.4.3.4.1.)

Avec:

$$\begin{split} \gamma_b : & \text{Coefficient de sécurité.} \\ \gamma_b = \begin{cases} 1.5 & \text{En situation durable et transitoire} \\ 1.15 & \text{en situation accédentaile} \end{cases} \end{split}$$

Le coefficient θ est fixé à 1 lorsque la durée probable d'application de la combinaison d'actions considérée est supérieure à 24 h, à 0,9 lorsque cette durée est comprise entre 1h et 24h, et à 0,85 lorsqu'elle est inférieure à 1h.

•
$$\sigma_{bc} = \frac{0.85 \times 25}{1.5} = 14,2$$
 MPa (situations durables et transitoires)
• $\sigma_{bc} = \frac{0.85 \times 25}{1.15} = 18.5$ MPa (situations accidentelles)

•
$$\sigma_{\rm bc} = \frac{0.85 \times 25}{1.15} = 18.5$$
 MPa (situations accidentelles)

La contrainte limite service du béton comprimé est donnée par :

1.
$$\overline{\sigma}_{bc} = 0.6 \, f_{cj}$$
 (C.B.A 93, A.4.5.2) / $f_{c28} = 25 \, \text{MPa}$ \rightarrow $\overline{\sigma}_{bc} = 15 \, \text{Mpa}$

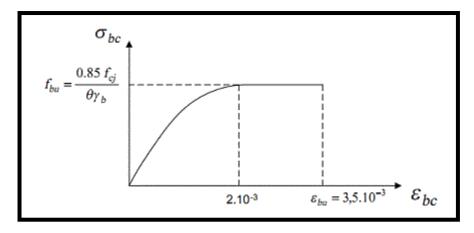


Figure I.5.2 : Diagramme parabole-rectangle (béton).

5

I.5.2.6 La contrainte ultime de cisaillement (C.B.A 93, A.5.1.2.1) :

La contrainte limite de cisaillement prend les valeurs suivantes :

Fissuration non préjudiciable (peu nuisible)

•
$$\tau_U = \min(\frac{0.2.f_{cj}}{\gamma_h}; 5MPa) = 3.33 \text{ Mpa}$$

Présentation du projet

Fissuration préjudiciable ou très préjudiciable :

•
$$\tau_U = \min\left(\frac{0.15.f_{cj}}{\gamma_b}; 4MPa\right) = 2.5 MPa$$

I.5.2.7 Module de déformation longitudinale du béton (C.B.A 93, A.2.1.2.):

- Le module de déformation longitudinale instantanée :

Sous des contraintes normales d'une durée d'application inférieure à 24 heures, le module de déformation longitudinale instantanée du béton E_{ij} est donné par :

$$E_i = 11000 \sqrt[3]{f_{c28}} = 32164,195 \text{ MPa}$$

-Le module de déformation longitudinale différée :

Pour les déformations différées du béton qui comprennent le retrait et le fluage, on considère dans le calcul que les effets de ces deux phénomènes s'additionnent sans atténuation pour le calcul des déformations finales du béton, on utilise le module de déformation longitudinale différée E_{ij} qui est donné par la formule :

$$E_v = 3700 \sqrt[3]{f_{c28}} = 10818,9 \text{ MPa}$$

I.5.3 Acier:

L'acier est un alliage fer carbone en faible pourcentage, son rôle est d'absorber les efforts de traction, de cisaillement et de torsion, on distingue deux types d'aciers : Aciers doux ou mi-durs pour 0.15 à 0.25 % de carbone et Aciers durs pour 0.25 à 0.40 % de carbone.

Le module d'élasticité longitudinal de l'acier est pris égale à :

$$E_s = 200\ 000\ MPa.\ (C.B.A\ 93,\ A.2.2.1.)$$

I.5.3.1 Caractéristique de l'acier :

Les valeurs de la limite d'élasticité garantie Fe sont données par le tableau suivant :

Types	Désignation	Limite élastique f _e (Mpa)
Donda liago	FeE235	235
Ronds lisse	FeE215	215
Barre HA	FeE400	400
вагте па	FeE500	500
Treillis soudes lisse	TSL	500

Dans notre cas on utilise des armatures à haute adhérence avec un acier de nuance $F_eE400 \rightarrow$ (limite d'élasticité $f_e=400 MPa$) $F_eE235 \rightarrow$ (limite d'élasticité $f_e=235 MPa$)

TSL \rightarrow (limite d'élasticité $f_e = 500 \text{ MPa}$)

Présentation du projet

I.5.3.2.Contraintes limites:

1. Etat limite ultime (ELU):

La contrainte admissible de l'acier est définie par :

$$\sigma_{\rm S} = \frac{f_{\rm e}}{\gamma_{\rm S}} \rightarrow \ \epsilon_{\rm S} \ge \epsilon_{\rm L} \Longrightarrow ({\bf C.\,B.\,A~93~A.\,2.\,2.\,2}).$$

$$\sigma_{\rm S} = E_{\rm S.\,} \epsilon_{\rm S} \rightarrow \epsilon_{\rm S} < \epsilon_{\rm L}$$

Avec:

 ε_s : Allongement relatif de l'acier, limité à 10 ‰.

Es: Module d'élasticité longitudinale est pris égal à 200 000 MPa.

Fe: Limite d'élasticité garantie.

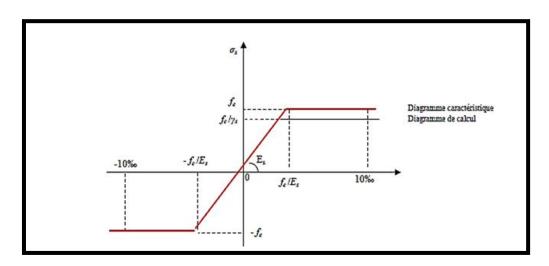


Figure I.5.3 : Diagramme de la déformation d'acier

Le diagramme de déformation des contraintes du calcul se déduise de précédent en effectuant une affinité parallèlement à la tangente à l'origine et dans le rapport $\frac{1}{v_c}$.

$$\gamma_s = \left\{ \begin{matrix} 1{,}15 \text{ En situation durable et transitoire} \\ 1 \text{ en situation accédentaile} \end{matrix} \right.$$

Avec : σ_s limite élastique de l'acier utilisé :

2. État limite de service (E.L.S):

On ne limite pas la contrainte de l'acier sauf en état limite d'ouverture des fissures :

 η : Coefficient de fissuration.

Présentation du projet

 $\begin{cases} \eta = 1 & \text{pour les ronds lisses (RL)} \\ \eta = 1.6 & \text{pour les armatures à hautes adhérence (HA)} \end{cases}$

Fissuration préjudiciable : $\sigma_s \le \min((\frac{2}{3}.f_e); 110\sqrt{\eta.f_{tj}})$

Donc: $\sigma_s \leq 201,63 \text{ MPa}$

 $\sigma_s \le 156,66 \text{ MPa}$ (Ronds lisses) avec $f_e = 235 \text{ MPa}$.

Fissuration très préjudiciable : $\sigma_s \le min((0.5.f_e); 90\sqrt{\eta.f_{tj}})$

Donc: $\sigma_s \leq 117,5$ MPa

 $\sigma_s \le 117,5 \text{ MPa } (\textbf{Ronds lisses}) \text{ avec } f_e = 235 \text{ MPa}$

Fissuration peu nuisible: aucune vérification n'est requise pour les aciers.

I.5.4 Les combinaisons fondamentales :

1. Etat limite ultime:

Les sollicitations de calcul sont déterminées à partir de la combinaison d'action suivante:

2. Etat limite de service :

Combinaison d'action suivante :

$$G + Q$$

S'il y a intervention des efforts horizontaux dus au séisme, les règles parasismiques algériennes ont prévu des combinaisons d'action suivantes :

- \bullet G+Q±E
- 0,8 G±E

Avec:

G: charge permanente.

Q: charge d'exploitation.

E : effort de séisme.

Pré dimensionnement des éléments résistants

CHAPITRE II

Pré dimensionnement des éléments résistants

Pré dimensionnement des éléments résistants

II.1 Introduction:

Le pré-dimensionnements permet la détermination des dimensions des différents éléments de la structures, ces dimensions sont choisies selon les préconisations du RPA 99/Version 2003, BAEL 91 modifié 99 et du CBA93 (Règle de Conception et de Calcul des Structures en Béton Arme CBA93).

Pour cela nous évaluons une descente des charges afin de déterminer ce qui revient à chaque élément porteur, à tous les niveaux jusqu'à la fondation.

II.2 Pré dimensionnements des planchers :

• Les planchers :

Un plancher est un élément porteur horizontal qui délimite sur la verticale l'espace occupé par une construction (séparation d'étages). Parmi les principales fonctions que rempli un plancher, on peut citer :

- Support des charges verticales (permanentes et d'exploitation);
- Transmission des efforts horizontaux aux éléments de contreventement :
- Liaison des éléments structuraux verticaux ce qui contribue à une amélioration de leur stabilité et rigidité globales et
- Ecran isolant entre les étages : acoustique et thermique.

Les planchers sont constitués de dalle, de poutres et poutrelles dont la combinaison peut résulter en différent types de planchers, tels que: plancher dalles pleine, plancher nervuré, balcon.

II.2.1 Plancher à corps creux:

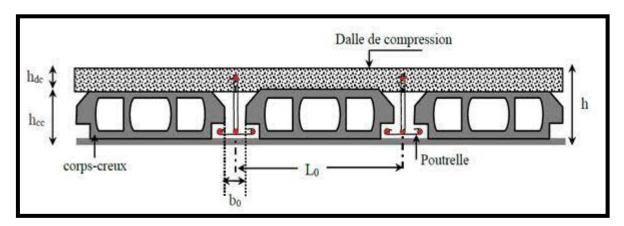


Figure II.2.1 : coupe transversale de plancher à corps creux

• Détermination de l'épaisseur:

L'épaisseur de ce plancher est déterminée par la condition de la flèche suivante :

$$\frac{L}{25} \le h_t \le \frac{L}{20}$$

Pré dimensionnement des éléments résistants

L : la plus grande portée entre nus d'appuis dans la direction de la disposition des solives.

On a: $L = 5.2m \Rightarrow 20.8cm \le h_t \le 26cm$ \Rightarrow On prend: h = 24 cm = (20+4) cm

Avec:

 $\mathbf{H_{dc}} = 4$ cm Épaisseur de la table de compression.

H_{cc}= 20 cm Épaisseur du corps creux.

II.2.2 Détermination des dimensions des poutrelles:

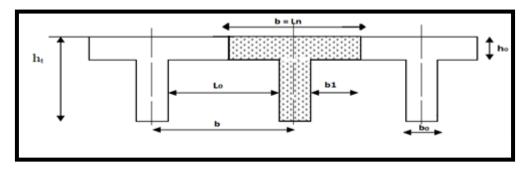


Figure II.2.2 : nervure de plancher à corps creux

La longueur de la dalle de compression sera calculée à partir de la plus petite des valeurs suivantes de b_1 :

On a : L = 520 cm

$$\begin{aligned} b_1 &\leq \frac{(\text{Ln} - \text{b0})}{2} = \frac{(\text{60} - \text{12})}{2} = 24 \text{ cm} \\ b_1 &\leq \frac{L}{10} = \frac{520}{10} = 52 \text{cm} \\ b_1 &\leq (6 \div 8). h_0 = (30 \div 40) \text{ cm} \end{aligned}$$

Donc: b1= 24 cm

$$L_n = b = 2 \times b_1 + b_0 = 2 \times 24 + 12 = 60 \text{ cm}$$

Avec:

 L_n : la distance entre axes de nervures

L : La portée entre nus d'appuis

Pré dimensionnement des éléments résistants

h₀: La hauteur de la nervure

b₀: Epaisseur de la nervure.

 $\mathbf{b_0}$: $(0.3/0.4)h_t$ et elle est généralement prise a b_0 = 12 cm

II.2.3 Plancher en dalle pleine:

Le plancher en dalle pleine est constitué d'une épaisseur de béton armé de 15 à 20 cm en moyenne, coulée sur un coffrage plat. Très utilisé dans l'habitat collectif, il comporte des armatures d'acier variant en nombre et en diamètre selon la portée et les charges à supporter.

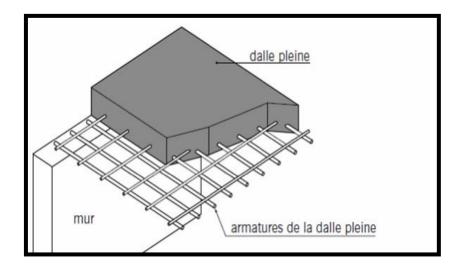


Figure II.2.3: Plancher en dalle pleine

II.2.3.1 Haut sous-sol:

> Détermination l'épaisseur:

Le pré dimensionnement de l'épaisseur des dalles dépend des critères suivant :

• Sécurité vis-à-vis de l'incendie :

 $h_d \le 7$ cm pour 1 heure de coupe feu

 $h_d \le 11$ cm pour 2heure de coupe feu

• Condition d'isolation phonique :

 $h_d \ge 16 cm$

D'après la condition de résistance a la flexion: (B.A.E.L 91)

Cas d'une dalle qui porte suivant un seule sens:

$$\rho = \frac{L_X}{L_Y} \le 0.4$$

Pré dimensionnement des éléments résistants

La charge doit être uniformément répartie :

$$h_{d} = \left(\frac{1}{35} \div \frac{1}{30}\right) \cdot L_{x}$$

Cas d'une dalle qui porte suivant un deux sens:

$$0,4$$
≤ ρ ≤ 1

La charge est uniformément répartie :

$$h_d = (\frac{1}{50} \div \frac{1}{40}). L_x$$

Dans notre cas on prend le panneau le plus grand :

$$L_x$$
=5,49-0,30=5,19m
 L_y = 6,47-0,30= 6,17m

La dalle porte suivant deux sens :

$$0,4 \le \rho \le 1$$

$$0.4 \le \frac{5.19}{6.17} \le 1$$

$$0.4 \le 0.84 \le 1$$

• L'épaisseur de la dalle :

$$\frac{L_x}{50} \le e_p \le \frac{L_x}{40} \to \frac{519}{50} \le e_p \le \frac{519}{40} \to 10,38 \text{cm} \le e_p \le 12,975 \text{ cm}$$

✓ **On prend** : ep = 15cm.

II.2.3.2 Balcon:

> Détermination l'épaisseur:

Il y'a 4 types de balcon, on prend le type avec les grandes portées :

Cas d'une dalle qui porte suivant un deux sens:

Pré dimensionnement des éléments résistants

$$0,4$$
≤ ρ ≤ 1

La charge est uniformément répartie :

$$h_d = (\frac{1}{50} \div \frac{1}{40}) L_x$$

On a:

 $L_x = 1,60 \text{ m}$

$$L_y = 3.2 \text{ m}$$

La dalle porte suivant deux sens :

$$0,4 \le \rho \le 1$$

 $0,4 \le 0,5 \le 1$

L'épaisseur de la dalle :

$$\frac{L_x}{50} \le e_p \le \frac{L_x}{40} \to \frac{160}{50} \le e_p \le \frac{160}{40} \to 3,2 \text{cm} \le e_p \le 4 \text{ cm}$$

✓ **On prend** : ep = 15cm.

II.3 Pré dimensionnements des poutres:

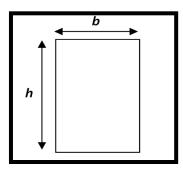


Figure II.3.1 : coupe transversale d'une poutre non armée

Les poutres sont des éléments porteurs horizontaux et linéaires. Il existe deux types de poutres, **principales et secondaires (Chaînages)**.

Pré dimensionnement des éléments résistants

II.3.1 Les poutres principales:

Elles supportent des poutres secondaires, des nervures ou des poutrelles et reposant elle même- sur des porteur verticaux (poteaux, voile).

On a deux types des poutres principales :

- Poutre P1:
- Critère de rigidité :

$$\frac{L}{15} \le H \le \frac{L}{10}$$

$$\{0,4. H \le b \le 0,8. H$$

L : portée de la poutreH : hauteur de la poutreB : largeur de la poutre

On a : L = 7,06m

Donc:

$$\begin{cases} \frac{706}{15} \le H \le \frac{706}{10} \\ 47,06 \text{ cm} \le H \le 70,6 \text{ cm} \end{cases}$$

✓ On prend : H = 55 cm

$$\{0,4. H \le b \le 0,8. H \}$$

 $\{22cm \le b \le 44\}$

- \checkmark **On prend**: b = 30 cm
- condition selon les règles parasismique algériennes RPA 99 v 2003 :

$$\begin{cases} H \ge 30 \text{ cm} \\ b \ge 20 \text{ cm} \\ \frac{H}{R} \le 4 \text{cm} \end{cases}$$

$$\begin{cases} 55\text{cm} \ge 30 \text{ cm} \rightarrow \text{C. V} \\ 30 \ge 20 \text{ cm} \rightarrow \text{C. V} \\ 1,83\text{cm} \le 4\text{cm} \rightarrow \text{C. V} \end{cases}$$

Donc: les conditions sont vérifiées.

Pré dimensionnement des éléments résistants

- Poutre P2:
- Critère de rigidité :

$$\frac{L}{15} \le H \le \frac{L}{10}$$

$$\{0,4.\, H \le b \le 0,8.\, H$$

L : portée de la poutre

 ${\bf H}$: hauteur de la poutre

B: largeur de la poutre

On a : L = 3,86m

Donc:

$$\begin{cases} \frac{396}{15} \le H \le \frac{396}{10} \\ 26,4cm \le H \le 39,6cm \end{cases}$$

✓ On prend : H =40 cm

$$\{0,4. H \le b \le 0,8. H \}$$

 $\{16cm \le b \le 32cm \}$

- ✓ **On prend**: b = 30 cm
- condition selon les règles parasismique algériennes RPA 99 v 2003 :

$$\begin{cases} H \ge 30 \text{ cm} \\ b \ge 20 \text{ cm} \\ \frac{H}{B} \le 4 \text{ cm} \end{cases}$$

Pré dimensionnement des éléments résistants

$$\begin{cases} 40 \text{cm} \ge 30 \text{ cm} \rightarrow \text{C. V} \\ 30 \ge 20 \text{ cm} \rightarrow \text{C. V} \\ 1{,}33 \text{cm} \le 4 \text{cm} \rightarrow \text{C. V} \end{cases}$$

Donc: les conditions sont vérifiées.

II.3.2 Les poutres secondaires:

Elles relient les portiques entre eux pour ne pas basculer.

On a deux types des poutres secondaires :

- 1. Poutre S1:
- Critère de rigidité :

$$\frac{L}{15} \le H \le \frac{L}{10}$$

$$\{0,4. H \le b \le 0,8. H\}$$

L : portée de la poutre H : hauteur de la poutre B : largeur de la poutre

On a : L = 3,86m

Donc:

$$\begin{cases} \frac{389}{15} \le H \le \frac{389}{10} \\ 25,93cm \le H \le 38,9 \ cm \end{cases}$$

✓ **On prend**: H = 30 cm

$$\{0,4. H \le b \le 0,8. H \}$$

 $\{11,09cm \le b \le 33,28cm \}$

16

Pré dimensionnement des éléments résistants

- **✓ On prend**: b = 30cm
- condition selon les règles parasismique algériennes RPA 99 v 2003 :

$$\begin{cases} H \ge 30 \text{ cm} \\ b \ge 20 \text{ cm} \\ \frac{H}{B} \le 4 \text{cm} \end{cases}$$

$$\begin{cases} 30\text{cm} \geq 30\text{ cm} \rightarrow \text{C. V} \\ 30 \geq 20\text{ cm} \rightarrow \text{C. V} \\ 1\text{cm} \leq 4\text{cm} \rightarrow \text{C. V} \end{cases}$$

Donc: les conditions sont vérifiées.

- 2. Poutre S2:
- Critère de rigidité :

$$\frac{L}{15} \le H \le \frac{L}{10}$$

$$\{0,4.\,\mathrm{H} \leq \mathrm{b} \leq 0,8.\,\mathrm{H}$$

L : portée de la poutreH : hauteur de la poutreB : largeur de la poutre

On a : L = 5,19m

Donc:

$$\begin{cases} \frac{519}{15} \le H \le \frac{519}{10} \\ 34,6 \ cm \le H \le 51,9 \ cm \end{cases}$$

17

Pré dimensionnement des éléments résistants

✓ On prend : H = 40 cm

$$\{0,4. H \le b \le 0,8. H \}$$

 $\{14,64cm \le b \le 43,92cm \}$

- **✓ On prend** : b = 30cm
- condition selon les règles parasismique algériennes RPA 99 v 2003 :

$$\begin{cases} H \geq 30 \text{ cm} \\ b \geq 20 \text{ cm} \\ \frac{H}{B} \leq 4 \text{cm} \end{cases}$$

$$\begin{cases} 40 \text{cm} \ge 30 \text{ cm} \rightarrow \text{C. V} \\ 30 \ge 20 \text{ cm} \rightarrow \text{C. V} \\ 1.3 \text{cm} \le 4 \text{cm} \rightarrow \text{C. V} \end{cases}$$

Donc: les conditions sont vérifiées.

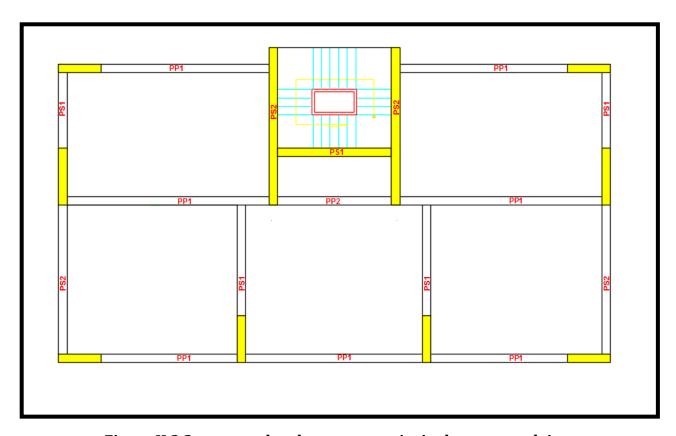


Figure II.3.2 : vue en plan des poutres principales et secondaires

Pré dimensionnement des éléments résistants

II.4 Pré-dimensionnement des voiles :

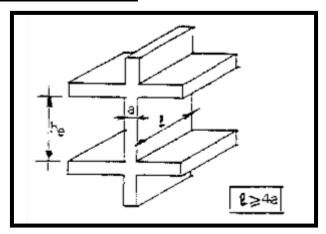


Figure II.4.1: coupe d'un voile

II.4.1 Voiles étages courants :

Condition selon les règles parasismique algériennes RPA 99 v 2003 :

$$\begin{cases} L \ge 4a \\ a \ge \frac{h_e}{20} \end{cases}$$

H_e: hauteur libre d'étageL: la longueur de voilea: épaisseur de voile

$$H_e = 3,40 - 0,4 = 3,00 m$$

$$\frac{h_e}{20} = \frac{300}{20} = 15$$
cm

 $a \ge 15cm$

Notre système de la construction est un voile porteur pour des raisons de sécurité on prend l'épaisseur :

$$\checkmark$$
 a= 30cm.

II.4.2 Voile périphérique :

$$H_e = 2,90 - 0,4 = 2,5m$$

$$\frac{h_e}{25} = \frac{250}{25} = 10$$
cm

Pré dimensionnement des éléments résistants

 $a \ge 10 \text{ cm}$

✓ On prend : a = 15 cm.

II.5 Pré-dimensionnement d'escalier :

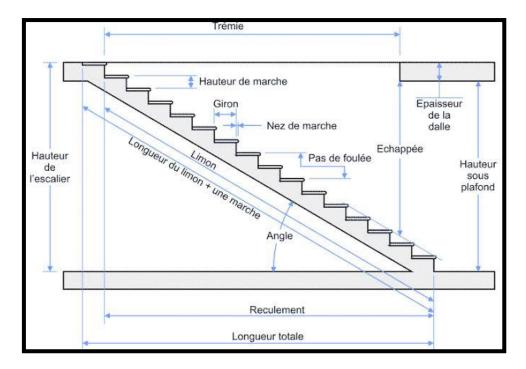


Figure II.5.1: schéma d'un escalier

Pour les dimensions des marches "g" et contre marches "h", on utilise généralement la formule de **BLONDEL** :

 $59 \text{ cm} \le 2\text{h} + \text{g} \le 66 \text{ cm}$

h: la hauteur de la marcheG: largeur de la marcheH: hauteur de volé

n : nombre de contre marche

L: projection horizontale de la longueur total de la volée

II.5.1 Etude d'un type d'escalier (à quatre volées) :

✓ Volé 01 et 03:

H = 68 cm

Pré dimensionnement des éléments résistants

$$H = n \cdot h \rightarrow n = \frac{H}{h} = \frac{68}{17} = 4 \text{ contremarches}$$

Nombre des marches : n-1=3

Largeur de la marche : $g = \frac{L}{n-1} = \frac{90}{3} = 30$ cm

✓ On prend : g=30cm

D'après la formule de **BLONDEL**:

$$59 \text{ cm} \le 2\text{h} + \text{g} \le 66 \text{ cm}$$

$$59 \text{ cm} \le 2 \times 17 + 30 \le 66 \text{ cm}$$

1) La longueur et épaisseur de la paillasse :

$$Tan\alpha = \frac{68}{90} = 0.75 = arctg 0.75 = 37^{\circ}$$

$$\alpha=37^{\circ}$$

$$L = \frac{90}{\cos \alpha} = 113 \text{ cm}$$

 $L_t = L_{paillasse} + L_{palier} = 113 + 143 + 114 = 370 \text{ cm}$

$$\frac{L}{30} \le ep \le \frac{L}{20} \Rightarrow \frac{370}{30} \le ep \le \frac{370}{20} \Rightarrow 12,33 \text{ cm} \le ep \le 18,50 \text{cm}$$

On prend: ep = 16 cm Pour L'épaisseur du palier et de la paillasse.

• Volé 02 et 04:

H = 102 cm

$$H = n \cdot h \rightarrow n = \frac{H}{h} = \frac{102}{17} = 6$$
 contre marche

Nombre des marches : n-1 = 5

Largeur de la marche : $g = \frac{L}{n-1} = \frac{150}{5} = 30 \text{ cm}$

On prend: g=30cm

D'après la formule de **BLONDEL**:

$$59 \text{ cm} \le 2\text{h} + \text{g} \le 66 \text{ cm}$$

$$59 \text{ cm} \le 2 \times 17 + 30 \le 66 \text{ cm}$$

Pré dimensionnement des éléments résistants

 $59 \text{ cm} \le 64 \text{ cm} \le 66 \text{ cm}$

• La longueur et épaisseur de la paillasse :

$$Tan\alpha = \frac{102}{150} = 0.68 = arctg 0.68 = 34.2^{\circ}$$

$$\alpha = 34,2^{\circ}$$

$$L = \frac{150}{\cos \alpha} = 181,39$$
cm

 $L_t = L_{paillasse} + L_{palier} = 181,39 + 123.2 = 427,39 \text{ cm}$

$$\frac{L_t}{30} \le ep \le \frac{L_t}{20} \Rightarrow \frac{427,39}{30} \le ep \le \frac{427,39}{20} \quad 14,25cm \le ep \le 21,37cm$$

✓ **On prend** : ep = 16 cm Pour L'épaisseur de palier et la paillasse.

II.6 Descente des charges :

D'après le (DTR BC 22):

II.6.1 tableau des charges permanentes des murs extérieurs:

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Brique creuse	0,10	9	0,9
Enduit extérieur au ciment	0.02	18	0,36
Enduit intérieur en ciment	0.02	18	0,36
Brique creuse	0.10	9	0,9
Charge permanente totale		2,52 KN	/m²

Pré dimensionnement des éléments résistants

II.6.2 tableau des charges permanentes des murs intérieurs:

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Brique creuse	0,10	9	0,9
Enduit extérieur au plâtre	0,02	10	0,2
Enduit extérieur en plâtre	0,02	10	0,2
Charge perm	anente totale	1,3 KN/	m ²

II.6.3 tableau des charges permanentes appliquées sur le plancher d'étage courant:

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Revêtement en carrelage	0,02	22	0,44
Mortier de pose	0,02	20	0,40
Dalle en corps creux (20+4)	0,24	/	3,20
Enduit en plâtre	0,02	10	0,2
Cloisons intérieures	0,1	9	0,90
Sable	0.01	18	0,18
Charge perm	anente totale	5,32 KN	/m²

Surcharge d'exploitation :

• Locaux à usage d'habitation : 1,5 KN/m²

Pré dimensionnement des éléments résistants

II.6.4 tableau des charges permanentes appliquées sur le plancher de la terrasse :

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Protection gravillon	0,05	20	1
Etanchéité multicouche	0,02	6	0,12
Dalle en corps creux (20+4)	0,24	/	3,20
Isolation thermique en polystyrène	0,04	4	0,16
Enduit au plâtre	0,1	10	1
Forme de pente	0,1	22	2,2
Charge permanente totale		7,68 KN	/m²

Surcharge d'exploitation :

• Terrasse inaccessible : 1,00 KN/m²

Pré dimensionnement des éléments résistants

II.6.5 tableau des charges permanentes appliquées sur le plancher en dalle pleine (haut sous-sol):

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Revêtement en carrelage	0,02	22	0,44
Mortier de pose	0,02	20	0,40
Dalle en béton armé	0,15	25	3,75
Enduit au plâtre	0,02	10	0,2
Cloisons intérieures	0,1	9	0,90
Sable	0,01	18	0,18
Charge permanente totale		5,87 KN	/m²

Surcharge d'exploitation :

Locaux à usage commerciale : 5 KN/m²
 Locaux à usage Bureaux : 2,50 KN/m²

Pré dimensionnement des éléments résistants

II.6.6 tableau des charges permanentes appliquées sur la dalle pleine du balcon :

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Revêtement en carrelage	0,02	22	0,44
Mortier de pose	0,02	20	0,40
Enduit au plâtre	0,02	10	0,20
Dalle en béton armé	0,15	25	3,75
Couche de Sable	0,01	18	0,18
Charge permanente totale		4,97 KN	/m²

Surcharge d'exploitation :

• Balcon: 3,50 KN/m²

Pré dimensionnement des éléments résistants

II.6.7 tableau des charges permanentes appliquées sur la paillasse: vole 01 et 03

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Revêtement en carrelage	0,02	22	0,44
Mortier de pose	0,02	20	0,40
Poids propre de paillasse	/	25	5,01
Poids propre des marches	0,17/2	22	1,87
Garde-corps	/	/	0,1
Charge permanente totale		7,82 KN ,	/m²

Surcharge d'exploitation :

• Escalier: 2,50 KN/m²

Pré dimensionnement des éléments résistants

II.6.8 tableau des charges permanentes appliquées sur la paillasse: vole 02 et 04

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Revêtement en carrelage	0,02	22	0,44
Mortier de pose	0,02	20	0,40
Poids propre de paillasse	/	25	4,84
Poids propre des marches	0,17/2	22	1,87
Garde-corps	/	/	0,1
Charge permanente totale		7,65 KN	/m²
Charge d'e	xploitation	2,50 KN	/ m ²

II.6.9 tableau des charges permanentes appliquées sur le palier:

Désignation	Epaisseur (m)	Densité (KN/m³)	Poids (KN/m²)
Poids propre de palier	0,16	25	4
Revêtement en carrelage	0,02	22	0,44
Mortier de pose	0,02	20	0,40
Enduit au plâtre	0,02	10	0,20
Lit de sable	0,02	18	0,36
Charge permanente totale		5,4 KN/m ²	
Charge d'e	xploitation	2,50 KN	/m²

Pré dimensionnement des éléments résistants

II.7 <u>Dégression verticale des charges</u> :

Niveau	Formule de calcul	Q (KN/m²)	G (KN/m²)
8 ^{eme} Terrasse	Q_0	1	7,68
7 ^{eme} Etage	$Q_0 + Q$	2,5	13
6 ^{eme} Etage	Q ₀ + 0.95 x 2 x Q	3,85	18,32
5 ^{eme} Etage	Q ₀ + 0.90 x 3 x Q	5,05	23,64
4 ^{eme} Etage	Q ₀ + 0.85 x 4 x Q	6,1	28,96
3 ^{eme} Etage	Q ₀ + 0.80 x 5 x Q	7	34,28
2 ^{eme} Etage	Q ₀ + 0.75 x 6 x Q	7,75	39,6
1 ^{er} Etage	Q ₀ + 0.71 x 7 x Q	8,455	44,92
Haut Sous- sol	Q ₀ + 0.69 x 8x Q+2,5	11,78	50,79

Etude des éléments non structuraux

CHAPITRE III

Etude des éléments non structuraux

Etude des éléments non structuraux

III.1 Etude du Plancher à corps creux :

Le plancher à corps creux est un plancher en béton préfabriqué, constitué de trois éléments: une structure porteuse, des corps creux et une dalle de compression.

III.1.1 Détermination des sollicitations:

Pour la détermination des différentes sollicitations des poutrelles, on utilise l'une des trois méthodes:

- 1. Méthode forfaitaire, si les conditions cités ci-après sont vérifiées:
 - $Q \le 2G$; $Q \le 5KN$.
 - le moment d'inertie est constant pour toutes les travées.
 - $0.8 \le \frac{L_i}{L_{i+1}} \le 1.25.$
 - La fissuration est considérée comme peu nuisible.
- **2.** Méthode de Caquot, si l'une des conditions de la méthode forfaitaire n'est pas vérifiée.
- **3.** Méthode de Caquot minoré, si la première condition de méthode forfaitaire vérifié et une ou plus des autres conditions n'est pas vérifier.
- 1) Les types des traves:
- a) Plancher de l'étage courant et terrasse:

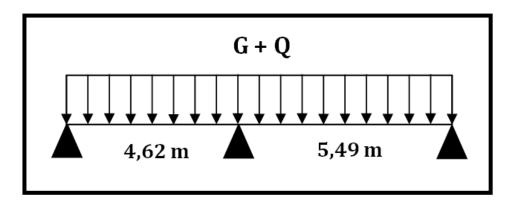


Figure III.1.1: schéma statique de la travée type 01

Etude des éléments non structuraux

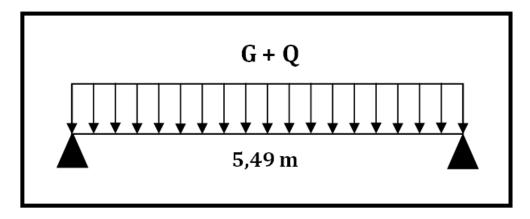


Figure III.1.2: schéma statique de la travée type 02

- Plancher de l'étage courant:
- **≻** Type 1 :

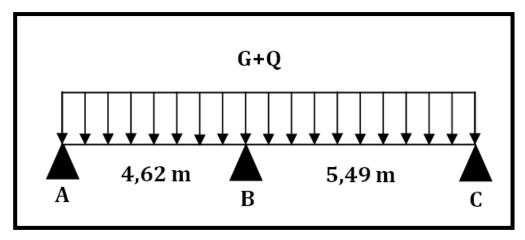


Figure III.1.3: schéma statique de la travée type 01

- ✓ $1,5 \le 10,64 \text{ KN}$; $1,5 \le 5 \text{KN} \rightarrow \text{Condition vérifiée}$
- ✓ le moment d'inertie est constant pour toutes les travées. → Condition vérifiée.
- ✓ $0.8 \le \frac{4.62}{5.49} = 0.84 \le 1.25$ \rightarrow Condition vérifiée.
- ✓ La fissuration est considérée comme peu nuisible. → Condition vérifiée.

Etude des éléments non structuraux

Conclusion:

✓ méthode forfaitaire est applicable.

Les surcharges permanentes et d'exploitation du plancher :

$$G = 5.32 \text{ KN/m}^2$$

$$Q = 1.5 \text{ KN/m}^2$$

Donc:

$$G' = 0.6 \times 5.32 = 3.192 \text{ KN/m}$$

$$Q' = 0.6 \times 1.5 = 0.9 \text{ KN/m}$$

Les surcharges permanentes et d'exploitation en ELU et ELS :

$$q_u = 1,35 \times G' + 1,5 Q' = 5,659 KN/m$$

$$q_s = G' + Q' = 4,092 \text{ KN/m}$$

III.1.1.1 Les moments fléchissant en travée:

$$\alpha = \frac{Q}{G+Q} = \frac{150}{150+532} = 0.22 \implies 0 < \alpha < \frac{2}{3} \implies \text{condition vérifier.}$$

Travée AB et BC:

$$M_t + \frac{M_g + M_d}{2} \cdot M_{01} \ge \text{Max} [(1 + 0.3 \times \alpha); 1.05] \cdot M_{01}$$

$$M_t \ge \left(\frac{1.2 + 0.3 \times \alpha}{2}\right) \cdot M_{01}$$

$$M_t + \frac{0.6 + 0.2}{2} . M_{01} \ge \text{Max} [(1 + 0.3 \times 0.22); 1.05]. M_{01}$$

$$M_t \ge \left(\frac{1.2 + 0.3 \times 0.22}{2}\right) . M_{01}$$

$$\begin{cases} M_t \ge 0,666.M_{01} \\ M_t \ge 0,633.M_{01} \end{cases}$$

Etude des éléments non structuraux

On prend: $M_t = 0.67.M_{01}$

III.1.1.2 Calcul des moments fléchissant en travée:

• ELU:

Travée 01:
$$M_{t1} = 0.67$$
. $M_{01} = 0.67$. $\frac{q \times l^2}{8} = 0.67 \times \frac{5.659 \times 4.62^2}{8} = 10.116$ KN.m

Travée 02:
$$M_{t2} = 0.67$$
. $M_{02} = 0.67$. $\frac{q \times l^2}{8} = 0.67 \times \frac{5.659 \times 5.49^2}{8} = 14.285$ KN.m

• ELS:

Travée 01:
$$M_{t1} = 0.67$$
. $M_{01} = 0.67$. $\frac{q \times l^2}{8} = \frac{4.092 \times 4.62^2}{8} = 7.315$ KN.m

Travée 02:
$$M_{t2} = 0.67$$
. $M_{02} = 0.67$. $\frac{4.092 \times 5.49^2}{8} = 10.329$ KN.m

III.1.1.3 Calcul des moments fléchissant en appuis :

• ELU:

Appuis A:
$$M_{a1} = 0.2$$
. $M_{01} = 0.2$. $\frac{q \times l^2}{8} = 0.2 \times \frac{5.659 \times 4.62^2}{8} = -3.019$ KN.m

Appuis B:
$$M_{a2} = 0.6$$
. $M_{02} = 0.2$. $\frac{q \times l^2}{8} = 0.6 \times \frac{5.659 \times 5.49^2}{8} = -12.79$ KN.m

Appuis C:
$$M_{a2} = 0.2$$
. $M_{02} = 0.2$. $\frac{q \times l^2}{8} = 0.2 \times \frac{5.659 \times 5.49^2}{8} = -4.26$ KN.m

• **ELS**:

Appuis A:
$$M_{a2} = 0.2$$
. $M_{02} = 0.2$. $\frac{q \times l^2}{8} = 0.2$. $\frac{4.092 \times 4.62^2}{8} = -2.183$ KN.m

Appuis B:
$$M_{a2} = 0.6$$
. $M_{02} = 0.6$. $\frac{q \times l^2}{8} = 0.6$. $\frac{4.092 \times 5.49^2}{8} = -9.25$ KN.m

Appuis C:
$$M_{a2} = 0.2$$
. $M_{02} = 0.2$. $\frac{q \times l^2}{8} = 0.2$. $\frac{4.092 \times 5.49^2}{8} = -3.08$ KN.m

III.1.1.4 Calcul des efforts tranchants:

$$T = \frac{q \times l^2}{2} \pm \frac{M_g + M_d}{2}$$

Etude des éléments non structuraux

- ELU:
- Travée AB:

$$T = \frac{q \times l^2}{2} + \frac{M_A - M_B}{2} = \frac{5,659 \times 4,62}{2} + \frac{3,019 - 12,79}{2} = 8,187 \text{ KN}$$

$$T = \frac{q \times l^2}{2} + \frac{M_A - M_B}{2} = \frac{5,659 \times 4,62}{2} + \frac{-3,019 + 12,79}{2} = 17,956 \text{ KN}$$

• Travée BC:

$$T = \frac{q \times l^2}{2} + \frac{M_B - M_C}{2} = \frac{5,659 \times 5,49}{2} + \frac{12,79 - 4,26}{2} = 19,799 \text{ KN}$$

$$T = \frac{q \times l^2}{2} + \frac{M_B - M_C}{2} = \frac{5,659 \times 5,49}{2} + \frac{-12,79 + 4,26}{2} = 11,269 \text{ KN}$$

• Type 02:

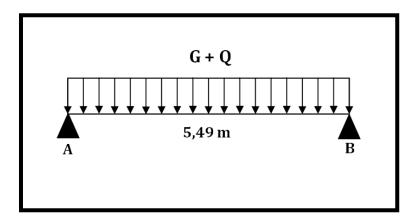


Figure III.1.4: schéma statique de la travée type 02

Etude des éléments non structuraux

En utilisant logiciel **RDM6**:

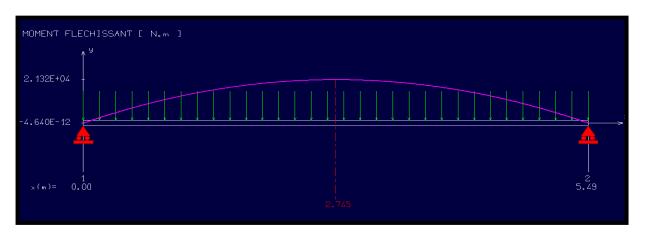


Figure III.1.5: Diagramme des moments fléchissants en ELU

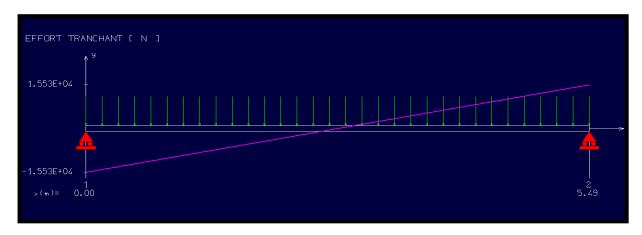


Figure III.1.6: Diagramme des efforts tranchants

III.1.1 Tableau récapitulatif des moments fléchissants et les efforts tranchants:

ELU		
Effort tranchant (KN)	Moment en travée (KN.M)	Moment en appuis (KN.M)
15,53	17,056	4,264

Etude des éléments non structuraux

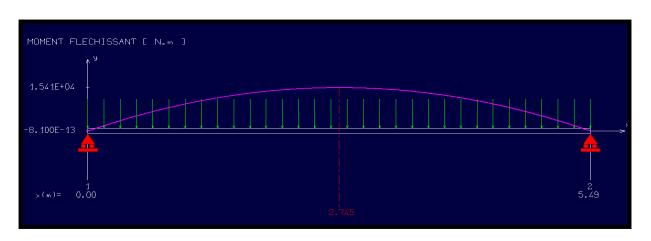


Figure III.1.7: Diagramme des moments fléchissants en ELS

III.1.2 Tableau récapitulatif des moments fléchissants:

ELS	
Moment en travée Moment en appuis	
(KN.M)	(KN.M)
12,33	3,082

III.1.3 Tableau récapitulatif des valeurs des efforts et les moments fléchissant maximums:

Moments en appuis [KN.M]		Moments en travées [KN.M]		Efforts tranchants [KN]
ELU	ELS	ELU	ELS	ELU
12,79	9,25	17,056	12,33	19,799

Etude des éléments non structuraux

III.1.2 Ferraillage des poutrelles:

• Les dimensions de poutrelle :

h = 24 cm; $h_0 = 4 \text{ cm}$; b = 60 cm; $b_0 = 12 \text{ cm}$

- ELU:
- En travée:

 $M_u = 17,056 \text{ KN.m}$

Moment qui équilibre la table de compression:

$$M_t = b. h_0. \sigma_b (d - h_0 / 2)$$

$$M_t = 0.60 \times 0.04 \times 14,20 ((0.9 \times 0.24) - 0.04/2))$$

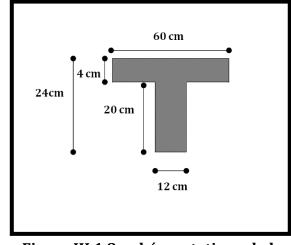


Figure III.1.8: schéma statique de la poutrelle

 M_t = 29,99 KN.m \rightarrow M_u < M_t \rightarrow l'axe neutre se trouve dans la table

La section de calcul sera une section rectangulaire de dimension (60 ×24)

- ❖ Vérification de l'existence de A':
- Calcul du moment réduit:

$$\sigma_b = 0.85. \frac{f_{c28}}{\gamma_b} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{b,b,d^2}} = \frac{17,056.10^3}{14.2,60.21.6^2} = 0,043$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\,S} = \frac{f_e}{\gamma_s} \, = \, \frac{400}{1{,}15} = 348 \, \text{MPa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,055

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.98$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{17,056.10^3}{348.0,98.21,6}$ = 2,32 cm²

III.1.2.1 Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06.f_{c28} = 2.1Mpa$$

A > 0,23 . b . d .
$$\frac{f_{tj}}{f_e}$$
 = 0,23 . 12 . 21,6 . $\frac{2,1}{400}$ = 1,56 cm²

 $A > 1,56 \text{ cm}^2$

• Choix d'armature :

$$A = 3T10 = 2.36cm^2$$

Etude des éléments non structuraux

- ELU:
- En appuis:

 $M_u = 12,79 \text{ KN.m}$

Vu que le moment en appuis est négatif et la partie tendue se trouve au niveau de la table on néglige les ailettes, donc la section de calcul sera une section rectangulaire de largeur b_0 =12cm et de hauteur h =24cm.

- ❖ Vérification de l'existence de A':
- ❖ Calcul du moment réduit:

$$\sigma_{\rm b} = 0.85. \frac{f_{\rm c28}}{\gamma_{\rm b}} = 0.85. \frac{25}{1.5} = 14,20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b}.\rm{b.d}^2} = \frac{12,79.10^3}{14,2.12.21,6^2} = 0,16$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_S = \frac{f_e}{\gamma_S} = \frac{400}{1,15} = 348 \text{ MPa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,22

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.91$$

$$A = \frac{M_u}{g_{s,B,d}} = \frac{12,79.10^3}{348,0.91,21.6} = 1,9 \text{ cm}^2$$

III.1.2.3 Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06.f_{c28} = 2.1Mpa$$

$$A > 0.23 \cdot b \cdot d \cdot \frac{f_{t_j}}{f_e} = 0.23 \cdot 12 \cdot 21.6 \cdot \frac{2.1}{400} = 1.56 \text{ cm}^2$$

 $A > 1,56 \text{ cm}^2$

• Choix d'armature :

$$A = 2T12 = 2,26 \text{ cm}^2$$

- ❖ Vérification à l'ELS :
- En travée:

Fissurations non préjudiciables Flexion simple Section Té FeE400

• Position de l'axe neutre :

Etude des éléments non structuraux

$$H = \frac{b \cdot h_0^2}{2} - 15. A. (d - h_0) = \frac{60.4^2}{2} - 15.2, 26. (21, 6 - 4) = -116, 64 < 0$$

→L'axe neutre se trouve dans la nervure.

• Y la solution de l'équation de deuxième degré :

$$b_0.y^2 + (2h_0(b-b_0) + 30(A_S + A_s').y - (30(A_S.d + A_s'.d) + h_0^2(b-b_0)) = 0$$

$$12. y^2 + (2.4 (60-12) + 30.2, 36.y - (30.2, 36.21, 6 + 4^2(60-12)) = 0$$

12.
$$y^2+70,8.y-1913,3=0$$

$$\Delta$$
=70,8²-4(12). (-1913,3) =96850,1

$$\sqrt{\Delta}$$
=311,2 cm

Donc:

Y=10,02 cm

• Le moment quadratique :

$$I = \frac{b_0}{3} \cdot y^3 + \frac{(b-b_0) \cdot h_0^3}{12} + (b-b_0) \cdot h_0 \cdot (y - \frac{h_0}{2})^2 + 15 \cdot A_S \cdot (d-y)^2$$

I= 21376,6 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{l} = \frac{12,33.10^6}{21376,6.10^4} = 0,058$$

$$\sigma_{bc}=k.\,y=0.058.100.2=5.78\,MPa<\overline{\sigma_{bc}}=0.6.\,f_{c28}=15MPa\rightarrow C.\,V$$

$$\sigma_{st} = 15.k(d-y) = 100,75 MPa < \overline{\sigma_{st}} = 400 MPa \rightarrow C.V$$

• En appuis:

Fissurations non préjudiciables Flexion simple Section rectangulair FeE400

Etude des éléments non structuraux

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

$$M_u = 12,79KN.m$$

$$M_s = 9,25 \text{ KN.m}$$

$$\gamma = \frac{12,79}{9,25} = 1,38$$

$$\alpha \le \frac{y-1}{2} + \frac{fc_{28}}{100} \implies \frac{1,38-1}{2} + \frac{25}{100} = 0,44$$

$$\alpha = 0.22 < 0.44 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.1.2.4 Vérification de la flèche:

Selon l'article B.6.5.1 CBA93; les conditions à vérifier pour ne pas avoir une vérification sur les flèches limite pour les poutres:

$$\frac{\frac{h}{l} \ge \frac{1}{16} \rightarrow \frac{24}{549} = 4,37 > \frac{1}{16} = 0,063}{\frac{h}{l} \ge \frac{M_t}{10 \times M_0}}$$

$$\frac{A_s}{b_0 \times d} \le \frac{4,2}{f_e}$$

$$L \le 8m \rightarrow$$

Donc: une seule condition n'est pas verifier donc la vérification de la flèche est nécessaire.

Soit:

J: la charge permanente avant la mise en place des cloisons.

Gcloison: la charge permanente après la mise en place des cloisons.

P: la charge totale (p=g+charge d'exploitation).

 $\mathbf{f_{gi}}$ et $\mathbf{f_{gv}}$: les fleche dues aux charges g.

Etude des éléments non structuraux

f_{ii}: la flèche due aux charge j.

fpi: la flèche due aux charge p.

a)
$$F_v = \frac{M.l^2}{10.E_v.I_{Fv}}$$

b)
$$F_i = \frac{M.l^2}{10.E_i.I_{Fi}}$$

Art : (Annexe D CBA 93) et f < \overline{f} = 0,5 + $\frac{1}{500}$ (L > 5m.Art B.6.5.3 CBA 93)

$$E_v = 3700.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 10818,9 \text{ MPa}$$

$$E_i = 11000. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$I_{\text{fv}} = \frac{1, 1.I_0}{1 + \lambda_{12} \times \mu}$$

$$I_{fi} = \frac{i_0}{1 + \lambda_i \times \mu}$$

Avec

$$V_1 = \frac{\sum A_i \cdot y_i + n \cdot A \cdot d}{\sum A_i + n \cdot A} = \frac{4.60.2 + 20.12.14 + 15.2,36.21,6}{60.4 + 20.12 + 15.2,36} = 8,93 \text{cm}$$

$$V_2 = h - V_1 = 15,06cm$$

$$I_0 = \frac{b.V_1^3}{3} - \frac{(b-b_0).(V_1 - h_0)^3}{3} + \frac{b_0.V_2^3}{3} + \text{n.A.}(d - V_1)^2$$

$$I_0 = \frac{60.8,93^3}{3} - \frac{(60-12).(8,93-4)^3}{3} + \frac{12.15,06^3}{3} + 15.2,36.(21,6-8,93)^2$$

I₀=31670,6 cm⁴

$$\lambda_{i} = \frac{0.05.f_{c28}}{(2+3.\frac{b_{0}}{b})} \cdot \rho$$

Avec:

$$\rho = \frac{A_s}{b_0 \times d} = \frac{2,36}{20.21,6} = 0,0055$$

Donc:

$$\lambda_{\rm i} = \frac{0.05.f_{c28}}{(2+3.\frac{b_0}{h}).\rho} = \frac{0.05.2.1}{(2+3.\frac{12}{60}).0.0055} = 7.4$$

$$\lambda = \lambda_v = \frac{2}{5} \lambda_i = 2,96$$

Etude des éléments non structuraux

1) Calcul fgv:

$$F_{gv} = \frac{M^{ser} g . l^2}{10.E_v . I_{Fgv}}$$

$$M^{\text{ser}}_{g} = 0.67.M_{0} = 0.67.0.6.G \frac{L^{2}}{8} = 0.67.(0.6.5.32) \frac{5.49^{2}}{8} = 805.7 \text{daN}$$

$$E_v = 3700.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 10818,9 \text{ MPa}$$

$$\rho_1$$
=100. $\rho = 0.546 \Rightarrow \beta_1 = 0.8897$

$$\sigma_{S}^{g} = ? \rightarrow A = \frac{M^{\text{ser}} g}{\sigma_{S}^{g}.\beta_{1.d}} \rightarrow \sigma_{S}^{g} = \frac{M^{\text{ser}} g}{A.\beta_{1.d}} = \frac{8057}{2,36.0,8897.21,6} = 177,6\text{MPa}$$

$$\mu_g = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s^g + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,0055.177,6+2,1} = 0,388$$

$$I_{\text{fgv}} = \frac{1,1.I_0}{1 + \lambda_v \times \mu_g} = \frac{1,1.31670,6}{1 + 2,96.0,388} = 16215,03 \text{ cm}^4$$

$$F_{gv} = \frac{M.l^2}{10.E_v.I_{Fgv}} = \frac{8057.5,49^2.10^4}{10.10818,9.16215,03} = 1,38cm$$

2) Calcul fij:

$$F_i = \frac{M.l^2}{10.E_i.I_{Fij}}$$

$$M^{\text{ser}}_{j}=0.67.M_{0}=0.67.0.6.(G-G_{\text{cloison}}).\frac{L^{2}}{8}=0.67.(0.6.(532-0.90))\frac{5.49^{2}}{8}=669.43\text{daN}$$

$$E_i = 11000. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$\rho_1 = 100. \ \rho = 0.546 \Rightarrow \beta_1 = 0.8897$$

$$\sigma_s^j = ? \rightarrow A = \frac{M^{\text{ser}}_j}{\sigma_s^j.\beta_1.d} \rightarrow \sigma_s^g = \frac{M^{\text{ser}}_j}{A.\beta_1.d} = \frac{6694.3}{2,36.0,8897.21,6} = 147,6\text{MPa}$$

$$\mu_j = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s{}^g + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,0055.147,6+2,1} = 0,31$$

$$I_{\text{fij}} = \frac{1,1.I_0}{1+\lambda_i \times \mu_i} = \frac{1,1.31670,6}{1+7,4.0,31} = 10511,55 \text{ cm}^4$$

$$F_{ij} = \frac{M.l^2}{10.E_i.I_{Fij}} = \frac{6694,3.5,49^2.10^4}{10.32164,2.10511,55} = 0,60cm$$

3) Calcul fpi:

$$F_{pi} = \frac{M^{ser}_{p} . l^2}{10.E_i . I_{Fi}}$$

$$M_{\text{ser}}^{2} = 0.67.M_{0} = 0.67.0,6.(G + Q).\frac{L^{2}}{8} = 0.67.(0.6.(532 + 150)).\frac{5.49^{2}}{8} = 1032.9 \text{daN}$$

$$E_i = 11000. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$\rho_1$$
=100. ρ = 0,546 $\rightarrow \beta_1$ = 0,8897

$$\sigma_s^p = ? \rightarrow A = \frac{M^{\text{ser}}_p}{\sigma_s^p.\beta_1.d} \rightarrow \sigma_s^p = \frac{M^{\text{ser}}_p}{A.\beta_1.d} = \frac{10329}{2.36.0,8897.21.6} = 227,7\text{MPa}$$

$$\mu_p = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s^g + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,0055.227,7+2,1} = 0,48$$

Etude des éléments non structuraux

$$I_{fpi} = \frac{1,1.I_0}{1+\lambda_i \times \mu_p} = \frac{1,1.31670,6}{1+7,4.0,48} = 7614,26cm^4$$

$$F_{pi} = \frac{M.I^2}{10.E_i.I_{Fpi}} = \frac{10329.5,49^2.10^4}{10.32164,2.7614,26} = 1,27cm$$

4) Calcul fgi:

$$F_{gi} = \frac{M.l^{2}}{10.E_{i}.I_{Fgi}}$$

$$I_{fgi} = \frac{1,1.I_{0}}{1+\lambda_{i} \times \mu_{g}} = \frac{1,1.31670,6}{1+7,4.0,388} = 8999,2 \text{ cm}^{4}$$

$$F_{gi} = \frac{M.l^{2}}{10.E_{i}.I_{Fgi}} = \frac{8057.5,49^{2}.10^{4}}{10.32164,2.8999,2} = 0,84 \text{ cm}$$

$$\Delta f_{t} = (f_{gv} - f_{ji}) + (f_{pi} - f_{gi})$$

$$\Delta f_{t} = (1,38-0,60) + (1,27-0,84)$$

• Flèche admissible :

$$l = 5,49m > 5m \rightarrow \Delta f_{t max} = 0,5 + \frac{l}{500} = 0,5 + \frac{549}{500} = 1,598 \text{ cm}$$

Conclusion:

 $\Delta f_t = 1,21$ cm

$$\Delta f_t = 1,21$$
cm $< \Delta f_{t max} = 0,5 + \frac{549}{500} = 1,598$ cm \rightarrow Condition vérifiée.

III.1.2.5 Vérification de l'effort tranchant:

Pour des fissurations peu préjudiciables on doit vérifier que:

$$\tau_u = \frac{T_u}{b_0.\,d} \le \overline{\tau_u}$$

Avec =
$$\overline{\tau_u}$$
 = min $\left(\frac{0,20.f_{c28}}{\gamma_h}; 5 MPa\right)$ = min (3,33; 5) = 3,33 MPa

Tu = 19,798KN ⇒τu =
$$\frac{19798}{120.216}$$
 = 0,76 MPa< 3,33 MPa → Condition verifier.

III.1.2.6 Calcul des armatures transversales

L'acier choisi pour les armatures transversales est de type rond lisse de nuance FeE235 (Fe = 235 MPa).

43

$$\emptyset_t \leq \min\left(\frac{h}{35}; \emptyset_l; \frac{b_0}{10}\right)$$

 $\emptyset_t \le \text{Min (0,68cm; 1cm; 1,2cm)=0,68cm}$

On adopte: $\emptyset_t = 6$ mm $\rightarrow 2$ T6 = 0,57cm²

Etude des éléments non structuraux

III.1.2.7 Calcul de l'espacement des armatures transversales:

$$\begin{cases} k=1 \text{ (flexion simple)} \\ \alpha = 90^{\circ} \end{cases}$$

$$\frac{A_{t}}{b_{0}.S_{t}} \ge \frac{\gamma_{s}.(\tau_{u} - 0.3.f_{t28}.K)}{0.9.f_{e}}$$

 $S_t \le min[0,9d; 40cm]$

$$\frac{A_t.f_e}{b.S_{2_t}} \ge 0,4Mpa$$

$$\frac{A_t}{b_0.S_t} \ge \frac{0.76 - 0.3.2.1.1}{0.9.\frac{235}{1.15}}$$

 $S_t \le min[19,44;40cm]$

$$S_{t} \le \frac{A_{t}. f_{e}}{b. 0.4}$$

$$S_t \ge 67,2cm$$

 $S_t \le 19,44 \text{ cm}$

 $S_t \leq 27,91$ cm

✓ **On adopte**: S_t =20cm

Etude des éléments non structuraux

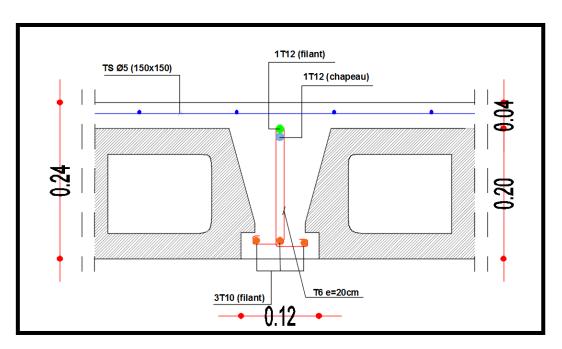


Figure III.1.9: Schéma du ferraillage de la poutrelle (étage courant)

Plancher terrasse:

On applique la même méthode de calcul des moments:

• Type 01:

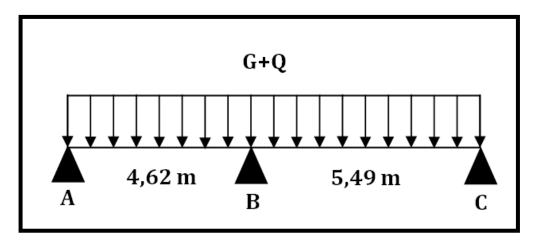


Figure III.1.10: schéma statique de travée type 01

Etude des éléments non structuraux

III.1.3 Détermination les sollicitations:

On a:

$$G = 7,68 \text{ KN/m}^2$$

$$Q = 1 \text{ KN/m}^2$$

Donc:

$$G' = 0.6 \times 7.68 = 4.608 \text{ KN/m}$$

$$Q' = 0.6 \times 1 = 0.6 \text{ KN/m}$$

• Les surcharges permanentes et d'exploitation en ELU et ELS :

$$q_u = 1.35 \times G' + 1.5 Q' = 7.121 KN/m$$

$$q_s = G' + Q' = 5,208 \text{ KN/m}$$

III.1.3.1 Les moments fléchissant en travée :

$$\alpha = \frac{Q}{G+Q} = \frac{100}{100+768} = 0.115 \rightarrow 0 < \alpha < \frac{2}{3} \rightarrow C.V$$

Travée AB et BC:

$$\begin{cases} M_t + \frac{M_g + M_d}{2} . M_{01} \ge \text{Max} \left[(1 + 0.3 \times \alpha); 1.05 \right] . M_{01} \\ M_t \ge \left(\frac{1.2 + 0.3 \times \alpha}{2} \right) . M_{01} \end{cases}$$

$$M_t + \frac{0.6 + 0.2}{2} \cdot M_{01} \ge \text{Max} [(1 + 0.3 \times 0.115); 1.05] \cdot M_{01}$$

$$M_t \ge \left(\frac{1.2 + 0.3 \times 0.115}{2}\right) \cdot M_{01}$$

$$\begin{cases} M_t \ge 0,65. M_{01} \\ M_t \ge 0,62. M_{01} \end{cases}$$

Etude des éléments non structuraux

• **On prend** : $M_t = 0.65.M_{01}$

III.1.3.2 Calcul des moments en travée:

& ELU:

travé01:
$$M_{t1} = 0.65$$
. $M_{01} = 0.65$. $\frac{q_u \times l^2}{8} = 0.65 \times \frac{7.121 \times 4.62^2}{8} = 12.35$ KN.m

travé02:
$$M_{t2} = 0.65$$
. $M_{02} = 0.65$. $\frac{q_u \times l^2}{8} = 0.65 \times \frac{7.121 \times 5.49^2}{8} = 17.44$ KN.m

& ELS:

travé01:
$$M_{t1} = 0.65$$
. $M_{01} = 0.65$. $\frac{q_s \times l^2}{8} = 0.65$. $\frac{5.208 \times 4.62^2}{8} = 9.03$ KN.m

travé02:
$$M_{t2} = 0,65$$
. $M_{02} = 0,65$. $\frac{q_s \times l^2}{8} = 0,65$. $\frac{5,208 \times 5,49^2}{8} = 12,75$ KN.m

III.1.3.3 Calcul des moments en appuis :

& ELU:

Appuis A:
$$M_{a1} = 0.2$$
. $M_{01} = 0.2$. $\frac{q \times l^2}{8} = 0.2 \times \frac{7.121 \times 4.62^2}{8} = -3.8$ KN.m

Appuis B:
$$M_{a2} = 0.6$$
. $M_{02} = 0.6$. $\frac{q \times l^2}{8} = 0.6 \times \frac{7.121 \times 5.49^2}{8} = -16.1$ KN.m

Appuis C:
$$M_{a2} = 0.2$$
. $M_{02} = 0.2$. $\frac{q \times l^2}{8} = 0.2 \times \frac{7.121 \times 5.49^2}{8} = -5.37$ KN.m

& ELS:

Appuis A:
$$M_{a2} = 0.2$$
. $M_{02} = 0.2$. $\frac{q \times l^2}{8} = 0.2$. $\frac{5.208 \times 4.62^2}{8} = -2.8$ KN.m

Appuis B:
$$M_{a2} = 0.6$$
. $M_{02} = 0.6$. $\frac{q \times l^2}{8} = 0.6$. $\frac{5.208 \times 5.49^2}{8} = -11.8$ KN.m

Appuis C:
$$M_{a2} = 0.2$$
. $M_{02} = 0.2$. $\frac{q \times l^2}{8} = 0.2$. $\frac{5,208 \times 5,49^2}{8} = -3.9$ KN.m

III.1.3.4 Calcul des efforts tranchants :

$$T = \frac{q \times l^2}{2} \pm \frac{M_g + M_d}{2}$$

Etude des éléments non structuraux

• ELU:

Travée AB:

$$T = \frac{q \times l^2}{2} + \frac{M_A - M_B}{2} = \frac{7,121 \times 4,62}{2} + \frac{3,8 - 16,1}{2} = 10,3 \text{KN}$$

$$T = \frac{q \times l^2}{2} + \frac{M_A - M_B}{2} = \frac{7,121 \times 4,62}{2} + \frac{-3,8+16,1}{2} = 22,6KN$$

Travée BC:

$$T = \frac{q \times l^2}{2} + \frac{M_B - M_C}{2} = \frac{7,121 \times 5,49}{2} + \frac{16,1-3,9}{2} = 25,65KN$$

$$T = \frac{q \times 1^2}{2} + \frac{M_B - M_C}{2} = \frac{7,121 \times 5,49}{2} + \frac{-16,1+3,9}{2} = 13,44 \text{ KN}$$

Type 02:

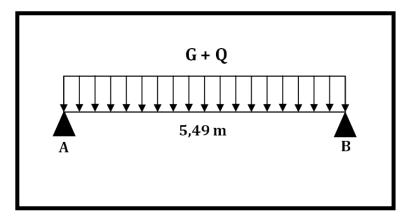


Figure III.1.11: schéma statique de travée type

Etude des éléments non structuraux

En utilisant logiciel **RDM6**:

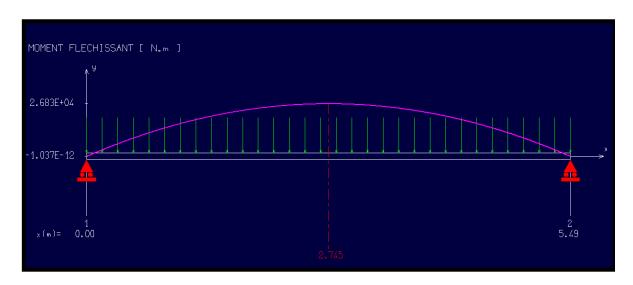


Figure III.1.12 Diagramme des moments fléchissants en ELU

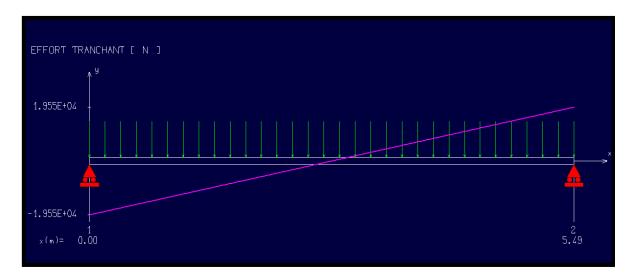


Figure III.1.13 Diagramme des efforts tranchants en ELU

Etude des éléments non structuraux

III.1.4 Tableau récapitulatif des moments fléchissants et les efforts tranchants :

ELU						
Effort tranchant (KN)	Moment en travée (KN.M)	Moment en appuis (KN.M)				
19,55	21,464	5,366				

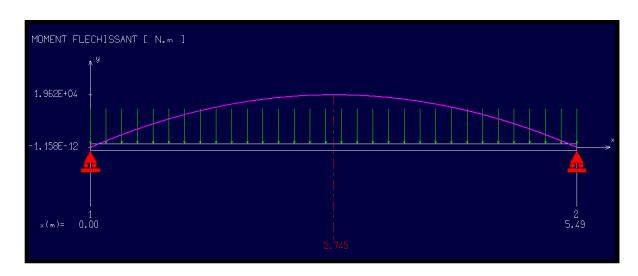


Figure III.1.14 Diagramme des moments fléchissants en ELS

III.1.5 Tableau récapitulatif des moments fléchissants:

ELS				
Moment en travée (KN.M)	Moment en appuis (KN.M)			
15,696	3,924			

Etude des éléments non structuraux

III.1.6 Tableau récapitulatif des valeurs des efforts et les moments fléchissants maximums :

Moments en appuis [KN.M]		Moments en travées [KN.M]		Efforts tranchants [KN]
ELU	ELS	ELU	ELS	ELU
16,1	11,8	21,464	15,696	29,65

III.1.4 Ferraillage des poutrelles:

Les dimensions de la poutrelle :

h = 24 cm; $h_0 = 4 \text{ cm}$; b = 60 cm; $b_0 = 12 \text{ cm}$

- ELU:
- En travée:

 $M_u = 21,464 \text{ KN.m}$

Moment qui équilibre la table de compression:

$$M_t = b. h_0. \sigma_b (d - h_0 / 2)$$

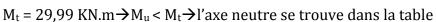

$$M_t = 0.60 \times 0.04 \times 14,20 ((0.9 \times 0.24) - 0.04/2))$$

Figure III.1.15: schéma statique de la poutrelle

60 cm

12 cm

4 cm

La section de calcul sera une section rectangulaire de dimension (60 ×24)

Vérification de l'existence de A':

III.1.4.1 Calcul du moment réduit:

$$\sigma_b = 0.85. \frac{f_{c28}}{\gamma_b} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_b.b.d^2} = \frac{21,464.10^3}{14,2.60.21,6^2} = 0,054$$

On a: U_L = 0,392 (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{S} = \frac{f_{e}}{\gamma_{s}} = \frac{400}{1,15} = 348 \text{ MPa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,069

$$\beta = (1-0.4\alpha) \rightarrow \beta = 0.97$$

Etude des éléments non structuraux

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{21,464.10^3}{348.0,97.21,6}$ = 2,94 cm²

III.1.4.2 Condition de non fragilité:

$$f_{ti} = 0.60 + 0.06 f_{c28} = 2.1$$

A > 0,23 . b . d .
$$\frac{f_{tj}}{f_e}$$
 = 0,23 . 60 . 21,6 . $\frac{2,1}{400}$ = 1,56 cm²

 $A > 1,56 \text{cm}^2$

• Choix d'armature :

$$A = 3T12 = 3,39cm^2$$

- ELU:
- En appuis:

$$M_u = 16,10 \text{ KN.m}$$

Vu que le moment en appuis est négatif et la partie tendue se trouve au niveau de la table on néglige les ailettes, donc la section de calcul sera une section rectangulaire de largeur b_0 =12cm et de hauteur h =24cm.

Vérification de l'existence de A':

Calcul du moment réduit:

$$\sigma_{\rm b} = 0.85. \frac{f_{\rm c28}}{\gamma_{\rm b}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b}.\rm{b.d}^2} = \frac{16,10.10^3}{14,2.12.21,6^2} = 0,20$$

On a: U_L=0,392 (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{S} = \frac{f_{e}}{\gamma_{s}} = \frac{400}{1,15} = 348 \text{ MPa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,28

$$\beta = (1-0.4\alpha) \rightarrow \beta = 0.89$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{16,1.10^3}{348.0,89.21,6}$ = 2,41cm²

III.1.4.3 Condition de non fragilité:

$$f_{tj} = 0.60 + 0.06 f_{c28} = 2.1$$

A > 0,23 . b . d .
$$\frac{f_{tj}}{f_e}$$
 = 0,23 . 60 . 21,6 . $\frac{2,1}{400}$ = 1,56cm²

Etude des éléments non structuraux

 $A > 1.56 \text{cm}^2$

• Choix d'armature :

 $A = 1T12 + 1T14 = 2,67cm^2$

- Vérification à l'ELS :
- En travée:

Fissurations non préjudiciables Flexion simple Section Té FeE400

• Position de l'axe neutre :

$$H = \frac{b \cdot h_0^2}{2} - 15. A. (d - h_0) = \frac{60.4^2}{2} - 15.3,14. (21,6 - 4) = -348,96 < 0$$

→ L'axe neutre se trouve dans la nervure.

• Y la solution de l'équation de deuxième degré :

$$b_0.y^2 + (2h_0(b-b_0) + 30(A_S + A_s').y - (30(A_S.d + A_s'.d) + h_0^2(b-b_0)) = 0$$

$$12. y^2 + (2.4 (60-12) + 30.3,39.y - (30.3,39.21,6+4^2(60-12))$$

$$\Delta$$
=101,72-4(12).(-2580,72) =134217,45

$$\sqrt{\Delta}$$
=366,4cm

Donc:

Y=11,027cm

• Le moment quadratique :

$$I = \frac{b_0}{3} \cdot y^3 + \frac{(b-b_0) \cdot h_0^3}{12} + (b-b_0) \cdot h_0 \cdot (y - \frac{h_0}{2})^2 + 15 \cdot A_S \cdot (d-y)^2$$

Etude des éléments non structuraux

I=26949,2cm4

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{15,696.10^6}{26949.2.10^4} = 0,058$$

$$\sigma_{bc}=k.\,y=0,\!058.110,\!27=6,\!42\text{MPa}<\overline{\sigma_{bc}}=0,\!6.\,f_{c28}=15\text{MPa}\rightarrow\text{Condition verifier}$$

$$\sigma_{st} = 15. \, \text{k(d-y)} = 91,99 \text{MPa} < \overline{\sigma_{st}} = 400 \, \text{MPa}$$

$$\sigma_{st} = 91,99 \text{MPa} < \overline{\sigma_{st}} = 400 \text{MPa} \rightarrow \text{Condition verifier}$$

• En appuis:

Fissurations non préjudiciables Flexion simple Section rectangulair FeE400

Si
$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$$
 avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

$$M_u = 16,1 KN.m$$

$$M_s = 11.8 \text{ KN.m}$$

$$\gamma = \frac{16,1}{11,8} = 1,36$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1,36 - 1}{2} + \frac{25}{100} = 0,43$$

$$\alpha = 0.28 < 0.30 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6.f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.1.4.4 Vérification de la flèche:

Selon l'article **B.6.5.1 CBA93**; les conditions à vérifier pour ne pas avoir une vérification sur les flèches limite pour les poutres:

Etude des éléments non structuraux

$$\begin{cases} \frac{h}{l} \ge \frac{1}{16} \to \frac{24}{549} = 4,37 > \frac{1}{16} = 0,063 \\ \frac{h}{l} \ge \frac{M_t}{10 \times M_0} \\ \frac{A_s}{b_0 \times d} \le \frac{4,2}{f_e} \\ L \le 8m \end{cases}$$

Donc: une seule condition n'est pas vérifiée donc la vérification de la flèche est nécessaire.

Soit:

J: la charge permanente avant la mise en place des cloisons.

Gcloison: la charge permanente après la mise en place des cloisons.

P: la charge totale (p=g+charge d'exploitation).

 f_{gi} et f_{gv} : les fleche dues aux charges g.

 \mathbf{f}_{ji} : la flèche due aux charge j.

f_{pi} : la flèche due aux charge p

a)
$$F_v = \frac{M.l^2}{10.E_v.I_{Fv}}$$

b)
$$F_i = \frac{M.l^2}{10.E_i.I_{Fi}}$$

Art : (Annexe D CBA 93) et f < \overline{f} = 0,5 + $\frac{1}{500}$ (L > 5m.Art B.6.5.3 CBA 93)

$$E_v = 3700.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 10818,9 \text{ MPa}$$

$$E_i = 11000. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$I_{\text{fv}} = \frac{1, 1.I_0}{1 + \lambda_v \times \mu}$$

$$I_{fi} = \frac{i_0}{1 + \lambda_i \times \mu}$$

Etude des éléments non structuraux

Avec:

$$V_1 = \frac{\sum A_i.y_i + n.A.d}{\sum A_i + n.A} = \frac{4.60.2 + 20.12.14 + 15.3,39.21,6}{60.4 + 20.12 + 15.3,39} = 9,30cm$$

$$V_2 = h - V_1 = 14.7 cm$$

$$I_0 = + \text{ n.A.}(d - V_1)^2$$

$$I_0 = \frac{60.9,3^3}{3} - \frac{(60-12).(9,3-4)^3}{3} + \frac{12.14,7^3}{3} + 15.3,39.(21,6-9,30)^2$$

$$\lambda_{i} = \frac{0.05.f_{c28}}{(2+3.\frac{b_{0}}{h}).\rho}$$

Avec:

$$\rho = \frac{A_s}{b_0 \times d} = \frac{3,39}{20.21,6} = 0,008$$

Donc:

$$\lambda_{i} = \frac{0.05.f_{t28}}{(2+3.\frac{b_0}{k}).\rho} = \frac{0.05.2.1}{(2+3.\frac{12}{c_0}).0.008} = 5.05$$

$$\lambda = \lambda_{\nu} = \frac{2}{5} \lambda_i = 2.02$$

1) Calcul fgv:

$$F_{gv} = \frac{M^{ser} g . l^2}{10.E_v . I_{Fgv}}$$

$$M_{\text{ser}_g} = 0.65.M_0 = 0.65.(0.6.7.68) \frac{5.49^2}{9} = 11.284 \text{ KN.m}$$

$$E_v = 3700. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 10818.9 \text{ MPa}$$

$$\rho_1$$
=100. $\rho = 0.785 \rightarrow \text{tableau}: \frac{\beta_1 - 0.872}{0.873 - 0.872} = \frac{0.798 - 0.785}{0.798 - 0.782} \rightarrow \beta_1 = 0.873$

$$\sigma_s^g = ? \rightarrow A = \frac{M^{\text{ser}}_g}{\sigma_s^g.\beta_1.d} \rightarrow \sigma_s^g = \frac{M^{\text{ser}}_g}{A.\beta_1.d} = \frac{11284.4}{3,39.0,873.21,6} = 176,5 \text{ MPa}$$

$$\mu_g = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s^g + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,008.176,5+2,1} = 0,53$$

$$I_{\text{fgv}} = \frac{1,1.I_0}{1+\lambda_v \times \mu_a} = \frac{1,1.34104,3}{1+2,02.0,53} = 18193,5 \text{ cm}^4$$

$$F_{gv} = \frac{\text{M.l}^2}{10.\text{E}_v.\text{I}_{Fgv}} = \frac{10463.5,49^2.10^4}{10.10818,9.18193,5} = 1,60 \text{ cm}$$

2) Calcul fij:

$$F_i = \frac{M.l^2}{10.E_i.I_{Fij}}$$

$$M^{\text{ser}}_{j}$$
=0,65. M_{0} = 0,65. $(0,6.(7,68-0.9))\frac{5,49^{2}}{8}$ =9,96 KN.m

Etude des éléments non structuraux

$$\begin{split} &E_{i} = 11000. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 32164,2 \text{ MPa} \\ &\rho_{1} = 100. \, \rho = 0,785 \Rightarrow \text{tableau:} \frac{\beta_{1} - 0,872}{0,873 - 0.872} = \frac{0,798 - 0,785}{0,798 - 0,782} \Rightarrow \beta_{1} = 0,873 \\ &\sigma_{s}^{\ \ j} = ? \Rightarrow A = \frac{M^{\text{ser}}_{\ \ j}}{\sigma_{s}^{\ \ j}.\beta_{1}.d} \Rightarrow \sigma_{s}^{\ \ g} = \frac{M^{\text{ser}}_{\ \ j}}{A.\beta_{1}.d} = \frac{9960}{3,39.0,873.21,6} = 155,8MPa \\ &\mu_{j} = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_{s}^{\ \ g} + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,008.155,8 + 2,1} = 0,48 \\ &I_{fij} = \frac{1,1.I_{0}}{1 + \lambda_{i} \times \mu_{j}} = \frac{1,1.34104,3}{1 + 5,05.0,48} = 10956,4 \text{ cm}^{4} \\ &F_{ij} = \frac{M.l^{2}}{10.E_{i}.I_{Fij}} = \frac{9361,1.5,49^{2}.10^{4}}{10.32164,2.10956,4} = 0,85\text{ cm} \end{split}$$

3) Calcul fpi:

$$F_{pi} = \frac{M^{ser}_{p} . l^2}{10.E_i . I_{Fi}}$$

$$M_{ser}^{p} = 0.65.M_{0} = 0.65.(0.6.(7.68+100)) \frac{5.49^{2}}{8} = 12.754 \text{ KN.m}$$

$$E_{i} = 11000.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 32164.2 \text{ MPa}$$

$$\rho_{1} = 100.\rho = 0.785 \Rightarrow \text{tableau:} \frac{\beta_{1} - 0.872}{0.873 - 0.872} = \frac{0.798 - 0.785}{0.798 - 0.782} \Rightarrow \beta_{1} = 0.873$$

$$\sigma_{s}^{p} = ? \Rightarrow A = \frac{M_{ser}^{ser}}{\sigma_{s}^{p}.\beta_{1}.d} \Rightarrow \sigma_{s}^{p} = \frac{M_{ser}^{ser}}{A.\beta_{1}.d} = \frac{12754}{3.39.0.873.21.6} = 199.5 \text{MPa}$$

$$\mu_{p} = 1 - \frac{1.75.f_{t28}}{4.\rho.\sigma_{s}^{g} + f_{t28}} = 1 - \frac{1.75.2.1}{4.0.008.199.5 + 2.1} = 0.57$$

$$I_{fpi} = \frac{1.1.I_{0}}{1 + \lambda_{i} \times \mu_{p}} = \frac{1.1.34104.3}{1 + 5.05.0.57} = 9672.5 \text{ cm}^{4}$$

$$F_{pi} = \frac{M.l^{2}}{10.E_{i}.I_{Epi}} = \frac{12754.5.49^{2}.10^{4}}{10.32164.2.9672.5} = 1.24 \text{ cm}$$

4) Calcul fgi:

$$\begin{split} F_{gi} = & \frac{\text{M.I}^2}{10.\text{E}_i.\text{I}_{Fgi}} \\ I_{fgi} = & \frac{1,1.I_0}{1+\lambda_i \times \mu_g} = \frac{1,1.34104,3}{1+5,05.0,53} = 10203,9 \text{ cm}^4 \\ F_{gi} = & \frac{\text{M.I}^2}{10.\text{E}_i.\text{I}_{Fgi}} = \frac{11284,4.5,49^2.10^4}{10.32164,2.10203,9} = 1,04 \text{ cm} \end{split}$$

$$\Delta f_t = (f_{gv} - f_{ji}) + (f_{pi} - f_{gi})$$

$$\Delta f_t = (1,60-0,85) + (1,24-1,04)$$

$$\Delta f_t = 1,02 \text{cm}$$

Flèche admissible:

•
$$l = 5,49m > 5m \rightarrow \Delta f_{t max} = 0,5 + \frac{l}{500} = 0,5 + \frac{549}{500} = 1,598$$
cm

Etude des éléments non structuraux

Conclusion:

 $\Delta f_t = 0.95$ cm< $\Delta f_{t max} = 0.5 + \frac{549}{500} = 1.598$ cm \rightarrow condition verifier.

III.1.4.5 Vérification de l'effort tranchant:

Pour des fissurations non préjudiciables on doit vérifier que:

$$\tau_u = \frac{T_u}{b_0. d} \le \overline{\tau_u}$$

Avec =
$$\overline{\tau_u}$$
 = min $\left(\frac{0,2.f_{c28}}{\gamma_b}; 5 MPa\right)$ =min (3,33;5) = 3,33 MPa

Tu = 29,65 KN
$$\Rightarrow \tau u = \frac{29650}{120,216} = 1,14$$
 MPa< 3,33 MPa \Rightarrow Condition vérifiée

III.1.4.6 Calcul des armatures transversales:

L'acier choisi pour les armatures transversales est de type rond lisse de nuance FeE235 (fe = 235 MPa).

$$\emptyset_t \le \min\left(\frac{h}{35}; \emptyset_l; \frac{b_0}{10}\right)$$

$$\emptyset_t \le Min (0.68cm; 12cm; 1,2cm) = 0,68cm$$

On adopte:
$$\emptyset_t = 6$$
mm $\rightarrow 2$ T6 = 0,57cm²

III.1.4.7 Calcul de l'espacement des armatures transversales:

$$\begin{cases} k=1 \text{ (flexion simple)} \\ \alpha = 90^{\circ} \end{cases}$$

$$\begin{cases} \frac{A_{t}}{b_{0}.S_{t}} \ge \frac{\gamma_{s}.(\tau_{u}-0,3.f_{t28}.K)}{0,9.f_{e}} \\ S_{t} \le \min[0,9d;40cm] \\ \frac{A_{t}.f_{e}}{b.S_{t}} \ge 0,4Mpa \end{cases}$$

$$\begin{cases} \frac{A_{t}}{b_{0}.S_{t}} \ge \frac{1,14-0,3.2,1.1}{0,9.\frac{235}{1,15}} \\ S_{t} \le min[19,44;40cm] \\ S_{t} \le \frac{A_{t}.f_{e}}{b.0,4} \end{cases}$$

Etude des éléments non structuraux

$$S_t \ge 17,13cm$$

$$S_t \le 19,44 cm$$

$$S_t \le 27,91cm$$

✓ **On adopte**: S_t =20cm

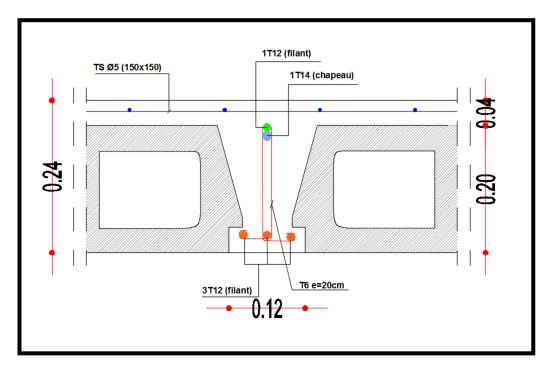


Figure III.1.16 schéma de ferraillage de la poutrelle (terrasse)

III.1.5 Ferraillage de la dalle de compression:

D'âpres B.A.E.l 91:

Si:
$$L_n \le 50 \text{ cm} \rightarrow A_1 = \frac{200}{\text{fe}} (L_n \text{ en cm})$$

Si:
$$50 \le L_n \le 80 \text{ cm} \rightarrow A_1 = 4.\frac{Ln}{fe} \text{ (}L_n \text{ en cm)}$$

Fe = 500 Mpa

L_n=60cm

L_n: l'entraxe des nervures.

$$A_1 = 4.\frac{Ln}{fe} = 4.\frac{60}{500} = 0,48 \text{ cm}^2/\text{ml}$$

Choix: $6T5 = 1,18 \text{ cm}^2/\text{ml}$

Etude des éléments non structuraux

III.1.5.1 Armature parallèle aux nervures:

$$A_1 = \frac{A_1}{2} = 0.24 \text{cm}^2/\text{ml}$$

Choix: $6T5 = 1,18 \text{ cm}^2/\text{ml}$

On adoptera un treillis soudé Ø5 (150x150) cm²

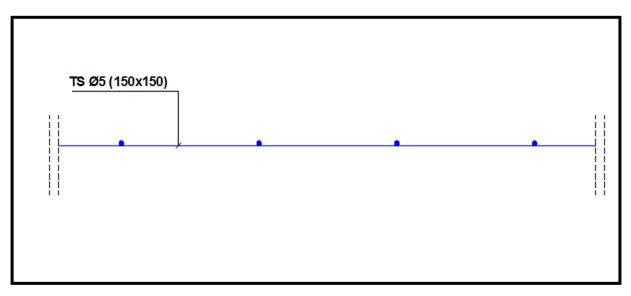


Figure III.1.17: schéma ferraillage de la dalle de compression

Etude des éléments non structuraux

III.2 Plancher en dalle pleine:

Le plancher en dalle pleine est constitué d'une épaisseur de béton armé de 15 à 20 cm en moyenne, coulée sur un coffrage plat. Très utilisé dans l'habitat collectif, il comporte des armatures d'acier variant en nombre et en diamètre selon la portée et les charges à supporter.

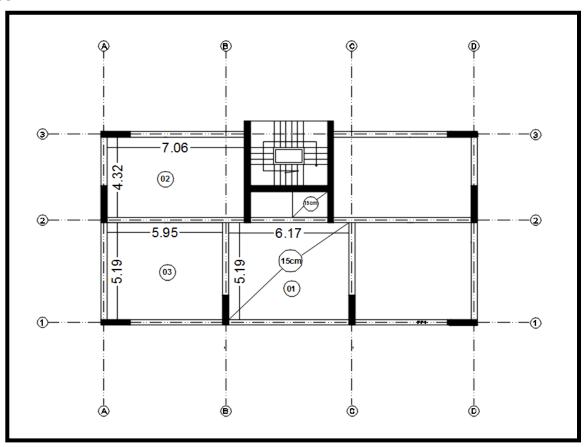


Figure III.2.1: vue en plan des panneaux

1) Le panneau le plus défavorable panneau 03 :

$$L_x=5,49-0,30=5,19m$$

$$L_y = 6,47-0,30 = 6,17m$$

$$0,4 \le \rho \le 1$$

$$0.4 \le \frac{5.19}{6.17} \le 1$$

$$0,4 \le 0,84 \le 1$$

La dalle porte suivant deux sens.

Etude des éléments non structuraux

• ELU:

$$q_u = 1,35.g + 1,5.q$$

• ELS:

$$q_s = Q + G$$

On a:

Panneaux 02:

$$G=5,87 \text{ KN/m}^2$$

$$Q=5 \text{ KN/m}^2$$

Panneaux 01 et 03:

$$G=5,87 \text{ KN/m}^2$$

$$Q=2,5 \text{ KN/m}^2$$

Donc:

Panneaux 01 et 03:

$$q_{u'} = (1,35.Q+1,5.G).1 = (1,35.5,87+1,5.2,5).1=11,8 \text{ KN/ml}$$

$$q_s = (Q+G).1 = (5.87+2.5).1 = 8.4 \text{ KN/ml}$$

Panneaux 02:

$$q_{u'} = (1,35.Q+1,5.G).1 = (1,35.5,87+1,5.5).1=15,43 \text{ KN/ml}$$

$$q_s = (Q+G).1 = (5.87+5).1 = 10.87 \text{ KN/ml}$$

Etude des éléments non structuraux

III.2.1 Exemple de calcul:

a) Le panneau calculé:

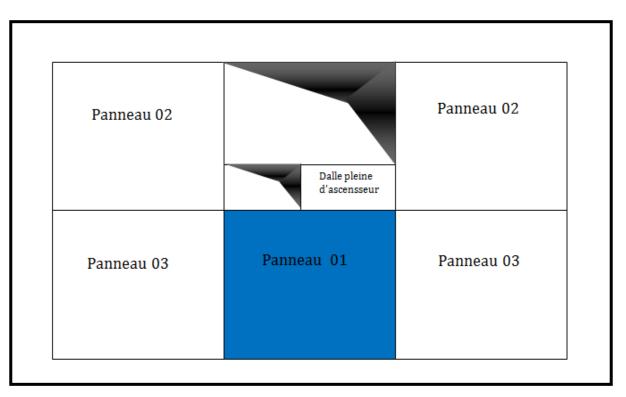


Figure III.2.2: schéma des panneaux

b) Le type de panneaux calculé:

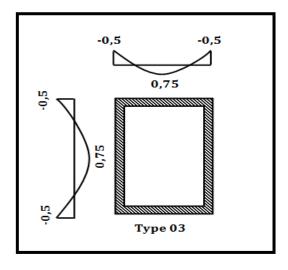


Figure III.2.3: schéma statique du panneau

Etude des éléments non structuraux

On a:

$$L_y = 6,47-0,30 = 6,17m$$

La dalle porte suivant deux sens:

$$0,4 \le \rho \le 1$$

$$0.4 \le \frac{5.19}{6.17} \le 1$$

$$0,4 \le 0,84 \le 1$$

III.2.1.1 Calcul des moments:

& ELU:

$$M^u_x \,=\, \mu^u_x.\, q_u.\, L^2_x$$

$$M_y^u = \mu_y^u . M_x^u$$

III.2.1 Tableau recupilatif des valeurs de $\mu_{Y},\,\mu_{X}\,en$ ELU et ELS :

EI	LU	ELS		
μ_{X}	μγ	μχ	μγ	
0,052	0,667	0,0589	0,764	

$$M_x^u \, = \, \, \mu_x^u. \, q_u. \, L_x^2 \, \, \text{=0,0520.} \, \, 11,\! 8. \, \, \text{5,19}^2 \text{=16,53 KN.ml}$$

$$M_y^u = \ \mu_y^u. \, M_x^u \text{=0,667.16,53=11,02 KN.ml}$$

& ELS:

$$M_x^S = \ \mu_x^S. \, q_u. \, L_x^2 \text{=0,0589. 8,4. 5,19} \text{=-13,33 KN.ml}$$

$$M_y^S = \mu_y^S. M_x^S$$
 = 0,764.13,33 = 10,18 KN.ml

Etude des éléments non structuraux

& ELU:

• Moment en travée :

 $M_{tx} = 0.75.M_x = 0.75. 16.53 = 12.40 \text{ KN.ml}$ $M_{ty} = 0.75.M_y = 0.75. 11.02 = 8.27 \text{ KN.ml}$

• Moment en appuis intermédiaire :

$$M_{aix}$$
= 0,5. M_x =0,5. 16,53= 8,27 KN.ml
 M_{aiy} = 0,5. M_y =0,5. 11,02=5,51 KN.ml

ELS:

• Moment en travée :

 $M_{tx} = 0.75.M_x = 0.75. 13.33 = 9.99 \text{ KN.ml}$ $M_{ty} = 0.75.M_y = 0.75. 10.18 = 7.64 \text{ KN.ml}$

• Moment en appuis intermédiaire :

 M_{aix} = 0,5. M_x =0,5. 13,33= 6,665 KN.ml M_{aiy} = 0,5. M_y =0,5. 10,18= 5,09 KN.ml

Etude des éléments non structuraux

III.2.2 Tabelau recapulatif des moments flechissants et des efforts tranchants

						ELu ν = 0					ELS v	= 0.2			
					μ	u	М	u		ļ	ıs	M	S		
	lx	ly	ρ	qu	μх	μу	Mux	Muy	qs	μх	μу	Msx	Msy	Tx	Ту
P1	5,19	6,18	0,84	11,800	0,052	0,667	16,53	11,02	8,40	0,0589	0,764	13,33	10,18	21,6	20,414
P2	4,32	7,06	0,61	15,430	0,0798	0,317	22,98	7,28	10,87	0,0849	0,487	17,22	8,38	23,47	22,22
Р3	5,19	5,95	0,87	11,800	0,0488	0,721	15,51	11,18	8,40	0,0559	0,804	12,65	10,17	21,6	20,414

Etude des éléments non structuraux

• Mode d'encastrement :

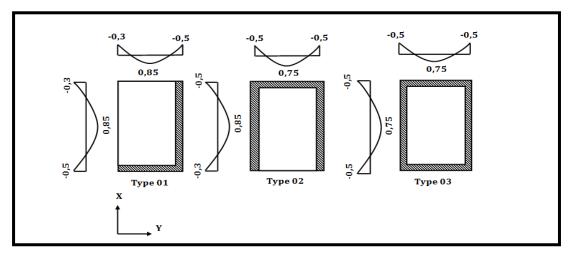


Figure III.2.4: Schéma statique des panneaux

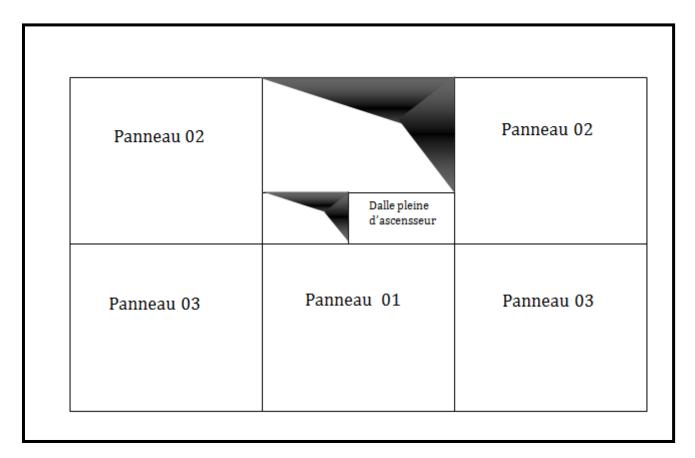


Figure III.2.5: Les différents panneaux de dalle (panneau continue et panneau de rive)

Etude des éléments non structuraux

III.2.3 Tableau récapitulatif des moments fléchissant en ELU:

	M _u (K	(N.m)	M _t (KN.ml)		M _{ar} (KN.ml)		M _{ai} (KN.ml)	
	x-x	у-у	x-x	у-у	x-x	у-у	х-х	у-у
P01	16,53	11,02	12,40	8,27	-	-	8,27	5,51
P02	22,98	7,28	17,24	6,19	M _{ai} = 11,49	2,18	11,49	3,64
P03	15,51	11,18	11,63	9,50	M _{ai} = 7,76	3,35	7,76	5,59

III.2.4 Tableau récapitulatif des moments fléchissants en ELS :

	M _u (K	M _t (KN.ml) M _{ar}		M _{ar} (I	KN.ml)	M _{ai} (KN.ml)		
	x-x	у-у	x-x	у-у	x-x	у-у	х-х	у-у
P01	13,33	10,18	9,99	7,64	-	-	6,7	5,09
P02	17,22	8,39	12,92	7,13	M _{ai} = 8,61	2,52	8,61	4,195
P03	12,65	10,17	9,50	8,64	6,33	3,05	6,33	5,09

Etude des éléments non structuraux

III.2.5 Tableau récapitulatif des moments fléchissants maximum ELU:

M _t (K	N.ml)	M _a (KN.ml)		
X-X	x-x y-y		у-у	
17,24	9,50	11,49	5,59	

III.2.6 Tableau récapitulatif des moments fléchissants maximum ELS :

M _t (K)	N.ml)	M _a (KN.ml)		
x-x y-y		x-x	у-у	
12,92	8,64	8,61	5,09	

III.2.1.2 Calcul de l'enrobage:

D'après le B.A.E.L 91:

$$\emptyset \le \frac{h_d}{10} = \frac{15}{10} = 1,5$$
 cm on prendra $\rightarrow \emptyset = 10$ mm

$$C_x = a + \frac{\phi}{2} = 10 + 5 = 15$$
mm

$$C_y = a + \emptyset + \frac{\emptyset}{2} = 25 \text{mm}$$

$$d_x = h_d - c_x = 13,5$$
cm

$$d_y = h_d - c_y = 12,5$$
cm

III.2.1.3 Ferraillage de la dalle pleine:

- ❖ ELU:
- Sens x-x:
- En travée:

 $M_{u} = 17,24 \text{KN.ml}$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\sigma_{b} = 0.85. \frac{f_{c28}}{\gamma_{b}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d_x}^2} = \frac{17,24.10^3}{14,2.100.13,5^2} = 0,067$$

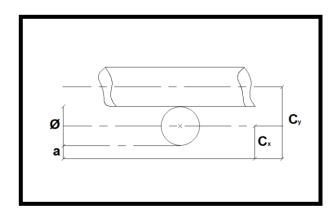


Figure III.2.6: l'enrobage

Etude des éléments non structuraux

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_s = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 348 \text{ MPa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,09

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.96$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{17,24.10^3}{348.0,96.13,5}$ = 3,81m²/ml

III.2.1.3.1 Condition de non fragilité:

A > 0.0008. b.h = 0.0008.100.15 = 1.2cm² /ml

$$A > 1.2 \text{cm}^2/\text{ml}$$

• Choix d'armature :

$$A = 5T10/ml = 3,93 \text{ cm}^2/ml$$

& ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_S}$ Il n'y a aucune vérification effectuée pour l'ELS.

• En travée:

 $M_u = 17,24 \text{KN.ml}$

$$M_s = 12,92 \text{ KN.ml}$$

$$y = \frac{17,24}{12,92} = 1,33$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1,33 - 1}{2} + \frac{25}{100} = 0,42$$

$$\alpha = 0.09 < 0.42 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

Etude des éléments non structuraux

• En appuis:

 $M_u = 11,49 \text{ KN.ml}$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\sigma_{b} = 0.85. \frac{f_{c28}}{\gamma_{b}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b}.\rm b.d^2} = \frac{11,49.10^3}{14,2.100.13,5^2} = 0,044$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm s} = \frac{f_e}{\gamma_{\rm s}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,057

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.98$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{11,49.10^3}{348.0,98.13,5}$ = 2,52 cm²/ml

III.2.1.3.2 Condition de non fragilité:

A > 0.0008. b. h = 0.0008.100.15 = 1.2cm²/ml

 $A > 1,2 \text{cm}^2/\text{ml}$

• Choix d'armature :

 $A = 4T10 / ml = 3,14 cm^2 / ml$

& ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{y-1}{2} + \frac{fc_{28}}{100}$ avec $y = \frac{M_u}{M_c}$ Il n'y a aucune vérification effectuée pour l'ELS.

• En appuis :

 $M_u = 11,49 \text{KN.ml}$

 $M_s = 8,61KN.ml$

Etude des éléments non structuraux

$$\gamma = \frac{11,49}{8.61} = 1,34$$

$$\alpha \le \frac{y-1}{2} + \frac{fc_{28}}{100} \implies \frac{1,34-1}{2} + \frac{25}{100} = 0,42$$

$$\alpha = 0.057 < 0.57 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6.f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

- Sens Y-Y:
- En travée:

 $M_{u} = 9,50 \text{ KN.ml}$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\sigma_{\rm b} = 0.85. \frac{{\rm f_{c28}}}{{\gamma_{\rm b}}} = 0.85. \frac{25}{1.5} = 14.20 \; {\rm MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d_x}^2} = \frac{9,50.10^3}{14,2.100.12,5^2} = 0,043$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,055

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.98$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{9,50.10^3}{348.0,98.12,5}$ = 2,23 cm²/ml

III.2.1.3.4 Condition de non fragilité:

$$A > 0,0008. b. h = 0,0008.100.15 = 1,2cm^2/ml$$

$$A > 1,2 \text{cm}^2/\text{ml}$$

• Choix d'armature :

$$A = 4T10/ml = 3,14cm^2/ml$$

& ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Etude des éléments non structuraux

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

• En travée:

$$M_u = 9.50 \text{ KN.ml}$$

$$M_s = 8,64KN.ml$$

$$y = \frac{9,50}{8.64} = 1,1$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1, 1 - 1}{2} + \frac{25}{100} = 0,31$$

$$\alpha = 0.055 < 0.31 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

• En appuis:

 $M_u = 5,59 \text{ KN.ml}$

- Vérification de l'existence de A':
- Calcul du moment réduit:

$$\sigma_{b} = 0.85. \frac{f_{c28}}{\gamma_{b}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{b,b,d}^2} = \frac{5,59.10^3}{14.2,100,12.5^2} = 0,025$$

On a: μ_L =0,392 (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm s} = \frac{f_e}{\gamma_{\rm s}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha = 1,25 (1 - \sqrt{1 - 2\mu}) \rightarrow \alpha = 0,032$$

$$\beta = (1-0.4\alpha) \rightarrow \beta = 0.99$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{5,59.10^3}{348.0,99.12,5}$ = 1,30 cm²/ml

III.2.1.3.5 Condition de non fragilité:

$$A > 0,0008. b. h = 0,0008.100.15 = 1,2cm^2/ml$$

$$A > 1,2 \text{cm}^2/\text{ml}$$

• Choix d'armature :

$$A = 4T10 / ml = 3,14cm^2 / ml$$

Etude des éléments non structuraux

• ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

• En appuis:

$$M_u = 5,59KN.m$$

$$M_s = 5,09KN.m$$

$$\gamma = \frac{5,59}{5.09} = 1,098$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1,11 - 1}{2} + \frac{25}{100} = 0,30$$

$$\alpha = 0.032 < 0.30 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.2.7 Tableau récapitulatif du ferraillage de la dalle pleine:

	A_{cal} (cm ² /ml)	A _{min} (cm²/ml)	A (cm ² /ml)	Choix (cm²/ml)	Espacement (cm)
A _{tx}	3,81	1,08	3,93	5T10	20
A _{ty}	2,23	1,08	3,14	4T10	25
A _{ax}	2,52	1,08	3,14	4T10	25
Aay	1,30	1,08	3,14	4T10	25

Etude des éléments non structuraux

III.2.1.3.6 Les efforts tranchant:

• On prend le cas le plus défavorable :

$$T_x = \frac{q_u.l_x}{2+\alpha} = \frac{15,43.4,32}{2+0,61} = 25,54 \text{ KN}$$

$$T_y = \frac{q_u.l_x}{3} = \frac{15,43.4,32}{3} = 22,22 \text{ KN}$$

 $T_{\text{max}} = \max (T_x; T_v) = 25,54 \text{ KN}$

$$\bar{\tau} = 0.07. \frac{f_{28}}{\gamma_b} = 1.17 \text{ MPa}$$

$$\tau = \frac{T_u}{b.d} = \frac{25540}{1000.135} = 0,19 \text{ MPa}$$

Alors: $\bar{\tau} \ge \tau$

Donc les armatures transversales ne sont pas nécessaires.

III.2.1.3.7 Vérification de la flèche:

Selon l'article B.6.5.1 CBA93; les conditions à vérifier pour ne pas avoir une vérification sur les flèches limite pour les poutres:

$$\begin{cases} \frac{h}{L_x} \ge \frac{M_{tx}^s}{20 \times M_x^s} \\ \frac{A_s}{b \times d} \le \frac{2}{f_e} \end{cases}$$

$$\frac{15}{432} \ge \frac{12,92}{20 \times 12,92} \rightarrow 0.04 < 0.05 \rightarrow \text{C.N.V}$$

$$\frac{4,52}{100 \times 13.5} \le \frac{2}{400} \rightarrow 0,0035 < 0,005 \rightarrow C.V$$

Donc: la vérification de la flèche est nécessaire.

Soit:

J: la charge permanente avant la mise en place des cloisons.

G_{cloison}: la charge permanente après la mise en place des cloisons.

P: la charge total (p=g+charge d'exploitation).

Etude des éléments non structuraux

 f_{gi} et f_{gv} : les flèches dues aux charges g.

 \mathbf{f}_{ji} : la flèche due aux charge j.

f_{pi}: la flèche due aux charge p.

a)
$$F_v = \frac{M.l^2}{10.E_v.I_{Fv}}$$

b)
$$F_i = \frac{M.l^2}{10.E_i.I_{Fi}}$$

Art: (Annexe D CBA 93) et f < $\overline{f} = \frac{1}{500}$ (L < 5m.Art B.6.5.3 CBA 93)

$$E_v = 3700.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 10818,9 \text{ MPa}$$

$$E_i = 11000.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$I_{\text{fv}} = \frac{1, 1.I_0}{1 + \lambda_v \times \mu}$$

$$I_{fi} = \frac{i_0}{1 + \lambda_i \times \mu}$$

Avec

$$V_1 = \frac{\sum A_i.y_i + n.A.d}{\sum A_i + n.A} = \frac{15.100.7,5 + 15.3,93.1.13,5}{15.100 + 15.3,93} = 7,73 \text{ cm}$$

$$V_2 = h - V_1 = 7.27$$
 cm

$$I_0 = \frac{b.V_1^3}{3} + \frac{b.V_2^3}{3} + n.A.(V_2 - c)^2$$

I₀= 30166,97 cm⁴

$$\lambda_{\rm i} = \frac{0.05.f_{c28}}{5.0}$$

Avec:

$$\rho = \frac{A_s}{b \times d} = \frac{3.93}{100.13.5} = 0.00291$$

Donc

$$\lambda_{\rm i} = \frac{0.05.f_{t28}}{5.\rho} = \frac{0.05.2.1}{5.0,00291} = 7,22$$

$$\lambda_v = \frac{2}{5} \, \lambda_i = 2,89$$

Etude des éléments non structuraux

1) Calcul fgv:

$$F_{gv} = \frac{M^{ser} g . l^2}{10.E_v . I_{Fgv}}$$

$$M^{ser}_{g}$$
 =0,85. μ_{x}^{s} . G. L_{x}^{2} =0,85. 0,0589. 5,87.4,32 2 =5,48 KN.m

$$E_v = 3700. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 10818,9 \text{ MPa}$$

$$\rho_1 = 100. \ \rho = 0.291 \rightarrow \beta_1 = 0.915$$

$$\sigma_s^g = ? \rightarrow A = \frac{M^{\text{ser}_g}}{\sigma_s^g.\beta_1.d} \rightarrow \sigma_s^g = \frac{M^{\text{ser}_g}}{A.\beta_1.d} = \frac{5480}{3.93.0.915.13.5} = 112.9 \text{ MPa}$$

$$\mu_g = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s{}^g + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,00291.112,9+2,1} = -0,076$$

$$I_{\text{fgv}} = \frac{1,1.I_0}{1 + \lambda_v \times \mu_g} = \frac{1,1.30166,97}{1 + 2,89. - 0,076} = 42595,9 \text{ cm}^4$$

$$F_{gv} = \frac{\text{M.I}^2}{10.\text{E}_v.\text{I}_{Fgv}} = \frac{5480.4,32^2.10^4}{10.10818,9.42595,9} = 0,22 \text{ cm}$$

2) Calcul fii:

$$F_i = \frac{M.l^2}{10.E_i.I_{Fij}}$$

$$M^{\text{ser}}_{j} = 0.85. \, \mu_{v}^{\text{s}}. \, (G - G_{\text{cloison}}). \, L_{x}^{2} = 0.85. \, 0.0589. (5.87-0.9). \, 4.32^{2} = 4.64 \, \text{KN.m}$$

$$E_i = 11000. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$\rho_1 = 100. \ \rho = 0.291 \rightarrow \beta_1 = 0.915$$

$$\sigma_s^j = ? \rightarrow A = \frac{M^{\text{ser}}_j}{\sigma_s^j.\beta_1.d} \rightarrow \sigma_s^g = \frac{M^{\text{ser}}_j}{A.\beta_1.d} = \frac{4640}{3,93.0,915.13,5} = 95,60 \text{ MPa}$$

$$\mu_j = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s^g + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,00291.95,60 + 2,1} = -0,14$$

$$I_{fij} = \frac{1,1.I_0}{1 + \lambda_i \times \mu_j} = \frac{1,1.30166,97}{1 + 7,22. - 0,14} = 3072561,8 \text{ cm}^4$$

$$F_{ij} = \frac{\text{M.I}^2}{10.E_i.I_{Fij}} = \frac{4620.4,32^2.10^4}{10.32164,2.3072561,8} = 0,001 \text{ cm}$$

3) Calcul fpi:

$$F_{pi} = \frac{M^{ser}_{p}.l^2}{10.E_i.I_{Fi}}$$

$$M^{\text{ser}}_{p} = 0.85. \, \mu_{x}^{\text{s}}. \, (G + Q). \, L_{x}^{2} = 0.85. \, 0.0589. (5.87 + 5).4.32^{2} = 10.2 \, \text{KN.m}$$

$$E_i = 11000.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$\rho_1 = 100. \ \rho = 0.291 \rightarrow \beta_1 = 0.915$$

$$\sigma_{S}^{p} = ? \rightarrow A = \frac{M^{\text{ser}}_{p}}{\sigma_{S}^{p}.\beta_{1}.d} \rightarrow \sigma_{S}^{p} = \frac{M^{\text{ser}}_{p}}{A.\beta_{1}.d} = \frac{10200}{3,93.0,915.13,5} = 210,11 \text{ MPa}$$

Etude des éléments non structuraux

$$\mu_p = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s^g + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,00291.210,11 + 2,1} = 0,19$$

$$I_{\text{fpi}} = \frac{1,1.I_0}{1 + \lambda_i \times \mu_p} = \frac{1,1.30166,97}{1 + 7,22.0,195} = 13925,4 \text{ cm}^4$$

$$F_{pi} = \frac{\text{M.I}^2}{10.E_i.I_{Fpi}} = \frac{10200.4,32^2.10^4}{10.32164,2.13925,4} = 0,43 \text{ cm}$$

4) Calcul fgi:

$$F_{gi} = \frac{M.l^2}{10.E_i.I_{Fgi}}$$

$$I_{fgi} = \frac{1,1.I_0}{1+\lambda_i \times \mu_g} = \frac{1,1.30166,97}{1+7,22.-0,076} = 73532,3 \text{ cm}^4$$

$$F_{ij} = \frac{M.l^2}{1+\lambda_i \times \mu_g} = \frac{1,0200.4,32^2.10^4}{10200.4,32^2.10^4} = 0.10 \text{ cm}^4$$

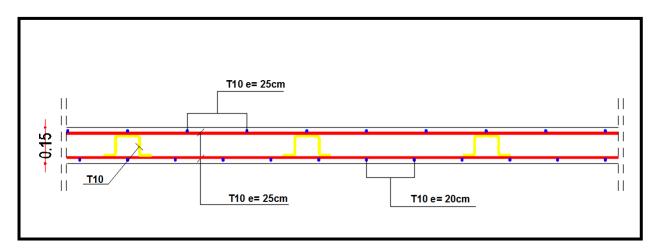
$$F_{gi} = \frac{M.l^2}{10.E_i.I_{Fgi}} = \frac{10200.4,32^2.10^4}{10.32164,2.73532,3} = 0,10 \text{ cm}$$

$$\Delta f_t = \left(f_{gv} - f_{ji}\right) + \left(f_{pi} - f_{gi}\right)$$

$$\Delta f_t = (0.22 - 0.001) + (0.43 - 0.10)$$

$$\Delta f_t = 0.549 \text{ cm}$$

• Flèche admissible :


$$l = 4,32m < 5m \rightarrow \Delta f_{t max} = \frac{l}{500} = \frac{432}{500} = 0,864$$
cm

✓ Conclusion :

 Δf_t =0,549 cm < $\Delta f_{t\,max}$ =0,864cm \rightarrow Condition vérifiée.

Etude des éléments non structuraux

Coupe sens X-X

Coupe sens Y-Y

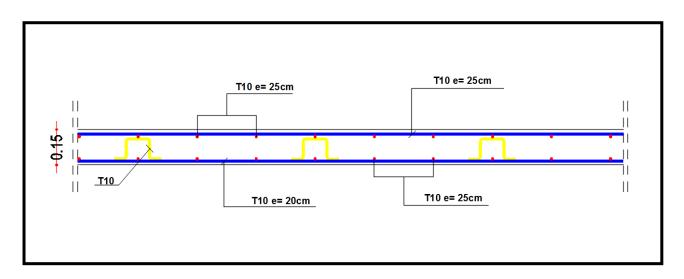


Figure III.2.7: schéma de ferraillage de la dalle pleine

(Haut sous sol)

Etude des éléments non structuraux

III.3 Etude d'escalier:

Ouvrage de circulation verticale comprenant une suite de degrés (marches ou paliers) destiné à relier deux plans horizontaux placés à différentes hauteurs.

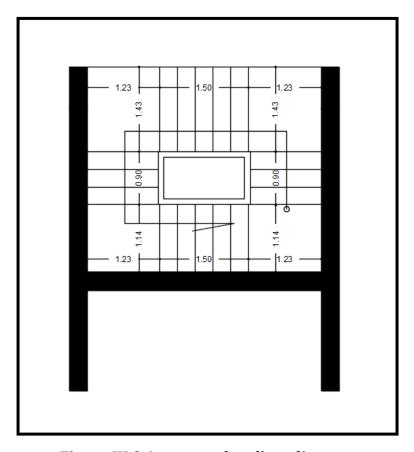


Figure III.3.1: vue en plan d'escalier

(Etage courant)

- 1) Les types d'escalier:
- Type 01:

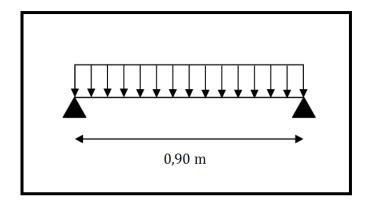


Figure III.3.2: schéma statique de la volée type 01

Etude des éléments non structuraux

• Types 02:

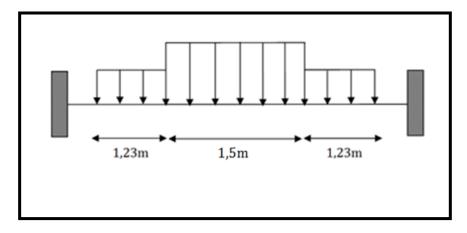


Figure III.3.3: schéma statique de la volée type 02

III.3.1 Types 1:

- **ELU**:
- Vole 01 et 03:

On a:

 $G=7.82 \text{ KN/m}^2$

 $Q=2,5 \text{ KN/m}^2$

Donc:

$$q_u = (1,35.Q+1,5.G).1 = (1,35.7,82+1,5.2,5).1=14,31 \text{ KN/m}^2$$

 $q_s = (Q+G).1 = (7,82+2,5).1 = 10,32 \text{ KN/m}^2$

• Palier de repos:

On a:

 $G=5,4 \text{ KN/m}^2$

 $Q=2,5 \text{ KN/m}^2$

Donc:

$$q_u = (1,35.Q+1,5.G).1 = (1,35.5,4+1,5.2,5).1=11,04 \text{ KN/m}^2$$

 $q_s = (Q+G).1 = (5,4+2,5).1 = 7,9 \text{KN/m}^2$

Etude des éléments non structuraux

En utilisant logiciel **RDM6**:

a) Les diagrammes des moments fléchissant et les efforts tranchant:

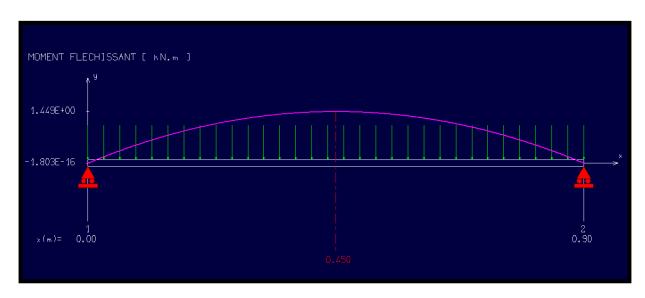


Figure III.3.4 : Diagramme de moments fléchissants en ELU

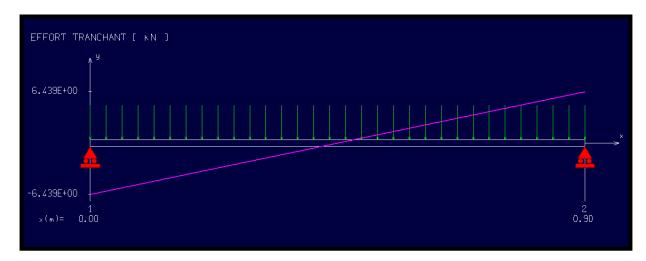


Figure III.3.5: Diagramme des efforts tranchants en ELU

Etude des éléments non structuraux

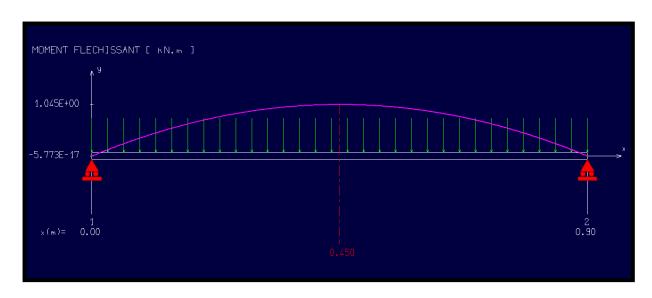


Figure III.3.6 : Diagramme de moments fléchissants en ELS

III.3.1 Tableau récapitulatif des moments fléchissant et des efforts tranchants en ELU :

M _t	M _a	Effort tranchant
(KN.m)	(KN.m)	(KN)
1,16	0,29	6,44

III.3.2 Tableau récapitulatif des moments fléchissants en ELS :

M _t	M _a
(KN.m)	(KN.m)
0,84	0,21

III.3.1.1 Ferraillage de l'escalier:

- **&** ELU:
- En travée:

 M_{tu} =1,16 KN.ml

• Vérification de l'existence de A':

Etude des éléments non structuraux

• Calcul du moment réduit:

$$\sigma_b = 0.85. \frac{f_{c28}}{\gamma_b} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_{u \; max}}{\sigma_{b}.b.d^{2}} = \frac{1,16.10^{3}}{14,2.100.14,4^{2}} = 0,004$$

On a: μ_L = 0,392 (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,01

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.997$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{1,16.10^3}{348.0,997.14,2}$ = 0,24 cm²/ml

III.3.1.1.1 Condition de non fragilité:

$$A > A_{min} = 0.0008. b. h = 0.0008.100.16 = 1.28 cm^2 / ml$$

$$A < A_{min} = 1,28 \text{ cm}^2/\text{ml}$$

III.3.1.1.2 L'espacement minimal des armatures:

$$e \le min (3.h; 33 cm) \rightarrow e \le min (48 cm; 33 cm)$$

e ≤ 33 cm

• Choix d'armature :

$$A = 4T10/ml = 3,14cm^2/ml \rightarrow e = 20cm$$

& ELS:

Fissurations peut préjudiciables Flexion simple

Section rectangulaire

FeE400

Si
$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$$
 avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

$$M_u = 1,16 \text{ KN.m}$$

$$M_s = 0.84 \text{ KN.m}$$

Etude des éléments non structuraux

$$y = \frac{8,90}{6,45} = 1,39$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} = > \frac{1,38 - 1}{2} + \frac{25}{100} = 0,44$$

$$\alpha = 0.01 < 0.44 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6.f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.3.1.1.3 Les armatures de répartition:

$$A_r = \frac{A}{4} = \frac{3,14}{4} = 0,785 \text{cm}^2/\text{ml}$$

- **Choix**: 4T10/ml =3,14/ml
- En appuis:

$$M_u = 0.29 \text{ KN.m}$$

- Vérification de l'existence de A':
- Calcul du moment réduit:

$$\sigma_{\rm b} = 0.85. \frac{{\rm f_{c28}}}{\gamma_{\rm b}} = 0.85. \frac{25}{1.5} = 14.20 \; {\rm MPa}$$

$$\mu = \frac{M_{u \ max}}{\sigma_{b}.b.d^{2}} = \frac{0.29.10^{3}}{14,2.100.14,4^{2}} = 0.001$$

On a: μ_L = 0,392 (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm s} = \frac{f_e}{\gamma_{\rm s}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha = 1,25 (1 - \sqrt{1 - 2\mu}) \rightarrow \alpha = 0,001$$

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.9995$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{0.29.10^3}{348.0.9995.14.4}$ = 0.058 cm²/ml

III.3.1.1.4 Condition de non fragilité:

$$A > A_{min} = 0.0008. b. h = 0.0008.100.16 = 1.28 cm^2 / ml$$

$$A < A_{min} = 1,28 \text{ cm}^2/\text{ml}$$

III.3.1.1.5 L'espacement minimal des armatures :

$$e \le min (3.h; 33 cm) \rightarrow e \le min (48 cm; 33 cm)$$

Etude des éléments non structuraux

• Choix d'armature :

$$A = 4T10 = 3,14 \text{ cm}^2/\text{ml}$$

• ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

$$M_u = 0.29 \text{ KN.m}$$

$$M_s = 0.21 \text{ KN.m}$$

$$\gamma = \frac{0.29}{0.21} = 1.38$$

$$\alpha \le \frac{y-1}{2} + \frac{fc_{28}}{100} = > \frac{1,38-1}{2} + \frac{25}{100} = 0,44$$

$$\alpha = 0.001 < 0.44 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.3.1.1.6 Les armatures de répartition:

$$A_r = \frac{A}{4} = \frac{3,14}{4} = 0,785 \text{ cm}^2$$

• **Choix:** 4T10 =3,14 cm²/ml

III.3.1.2 Vérification de l'effort tranchant:

Pour des fissurations peu préjudiciables on doit vérifier que:

$$\tau_u = \frac{T_u}{b.d} \le \overline{\tau_u}$$

86

Avec
$$\overline{\tau_u} = \min[\underbrace{\frac{0,20.f_{c28}}{\gamma_b}}; 5 MPa) = \min(3,33; 5) = 3,33 MPa$$

Tu =6,44 KN ⇒τu =
$$\frac{6440}{1000.144}$$
 = 0,05 MPa< 3,33 MPa → condition vérifiée

Etude des éléments non structuraux

III.3.3 Tableau récapitulatif de choix des armatures et les espacements :

		Espacement (cm)
En travée (cm²/ml)	4T10	25
En appuis (cm²/ml)	4T10	25

III.3.2 Types 02:

- ELU:
- Vole 02 :

On a:

 $G=7,65 \text{ KN/m}^2$

 $Q=2,5 \text{ KN/m}^2$

Donc:

$$q_u' = (1,35.Q+1,5.G).1 = (1,35.7,65 +1,5.2,5).1=14,08 \text{ KN/ml}$$

 $q_s' = (Q+G).1 = (7,65+2,5).1 = 10,15 \text{KN/ml}$

• Palier de repos:

On a:

 $G=5,4 \text{ KN/m}^2$

 $Q=2,5 \text{ KN/m}^2$

Donc:

$$\begin{aligned} q_u &= (1,35.Q+1,5.G).1 = (1,35.\ 5,4\ +1,5.2,5\) = 11,04\ KN/ml \\ q_s &= (Q+G).1 = (5,4\ +2,5) = 7,9\ KN/ml \\ G_{mur} &= (h_e-0,68-0.30).g_{mur} = 6,1\ KN/ml \end{aligned}$$

III.3.2.1 Calcul des réactions des appuis de vole 01:

$$R^{u}_{A} = R^{u}_{B} = \frac{Q.L}{2} = 6,44 \text{ KN/ml}$$

Etude des éléments non structuraux

$$R_A^s = R_B^s = \frac{Q.L}{2} = 4,64 \text{ KN/ml}$$

& ELU:

$$q^{\rm u}{\rm eq} = \frac{({\rm q_u} + {\rm R_a}).{\rm L}.2 + {\rm q_u}^{'}.{\rm L}}{L_T} + G_{\rm mur} = \frac{(11,04 + 6,44)1,23.2 + 14,08.1,5}{1,23.2 + 1,5} + 1,35.6,1 = 24,43~{\rm KN/m^2}$$

& ELS:

$$q^{s}_{eq} = \frac{(q_{s} + R_{A}).L.2 + q_{s}.L}{L_{T}} + G_{mur} = \frac{(7.9 + 4.64)1.23.2 + 10.15.1.5}{1.23.2 + 1.5} + 6.1 = 17.74 \text{ KN/m}^{2}$$

En utilisant logiciel **RDM6**:

• Les diagrammes des moments fléchissants et les efforts tranchants :

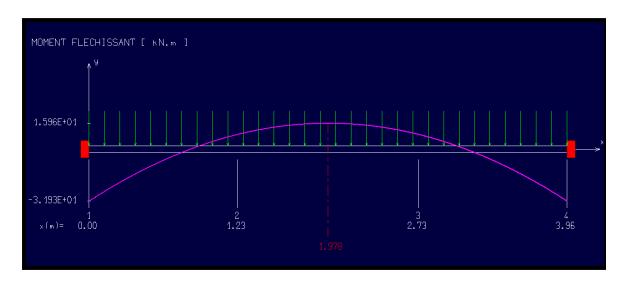


Figure III.3.7 : Diagramme de moments fléchissants en ELU

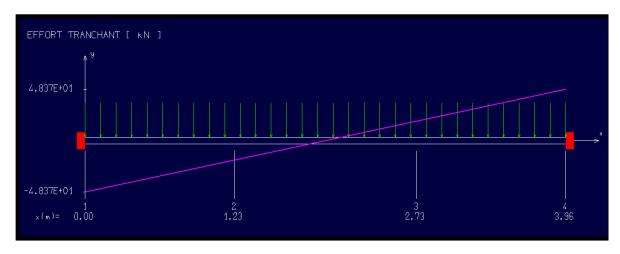


Figure III.3.8: Diagramme des efforts tranchants en ELU

Etude des éléments non structuraux

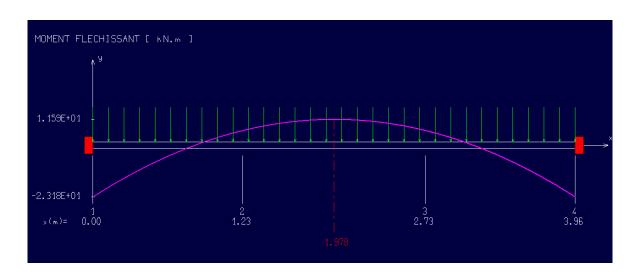


Figure III.3.5 : Diagramme de moments fléchissants en ELS

III.3.4 Tableau récapitulatif des moments fléchissants et des efforts tranchants en ELU :

M _t	M _a	Effort tranchant
(KN.ml)	(KN.ml)	(KN)
15,96	31,93	48,37

III.3.5 Tableau récapitulatif des moments fléchissants en ELS :

M _t	M _a	
(KN.ml)	(KN.ml)	
11,59	23,18	

Etude des éléments non structuraux

III.3.2.2 Ferraillage de l'escalier:

- **&** ELU:
- En travée:

 $M_{tu} = 15,96 \text{ KN.ml}$

- Vérification de l'existence de A':
- Calcul du moment réduit:

$$\sigma_b = 0.85. \frac{f_{c28}}{\gamma_b} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b}.\rm b.d^2} = \frac{15,96.10^3}{14,2.100.14,4^2} = 0,054$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,06

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.96$$

A =
$$\frac{M_u}{\sigma_{\rm S}.6.d}$$
 = $\frac{15,96.10^3}{348.0,96.144}$ = 3,32 m²/ml

III.3.2.2.1 Condition de non fragilité:

$$A > A_{min} = 0.0008. b. h = 0.0008.100.16 = 1.28 cm^2 / ml$$

$$A > A_{min} = 1,28 \text{ cm}^2/\text{ml}$$

III.3.2.2.2 L'espacement minimal des armatures :

$$e \le min (3.h; 33 cm) \rightarrow e \le min (48 cm; 33 cm)$$

e ≤ 33 cm

• Choix d'armature :

$$A = 5T10 = 3.93 \text{ cm}^2 \rightarrow e = 20 \text{cm}$$

• ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Etude des éléments non structuraux

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

$$M_u = 15,96 \text{ KN.ml}$$

$$M_s = 11,59 \text{ KN.ml}$$

$$\gamma = \frac{15,96}{11,59} = 1,38$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} = > \frac{1,38 - 1}{2} + \frac{25}{100} = 0,44$$

$$\alpha = 0.06 < 0.44 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6.f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.3.2.2.3 Les armatures de répartition:

$$A_r = \frac{A}{4} = \frac{3,93}{4} = 0,98 \text{ cm}^2/\text{ml}$$

Choix: 4T10 /ml = 3,93 cm²/ml

• En appuis:

 $M_u = 31,93 \text{ KN.m}$

- Vérification de l'existence de A':
- Calcul du moment réduit:

$$\sigma_{\rm b} = 0.85. \frac{\rm f_{c28}}{\rm \gamma_{\rm b}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_b.b.d^2} = \frac{31,93.10^3}{14,2.100.14,4^2} = 0,108$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,144

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.94$$

A =
$$\frac{M_u}{\sigma_S.\beta.d}$$
 = $\frac{31,93.10^3}{348.0,94.14,4}$ = 6,76 cm²/ml

III.3.2.2.4 Condition de non fragilité:

$$A > A_{min} = 0.0008. b. h = 0.0008.100.16 = 1.28 cm^2 / ml$$

$$A > A_{min} = 1,28 \text{ cm}^2/\text{ml}$$

Etude des éléments non structuraux

III.3.2.2.5 L'espacement minimal des armatures:

 $e \le min (3.h; 33 cm) \rightarrow e \le min (48 cm; 33 cm)$ $e \le 33 cm$

• Choix d'armature :

 $A = 6T12 = 6,79 \text{ cm}^2/\text{ml} \rightarrow e = 15 \text{cm}$

& ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

 $M_u = 31,93 \text{ KN.ml}$

 $M_s = 23,18 \text{ KN.ml}$

$$\gamma = \frac{31,93}{23.18} = 1,38$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1,38 - 1}{2} + \frac{25}{100} = 0,44$$

$$\alpha = 0.144 < 0.44 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.3.2.2.6 Les armatures de répartition:

$$A_r = \frac{A}{4} = \frac{6,79}{4} = 1,69 \text{ cm}^2/\text{ml}$$

Choix: $4T10/ml = 3,14 cm^2/ml → e = 20cm$

III.3.2.2 Vérification de l'effort tranchant:

Pour des fissurations non préjudiciables on doit vérifier que:

$$\tau_u = \frac{T_u}{b.\,d} \le \overline{\tau_u}$$

Etude des éléments non structuraux

Avec
$$\overline{\tau_u} = \min(0.20.f_{c28})$$
; 5 MPa)= min (3,33; 5) = 3,33 MPa
Tu =48,37 KN $\Rightarrow \tau u = \frac{48370}{1000.144} = 0,34$ MPa< 3,33 MPa \Rightarrow Condition vérifiée

III.3.6 Tableau récapitulatif de choix des armatures et les espacements :

		Espacement (cm)
En travée (cm²/ml)	5T10	20
En appuis (cm²/ml)	6T12	15

III.3.3. Type02:

- **ELU**:
- Vole 04:

On a:

 $G=7,65 \text{ KN/m}^2$

 $Q=2,5 \text{ KN/m}^2$

Donc:

$$\begin{aligned} &q_{u}\text{'} = (1,35.Q + 1,5.G).1 = (1,35.\ 7,65\ + 1,5.2,5\).1 = 14,08\ KN/ml \\ &q_{s}\text{'} = (Q + G).1 = (7,65 + 2,5).1 = 10,15KN/ml \end{aligned}$$

• Palier de repos:

On a:

 $G=5,4 \text{ KN/m}^2$

 $Q=2,5 \text{ KN/m}^2$

Donc:

$$\begin{aligned} q_{\rm u} &= (1,35.Q + 1,5.G).1 = (1,35.\ 5,4 + 1,5.2,5\) = 11,04\ KN/ml \\ q_{\rm s} &= (Q + G).1 = (5,4 + 2,5) = 7,9\ KN/ml \end{aligned}$$

Etude des éléments non structuraux

III.3.3.1 Calcul des réactions des appuis de vole 01:

$$R^{u}_{A} = R^{u}_{B} = \frac{Q.L}{2} = 6,44 \text{ KN/ml}$$

$$R_{A} = R_{B} = \frac{Q.L}{2} = 4,64 \text{ KN/ml}$$

& ELU:

$$q^{\rm u}{\rm eq} = \frac{(q_{\rm u} + R_a).L.2 + q_{\rm u}{}^{'}.L}{L_T} = \frac{(11,04 + 6,44)1,23.2 + 14,08.1,5}{1,23.2 + 1,5} = 16,195~{\rm KN/m^2}$$

ELS:

$$q^{s}_{eq} = \frac{(q_{s} + R_{A}).L.2 + q_{s}.L}{L_{T}} = \frac{(7,9 + 4,64)1,23.2 + 10,15.1,5}{1,23.2 + 1,5} = 11,64 \text{ KN/m}^{2}$$

En utilisant logiciel **RDM6**:

• Les diagrammes des moments fléchissants et les efforts tranchants :

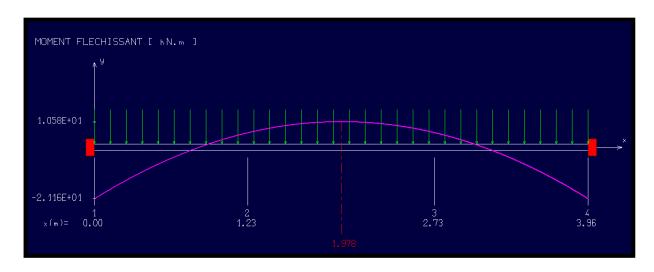


Figure III.3.10 : Diagramme de moments fléchissants en ELU

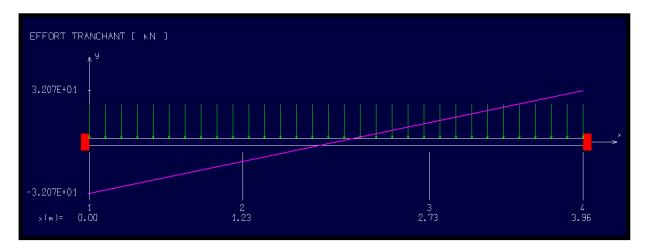


Figure III.3.11: Diagramme des efforts tranchants en ELU

Etude des éléments non structuraux

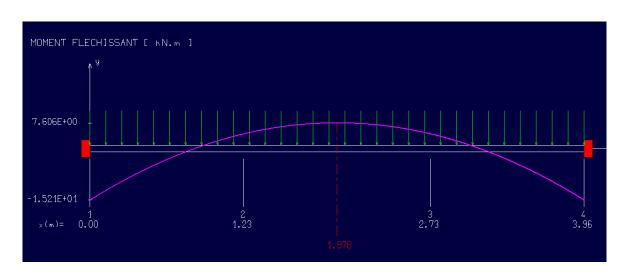


Figure III.3.12 : Diagramme de moments fléchissants en ELS

III.3.7 Tableau récapitulatif des moments fléchissants et des efforts tranchants en ELU :

M _t	M _a	Effort tranchant	
(KN.m)	(KN.m)	(KN)	
10,58	21,16	32,07	

III.3.8 Tableau récapitulatif des moments fléchissants en ELS :

M _t	M _a	
(KN.m)	(KN.m)	
7,61	15,21	

III.3.3.2 Ferraillage de l'escalier:

- **&** ELU:
- En travée:

 $M_{tu} = 10,58 \text{ KN.ml}$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

Etude des éléments non structuraux

$$\sigma_{\rm b} = 0.85. \frac{f_{\rm c28}}{\gamma_{\rm b}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b}.b.d^2} = \frac{10.58.10^3}{14.2.100.14.4^2} = 0.04$$

$$\mu - \frac{1}{\sigma_{\rm b}.\rm b.d^2} - \frac{1}{14,2.100.14,4^2} - 0,04$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,046

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.98$$

A =
$$\frac{M_u}{\sigma_{\rm S},\beta,d}$$
 = $\frac{10,58.10^3}{348.0,98.14,4}$ = 2,15 m²/ml

III.3.3.2.1 Condition de non fragilité:

$$A > A_{min} = 0,0008. b. h = 0,0008.100.16 = 1,28 cm2 /ml$$

 $A > A_{min} = 1,28 cm2 /ml$

III.3.3.2.2 L'espacement minimal des armatures:

$$e \le min (3.h; 33 cm) \rightarrow e \le min (48 cm; 33 cm)$$

 $e \le 33 cm$

Choix d'armature:

$$A = 4T10 = 3,14cm^2 \rightarrow e = 20cm$$

***** ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{y-1}{2} + \frac{fc_{28}}{100}$ avec $y = \frac{M_u}{M_c}$ Il n'y a aucune vérification effectuée pour l'ELS.

Etude des éléments non structuraux

 $M_u = 10,58 \text{ KN.ml}$

$$M_s = 7,61KN.ml$$

$$y = \frac{10,58}{7.61} = 1,39$$

$$\alpha \le \frac{y-1}{2} + \frac{fc_{28}}{100} \implies \frac{1,38-1}{2} + \frac{25}{100} = 0,45$$

$$\alpha = 0.046 < 0.45 \rightarrow C.V$$

$$\sigma_h \leq \overline{\sigma_h} = 0.6$$
.fc28 = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.3.3.2.3 Les armatures de répartition :

$$A_r = \frac{A}{4} = \frac{3,14}{4} = 0,785 \text{ cm}^2/\text{ml}$$

- **Choix:** 3T10 /ml = 2,36/ml
- En appuis:

 $M_{au} = 21,16 \text{ KN.m}$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\sigma_{\rm b} = 0.85. \frac{{\rm f_{c28}}}{{\gamma_{\rm b}}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b}.{\rm b.d^2}} = \frac{21,16.10^3}{14,2.100.14,4^2} = 0,07$$

On a: μ_L =0,392 (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha = 1,25 (1 - \sqrt{1 - 2\mu}) \rightarrow \alpha = 0,093$$

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.96$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{21,16.10^3}{348.0,96.14,4}$ = 4,39 cm²/ml

III.3.3.2.4 Condition de non fragilité:

$$A > A_{min} = 0,0008. b. h = 0,0008.100.16 = 1,28 cm^2 / ml$$

$$A > A_{min} = 1,28 \text{ cm}^2/\text{ml}$$

• Choix d'armature :

$$A = 6T10 = 4,71 \text{ cm}^2/\text{ml} \rightarrow e = 15 \text{ cm}$$

Etude des éléments non structuraux

& ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

 $M_u = 21,16 \text{ KN.ml}$

 $M_s = 15,21 \text{ KN.ml}$

$$\gamma = \frac{21,16}{15,21} = 1,39$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1,39 - 1}{2} + \frac{25}{100} = 0,45$$

$$\alpha = 0.07 < 0.45 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

III.3.3.2.5 Les armatures de répartition:

$$A_r = \frac{A}{4} = \frac{4,71}{4} = 1,178 \text{cm}^2/\text{ml}$$

• **Choix**: 4T10 =3,14 cm²/ml

III.3.3.3 Vérification de l'effort tranchant:

Pour des fissurations non préjudiciables on doit vérifier que:

$$\tau_u = \frac{T_u}{h \ d} \le \overline{\tau_u}$$

Avec
$$\overline{\tau_u} = \min[\underbrace{\frac{0.20.f_{c28}}{\gamma_b}}; 5 MPa) = \min(3.33; 5) = 3.33 Mpa$$

Tu =32,07 KN ⇒τu =
$$\frac{32070}{1000,144}$$
 = 0,198 MPa< 3,33 MPa → Condition verifier.

Etude des éléments non structuraux

III.3.9 Tableau récapitulatif de choix des armatures et les espacements :

		Espacement (cm)
En travée (cm²/ml)	4T10	25
En appuis (cm²/ml)	6T10	15

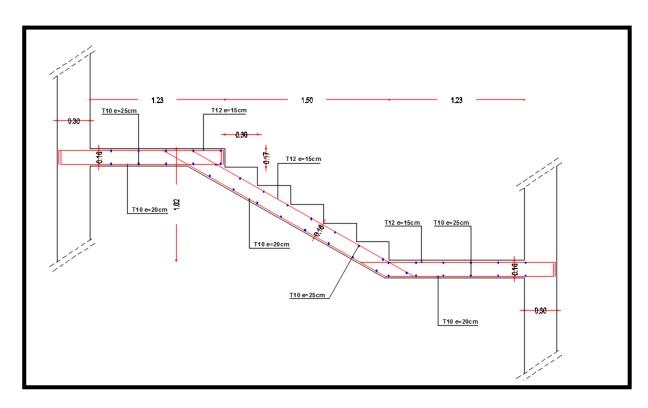


Figure III.3.13: schéma ferraillage de la volée 02

Etude des éléments non structuraux

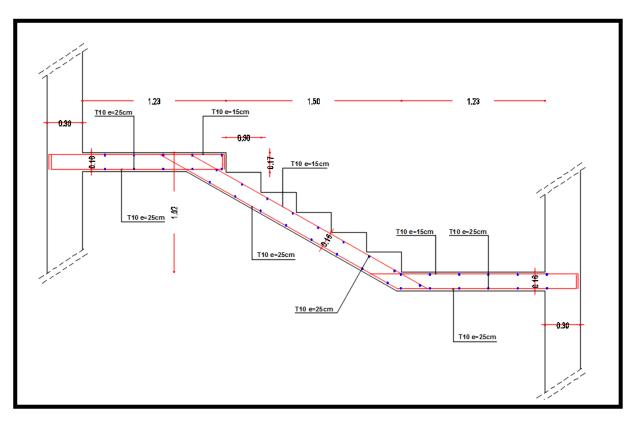


Figure III.3.14: schéma ferraillage de la volée 04

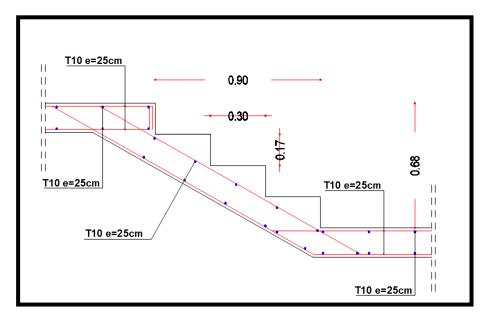


Figure III.3.15: schéma ferraillage vole des volées

Etude des éléments non structuraux

III.4 Etude de balcon:

Un balcon est un type de plateforme qui se dégage d'un mur et forme ainsi une « pièce en hauteur » Le plus souvent, il se trouve à l'extérieur du bâtiment, mais peut aussi être à l'intérieur, comme une galerie dans une salle de spectacle.

1) Les types de balcon:

Type 01:

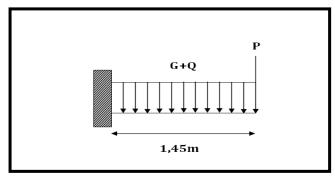


Figure III.4.1: schéma statique du balcon type 01

Type 02:

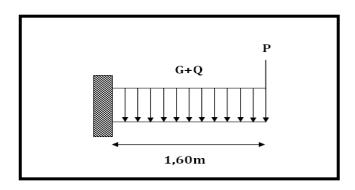


Figure III.4.2: schéma statique du balcon type 02

Type 03:

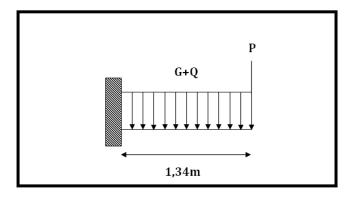


Figure III.4.3: schéma statique du balcon type 03

Etude des éléments non structuraux

Type 04:

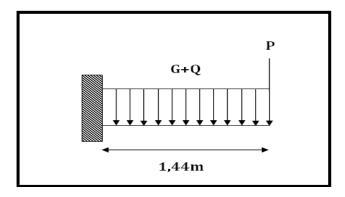
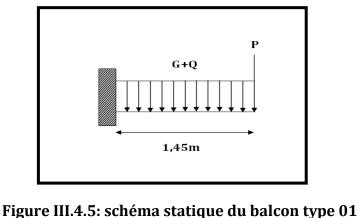



Figure III.4.4: schéma statique due balcon type 04

III.4.1 Exemple de calcul:

• Type 01:

On a:

$$G = 4,97 \text{ KN/ml}$$

Q = 3.5 KN/ml

$$P = G_{mur}.h = (1.8 + 2.18.0,02).(3.4 - 0.55) = 7.182 \text{ KN/ml}$$

III.4.1.1 Calcul des moments fléchissant:

& ELU:

$$M_u$$
=- (1,35.G+1,5.Q). $\frac{L^2}{2}$ -1,35. P.L

 $M_u = -26,63 \text{ KN.ml}$

ELS:

$$M_s = -(G+Q).\frac{L^2}{2} - P.L$$

 M_s =-19,31 KN.ml

III.4.1.2 Ferraillage de balcon:

III.4.1.2.1 Calcul de l'enrobage :

Etude des éléments non structuraux

$$\emptyset \le \frac{h_d}{10} = \frac{15}{10} = 1,5 \text{ cm on prendra } \rightarrow \emptyset = 10 \text{mm}$$

$$C = a + \frac{\emptyset}{2} = 10 + 5 = 15$$
mm

$$d = h_d - c = 13,5 cm$$

• Vérification de l'existence de A':

 $M_u = -26,63 \text{ KN.ml}$

• Calcul du moment réduit:

$$\sigma_{\rm b} = 0.85. \frac{f_{\rm c28}}{\gamma_{\rm b}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_b.b.d^2} = \frac{26,63 \cdot .10^3}{14,2.100.13,5^2} = 0,103$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_s = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 348 \text{ MPa}$$

$$\alpha = 1,25 (1 - \sqrt{1 - 2\mu}) \rightarrow \alpha = 0,136$$

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.95$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{26,63 \cdot .10^3}{348.0,95.13,5}$ = 5,99 cm²/ml

III.4.1.2.2 Condition de non fragilité:

$$A > 0.0008$$
. b . $h = 0.0008.100.15 = 1.2$ cm² /ml

$$A > 1,2$$
cm $^2/$ ml

III.4.1.2.3 L'espacement des armatures:

$$e \le min (3.h; 33 cm) \rightarrow e \le min (45 cm; 33 cm)$$

e ≤ 33cm

• Choix d'armature :

$$A = 8T10 = 6,28cm^2/ml \rightarrow e = 15cm$$

& ELS:

Etude des éléments non structuraux

Fissurations préjudiciables Flexion simple Section rectangulaire FeE400

• Y la solution d'équation de deuxième degré :

b.y²+30(A_S+A_s').y - (30(A_S.d+ A_s'.d) = 0
100.y²+188,4.y-2543,4 =0

$$\Delta$$
=188,4²-4(100). (-2543,4) =1052854,56
 $\sqrt{\Delta}$ =1026,1

Donc:

Y=4,19cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d-y)^2 = 0$$

I= 10619,6 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{19,31 \cdot 10^6}{10616,9 \cdot 10^4} = 0,18$$

$$\sigma_{bc}=k.\,y=0.18.41.9=7.62 MPa<\overline{\sigma_{bc}}=0.6.\,f_{c28}=15 MPa\rightarrow C.\,V$$

$$\begin{split} \sigma_{st} &= 15.\,\text{k(d-y)} = 251,\!37\,\,\text{MPa} < \overline{\sigma_{st}} = & \text{min} \, \overline{\mathbb{Q}_3^2}.\,400;\,110.\,\sqrt{1,\!6.2,\!1}) \text{MPa} \\ \sigma_{st} &= 251,\!37\,\,\text{MPa} > \overline{\sigma}_s = 201,\!63\,\,\text{MPa} \xrightarrow{} \text{C.N.V} \end{split}$$

Donc les armatures calculées à ELU ne conviennent pas à ELS.

D'après le **B.A.E.L 91** si $\sigma_{st} \le \overline{\sigma_{st}}$ la condition n'est pas remplie il faut recalculer la section d'aciers tendus A_s en admettent que ces armatures travaillent au maximum possible c'est-à-dire a la contrainte limite de service:

On calcule:

$$\lambda = 1 + (30.M_{ser}/b.d^2.\overline{\sigma_{st}}) = 1,16$$

Etude des éléments non structuraux

Puis: Cos $\varphi = \lambda^{-3/2}$ d'où φ en degres

 $\cos \varphi = 0.80 \rightarrow \varphi = 36.8^{\circ}$

On trouve: $\alpha = 1 + 2\sqrt{\lambda} \cos(240 + \varphi/3) = 0.34$

Le diagramme fourni en annexes donne directement les valeurs de : α

Ayant obtenu α , on calcule : $\sigma_{bc} = (\overline{\sigma_{st}}/n)$. $\alpha/(1-\alpha)=6.92$ MPa

On vérifie que: $\sigma_{bc} \le 0.6.f_{cj} \rightarrow \sigma_{bc} = 6.92 \text{ MPa} \le \overline{\sigma_{bc}} = 15\text{MPa} \rightarrow \text{C.V}$

Puis on obtient: $A_s = \frac{\alpha.b.d.\sigma_{bc}}{(2\overline{\sigma_{st}})} = 7,88 \text{ cm}^2$

• Choix d'armature :

 $11T10 = 8,64cm^2 \rightarrow e = 10cm$

III.4.1.2.4 Les armatures de répartition :

$$A_r = \frac{A}{4} = \frac{8,64}{4} = 1,83 \text{ cm}^2$$

• **Choix**: $A_r = 4T10 = 3,14cm^2/ml \rightarrow e=20cm$

III.4.1.3 Vérification de l'effort tranchant:

Pour des fissurations préjudiciables on doit vérifier que:

$$T_u = (1,35.G+1,5.Q).L+1,35.P$$

 $T_u = 27,04 \text{ KN}$

$$\tau_u = \frac{T_u}{b.\,d} \le \overline{\tau_u}$$

Avec : $\overline{\tau_u} = \min[\frac{0.15.f_{c28}}{\gamma_b}; 4 MPa) = \min(2.5; 4) = 2.5 MPa$

Tu = 27,04 KN ⇒τu = $\frac{27040}{135.1000}$ = 0,20 MPa< 2,5 MPa → Condition vérifiée

III.4.1.4 Vérification de la flèche:

Selon l'article B.6.5.1 CBA93; les conditions à vérifier pour ne pas avoir une vérification sur les flèches limite pour les poutres:

$$\begin{cases} \frac{h}{L} \ge \frac{M^s_x}{20 \times M_x} \\ \frac{A_s}{b \times d} \le \frac{2}{f_e} \end{cases}$$

Etude des éléments non structuraux

$$\frac{15}{145} \ge \frac{19,31}{20 \times 19,31} \rightarrow 0,103 > 0,05 \rightarrow C.V$$

$$\frac{8,64}{100 \times 13.5} \le \frac{2}{400} \rightarrow 0,006 \ge 0,005 \rightarrow \text{C.N.V}$$

Donc: la vérification de la flèche est nécessaire.

Soit:

J: la charge permanente avant la mise en place des cloisons.

Gcloison: la charge permanente après la mise en place des cloisons.

P: la charge total (p=g+charge d'exploitation).

 f_{gi} et f_{gv} : les flèches dues aux charges g.

f_{ji} : la flèche due aux charge j.

fpi: la flèche due aux charge p.

a)
$$F_v = \frac{M.l^2}{4.E_v.I_{Ev}}$$

b)
$$F_i = \frac{M.l^2}{4.E_i.I_{Fi}}$$

Art : (Annexe D CBA 93) et f < $\overline{f} = \frac{1}{500}$ (L < 5m.Art B.6.5.3 CBA 93)

$$E_v = 3700.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 10818,9 \text{ MPa}$$

$$E_i = 11000.\sqrt[3]{f_{c28}} = 3700.\sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$I_{\text{fv}} = \frac{1, 1.I_0}{1 + \lambda_v \times \mu}$$

$$I_{fi} = \frac{i_0}{1 + \lambda_i \times \mu}$$

Avec:

$$V_1 = \frac{\sum A_i \cdot y_i + n \cdot A \cdot d}{\sum A_i + n \cdot A} = \frac{15.100.7, 5 + 15.8, 64.13, 5}{15.100 + 15.8, 64} = 7,98 \text{ cm} \quad 1629.6$$

$$V_2 = h - V_1 = 7,02 \text{ cm}$$

$$I_0 = \frac{b.V_1^3}{3} + \frac{b.V_2^3}{3} + n.A.(V_2 - c)^2$$

Etude des éléments non structuraux

$$I_0 = 32419.6 \text{ cm}^4$$

$$\lambda_{\rm i} = \frac{0.05.f_{c28}}{5.\rho}$$

Ave

$$\rho = \frac{A_s}{h \times d} = \frac{8,64}{100.13.5} = 0,0064$$

Donc:

$$\lambda_{\rm i} = \frac{0.05.f_{t28}}{5.\rho} = \frac{0.05.2.1}{5.0,0064} = 3.3$$

$$\lambda_v = \frac{2}{5} \, \lambda_i = 1.31$$

1) Calcul fgv:

$$F_{gv} = \frac{M^{ser} g . l^2}{10.E_v . I_{Fgv}}$$

$$M^{\text{ser}}_{g} = -G.\frac{L^{2}}{2} - P.L = -4.97.\frac{1.45^{2}}{2} - 7.182.1.45 = 15.64 \text{ KN.m}$$

$$E_v = 3700. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 10818,9 \text{ MPa}$$

$$\rho_1$$
=100. $\rho = 0.640 \Rightarrow \beta_1 = 0.8825$

$$\sigma_s^g = ? \rightarrow A = \frac{M^{\text{ser}}_g}{\sigma_s^g.\beta_1.d} \rightarrow \sigma_s^g = \frac{M^{\text{ser}}_g}{A.\beta_1.d} = \frac{15640}{8,64.0,8825.13,5} = 152 \text{ MPa}$$

$$\mu_g = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s^g + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,0064.152 + 2,1} = 0,39$$

$$I_{\text{fgv}} = \frac{1,1.I_0}{1 + \lambda_v \times \mu_g} = \frac{1,1.32419,6}{1 + 1,31.0,39} = 23602,9 \text{ cm}^4$$

$$F_{gv} = \frac{\text{M.l}^2}{4.\text{E}_v.\text{I}_{Fgv}} = \frac{15640 \cdot 1,45^2.10^4}{4.10818,9.23602,9} = 0,32 \text{ cm}$$

2) Calculb fij:

$$F_{i} = \frac{M.l^{2}}{10.E_{i}.I_{Fij}}$$

$$M^{\text{ser}}_{j} = (G - G_{\text{cloison}}) \cdot \frac{L^{2}}{2} - P.L = (4.97 - 0.9) \cdot \frac{1.45^{2}}{2} + 7.182 \cdot 1.45 = 14.70 \text{ KN.m}$$

$$E_i = 11000. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$\rho_1 = 100. \ \rho = 0.640 \Rightarrow \beta_1 = 0.8825$$

$$\sigma_s^j = ? \rightarrow A = \frac{M^{\text{ser}}_j}{\sigma_s^j.\beta_1.d} \rightarrow \sigma_s^g = \frac{M^{\text{ser}}_j}{A.\beta_1.d} = \frac{14700}{8,64.0,8825.13,5} = 142,8 \text{ MPa}$$

$$\mu_j = 1 - \frac{1,75.f_{t28}}{4.\rho.\sigma_s^j + f_{t28}} = 1 - \frac{1,75.2,1}{4.0,0064.142,8 + 2,1} = 0,36$$

$$I_{fij} = \frac{1,1.I_0}{1+\lambda_i \times \mu_j} = \frac{1,1.32419,6}{1+3,3.0,36} = 16261,3 \text{ cm}^4$$

Etude des éléments non structuraux

$$F_{ij} \! = \! \frac{{}^{M.l^2}}{{}^{4.E_i,I_{Fij}}} = \! \frac{{}^{14700\;.1,45^2.10^4}}{{}^{4.32164},2.16261,3} \! = \! 0,\!15\;cm$$

3) Calcul fpi:

$$F_{pi} = \frac{M^{ser} p . l^2}{4.E_i.I_{Fi}}$$

$$M^{\text{ser}}_{p} = G + Q$$
). $\frac{L^{2}}{2} - P.L = (4,97+3,5)$. $\frac{1,45^{2}}{2} + 7,182.1,45 = 19,31 \text{ KN.m}$

$$E_i = 11000. \sqrt[3]{f_{c28}} = 3700. \sqrt[3]{25} = 32164,2 \text{ MPa}$$

$$\rho_1$$
=100. $\rho = 0.640 \Rightarrow \beta_1 = 0.8825$

$$\sigma_{S}^{p} = ? \rightarrow A = \frac{M^{\text{ser}}_{p}}{\sigma_{S}^{p}.\beta_{1}.d} \rightarrow \sigma_{S}^{p} = \frac{M^{\text{ser}}_{p}}{A.\beta_{1}.d} = \frac{19310}{8,64.0,8825.13,5} = 187,6 \text{ MPa}$$

$$\mu_p = 1 - \frac{1.75.f_{t28}}{4.\rho.\sigma_s^p + f_{t28}} = 1 - \frac{1.75.2.1}{4.0.0064.187.6 + 2.1} = 0.47$$

$$I_{\text{fpi}} = \frac{1,1.I_0}{1+\lambda_i \times \mu_p} = \frac{1,1.32419,6}{1+3,3.0,47} = 14023,4 \text{ cm}^4$$

$$F_{pi} = \frac{\text{M.I}^2}{\text{4.E}_i.I_{Fpi}} = \frac{19310.1,45^2.10^4}{4.32164,2.14023,4} = 0,23 \text{ cm}$$

4) Calcul fgi:

$$F_{gi} = \frac{M.l^2}{4.E_i.I_{Fgi}}$$

$$I_{\text{fgi}} = \frac{1,1.I_0}{1+\lambda_i \times \mu_g} = \frac{1,1.32419,6}{1+3,3.0,39} = 15593,2 \text{ cm}^4$$

$$F_{gi} = \frac{M.l^2}{4.E_i.I_{Fgi}} = \frac{15640.1,45^2.10^4}{4.32164,2.15593,2} = 0,16 \text{ cm}$$

$$\Delta f_t = \left(f_{gv} - f_{ji}\right) + \left(f_{pi} - f_{gi}\right)$$

$$\Delta f_t = (0.32 - 0.15) + (0.23 - 0.16)$$

$$\Delta f_t = 0.24$$
cm

• Flèche admissible :

$$l = 1,45 \text{ m} < 5m \rightarrow \Delta f_{t max} = \frac{l}{500} = \frac{432}{500} = 0,29 \text{ cm}$$

✓ Conclusion :

$$\Delta f_t = 0.24 \text{ cm} < \Delta f_{t max} = 0.29 \text{ cm} \rightarrow \text{C.V}$$

Etude des éléments non structuraux

III.4.1 Tableau récapitulatif de ferraillage des balcons:

Туре	M _u (KN.m)	M _s (KN.m)	T _u (KN)	A (cm ²)	ELS	A (cm²) à ELS	Vérification de l'effort tranchant	Vérification de la flèche
1	26,63	19,31	27,04	8T10	C.N.V	11T10	C.V	C.V
2	19,23	13,74	21,6	6T10	C.N.V	8T10	C.V	N'est pas nécessaire
3	23,73	17,23	25,72	7T10	C.N.V	10T10	C.V	C.V
4	14,34	10,22	13,8	4T10	C.N.V	6T10	C.V	N'est pas nécessaire

III.4.1.5 Calcul de contre poids:

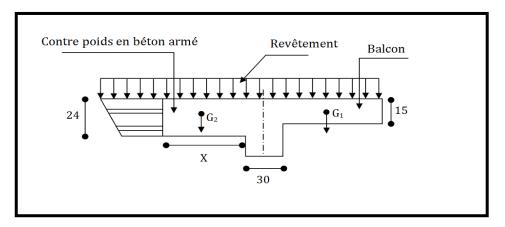


Figure III.4.6: schéma statique de contre poids

• Type 1 et 2:

On prend le cas favorable:

- Type: 02
- 1) Poids du balcon:

 G_1 =0,15.1,6.1.25 =6KN

2) Pour le contre balancement :

G₂=0,24.X.1.25 =6.X KN

60%.G₁= G₂=0,6.6=6.X

 $G_2=0,6 \text{ m}$

Etude des éléments non structuraux

■ Type 3 et 4:

On prend le cas défavorable:

- Type: 04
- 1) Poids du balcon:

 G_1 =0,15.1,44.1.25 =5,4KN

2) Pour le contre balancement :

 G_2 =0,24.X.1.25 =6.X KN

 $60\%.G_1 = G_2 = 0,6.5,4 = 6.X$

 $G_2=0,54 \text{ m}$

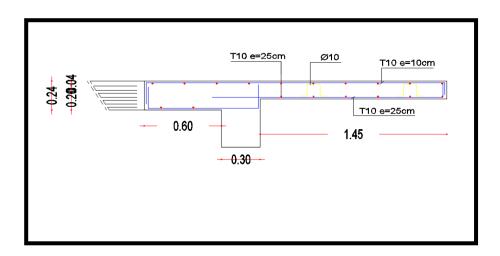


Figure III.4.7: balcon type 01

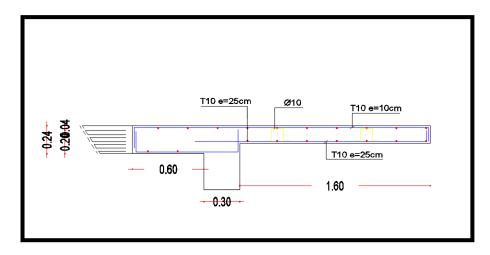


Figure III.4.8: balcon type 02

Etude des éléments non structuraux

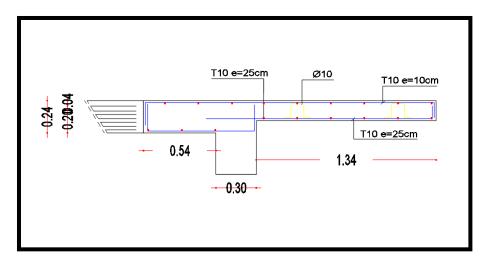


Figure III.4.9: balcon type 03

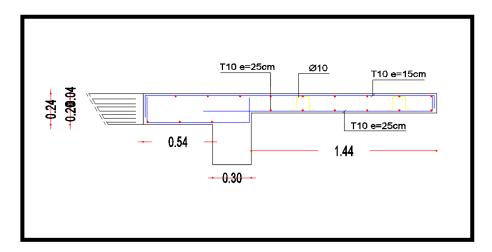


Figure III.4.10: balcon type 04

Etude des éléments non structuraux

III.5 Etude de l'acrotère:

Rebord périphérique placé au dernier niveau d'un bâtiment, au-dessus de la terrasse ou du point bas de la toiture, réalisé en maçonnerie, en béton armé ou par prolongement du bardage métallique.

D'après notre type de terrasse on prend les dimensions d'acrotère situé dans la figure III.5.2 :

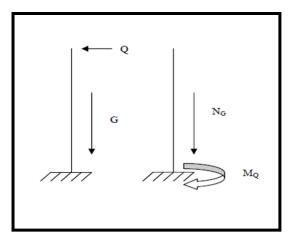


Figure III.5.1 Schéma statique de l'acrotère

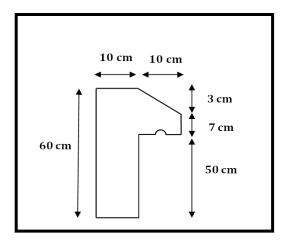


Figure III.5.2 Coupe transversale de l'acrotère

III.5.1 Détermination des sollicitations:

$$S = 0,6.0,1+0.07.0,1+\frac{0,1.0,03}{2} = 0,0685m^2 = 685cm^2$$

$$G=\rho$$
. $S=25.0,0685=1,713$ KN/ml

$$G_0 = (0.6+0.1.2+0.104+0.07+0.5).0.02.18=0.53KN$$

$$W_p = G + G_0 = 1,713 + 0,53 = 2,24 \text{ KN/ml}$$

Q=1KN/ml

S: la surface transversale totale de l'acrotère.

G: poids propre de l'acrotère.

 $G_{0:}$ poids de l'enduit en ciment.

 $\mathbf{W}_{\mathbf{p}:}$ poids totale de l'acrotère.

Q: la charge d'exploitation.

Etude des éléments non structuraux

III.5.2 Vérification de l'effort dû au séisme :

Le **RPA** exige de vérifier les éléments de structure sous l'effet des forces horizontales suivant la formule (**Art 6.2.3**) :

$$F_p = 4.A.C_p.W_p$$

 C_p : facteur de force horizontale variante entre (0,3; 0,8).

A: coefficient d'accélération.

 $\mathbf{F_p}$: La force due a main courante majoré.

$$F_p = 4.0,15.0,8.2,24 = 1,08 \text{ KN}$$

Alors:

M= F_p.L=1,08.0,6=0,648 KN.m

III.5.3 Calcul des sollicitations:

❖ ELU:

 $M_u=1,5.M=1,5.0,648=0,972$ KN.m

$$N_u = 1,35$$
. $W_p = 1,35.2,24 = 3,024$ KN

& ELS:

 $M_s = M = 0.648 \text{ KN.m}$

 $N_s = W_p = 2,24 \text{ KN}$

III.5.4 Ferraillage de l'acrotère:

& ELU:

$$e_1 = \frac{M_u}{N_u} = \frac{0.972}{3.024} = 0.321m$$

 $e_a = max (2cm ; l/250) = 2cm = 0.02m$

$$e_2 = \frac{3.l_f^2}{(10000.h).(2+\alpha.\emptyset)} = \frac{3.(2.0,6)^2}{(10000.0,1).2} = 0,0065m$$

$$\alpha$$
=10.(1-(M_u/1,5.M_{ser})=0

$$l_f^2: 2.l_0$$

Ø : Le rapport de la déformation finale due au fluage a la déformation instantanée sous la charge considérée; ce rapport est généralement pris égal à 2.

Etude des éléments non structuraux

III.5.4.1 L'excentricité totale de calcul :

$$e_t = e_1 + e_a + e_2 = 0.348 \text{ m}$$

L'effort normal est un effort de compression se trouvant à l'extérieur de la section.

Donc la section est partiellement comprime (S.P.C); le calcul se fait a la flexion simple avec un moment fictifs M_f calculé par rapport aux armatures tendues.

$$M_u = N_u.e_t = 3,024.0,348 = 1,052 \text{ KN.m}$$

$$M_f = N_u.e_A = M_u + N_u. (d-h/2+e_t) = 1,052 + 3,024. (0,09 - \frac{0,1}{2} + 0,348) = 2,23 \text{ KN.m}$$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\sigma_{b} = 0.85. \frac{f_{c28}}{\gamma_{b}} = 0.85. \frac{25}{1.5} = 14.20 \text{ MPa}$$

$$\mu = \frac{M_u}{\sigma_{\rm b}, b.d^2} = \frac{2,23 \cdot .10^3}{14,2.100.9^2} = 0,019$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L > 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ MPa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,024

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.99$$

A =
$$\frac{M_u}{\sigma_{\rm S}, \beta, d}$$
 = $\frac{2,23.10^3}{348.0,99.9}$ = 0,71 cm²/ml

On revient à la flexion composée:

$$A_s = A - \frac{N_u}{100.\sigma_s} = 0.71 - \frac{3.024}{100.348} = 0.62 \text{ cm}^2/\text{ml}$$

III.5.4.2 Condition non fragilité:

$$A_{min} = 0.23 \cdot \frac{f_{tj}}{f_e}$$
.b.d= 1.08 cm²/ml

$$A < A_{min} = 1,08 \text{ cm}^2/\text{ml}$$

• Choix d'armature :

$$A = 4T10 = 3,14 \text{ cm}^2/\text{ml}$$

III.5.4.3 Armature de répartition:

$$A_r = \frac{A}{4} = 0.785 \text{ cm}^2/\text{ml}$$

• Choix d'armature :

Etude des éléments non structuraux

 $A = 4T10 = 3,14 \text{ cm}^2/\text{ml}$

III.5.4.4 L'espacement des armatures:

 $e \le min (3.h; 33 cm) \rightarrow e \le min (30 cm; 33 cm)$

ELS:

 $M_s = M = 0,648 \text{ KN.m}$

$$N_s = W_p = 2,24 \text{ KN}$$

$$e_A = \frac{M_s}{N_s} + (d - \frac{h}{2}) = \frac{0.648}{2.24} + 0.04 = 0.33m$$

$$e_A = 0.33 \text{m} > \frac{h}{6} = 0.016 \text{m}$$

III.5.4.5 Détermination des contraintes:

C: centre de pression.

c : la distance de point C a l'arrête la plus comprimée.

Y_{c:} la distance du point C a l'axe neutre.

 $Y_{ser} = y_c + c$

N: effort de comprissions.

$$C = \frac{h}{2} - e_A = 0.05 - 0.33 = -0.28 \text{m}$$

Donc: C se trouve à l'extérieur de la section.

$$P=-3.c^2-(c-d').6.n.A'_s/b+(d-c).6.n.A_s/b$$

$$q = -2.c^2 - (c-d').6.n.A'_s/b - (d-c).6.n.A_s/b$$

$$q=-2.(-28)^3-(9+28)^2.6.90.3,14/100$$

• y_c la solution de :

$$y_c^3+p. y_c+q=0$$

$$y_c^3+-1724,63$$
. $y_c+20691,23=0$

Donc la résolution de l'équation est :

$$\Delta = q^2 + (4.p^3/27)$$

$$\Delta$$
= 20691,23²+ (4. (-1724,63)³/27)

$$\Delta$$
=-3,32.10⁸< 0

$$\cos \varphi = (3. \text{ q/2. p}).\sqrt{-3/p} = 0.75 = 138.6$$

Etude des éléments non structuraux

$$a=2.\sqrt{-p/3}=47,95$$

$$y_1 = a.\cos(\varphi/3) = 33,19 \text{ cm}$$

$$y_2 = a.\cos(\varphi/3 + 120) = -46,57 \text{ cm}$$

$$y_3 = a.\cos(\varphi/3 + 240) = 13,38 \text{ cm}$$

$$y_c = \max(y_1; y_2; y_3) = 33,19$$

Donc:

$$Y_{ser} = y_c + c$$

$$Y_{ser} = 33,19 - 28 = 5,19 cm$$

III.5.4.6 Calcul des contraintes:

$$I = \frac{b. y_{ser} 3}{3 + 15. A. (d - y_{ser})^2}$$

$$I = \frac{100. (-5.19)^2}{3} + 15.3,14. (9 - 5.19)^2$$

$$I = 1581.6 \text{ cm}^3$$

$$K = \frac{N_{\text{ser .} y_{\text{C}}}}{i} = \frac{2,24.33,19}{1581,6} = 0,047$$

$$\sigma_{\text{bc}} = \text{K.} y_{\text{ser}} = 0,047.5,19 = 2,4 \text{ Mpa}$$

$$\sigma_{\text{S}} = \text{n. K. } (d - y_{\text{ser}}) = 15.0,047. (9 - 5,19) = 26,9 \text{Mpa}$$

L'acrotère est expose aux intempéries donc la fissuration est considérée comme préjudiciable:

$$\bar{\sigma}_s = \min\{\frac{2}{3}.400; 110.\sqrt{1,6.2,1}\}$$
 FeE400 $\rightarrow \eta = 1,6 \rightarrow f_e = 400MPa$
$$\bar{\sigma}_s = \min\{\frac{2}{3}.400; 110.\sqrt{1,6.2,1}\}$$

$$\sigma_s = 26,9\text{Mpa} < \bar{\sigma}_s = \min(266,66; 201,63) = 201,63\text{MPa}$$

$$\sigma_{bc} = 2,4\text{ Mpa} < \overline{\sigma_b} = 0,6.f_{c28} = 15\text{ Mpa}$$

Donc:

$$\begin{array}{ll}
\checkmark & \sigma_{s} < \overline{\sigma}_{s} \\
\checkmark & \sigma_{bc} < \overline{\sigma_{b}}
\end{array}$$

Les armatures calculé en ELU sont maintenues.

Etude des éléments non structuraux

III.5.5 Vérification des contraintes de cisaillement:

$$\tau_u = \frac{T_u}{b.d} \le \overline{\tau_u}$$

$$\overline{\tau_u} = 0.05$$
. $f_{c28} = 1.25$ MPa

$$\tau_u = \frac{T_u}{b.d} = \frac{1,62}{100.9} = 0,0018$$

✓ Conclusion:

$$\tau_u \leq \overline{\tau_u}$$

Les armatures transversales ne sont pas nécessaires

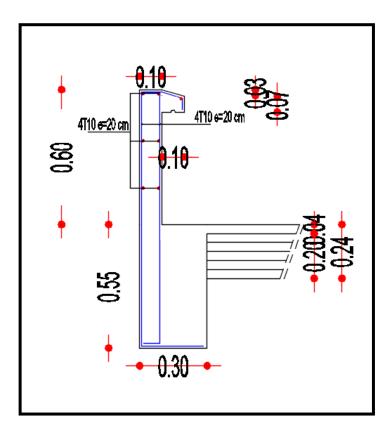


Figure III.5.3: schéma de ferraillage de l'acrotère (Terrasse inaccessible)

Etude dynamique

Etude dynamique

Etude dynamique

IV.1 Introduction:

Les présentes règles visent à assurer une protection acceptable des vies humaines et des constructions vis à vis des effets des actions sismiques par une conception et un dimensionnement appropriés Pour des ouvrages courants, les objectifs ainsi visés consistent à doter la structure : - d'une rigidité et d'une résistance suffisante pour limiter les dommages non structuraux et éviter les dommages structuraux par un comportement essentiellement élastique de la structure face à un séisme modéré, relativement fréquent. - d'une ductilité et d'une capacité de dissipation d'énergie adéquates pour permettre à la structure de subir des déplacements inélastiques avec des dommages limités et sans effondrement, ni perte de stabilité, face à un séisme majeur, plus rare. Pour certains ouvrages importants, la protection visée est encore plus sévère puisqu'il faudra que l'ouvrage puisse demeurer opérationnel immédiatement après un séisme majeur.

IV.2 Les méthodes du calcul:

L'étude sismique a pour but de calculer les forces sismiques; ce calcul peut être mené par les trois méthodes qui sont:

- **1.** la méthode statique équivalente.
- 2. la méthode d'analyse modale spectrale et
- 3. la méthode d'analyse dynamique par accélérogrammes

1. Méthode statique équivalente :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

Les forces sismiques horizontales équivalentes seront considérées appliquées successivement suivant deux directions orthogonales caractéristiques choisies par le projeteur. Il faut souligner toutefois que les forces et les déformations obtenues pour l'élément à partir des méthodes d'analyse statiques pour les charges de conception recommandées sont inférieures aux forces et aux déformations qui seraient observées sur la structure sous les effets d'un séisme majeur pour lequel les charges ont été spécifiées.

Ce dépassement des forces est équilibré par le comportement ductile qui est fourni par les détails de construction de l'élément.

C'est pourquoi l'utilisation de cette méthode ne peut être dissociée de l'application rigoureuse des dispositions constructives garantissant à la structure:

- Une ductilité suffisante
- La capacité de dissiper l'énergie vibratoire transmise à la structure par des secousses sismiques majeures

2. La méthode d'analyse modale spectrale :

Etude dynamique

Elle peut être utilisée dans tous les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des Effets engendrés dans la structure par les forces sismiques représentées par un spectre de Réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

• Méthode de calcul utilisé :

❖ La méthode d'analyse modale spectrale :

Modélisation :

- a) Pour les structures régulières en plan comportant des planchers rigides, l'analyse est faite séparément dans chacune des deux directions principales du bâtiment. Celui-ci est alors représenté dans chacune des deux directions de calcul par un modèle plan, encastré à la base et où les masses sont concentrées au niveau des centres de gravité des planchers avec un seul DDL en translation horizontale.
- b) Pour les structures irrégulières en plan, sujettes à la torsion et comportant des planchers rigides, elles sont représentées par un modèle tridimensionnel, encastré à la base et où les masses sont concentrées au niveau des centres de gravité des planchers avec trois (03) DDL (2 translations horizontales et une rotation d'axe vertical).
- c) Pour les structures régulières ou non comportant des planchers flexibles, elles sont représentées par des modèles tridimensionnels encastrés à la base et à plusieurs DDL par plancher.
- d) La déformabilité du sol de fondation doit être prise en compte dans le modèle toutes les fois où la réponse de la structure en dépend de façon significative.
- e) Le modèle de bâtiment à utiliser doit représenter au mieux les distributions des rigidités et des masses de façon à prendre en compte tous les modes de déformation significatifs dans le calcul des forces d'inerties sismiques (ex: contribution des zones nodales et des éléments non structuraux à la rigidité du bâtiment).
- f) Dans le cas des bâtiments en béton armé ou en maçonnerie la rigidité des éléments porteurs doit être calculée en considérant les sections non fissurées. Si les déplacements sont critiques particulièrement dans le cas de structures associées à des valeurs élevées du coefficient de 48 comportements, une estimation plus précise de la rigidité devient nécessaire par la prise en compte de sections fissurées.

Etude dynamique

IV.1.1 Tableau de coefficient d'accélération de zone :

	Zone						
Groupe	II IIa IIb III						
1A	0,15	0,25	0,30	0,40			
1B	0,12	0,20	0,25	0,30			
2	0,10	0,15	0,20	0,25			
3	0,07	0,10	0,14	0,18			

 ${f D}$: facteur d'amplification dynamique moyen, fonction de la catégorie de site, du facteur decorrection d'amortissement (η) et de la période (T)

$$\begin{cases} 2,5. & \eta & 0 \leq T \leq T_2 \\ 2,5. & \eta \cdot (\frac{T_2}{T})^{\frac{2}{3}} & T_2 \leq T \leq 3,0s \\ 2,5. & \eta \cdot (\frac{T_2}{3})^{\frac{2}{3}} \cdot (\frac{3}{T})^{\frac{5}{3}} & T \geq 3,0s \end{cases}$$

IV.1.2 tabelau de période caractéristique, associée à la catégorie du site:

Site	S ₁	S_2	S_3	S ₄
T _{1 (sec)}	0,15	0,15	0,15	0,15
T _{2 (sec)}	0,30	0,40	0,50	0,70

Q: facteur de qualité

Le facteur de qualité de la structure est fonction de :

- la redondance et de la géométrie des éléments qui la constituent
- la régularité en plan et en élévation
- la qualité du contrôle de la construction

La valeur de Q est déterminée par la formule: Q=1+ $\sum_{1}^{5} P_{q}$

Pq est la pénalité à retenir selon que le critère de qualité q " est satisfait ou non".

Etude dynamique

W: poids total de la structure. **R**: coefficient de comportement

Les combinaisons d'action:

• **E.L.U:** 1.35G+1.5Q

• **E.L.S**: G+Q

• **ACC:** G+Q+E et G+Q-E

0,8.G+E et 0,8.G-E

IV.3 Présentation du logiciel:

Logiciel Robot est un logiciel de calcul et d'analyse des structures nous permet de représenter une structure réelle par un modèle numérique que le logiciel peut le traiter et l'analyser et détermine les efforts internes (moments, efforts normaux, efforts tranchants), qui résistent les charges extérieurs appliquées sur la structure, par utilisation de la méthode des éléments finis.

En utilisant Robot on peut:

- faire l'analyse structurale pour n'importe quelle structure quel que soit la complexité, pour déterminer les différents types de résultats de calculs (efforts internes, déplacements ...).
- régler les préférences (langue, affichage,..) et préférences de l'affaire (unités et formats, matériaux, catalogues, normes de conception,...).
- dimensionner tous les éléments de la structure et faire le ferraillage des éléments en béton et l'assemblage des éléments en charpente selon les codes mondial de dimensionnement.
- effectuer l'analyse statique et dynamique de la structure.
- affecter et, ou de modifier le type de barres lors de la définition du modèle de la structure et pendant la simulation de calcul.
- vérifier la structure modélisée avant de lancer le calcul pour connaître les erreurs et les avertissements et les objets liés à ces erreurs.
- faire les plans d'exécution et les notes de calcul.

Etude dynamique

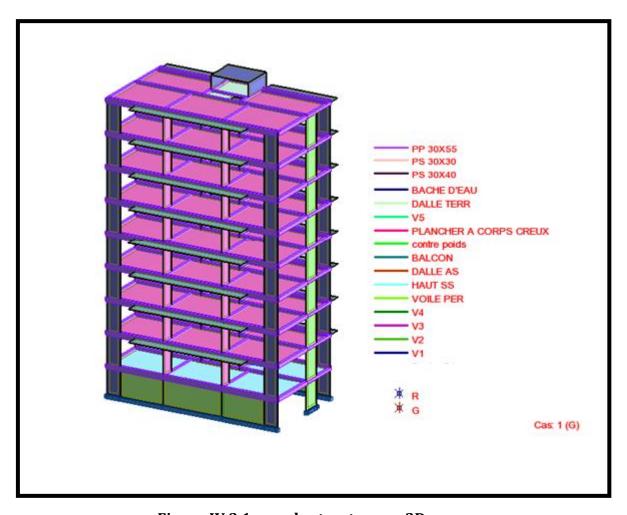


Figure IV.3.1: vue de structure en 3D

Etude dynamique

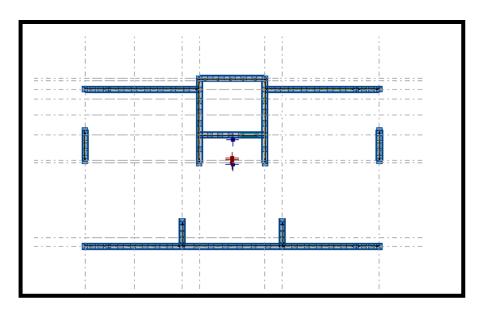


Figure IV.3.2: disposition des voiles de contreventement et les voiles périphérique

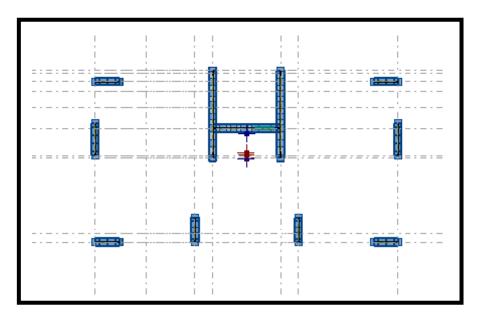


Figure IV.3.3: disposition des voiles de contreventement

Etude dynamique

IV. 3.1 tabelau de résultat d'analyse modale :

Cas	Mode	Période (Sec)	Sum UX	Sum UY	Masse modale UX	Masse modale UY
Modale	1	0,84	3,93	0,00	3,93	0,00
Modale	2	0,68	3,96	63,03	0,03	63,02
Modale	3	0,60	65,59	63,07	61,63	0,04
Modale	4	0,23	66,56	63,07	0,97	0,00
Modale	5	0,15	80,59	63,22	14,03	0,15
Modale	6	0,14	80,73	82,21	0,14	18,99
Modale	7	0,10	81,15	82,21	0,42	0,00
Modale	8	0,08	85,10	82,22	3,95	0,02
Modale	9	0,06	85,56	82,23	0,46	0,00
Modale	10	0,06	85,58	89,52	0,01	7,29
Modale	11	0,05	87,39	89,52	1,81	0,01
Modale	12	0,04	87,92	89,52	0,54	0,00
Modale	13	0,04	87,93	93,31	0,01	3,78
Modale	14	0,04	88,76	93,33	0,83	0,02
Modale	15	0,03	89,33	93,33	0,57	0,00
Modale	16	0,03	89,67	93,33	0,34	0,00
Modale	17	0,03	90,15	93,33	0,48	0,00

Etude dynamique

IV. 3.2 Estimation de la période fondamentale de la structure: (RPA Art 4.2.4):

$$T = C_T \cdot h_N^{3/4}$$

T statique	Min	T dynamique	1,3 T _s	vérification
$T = C_T.h_N^{3/4}$	0,643s	0,84	0,84	$T_e \le T_{dyn} \le 1,3.T_e$
0,643				

Donc condition vérifiée.

IV.4.2 Nombre de mode à considérer: (RPA Art 4.3.4)

- a) Pour les structures représentées par des modèles plan dans deux direction orthogonale le nombre des modes de vibration a retenir dans chacun des deux direction d'excitation doit être tel que :
- -La somme des mases modales effectives pour les modes retenus soit égale 90% au moins de la masse totale de la structure.
- -Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum de modes à retenir est de trois (03) dans chaque direction considérée.

b) Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que :

$$K \ge 3 \sqrt{N}$$
 et $T_K \ge 0.20$ sec

Où : N est le nombre de niveaux au dessus du sol et Tk la période du mode K.

Cas	Mode	Période (Sec)	Sum UX	Sum UY	Masse modale UX	Masse modale UY
Modale	17	0,03	90,15	93,33	0,48	0,00

Conclusion:

✓ Donc la condition est vérifiée.

Etude dynamique

IV.5 Vérification risque de torsion (RPA Art 4.3.7):

Quand il est procédé à une analyse par modèles plans dans les deux directions orthogonales. Les effets de la torsion accidentelle d'axe vertical sont à prendre en compte tel que décrit au paragraphe 4.2.7. Dans le cas où il est procédé à une analyse tridimensionnelle, en plus de l'excentricité théorique \pm 0,05.L, (L étant la dimension du calculée, une excentricité accidentelle (additionnelle) égale à plancher perpendiculaire à la direction de l'action sismique) doit être appliquée au niveau du plancher considéré et suivant chaque direction

D'âpre le logiciel ROBOT:

Coordonnées du centre de gravité de la structure:

X = 9,480 (m)

Y = 5,558 (m)

Z = 12,834 (m)

Coordonnées du centre de gravité de la structure avec la prise en compte des masses dynamiques globales:

X = 9,484 (m)

Y = 5,452 (m)

Z = 13,010 (m)

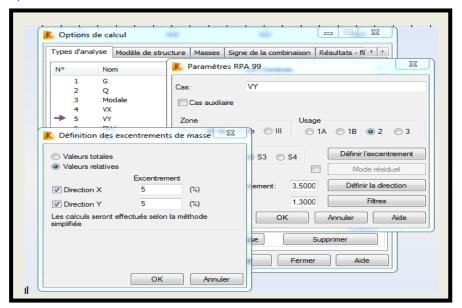
$$e_{cal\ x} = |X_G - X_R| = |9,480 - 9,484| = 0,004 \text{ m}$$

$$\rm e_{cal~y}$$
 = $|\rm Y_G - \rm Y_R|$ =|5,558 $-$ 5,452 $|$ = 0,106 m

$$e_{acc} = 5\%.L_X = 0,949 \text{ m}$$

$$e_{acc} = 5\%.L_Y = 0,506 \text{ m}$$

X-X:


$$e = max (e_{acc}; e_{cal}) = 0.949 m$$

Y-Y:

$$e = max (e_{acc}; e_{cal}) = 0.506 m$$

Etude dynamique

Donc il faut ajoute e_{max} dans le **robot** :

IV.6 Calcul la force sismique a la base :

La force sismique totale V, appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales

$$V = \frac{A. D. Q}{R}. W$$

W: poid total de la structure.

Q : facteur de qualité.

D: facteur d'amplification dynamique moyen.

R : coefficient de comportement.

A: coefficient d'accélération de zone.

IV.6.1 Facteur de qualité:

1) Direction x-x:

$$Q = 1 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.1 = 1.3$$

Etude dynamique

2) Direction y-y:

IV.6.2 Poids total de la structure: (d'âpre le logiciel ROBOT)

$$W = 2166415,39 \text{ Kg}$$

IV.6.3 Facteur de correction d'amortissement:
$$\eta = \sqrt{\frac{7}{2+\zeta}}$$

IV.6.1: tableau de facteur de correction d'amortissement

	Porti	ques	Voiles ou murs	
Remplissage	Béton arme	acier	Béton arme/maçonnerie	
léger	6	4	10	
dense	7	5	10	

Donc:

$$\zeta: 10 \Rightarrow \eta = \sqrt{\frac{7}{2+\zeta}} = 0.764 \ge 0.7$$

IV.6.4 Facteur d'amplification dynamique moyen:

$$\begin{cases} 2,5.\eta & 0 \le T \le T_2 \\ 2,5.\eta. \left(\frac{T_2}{T}\right)^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2,5.\eta. \left(\frac{T_2}{3}\right)^{\frac{2}{3}}. \left(\frac{3}{T}\right)^{\frac{5}{3}} & T \ge 3.0s \end{cases}$$

On a:

$$T_1=0,15$$
; $T_2=0,50$

Etude dynamique

 $T = T_{empirique}$

Cas 02:

$$T_2 \le T \le 3.0s$$

$$D = 2.5.\eta.(T_2/T)^{2/3} = 1.6$$

• Coefficient de comportement :

Système voile porteur: R=3,5

• Coefficient d'accélération de zone :

$$A=0,15$$

IV.6.5 Vérification la force sismique a la base :

1) Direction x-x:

$$V_x = \frac{A.D.Q}{R}.W = \frac{0,15.1,6.1,3}{3,5}.21664,1539 = 1952,01 \text{ KN}$$

$$V_{dyn}$$
=1645,24KN >0,8. V_x = 1561,61 KN

Conclusion:

✓ Donc la condition est vérifiée.

2) Direction y-y:

$$V_y = \frac{A.D.Q}{R}.W = \frac{0,15.1,6.1,3}{3,5}.21664,1539 = 1952,01 KN$$

$$V_{dyn}$$
= 1594,91KN > 0,8. V_y = 1561,61 KN

Conclusion:

✓ Donc la condition est vérifiée.

Etude dynamique

IV.7. Vérification le renversement:

D'après RPA Art 4.41:

Les moments de renversement qui peut être cause par l'action sismique doit être calcule par rapport au niveau de contact sol-fondation.

Le moment stabilisent sera calculer en prenant en compte le poids total équivalant au poids de la construction au poids des fondations et éventuellement au poids du remblai :

$$\frac{M_S}{M_r} > 1.5$$

Sens X-X:

ETAGE	Vx (KN)	h (m)	W (KN)	Xg (m)	Mr (KN)	Ms (KN)	Vérification
1	1645,24	2,9			77,262		OK
2	1637,09	6,3			497,0364		OK
3	1584,66	9,7			862,3008		OK
4	1493,7	13,1			1199,8836		OK
5	1367,13	16,5	21664,15	9,480	1536,8976	205376,179	OK
6	1205,01	19,9			1902,162		OK
7	1004,36	23,3			2339,7588		OK
8	757,55	26,7			2917,944		OK
9	449,75	30,1			4263,63		OK

Sens Y-Y:

ETAGE	V _Y (KN)	h (m)	W (KN)	Yg (m)	Mr (KN)	Ms (KN)	Vérification
1	1594,92	2,9			166,85116		OK
2	1564,9	6,3			366,66126		OK
3	1498,93	9,7			500,55348		OK
4	1408,87	13,1			654,23218		OK
5	1291,16	16,5	21664,15	5,558	803,85354	120409,3674	OK
6	1146,53	19,9			980,04214		OK
7	970,2	23,3			1206,69738		OK
8	753,09	26,7			1564,79932		OK
9	471,55	30,1			2620,8749		OK

Etude dynamique

IV.8 Justification vis à vis des déformations:

Les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents ne doivent pas dépasser 1.0% de la hauteur de l'étage à moins qu'il ne puisse être prouvé qu'un plus grand déplacement relatif peut être toléré

 $\Delta_k < 0.01$. h

 $\Delta k = \delta k - \delta k - 1$

Δm: déplacement non ductile

Δk: déplacement relatif du niveau "k" par rapport au niveau "k-1"

δk : Le déplacement horizontal à chaque niveau "k" de la structure est calculé comme suit

 $\delta_{\rm k} = R * \delta_{\rm ek}$

 δ_{ek} : déplacement dû aux forces sismiques Fi (y compris l'effet de torsion)

h_e: hauteur d'étage et R coefficient de comportement

Etage courant : Δ_k < 3,4

Sous sol : $\Delta_k < 2.9$

Etage	$\Delta_{m{k}^{ ext{X}}}$	$\Delta_{m{k} ext{y}}$
1	0,038	0,109
2	0,392	0,358
3	0,561	0,578
4	0,644	0,735
5	0,686	0,841
6	0,695	0,906
7	0,676	0,943
8	0,638	0,946
9	0,640	0,875

Conclusion:

✓ Donc la condition est vérifiée.

Etude dynamique

IV.7 Justification vis à vis de l'effet P-Δ

Les effets du 2° ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\Delta = P_k \cdot \Delta_k / V_k \cdot h_k \le 0.10$$

Pk : poids total de la structure et des charges d'exploitation associées au dessus du niveau « k »,

$$\sum_{i=k}^{n} (W_{Gi} + \beta W_{Qi})$$

Vk: effort tranchant d'étage au niveau "k"

 Δ_k : Déplacement relatif du niveau « k » par rapport au niveau « k-1 »

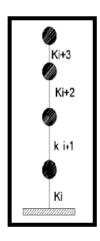
hk: hauteur de l'étage « k »

Si $0.10 < \theta_k < 0.20$, les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1° ordre par le facteur $1/(1-\theta_k)$.

Si k > 0,20, la structure est potentiellement instable et doit être redimensionnée.

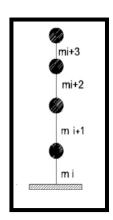
Sens X-X:

Etage	P	Δ	V	h	θ	Vérification
1	-21245,28	0,038	1645,24	2,9	0,001692	OK
2	-18585	0,392	1637,09	3,4	0,013089	OK
3	-16301,33	0,561	1584,66	3,4	0,016973	OK
4	-14017,7	0,644	1493,7	3,4	0,017775	OK
5	-11734,06	0,686	1367,13	3,4	0,017317	OK
6	-9450,43	0,695	1205,01	3,4	0,016031	OK
7	-7166,79	0,676	1004,36	3,4	0,014187	OK
8	-4883,16	0,638	757,55	3,4	0,012096	OK
9	-2598,94	0,64	449,75	3,4	0,010877	OK


Etude dynamique

Sens Y-Y:

Etage	P	Δ	V	h	θ	Vérification
1	-21245,28	0,108	1594,92	2,9	0,004961	OK
2	-18585	0,356	1564,9	3,4	0,012435	OK
3	-16301,33	0,571	1498,93	3,4	0,018264	OK
4	-14017,7	0,728	1408,87	3,4	0,021304	OK
5	-11734,06	0,835	1291,16	3,4	0,022319	OK
6	-9450,43	0,9	1146,53	3,4	0,021819	OK
7	-7166,79	0,931	970,2	3,4	0,020227	OK
8	-4883,16	0,935	753,09	3,4	0,017831	OK
9	-2598,94	0,911	471,55	3,4	0,006	OK


IV.8 Vérification de la rigidité de la structure :

1) Irrégularité en termes de rigidité (étage souple) :

$$K_i < 0.7 \text{ K i+1}$$
 $K_i < 0.8. \frac{\sum_{1}^{3} K_{i+1}}{3}$

1) Irrégularité en termes de la masse (poids) :

$$m_i > 1,5. m_i + 1$$

 $m_i < 1,5. m_i - 1$

Etude dynamique

1) Irrégularité en termes de rigidité (étage souple) :

• Sens x-x :

Niveau	Rigidité de étage direction X	K _i <0.7 K _{i+1}	Vérification	$K_{mi} = avg (K_{i-1,i-2,i-3})$	K_{i} <0,8 $\frac{\sum_{1}^{3}K_{i+1}}{3}$	Vérification
Etage 9	194401,22					
Etage 8	166893,25	0,86	RIGIDE	64800,40667	2,58	RIGIDE
Etage 7	166893,25	1,00	RIGIDE	120431,49	1,39	RIGIDE
Etage 6	166893,25	1,00	RIGIDE	176062,5733	0,95	RIGIDE
Etage 5	166893,25	1,00	RIGIDE	166893,25	1,00	RIGIDE
Etage 4	166893,25	1,00	RIGIDE	166893,25	1,00	RIGIDE
Etage 3	166893,25	1,00	RIGIDE	166893,25	1,00	RIGIDE
Etage2	166893,25	1,00	RIGIDE	166893,25	1,00	RIGIDE
Etage1	173633,5	1,04	RIGIDE	166893,25	1,04	RIGIDE

• Sens y-y:

Niveau	Rigidité de étage direction X	K _i < 0.7 K _{i+1}	Vérification	$K_{mi} = avg (K_{i-1,i-2,i-3})$	$K_{i} < 0.8 \frac{\sum_{1}^{3} K_{i+1}}{3}$	Vérification
Etage 9	194401,22					
Etage 8	166893,25	0,86	RIGIDE	64800,40667	2,58	RIGIDE
Etage 7	166893,25	1,00	RIGIDE	120431,49	1,39	RIGIDE
Etage 6	166893,25	1,00	RIGIDE	176062,5733	0,95	RIGIDE
Etage 5	166893,25	1,00	RIGIDE	166893,25	1,00	RIGIDE
Etage 4	166893,25	1,00	RIGIDE	166893,25	1,00	RIGIDE
Etage 3	166893,25	1,00	RIGIDE	166893,25	1,00	RIGIDE
Etage2	166893,25	1,00	RIGIDE	166893,25	1,00	RIGIDE
Etage1	173633,5	1,04	RIGIDE	166893,25	1,04	RIGIDE

Etude dynamique

2) Irrégularité en termes de la masse (poids) :

• Sens x-x:

Niveau	régularité de la masse direction X en Tonnes	$m_i > 1,5. m_{i+1}$	Vérificatio n de régularité	$m_i < 1,5. m_{i-1}$	Vérification
Etage 9	265,77			1,14	REGULIERE
Etage 8	232,87	0,88	REGULIERE	1,00	REGULIERE
Etage 7	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage 6	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage 5	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage 4	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage 3	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage2	232,87	1,00	REGULIERE	0,90	REGULIERE
Etage1	258,31	1,11	REGULIERE		

• Sens y-y:

Niveau	régularité de la masse direction X en Tonnes	$m_i > 1,5. m_{i+1}$	Vérificatio n de régularité	m _i < 1,5. m _{i-1}	Vérification
Etage 9	265,77			1,14	REGULIERE
Etage 8	232,87	0,88	REGULIERE	1,00	REGULIERE
Etage 7	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage 6	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage 5	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage 4	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage 3	232,87	1,00	REGULIERE	1,00	REGULIERE
Etage2	232,87	1,00	REGULIERE	0,90	REGULIERE
Etage1	258,31	1,11	REGULIERE	·	

Etude des éléments structuraux

CHAPITRE V

Etude des éléments structuraux

Etude des éléments structuraux

V.1 Ferraillage des poutres:

Les poutres sont des éléments structuraux qui transmettent les efforts de plancher vers les poteaux. Elles sont sollicitées à la flexion simple. Le ferraillage est calculé à l'état limité ultime sous l'effet du moment le plus défavorable suivant les recommandations de le RPA 99/version 2003.

Les Etapes de calcul de la section d'armature sont résumées par l'organigramme de la flexion simple à ELU (annexe N° 05).

Prescriptions données par RPA99/version 2003

Armatures longitudinales:

- Le pourcentage minimal des aciers longitudinaux sur toute la largeur de la poutre doit être de 0,5% de toute section.
- Le pourcentage maximal est de 4% en zone courante, et 6% en zone de recouvrement.
- La longueur minimale de recouvrement est de 40ϕ (zone II).
- Les cadres des nœuds, disposés comme armatures transversales des poteaux, sont constitués de 2 U superposés formant un carré ou un rectangle.

1. Armatures transversales:

- La quantité des armatures transversales est de : A_t = 0,003.S.b ;
- L'espacement maximal entre les armatures transversales est déterminé comme suit :
- Dans la zone nodale et en travée, si les armatures comprimées sont nécessaires, le RPA exige un minimum de « h/4, 12ϕ » ;
- En dehors de la zone nodale l'espacement doit être de « $s \le h/2$ ».
- Situation durable et transitoire (SDT)

-Béton:

$$\gamma_b = 1.5 f_{c28} = 25 \text{MPa} \ f_{bu} = \frac{0.85 f_{c28}}{\theta \gamma_b} = 14.17 \text{ MPa}$$

-Acier:

Etude des éléments structuraux

$$\gamma_s = 1,15$$
; $f_e = 400$ MPa; $\sigma_s = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 348$ MPa

Situation accidentelle (SA)

-Béton:

$$\gamma_b = 1.15 \ f_{c28} = 25 \text{MPa} \ f_{bu} = 18.48 MPa$$

-Acier:

$$\gamma_{\rm S} = 1$$
 $F_e = 400$ MPa $\sigma_{\rm S} = 400$ MPa

V.1.1 Détermination des sollicitations des poutres:

D'âpres logiciel **ROBOT ANALYSIS STRUCTURAL 2014** on obtient les résultats suivant:

V.1.1 tableau des sollicitations des poutres:

Poutre		M _t		M _a			T		
Combinaison	ELU	ELS	ACC	ELU	ELS	ACC	ELU	ACC	
PP 30x55	167,72	122,64	137,99	-209,12	-148,07	-191,77	174,75	249,87	
PP 30x40	20,51	14,51	17,60	-95,02	-67,28	91,70	114,03	86,28	
PS 30x30	16,80	12,18	79,57	-46,48	-33,29	105,17	116,37	222,97	
PS 30x40	61,47	43,83	77,94	-59,36	-42,81	108,70	63,06	88,84	

V.1.2 Exemple de calcul:

- Poutre principale 30x55:
- ***** ELU:
- En travée:

$$M_u = 167,72 \text{ KN.m}$$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_b.b.d_x^2} = \frac{167,72 \cdot 10^3}{14,2.30.49,5^2} = 0,16$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,220

Etude des éléments structuraux

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.91$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{167,72 \cdot 10^3}{348.0,91.49,5}$ = 10,67 cm²

V.1.2.1 Vérification à l'ELS:

Fissurations peu préjudiciables Flexion simple Section rectangulaire FeE400

• Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

$$M_u = 167,72 \text{ KN.m}$$

$$M_s = 122,64 \text{ KN.m}$$

$$y = \frac{167,72}{122.64} = 1,37$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1,37 - 1}{2} + \frac{25}{100} = 0,43$$

$$\alpha = 0.220 < 0.43 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6.f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS

• En appuis:

$$M_u = 209,12KN.m$$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d^2}} = \frac{209,12.10^3}{14,2.30.49.5^2} = 0,2$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,28

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.89$$

Etude des éléments structuraux

$$A = \frac{M_u}{\sigma_{\text{S.B.d}}} = \frac{209,12.10^3}{348.0,89.49,5} = 13,7 \text{ cm}^2$$

V.1.2.2 Vérification à l'ELS:

Fissurations peu préjudiciables Flexion simple Section rectangulaire FeE400

• Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

 $M_u = 209,12 \text{ KN.m}$

$$M_s = 148,07 KN.m$$

$$y = \frac{209,12}{148,07} = 1,38$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1,38 - 1}{2} + \frac{25}{100} = 0,46$$

$$\alpha = 0.28 < 0.46 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6.f_{c28} = 15 MPa

Donc les armatures calculées à ELU conviennent à ELS.

- ***** ACC:
- En travée:

 $M_u = 137,99 \text{ KN.m}$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d_x}^2} = \frac{137,99 \cdot .10^3}{18,48.30.49,5^2} = 0,099$$

On a: μ_L = 0,392 (acier FeE 400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1} = 400 \text{ Mpa}$$

$$\alpha = 1,25 (1 - \sqrt{1 - 2\mu}) \rightarrow \alpha = 0,134$$

$$\beta = (1-0.4\alpha) \rightarrow \beta = 0.94$$

A =
$$\frac{M_u}{\sigma_{\text{S}}.\text{B.d}}$$
 = $\frac{137,99 \cdot 10^3}{400.0,95.49,5}$ = 7,36cm²

Etude des éléments structuraux

• En appuis:

$$M_u = 191,77 \text{ KN.m}$$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_b.b.d_x^2} = \frac{191,77 \cdot 10^3}{18,48.30.49,5^2} = 0,14$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1} = 400 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,191

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.90$$

$$A = \frac{M_u}{\sigma_{s,B,d}} = \frac{191,77 \cdot 10^3}{400.0,92.49.5} = 10,48 \text{ cm}^2$$

V.1.2.3 Calcul des armatures minimales:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ MPa

B.A.E.L:
$$A_{min} = 0.23b. d \frac{f_{t28}}{f_e} = 1.79 cm^2$$

RPA:
$$A_{RPA} = \frac{0.5}{100}$$
. b. $h = 8.25 \text{ cm}^2$

- Choix des armatures :
 - En travée:

$$A = \max \left(A_{ELU} \ , A_{min} \ , A_{RPA} \ ; A_{ACC} \right) = \max \left(10,67; \, 1,81; \, 8,25 \; ; \, 7,36 \right) \, cm^2$$

$$A=10,67 \text{ cm}^2$$

• En appuis:

$$A = \max \left(A_{ELU} \ , A_{min} \ , A_{RPA} \ ; A_{ACC} \right) = \max \left(13.7; \ 1.81; \ 8.25 \ ; \ 10.48 \right) \, cm^2$$

$$A=13,7 \text{ cm}^2$$

$$A = 3T14 + 3T20 = 14,04 \text{ cm}^2$$

Etude des éléments structuraux

V.1.2.4 Vérification de l'effort tranchant:

ELU:

Pour des fissurations peu préjudiciables on doit vérifier que:

$$\tau_u = \frac{T_u}{b.d} \le \overline{\tau_u}$$

Avec =
$$\overline{\tau_u} = \min\left(\frac{0.2.f_{c28}}{\gamma_b}; 5 MPa\right) = \min(3.33; 5) = 3.33 MPa$$

$$T_u = 174,75 \text{ KN} \implies \tau u = \frac{174750}{300.495} = 1,18 \text{ MPa} < 3,33 \text{ MPa} \rightarrow \text{C.V}$$

***** ACC:

Pour des fissurations peu préjudiciables on doit vérifier que :

$$\tau_u = \frac{T_u}{b. d} \le \overline{\tau_u}$$

$$Avec = \overline{\tau_u} = \min\left(\frac{0.2.f_{c28}}{\gamma_b}; 5 MPa\right) = \min\left(4,35; 5\right) = 4MPa$$

$$T_{acc} = 249,87 \text{ KN} \implies \tau_{acc} = \frac{249870}{300.495} = 1,68 \text{ MPa} < 4,35 \text{ MPa} \rightarrow \text{C.V}$$

V.1.2.5 Calcule des armatures transversales:

L'acier choisi pour les armatures transversales est de type rond lisse de nuance FeE235 (Fe = 235 MPa).

$$\emptyset_t \le \min\left(\frac{h}{35}; \emptyset_l; \frac{b}{10}\right)$$

$$\emptyset_t \leq \text{Min (1,57 cm ; 1,2 cm ; 3 cm)} = 1,2 \text{ cm}$$

On adopte:
$$\emptyset_t = 8 \text{ mm} \rightarrow 4\text{T8} = 2,01 \text{ cm}^2$$

V.1.2.5.1 Calcule de l'espacement des armatures transversales:

$$\begin{cases}
k=1 \text{ (flexion simple)} \\
\alpha = 90^{\circ}
\end{cases}$$

$$\begin{cases} \rho_{t0} = \frac{A_t}{b_0.S_t} = \frac{(\tau_u - 0, 3.f_{t28}.K)}{0, 9.\frac{f_e}{\gamma_s}} \\ S_{tmax} = min[0,9d; 40cm] \end{cases}$$

$$S_{tmax} = min[0.9d; 40cm]$$

$$\rho_{tmin} = (0.5. \tau_u; 0.4 Mpa)/f_e$$

Etude des éléments structuraux

$$\begin{split} & \rho_{t0} = \frac{1-0,3.2,1.1}{0,9.\frac{235}{1,15}} = 0,002 \\ & S_{tmax} = min[44,55;40cm] = 40cm \\ & \rho_{tmin} = (0,5.\,\tau_u;\,0,4Mpa)/fe = 0,002 \\ & \\ & \rho_t = Max\,(\rho_{tmin}\,;\rho_{t0}) \\ & S_t = \frac{A_t}{b.\rho_t} = 33,5~cm \\ & S_{tmax} = 40~cm \\ & S_t \leq S_{tmax} \end{split}$$

Conclusion:

✓ Donc condition vérifiée.

• D'âpres l'RPA et le B.A.E.L 91:

 $S_t \leq Min(S_{tmax}; 30cm; S_t; \frac{h}{4}; 12.00) \rightarrow Zone nodale$

 $S_t \leq Min(S_{tmax}; 40cm; S_t; \frac{h}{2}) \Rightarrow Zone courant$

Donc:

 $S_t \leq \!\! \text{Min}$ (40 cm; 30 cm; 33,5 cm; 13,75cm; 14 cm) \Rightarrow Zone nodale

 $S_t \leq Min (40 \text{ cm}; 40 \text{ cm}; 33,5 \text{ cm}; 27,5 \text{cm}) \rightarrow Zone \text{ courant}$

Alors:

 $S_t \le 13,75$ cm

 $S_t \le 27,5$ cm

On adopte:

 $S_t = 10 \text{ cm} \rightarrow \text{Zone nodale}$

 $S_t = 15 \text{ cm} \rightarrow \text{Zone courant}$

Etude des éléments structuraux

V.1.2.6 Vérification de la contrainte de compression (bielle):

Condition à respecter:

$$\sigma_b = \frac{2.V_u}{b_0.a} \le 0.8.\frac{f_{cj}}{\gamma_b}$$

• Avec:

b₀: épaisseur de l'âme de la poutre.

a: profondeur utile de l'appuis.

 $a \cdot \frac{\sqrt{2}}{2}$: largeur utile de la bielle.

 V_{u} . $\sqrt{2}$: Effort de compression dans bielle.

 σ_b : Contrainte de compression dans bielle.

• Il faut que :

$$V_u \leq 0,267. b_0. a. f_{c28}$$

On a:

a = 30-2-4=24cm;
$$b_0$$
=30cm; f_{c28} =25 MPa; T_u = 150,20KN

Alors:

Conclusion:

✓ Donc condition vérifiée.

V.1.2.7 Vérification de l'effort tranchant sur les armatures longitudinales inférieures:

• La condition de stabilité exige :

$$A_i.\frac{f_e}{\gamma_s} > |T_u| + \frac{M_a^u}{0.9.d}$$

• Le moment Mu étant pris avec son signe :

$$|T_u| + \frac{M_a^u}{0.9.d} = 174,75. \frac{-191,77}{44,55} = -255,71 < 0$$

Etude des éléments structuraux

Conclusion:

✓ Donc condition vérifiee.

V.1.2.8 Vérification de l'effort tranchant:

& ELU:

Pour des fissurations peu préjudiciables on doit vérifier que:

$$\tau_u = \frac{T_u}{b.d} \le \overline{\tau_u}$$

Avec =
$$\overline{\tau_u} = \min\left(\frac{0.2.f_{c28}}{\gamma_b}; 5 MPa\right) = \min(3,33; 5) = 3,33 Mpa$$

V.1.2 Tableau récapitulatif de vérification des efforts tranchant en ELU:

Les poutres	Tu	$ au_u$	$\overline{ au_u}$	$ au_u \leq \overline{ au_u}$
PP 30x55	174,75	1,18	3,33	C.V
PP 30x40	114,03	1,1	3,33	C.V
PS 30x30	116,37	1,44	3,33	C.V
PS 30x40	63,06	0,58	3,33	C.V

* ACC

Pour des fissurations peu préjudiciables on doit vérifier que:

$$\tau_u = \frac{T_u}{h \ d} \le \overline{\tau_u}$$

Avec =
$$\overline{\tau_u} = \min\left(\frac{0.2.f_{c28}}{\gamma_b}; 5 MPa\right) = \min(4.35; 5) = 4.35 Mpa$$

Etude des éléments structuraux

V.1.2 Tableau récapitulatif de vérification des efforts tranchant en ACC:

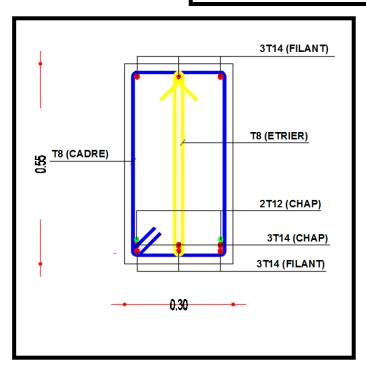
Les poutres	Tu	$ au_u$	$\overline{ au_u}$	$ au_u \leq \overline{ au_u}$
PP 30x55	249,87	1,68	4,35	C.V
PP 30x40	86,28	0,78	4,35	C.V
PS 30x30	222,97	2,75	4,35	C.V
PS 30x40	73,62	0,68	4,35	C.V

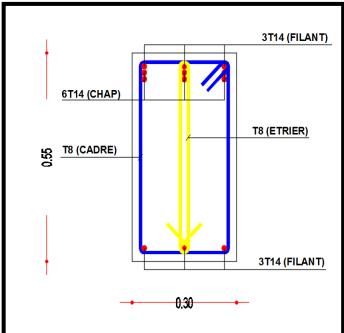
V.I.3 Tableau récapitulatif de vérification de l'effort tranchant sur les armatures longitudinales inférieur :

Les poutres	T_{u}	M _a u	$ T_u + \frac{M_a^u}{0.9.d}$	$ V_u \frac{M_a^u}{0.9.d} < 0$	
PP 30x55	174,75	-209,12	-255,71	C.V	
PP 30x40	114,03	-95,02	-149,91	C.V	
PS 30x30	116,37	-46,48	-55,88	C.V	
PS 30x40	63,06	-59,36	-101,83	C.V	

Etude des éléments structuraux

V.I.4 Tableau récapitulatif de choix d'armatures :

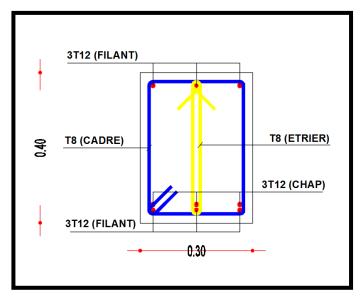

					En travée					
Les poutres	A _{ELU} [cm ²]	A _{ACC} [cm ²]	A _{ELS} [cm ²]	A' [cm²]	A _{min} [cm ²]	A _{RPA} [cm ²]	A retenue [cm ²]	A' retenue [cm²]	Choix d'armatures	A [cm ²]
PP 30x55	10,67	7,16	-	•	1,81	8,25	10,67	•	6T14+2T12	11,5
PP 30x40	1,67	1,24	-	-	1,30	6	6	-	6T12	6,79
PS 30x30	1,84	8,28	-	•	0,98	4,5	8,28	-	6T14	9,24
PS 30x40	5,22	3,2	-	-	1,30	6	6	-	3T12+2T14	6,47

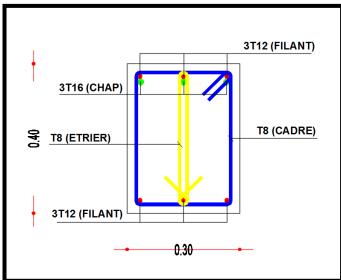

					En appuis					
Les poutres	A _{ELU} [cm ²]	A ACC [cm ²]	A _{ELS} [cm ²]	A' [cm²]	A _{min} [cm ²]	A _{RPA} [cm ²]	A retenue [cm ²]	A' retenue [cm²]	Choix d'armatures	A [cm²]
PP 30x40	13,7	10,48	-	-	1,81	8,25	13,70	-	9T14	13,86
PP 30x55	8,38	6,84	•	-	1,30	6	8,38	-	3T12+3T16	9,42
PS 30x30	5,39	11,51	-	-	0,98	4,5	11,51	-	4T14+3T16	12,19
PS 30x40	5,03	8,23	-	-	1,30	6	8,23	-	3T12+3T16	6,47

Etude des éléments structuraux

Figure V.1: Les schémas de ferraillages des poutres principales

Poutre 30×55

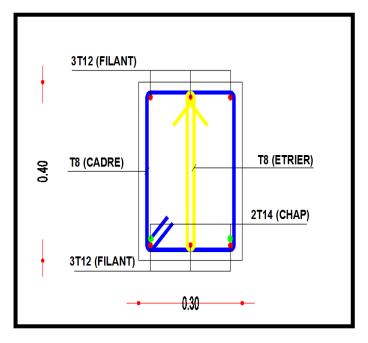


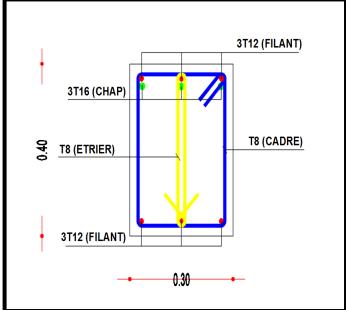


En travée

Etude des éléments structuraux

Poutre 30×40

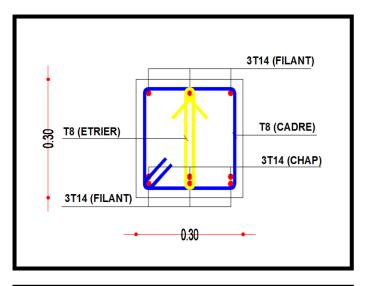


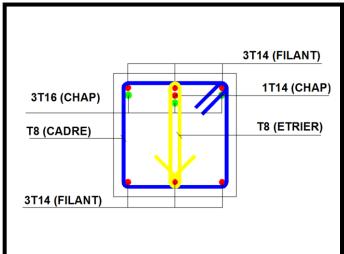

En travée

Etude des éléments structuraux

Figure V.2: Les schémas de ferraillages des poutres secondaires

Poutre 30×40





En travée

Etude des éléments structuraux

Poutre 30×30

En travée

Etude des éléments structuraux

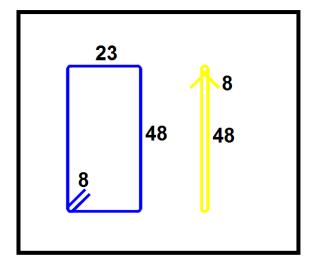


Figure V.3: dimensions de cadre et de l'étrier de la poutre (30×55)

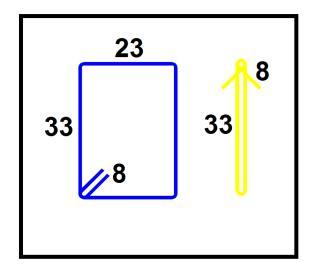


Figure V.4: dimensions de cadre et de l'étrier de la poutre (30×40)

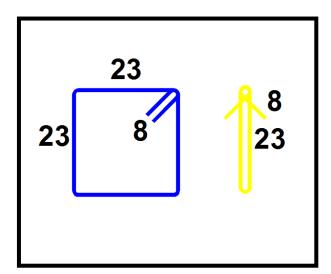


Figure V.5: dimensions de cadre et de l'étrier de la poutre (30×30)

Etude des éléments structuraux

V.2 Etude des voiles du contreventement:

V.2.1 Introduction:

Les voiles sont des éléments ayant deux dimensions grandes par rapport à la troisième appelée épaisseur, en générale ils sont verticaux et chargés dans leur plan. Ils peuvent être construit en béton armé ou non armé.

Le rôle des voiles est de :

- Reprendre les charges permanentes et d'exploitation apportées par les planchers ;
- Participer au contreventement de la construction (vent et séisme);
- Servir de cloisons de séparation entre locaux.

Les voiles sont utilisés en façade, en pignons ou à l'intérieur (murs de refends) des constructions.

Un poteau rectangulaire dans la largeur est supérieure à quatre fois son épaisseur est considéré comme un voile.

Qu'ils soient appelés armés ou non armés, les voiles en béton comportent un minimum d'armatures :

- Au droit des ouvertures (concentration de contraintes);
- ➤ A leur jonction avec les planchers et
- A leurs extrémités.

V.2.2 Ferraillage des voiles :

Le modèle le plus simple d'un voile est celui d'une console parfaitement encastrée à la base. La figure montre l'exemple d'un élément de section rectangulaire, soumis à une charge verticale N et une charge horizontale V en tête et un moment fléchissant

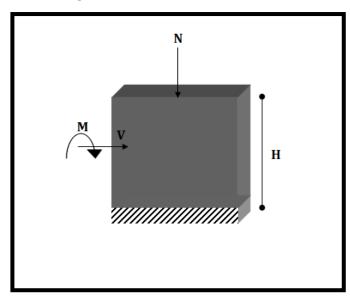


Figure V.2.1: les moments et les efforts normaux et de cisaillement appliqués sur les voiles

Etude des éléments structuraux

Le voile est donc sollicité par un effort normal N, un effort tranchant V constant sur toute la hauteur, et un moment fléchissant qui est maximal dans la section d'encastrement.

Le ferraillage classique du voile en béton armé est composé:

- 1. D'armatures verticales concentrées aux deux extremités du voile et d'armatures verticales uniformément reparties.
- 2. D'armatures horizontales, parallèles aux faces du murs et elles est aussi uniformément réparties.
- 3. D'armatures transversales (épingles) (perpendiculaires aux parement du voile)

Les armatures verticales extrêmes sont soumises à d'importantes forces de traction et de compression, créant ainsi un couple capable d'équilibrer le moment appliqué. À la base du voile, sur une hauteur critique des cadres sont disposés autour de ces armatures afin d'assurer la ductilité de ces zones.

En fin, les armatures de l'âme horizontales et verticales ont le rôle d'assurer la résistante à l'effort tranchant.

V.2.3.1 Procédure de ferraillage :

Pour le ferraillage des voiles, on devra calculer et disposer les aciers verticaux et les aciers horizontaux conformément aux règlements **CBA 93** et **RPA 99 version 2003.**

L'apparition de logiciels modernes d'analyse de structure, utilisant la méthode des éléments finis pour modéliser et analyser les structures a considérablement aidé l'étude du comportement globale de la structure en effet, l'obtention directe des efforts et des contraintes en tout point de la structure facilite, après une bonne interprétation des résultats du modèle retenue, permet l'adoption d'un bon ferraillage.

Le calcul se fait par une méthode simplifiée, basée sur les contraintes.

Nota: Les contraintes maximale σ_{max} et minimale σ_{min} du voile peuvent être déterminées à l'aide de M et N qui sont lues à partir du fichier résultat de **ROBOT** ANALISYS STRUCRUAL.

• 1er cas : Section Entièrement Comprimée

Si : $(\sigma_{\max} \operatorname{et} \sigma_{\min}) > 0$ la section du voile est entièrement comprimée " pas de zone tendue ".

La zone courante est armée par le minimum exigé par le RPA 99 version 2003 Art (7.7.4.1).

A = 0.0015.b.L (0.15%)

• 2ème cas : Section Entièrement tendue

Si : $(\sigma_{\max} \operatorname{et} \sigma_{\min}) < 0$ la section du voile est entièrement tendue " pas de zone comprimée"

On calcule le volume des contraintes de traction, d'où la section des armatures verticales

Etude des éléments structuraux

A = $\frac{f_t}{f_e}$; on compare A par la section minimale exigée par le RPA 99 version 2003.

 $Si: A < A min = 0,15\%.b.L_t$ de la section du voile, on ferraille avec la section minimale.

Si : Av > A min, on ferraille avec A.

• 3eme cas: Section Partiellement Tendue

Si : (σ_{\max} et σ_{\min}) sont de signe différent, la section du voile est partiellement tendue, donc on calcule le volume des contraintes pour la zone tendue.

V.2.3.2 Armatures verticales Art 7.7.4.1 du RPA 99 version 2003:

Ils sont disposés on deux nappes parallèles servant à répondre les contraintes de flexion composée, le RPA exige un pourcentage minimal égal à 0,15% de la section du béton.

Le ferraillage sera disposé symétriquement dans le voile en raison du changement de direction du séisme.

V.2.3.3 Armatures horizontales Art 7.7.4.2 du RPA 99 version 2003:

Les armatures horizontales parallèles aux faces du mur sont distribuées d'une façon uniforme sur la totalité de la longueur du mur ou de l'élément de mur limité par des ouvertures ; les barres horizontales doivent être disposé vers l'extérieure.

V.2.3.4 Règles communes Art 7.7.4.3du RPA 99 version 2003:

Le pourcentage minimum d'armatures verticales et horizontales est comme suit :

- Globalement dans la section du voile : 0,15%
- En zone courante : 0,10 %
- L'espacement des barres horizontales et verticales doit être inférieur à la plus petite des deux valeurs suivantes : (1,5.a; 30 cm).
- Les deux nappes doit être reliées avec au moins 4 épingles par mètre carré.
- Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'abouts) ne devrait pas dépasser $\frac{1}{10}$ de l'épaisseur du voile.
- Les longueurs de recouvrement doivent être égale à :
 - 40Ø pour les barres situées dans les zones ou le renversement de signe des efforts est possible.
 - 20Ø pour les barres situées dans les zones comprimées sous l'action des combinaisons.
- Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.
- Si des efforts importants de compressions agissent sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux.
- Les barres verticales du dernier niveau doivent être munies de crochets (jonction par recouvrement).

Etude des éléments structuraux

- A chaque extrémité du voile (trumeau) l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile, cet espacement d'extrémité doit être au plus égal à 15cm.
- Le long des joints de reprise de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A = 1.1. \frac{\overline{V}}{f_e}$$

V.2.4 Exemple de calcul:

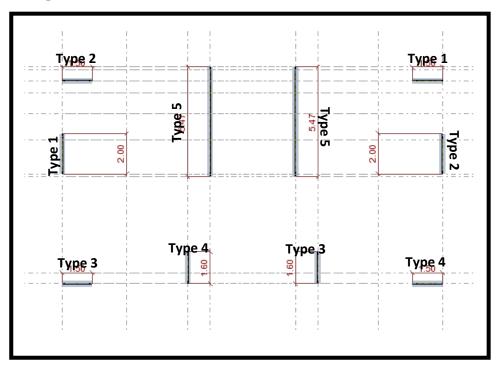


Figure V.2.1: vue en 2D avec logiciel robot analysis structural

Sens x-x:

On prendra comme exemple le voile type 01 le plus sollicité au niveau du RDC (Sens x-x) qu'il a les caractéristiques géométriques et les sollicitations suivantes :

Longueur [m]	Hauteur [m]	Ep [m]		
1,5	3,40	0,30		

Etude des éléments structuraux

On utilise une fiche Excel pour calculer les contraintes et les longueurs tendu :

V.2.1 Tableau récapitulatif des contraintes gauche et droit et les longueurs des zones tendue:

	NOM	ТҮРЕ	N (KN)	M (N.m)	σ _g (Mpa)	σ _d (Mpa)	Lt
1	ELU	ELU	2145,15	-89,98	5,57	3,97	-
2	G+Q+VX	ACC	1688,9	435,09	-0,11	7,62	0,02
3	G+Q-VX	ACC	1416,48	-565,86	8,18	-1,88	0,28
4	G+Q+VY	ACC	2288,26	-371,84	8,39	1,78	-
5	G+Q-VY	ACC	817,12	241,07	-0,33	3,96	0,11
6	0.8G+VX	ACC	1116,95	457,27	-1,58	6,55	0,29
7	0.8G-VX	ACC	844,52	-543,67	6,71	-2,96	0,46
8	0.8G+VY	ACC	1716,31	-349,65	6,92	0,71	-
9	0.8G-VY	ACC	245,16	263,25	-1,80	2,88	0,58

V.2.4.1 Les caractéristiques géométriques du voile:

• Inertie du voile :

$$I = \frac{(0.3 \times 1.5^3)}{12} = 0.084675 \text{ m}^4$$

Surface en plan du voile :

$$\Omega$$
=0,3.1,5 = 0,45 m²

La position de l'axe neutre :

$$v = \frac{L}{2} = \frac{1.5}{2} = 0.75 \text{ m}$$

V.2.4.2 Vérification de la stabilité de la résistance d'un voile :

• Effort de compression à l'ELU:

$$N_{max} = 2145,15 \text{ KN}$$
; $M_{corr} = 89,98 \text{ N.m}$

V.2.4.2.1 Calcul les contraintes :

$$\begin{split} \sigma_{d} &= \frac{N}{\Omega} + \frac{\text{M.v}}{I} = \frac{2145,15}{0,45} + \frac{89,98.0,75}{0,084675} = 5563,99 \text{ KN/m}^2 \\ \sigma_{g} &= \frac{N}{\Omega} + \frac{\text{M.v}}{I} = \frac{2145,15}{0,45} - \frac{89,98.0,75}{0,084675} = 3970,01 \text{ KN/m}^2 \end{split}$$

Etude des éléments structuraux

 $\sigma_d > \! 0$; $\sigma_g > \! 0 \,$ la section est entièrement comprimée.

V.2.4.2.2 Calcul de la contrainte moyenne:

Le calcul se fait par des bandes d'après le **DTR** .**B.C** 2.42 il faut que la condition suivante soit vérifier :

$$d \le min(\frac{h_e}{2}, \frac{2}{3}.L_c)=(1,7m;1m) = 1m$$

$$d_{max}=1 m$$

on prondra:

$$d_1 = 1 \text{ m}$$

V.2.4.2.3 Détermination la contrainte moyenne de la bande d₁:

$$\sigma_1 = \sigma_g + (L_c - d_1) \cdot \frac{(\sigma_d - \sigma_g)}{L_c} = 3,97 + (1,5 - 1) \cdot \frac{(5,56 - 3,97)}{1,5}$$

$$\sigma_1 = 4.5 \text{ MPa}$$

$$\sigma_{moy} = \frac{\sigma_d + \sigma_1}{2} = \frac{5,56 + 4,5}{2} = 5,03 \text{ MPa}$$

V.2.4.2.4 L'effort normal appliqué sur la bande d₁:

$$N_u = \sigma_{mov}$$
. e.d₁= 5,03.0,3.1=1509 KN

V.2.4.2.5 Calcul de l'effort limite ultime:

L'effort limite ultime N_{u lim} est donné par la formule suivante:

Cas d'un mur non armé : A= 0

$$N_{u \lim} = \alpha \cdot \frac{B_r \cdot f_{c28}}{0.9 \cdot \gamma_b}$$

Avec:

$$B_r$$
=L.(a-2) =100.(30-2)= 2800 cm²

$$\alpha = \frac{0.65}{1 + 0.2 \cdot (\frac{\lambda}{30})^2} \text{ avec} : \lambda = \frac{l_f \cdot \sqrt{12}}{a} = \frac{0.85 \cdot 3.4 \cdot \sqrt{12}}{0.3} = 33.37$$

Donc: α =0,52

Alors:

Etude des éléments structuraux

$$N_{u \lim} = \alpha \cdot \frac{B_r \cdot f_{c28}}{0.9 \cdot \gamma_h} = 0.52 \cdot \frac{0.28.25000}{0.9.1.5} = 2696.29 \text{ KN}$$

Conclusion:

 $N_{u \text{ lim}}$ = 2696,29 KN > N_{u} = 1509 KN \rightarrow condition vérifier

Il n'y a pas un risque de flambement et les armatures en compression ne sont pas nécessaires.

V.2.4.3 Calcul du ferraillage:

D'après notre système de contreventement voile porteur on prend en considération juste les sollicitations des voiles du RDC et sous sol et on applique leur ferraillage maximum sur les autres étages.

V.2.4.3.1 Ferraillage verticale:

On prend les cas les plus défavorables:

(0,8G-VX; 0,8G-VY) PANNEAU 03 RDC:

• 1ere cas: 0,8.G-VX

N = 844,52 KN; M = 543,67 KN.m

V.2.4.3.2 Calcul des contraintes:

$$\sigma_{d} = \frac{N}{\Omega} + \frac{M.v}{I} = \frac{844,52}{0,45} + \frac{543,67.0,75}{0,084675} = 6692,21 \text{ KN/m}^2$$

$$\sigma_g = \frac{{}^{N}_{}}{\Omega} + \frac{{}^{M.v}_{}}{{}^{I}_{}} = \frac{844,52}{0,45} - \frac{543,67.0,75}{0,084675} = -2938,8 \quad KN/m^2$$

 $\sigma_d > \! 0$; $\sigma_g < \! 0$ la section est partiellement tendue.

Le béton est un matériau qui résiste bien à la compression mais mal à la traction d'où la nécessité d'y mettre des armatures pour résister aux contraintes de traction. Nous déterminons donc le ferraillage en considérant la contrainte de traction.

V.2.4.3.3 Calcul de la longueur de la zone tendue:

$$L_t$$
 =L. $\frac{\sigma_g}{\sigma_g + \sigma_d}$ =1,5. $\frac{2938,8}{6692,21+2938,8}$ =0,46 m (longueur de la zone tendue)

Etude des éléments structuraux

Le calcul se fait par des bandes d'après le **DTR** .**B.C** 2.42 il faut que la condition suivant soit vérifier :

$$d \leq \min\left(\frac{h_e}{2}, \frac{2}{3} \cdot L_c\right)$$

$$d \le \min[\frac{3.4}{2} = 1.7m; \frac{2}{3}.1.04 = 0.69m)$$

Donc:

$$d_{\text{max}} = 0.69 \text{ m}$$

Alors on divise la longueur tendue par deux bandes:

$$d_1 = 15 \text{ cm (zone d'about)}$$

$$d_2 = 31 \text{ cm}$$

V.2.4.3.4 Détermination de la contrainte moyenne dans la zone d'about:

$$\sigma_1 = \frac{\sigma_g.(L_t - 0.15)}{L_t} = \frac{2.94.(0.46 - 0.15)}{0.46} = 1.98 \text{ MPa}$$

$$\sigma_{\text{moy}1} = \frac{(\sigma_g + \sigma_1)}{2} = 2,46 \text{ MPa}$$

V.2.4.3.5 Détermination de la valeur de l'effort normal moyen (traction) sollicitant la zone d'about:

$$N_{u1}$$
= σ_{moy} . e.d= 2,46.0,3.0,15= 110,7 KN

V.2.4.3.6 Calcul des armatures verticales:

$$A_s = \frac{Nu}{\frac{f_e}{\gamma_s}} = \frac{110.7 \cdot 10^3}{400 \cdot 10^2} = 2,80 \text{ cm}^2$$

V.2.4.3.7 Calcul des armatures de couture :

$$A_c = 1.1 \cdot \frac{\overline{V}}{f_e} \cdot \frac{X}{L} = 1.1 \cdot \frac{1.4.134.75}{400} \cdot \frac{15}{150} = 0.52 \text{ cm}^2$$

Etude des éléments structuraux

D'après le RPA on ajoute avec la section calculée:

$$A=A_s+A_c=3,32 \text{ cm}^2$$

V.2.4.3.8 Détermination de la contrainte moyenne de la deuxième bande:

$$\sigma_{moy 2} = \frac{(\sigma_1 + 0)}{2} = 0.99 \text{ MPa}$$

V.2.4.3.9 Détermination de la valeur de l'effort normal moyen (traction) de la deuxième bande:

$$N_{u2}$$
= σ_{moy} . e.d= 0,99.0,3.0,31= 92,07 KN

V.2.4.3.10 Calcul des armatures verticales :

$$A_s = \frac{N_{u\,2}}{\frac{f_e}{\gamma_s}} = \frac{92,07 \cdot 10^3}{400.10^2} = 2,30 \text{ cm}^2$$

V.2.4.3.11 Calcul des armatures de couture:

$$A_c=1, 1. \frac{\overline{V}}{f_e}. \frac{X}{L} = 1, 1. \frac{1, 4.134, 75}{400}. \frac{31}{150} = 1,07 \text{ cm}^2$$

D'après le RPA on ajoute avec la section calculée:

$$A=A_s+A_c=3,37 \text{ cm}^2$$

V.2.4.3.12 Armatures minimal RPA:

$$A_{min} = 0.20\%$$
. b. $L_t = 2.76 \text{ cm}^2$ (Zone tendu)

$$A_{\text{max}} = \text{Max} (A_{\text{cal}}, A_{\text{min}}) = (6,69; 2,76) = 6,63 \text{ cm}^2$$

V.2.4.3.13 Armatures courantes:

• **2**ere **cas**: 0,8.G-VY

$$N = 245,16 \text{ KN}$$
; $M = 263,25 \text{ N.m}$

Etude des éléments structuraux

V.2.4.3.14 Calcul des contraintes:

$$\sigma_{d} = \frac{N}{\Omega} + \frac{M.v}{I} = \frac{245,16}{0,45} + \frac{263,25.0,75}{0,084675} = 2876,51 \text{ KN}$$

$$\sigma_{g} = \frac{N}{\Omega} + \frac{M.v}{I} = \frac{245,16}{0,45} - \frac{263,25.0,75}{0,084675} = -1786,9 \text{ KN}$$

 $\sigma_d > \! 0$; $\sigma_g < \! 0$ la section est partiellement tendu.

V.2.4.3.15 Calcul de la longueur de la zone tendue:

$$L_t$$
 =L. $\frac{\sigma_g}{\sigma_g + \sigma_d}$ =1,5. $\frac{1786,9}{2876,51+1786,9}$ =0,58 m (longueur de la zone tendue)

Le calcul se fait par des bandes d'après le **DTR** .**B.C** 2.42 il faut que la condition suivant soit vérifier:

$$d \leq \min\left(\frac{h_e}{2}, \frac{2}{3} \cdot L_c\right)$$

$$d \le \min[\frac{3.4}{2} = 1.7m; \frac{2}{3}.0.92 = 0.61m)$$

Donc:

$$d_{max} = 0.61 \text{ m}$$

Alors on devise la longueur tendue par deux bandes:

 $d_1 = 15 \text{ cm (zone d'about)}$

$$d_2 = 43 \text{ cm}$$

V.2.4.3.16 Détermination de la contrainte moyenne dans la zone d'about:

$$\sigma_1 = \frac{\sigma_{\rm g.(L_t-0.15)}}{L_{\rm t}} = \frac{1.8.(0.58-0.15)}{0.58} = 1.34 \, MPa$$

$$\sigma_{moy 2} = \frac{(\sigma_g + \sigma_1)}{2} = \frac{1,8+1,34}{2} = 1,57 \text{ MPa}$$

Etude des éléments structuraux

V.2.4.3.17 Détermination de la valeur de l'effort normal moyen (traction) sollicitant la zone d'about:

$$N_u = \sigma_{mov}$$
. e.d= 1,57.0,3.0,15= 70,65 KN

V.2.4.3.18 Calcul des armatures verticales:

$$A_s = \frac{Nu}{\frac{f_e}{r_s}} = \frac{70,65.10^3}{400.10^2} = 1,80 \text{ cm}^2$$

V.2.4.3.19 Calcul des armatures de couture:

$$A_c = 1,1.\frac{\overline{V}}{f_e}.\frac{X}{L} = 1,1.\frac{1,4.134,75}{400}.\frac{15}{150} = 0,52 \text{ cm}^2$$

D'après le RPA on ajoute avec la section calculée:

$$A=A_s+A_c=2,32 \text{ cm}^2$$

V.2.4.3.20 Détermination de la contrainte moyenne de la deuxième bande:

$$\sigma_{moy 2} = \frac{(\sigma_1 + 0)}{2} = \frac{1,34 + 0}{2} = 0,67 \text{ MPa}$$

V.2.4.3.21 Détermination de la valeur de l'effort normal moyen (traction) de la deuxième bande:

$$N_{u2} = \sigma_{mov}$$
. e. $d = 0,67.0,3.0,43 = 86,430$ KN

V.2.4.3.22 Calcul des armatures verticales:

$$A_s = \frac{N_{u2}}{\frac{f_e}{r_s}} = \frac{86,430 \cdot 10^3}{400 \cdot 10^2} = 2,16 \text{ cm}^2$$

V.2.4.3.23 Calcul des armatures de couture:

$$A_c = 1, 1. \frac{\overline{V}}{f_e} \cdot \frac{X}{L} = 1, 1. \frac{1,4.134,75}{400} \cdot \frac{31}{150} = 1,07 \text{ cm}^2$$

D'après le RPA on ajoute avec la section calculée:

$$A=A_s+A_c=3.23 \text{ cm}^2$$

Etude des éléments structuraux

V.2.4.3.24 Armatures minimales RPA:

$$A_{min} = 0.20\%$$
. b. $L_t = 2.82 \text{ cm}^2$ (Zone tendu)

$$A_{\text{max}} = \text{Max} (A_{\text{cal}}, A_{\text{min}}) = (5,55; 2,82) = 5,55 \text{ cm}^2$$

V.2.4.3.25 Armatures courantes:

V.2.4.3.26 Espacement des armatures verticales :

D'âpres l'RPA 99 /2003 article 7.7.4.3:

$$S_t \le (1,5.a; 30 \text{ cm}) \rightarrow S_t \le (1,5.a=45 \text{ cm}; 30 \text{ cm}) = 30 \text{ cm}$$

Zone d'about
$$\rightarrow \frac{L}{10} = 15 \text{ cm} \ge S_t = 7 \text{ cm}$$

Zone courante \rightarrow S_t= 15 cm

V.2.4.3.27 Choix d'armature :

On prend le cas le plus défavorable 1 ere cas: 0,8.G-VX

A d'about = 3,57 cm² =
$$2 \times (2T12) = 4,52 \text{ cm}^2 \rightarrow e = 8 \text{ cm}$$

A bande 2=3,31 cm² = 2 × (2T10) cm² = 4,52 cm²
$$\rightarrow$$
 e = 15 cm

A courante = 0,1%.b.L courante=3,6 cm² = 2 × (3T10)= 4,71 cm²
$$\rightarrow$$
 e = 15 cm

V.2.4.3.28 Vérification de la contrainte de cisaillement:

La vérification de la résistance des voiles au cisaillement se fait avec la valeur de l'effort tranchant trouvé à la base du voile majoré de 40% (Art 7.7.2 **RPA 99/version 2003**).

La contrainte de cisaillement est: $\tau_u = \frac{\overline{V}}{b.d} = \frac{1.4 \text{ xV}_u}{b.d}$

Avec:

V: L'effort tranchant à la base du voile.

b: Épaisseur de voile.

d: Hauteur utile, (d=0,9h).

h: Hauteur totale de la section brute.

La contrainte limite est : $\bar{\tau}_u = 0.20$. fc28.

Il faut vérifier la condition suivante: $\tau_u \leq \bar{\tau}_u$

Etude des éléments structuraux

Application numérique:

***** ACC:

$$\tau_{u} = \frac{\overline{V}}{b.d} = \frac{1.4 \times 134,75.10^{3}}{300.2,9.0,9.10^{3}} = 0,24 \text{ MP}$$

Avec:
$$\tau_u = 0.24 \text{ MPa} \leq \overline{\tau_u} = 5 \text{ MPa}$$

Donc la condition est vérifiée.

& ELU:

$$\tau_{u} = \frac{V}{b.d} = \frac{92,60.10^{3}}{300.3,4.0,9.10^{3}} = 0,10 \text{ MPa}$$

Avec:
$$\tau_u = 0.10 \text{MPa} \le \overline{\tau_u} = 0.06 \cdot \frac{f_{c28}}{\gamma_h} = 1 \text{ MPa}$$

V.2.4.3.29 Ferraillage horizontale:

> L'espacement des armatures horizontales :

$$S_t \le (1,5.a; 30 \text{ cm}) \rightarrow S_t \le (1,5.a=45 \text{ cm}; 30 \text{ cm}) = 30 \text{ cm}$$

On adoptera: S_t=15 cm

$$\begin{cases} k=0 \text{ (pas de reprise en betonage)} \\ \alpha = 90^{\circ} \end{cases}$$

$$\begin{cases} \frac{A_{t}}{b_{0}.S_{t}} \frac{.(\tau_{u} - 0.3.f_{t28}.K)}{0.9.\frac{f_{e}}{\gamma_{s}}} \\ A_{t} \ge \frac{0.24 - 0.3.2.1.1}{0.9.\frac{400}{1}} 30.15 = 0.49 \text{ cm}^{2} \end{cases}$$

• Armatures transversale minimales :

$$\frac{A_t. f_e}{b. S_t} \ge \frac{1}{f_e} min(\frac{\tau_u}{2}; 0.4MPa)$$

Etude des éléments structuraux

$$A_{\text{t min}} = \frac{b.S_t}{f_e}.\frac{\tau_u}{2} = \frac{30.15}{400}.\frac{0.24}{2} = 0.14 \text{ cm}^2$$

D'après le B.A.E.L 91 :

$$A_{H} = \frac{A_{v}}{4} = \frac{7.9}{4} = 1.97 \text{ cm}^{2}$$

$$A_{H RPA} = 0.15\% b. L = 6.75 cm^2$$

$$A_t=max(A_{t min}; A_{cal}; A_{B.A.E.L}; A_{RPA})$$

$$A_t = 6,75 \text{ cm}^2$$

Choix: T10 \rightarrow e= 15 cm

V.2.5 Vérification de la contrainte de cisaillement:

V.2.2 Tableau recapulatif de verification de cisaillement sens X-X:

Type	Combinaison	T_{u}	$ au_u$ (MPa)	$\overline{\tau_u}$ (MPa)	$ au_u \leq \overline{ au_u}$
1	ELU	92,60	0,10	1	C.V
1	ACC	134,75	0,24	5	C.V
2	ELU	98,82	0,13	1	C.V
2	ACC	113,42	0,17	5	C.V
3	ELU	60,87	0,10	1	C.V
3	ACC	78,51	0,12	5	C.V
4	ELU	64,54	0,10	1	C.V
4	ACC	88,25	0,14	5	C.V

Etude des éléments structuraux

V.2.3 Tableau recapulatif de verification de cisaillement sens Y-Y:

Type	Combinaison	Tu	$ au_u$ (MPa)	$\overline{\tau_u}$ (MPa)	$ au_u \leq \overline{ au_u}$
1	ELU	96,60	0,12	1	C.V
1	ACC	315,28	0,48	5	C.V
2	ELU	90,70	0,12	1	C.V
2	ACC	324,79	0,58	5	C.V
3	ELU	261,86	0,33	1	C.V
3	ACC	284,52	0,51	5	C.V
4	ELU	261,31	0,33	1	C.V
4	ACC	301,44	0,54	5	C.V
5	ELU	264,12	0,34	1	C.V
5	ACC	862,76	1,54	5	C.V
6	ELU	308,11	0,39	1	C.V
6	ACC	1121,98	1,71	5	C.V

V.2.6 Vérification de la contrainte de compression à l'ELS:

N = 1533,36 KN; M = 68,54 N.m

V.2.6.1 Calcul des contraintes:

$$\begin{split} \sigma_{d} &= \frac{N}{\Omega} + \frac{M.v}{I} = & \frac{1533,36}{0,45} + \frac{68,54 \cdot 0,75}{0,084675} = & 4,0 MPa \\ \sigma_{g} &= \frac{N}{\Omega} + \frac{M.v}{I} = & \frac{1533,36}{0,45} - \frac{68,54 \cdot 0,75}{0,084675} = & 2,8 MPa \end{split}$$

V.2.6.2 Contrainte de compression à l'ELS:

$$\sigma_{\rm c} = 0.6.f_{\rm c28} = 15{\rm MPa}$$

Conclusion:

 σ_{c} =15Mpa > σ_{max} =4,02 MP \rightarrow condition vérifiée

Etude des éléments structuraux

V2.4 Tableau récapitulatif de vérification des contraintes de compression à ELS sens X-X:

Туре	cas	N (N.m)	M (N.m)	σ _{max} (MPa)	σ _c (MPa)	$\sigma_{\max} \leq \sigma_{c}$
1	ELS	1533,36	68,54	4,02	15	C.V
2	ELS	1531,69	84,64	4,16	15	C.V
3	ELS	1427,45	84,27	3,92	15	C.V
4	ELS	1436,29	79,59	3,90	15	C.V

V2.5 Tableau récapitulatif de vérification des contraintes de compression à ELS sens Y-Y :

Туре	cas	N (N.m)	M (N.m)	σ _{max} (KN/m²)	σ_{c} (KN/m2)	$\sigma_{max} \leq \sigma_{c}$
1	ELS	2119,32	36,74	3,72	15	C.V
2	ELS	2107,71	32,18	3,67	15	C.V
3	ELS	2157,47	323,57	7,02	15	C.V
4	ELS	2153,09	318,53	6,97	15	C.V
5	ELS	3262,80	1974,08	3,31	15	C.V
6	ELS	2945,69	1943,58	3,09	15	C.V

Etude des éléments structuraux

V.2.6 Tableaux récapitulatif de ferraillage des voiles les plus sollicités :

• Sens X-X

Type du voile	1	2	3	4
Ep[m]	0,30	0,30	0,30	0,30
L[m]	1,5	1,5	1,5	1,5
Section	SPT	SPT	SPT	SPT
L _t [m]	0,46	0,47	0,43	0,40
d _{max}	0,68	0,69	0,71	0,73
d ₁ [m]	0,15	0,15	0,15	0,15
d ₂ [m]	0,31	0,32	0,28	0,25
A _{d'about} [cm ²]	2,80	2,91	2,29	1,71
A _{bande2} [cm ²]	2,30	2,49	1,68	1,12
A'[cm²]	-	-	-	-
A _{c 1} [cm ²]	0,52	0,52	0,52	0,52
A _{c 2} [cm ²]	1,07	1,10	0,97	1,30
A _{d'about} +A _{c1} [cm ²]	3,32	3,43	2,81	2,23
A _{bande2} +A _{c2} [cm ²]	3,37	3,59	2,65	1,98
A _{min} [cm ²]	2,76	2,82	2,57	2,42
Retenue (d'about)[cm ²]	3,32	3,43	2,81	1,98
R _{etenue(bande2)} [cm ²]	3,37	3,59	2,65	2,42
A _{courante}	3,6	3,6	3,6	3,6

Etude des éléments structuraux

Sens Y-Y:

Type du voile	1	2	3	4	5	6
Ep [m]	0,30	0,30	0,30	0,30	0,30	0,30
L [m]	2	2	1,6	1,6	5,47	5,47
Section	SPT	SPT	SPT	SPT	SPT	SPT
L _t [m]	0,78	0,28	0,30	0,30	2,34	2,50
d _{max}	0,81	1,41	0,87	0,87	1,7	1,7
d ₁ [m]	0,20	0,20	0,16	0,16	0,547	0,547
d ₂ [m]	0,29	0,08	0,14	0,14	0,897	1,00
d ₃ [m]	0,29	-	1	-	0,897	0,953
A _{d'about} [cm ²]	7,21	0,84	1,94	0,22	13,15	30,81
A _{bande2} [cm ²]	6,68	0,07	0,54	0,06	14,04	36,78
A _{bande3} [cm ²]	2,20	-		-	4,69	11,53
A' [cm²]	-	-		-	1	
A _{c 1} [cm ²]	1,25	1,25	1,16	1,16	4,32	4,32
A _{c 2} [cm ²]	1,81	0,50	1,02	1,02	7,08	7,90
A _{c3} [cm ²]	1,81	-	1	-	1	7,53
A _{d'about} +A _{c1} [cm ²]	8,46	2,09	3,10	1,38	17,47	35,13
A _{bande2} +A _{c2} [cm ²]	8,49	0,57	1,56	1,08	21,12	44,68
A _{bande3} +A _{c3} [cm ²]	4,01	-	-	-	11,77	19,06
A _{min} [cm ²]	4,68	1,68	1,8	1,8	14,04	15
A _{Retenue(d'about)} [cm ²]	8,46	2,09	3,10	1,38	17,47	35,13
A _{Retenue(bande2)} [cm ²]	8,49	0,57	1,56	1,08	21,12	44,68
A _{Retenue(bande3)} [cm ²]	4,01	-	-	-	11,77	19,06
$\mathbf{A}_{ ext{courante}}$	4,8	4,8	3,84	3,84	13,13	13,13

Etude des éléments structuraux

V.2.7 Tableaux récapitulatif de choix d'armature:

Sens	X-X	Y-Y	Y-Y	Y-Y
Type de voile	1;2;3;4	1;2	3;4	5;6
Choix d ₁	4T12	6T14	4T10	18T16
Choix d ₂	4T10	6T14	4T10	16T20
Choix d ₃	-	4T14	-	12T16
Zone comprimée	10T10	4T14	12T10	8T16
\mathbf{A}_{H}	T10	T10	T10	T12
Espacement d ₁ (cm)	8	6	9	6
Espacement d ₂ (cm)	15	10	9	12
Espacement d ₃ (cm)	-	15	-	15
Espacement zone comprimée(cm)	15	15	15	11
Espacement A _H (cm)	15	15	15	15

Etude des éléments structuraux

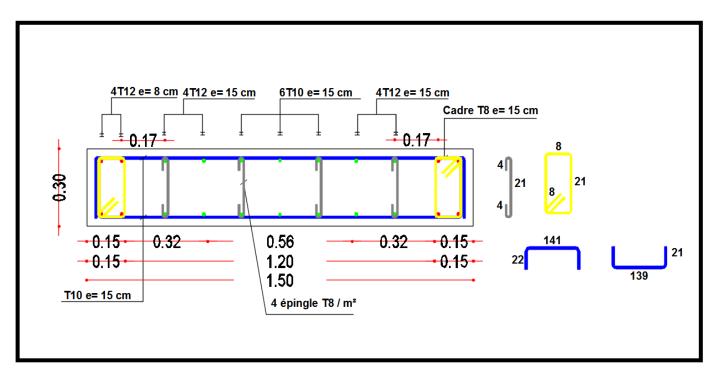


Figure V.2.2: Coupe horizontale du ferraillage des voiles sens X-X type (1; 2; 3; 4)

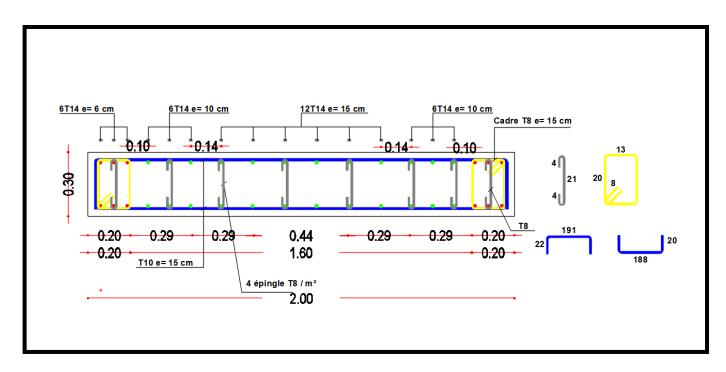


Figure V.2.3: Coupe horizontale du ferraillage des voiles sens Y-Y type (1; 2)

Etude des éléments structuraux

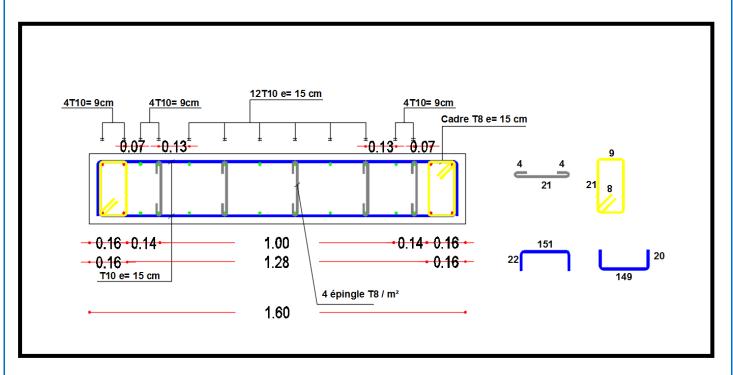


Figure V.2.4: Coupe horizontale du ferraillage des voiles sens Y-Y type (3; 4)

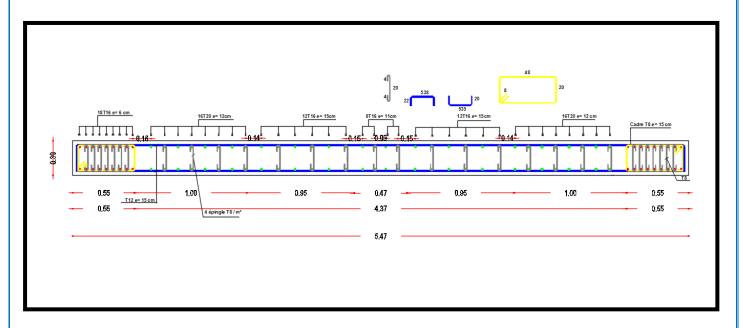


Figure V.2.5: Coupe horizontale du ferraillage des voiles sens Y-Y type (5; 6)

Etude des éléments structuraux

V.2.7 Ferraillage du voile avec ouverture:

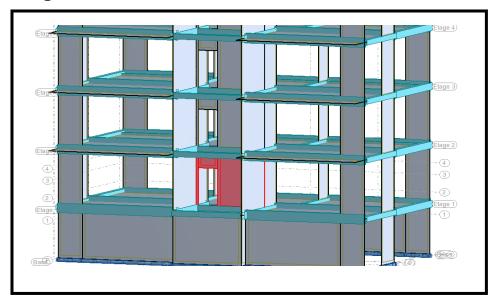


Figure V.2.13.1: vue en 3D avec robot analysis structural du voile avec ouverture voile

• Ferraillage du linteau :

Premier cas: $\tau_{\rm u}$ < 0,06. $f_{\rm c28}$ =0,06.25

Les linteaux sont calculés en flexion simple, (avec les efforts M, V)

On devra disposer:

- des aciers longitudinaux de flexion (A_l)
- des aciers transversaux (A_t)
- des aciers en partie courante (aciers de peau) (Ac)

a) Aciers longitudinaux:

Les aciers longitudinaux inférieurs et supérieurs sont calculés par la formule :

$$A_t \ge \frac{M}{z_{\cdot} f_{e}}$$

Avec: z = h-2d'

h: La hauteur totale du linteau.

d': La distance d'enrobage.

M: moment dû à l'effort tranchant (\overline{V}) .

Etude des éléments structuraux

- b) Aciers transversaux:
- **1) Premier sous- cas:** linteaux longs : $\lambda_g = \frac{1}{h} > 1$

On a:

$$s > \frac{A_t \cdot f_e \cdot z}{\overline{V}}$$

S: espacement des cours d'armatures transversales.

At: section d'un cours d'armatures transversales

z = h - 2d'

V= effort tranchant dans la section considérée

l = portée du linteau

2) deuxième sous cas: linteaux courts: $\lambda_g \leq 1$

On doit avoir:

$$s > \frac{A_t.\,f_e.\,l}{V + A_t.\,f_e}$$

 $V = \min (V_1; V_2)$

 $V_2 = 2.V_u$

$$V_1 = \frac{M_{ci} + M_{cj}}{l_{ij}}$$

Avec:

 M_{ci} et M_{cj} moments « résistants ultimes »des sections d'about à gauche et à droite du linteau de portée l_{ij} et calculés par :

 $M_c = Al. fe.z$

Avec: z = h - 2d' (voir figure V.2.13.1)

Etude des éléments structuraux

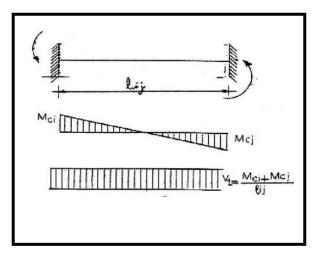


Figure V.2.13.2: schéma statique du calcul des moments et l'effort

Deuxième cas: τ_u >0,06. f_{c28}

Dans ce cas, il y a lieu de disposer les ferraillages longitudinaux (supérieurs et inférieurs), transversaux et en zone courante (armatures de peau) suivant les minimum réglementaires.

Les efforts (M, V) sont repris suivant des bielles diagonales (de compression et de traction) suivant l'axe moyen des armatures diagonales AD à disposer obligatoirement (voir figure 7.11)

Le calcul de ces armatures se fait suivant la formule:

$$A_D = \frac{V}{2.f_e.\sin\alpha}$$

Avec:

$$t_g \ = \frac{h-2.\,c}{L} \ (\mbox{voir figure V}.\,\mbox{2.}\,\mbox{13.}\,\mbox{3}\,)$$

V = V calcul (sans majoration)

Etude des éléments structuraux

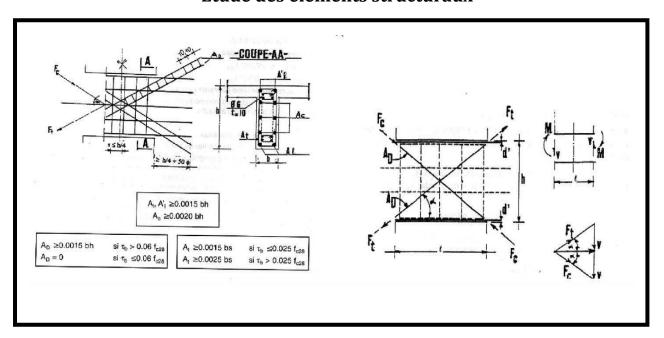


Figure V.2.13.3: ferraillage des armatures diagonales

V.2.7.1 Ferraillage du linteau:

• Sous sol:

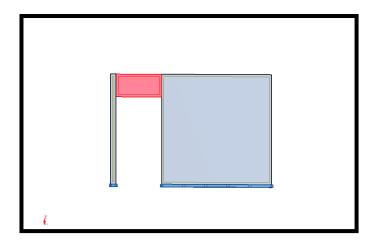


Figure V.2.13.4: linteau de sous sol

V.2.7.1.1 D'après le ROBOT ANALYSIS STRUCTURAL on détermine les moments et L'efforts tranchants max du linteau:

M = 22,41 N.m

 $V = 205,15 \text{ KN} \rightarrow \text{cas: } 0,8.\text{G-Vx}$

b = 30 cm; h = 0.6 m

Etude des éléments structuraux

V.2.7.1.2 Vérification de la contrainte de cisaillement :

La vérification de la résistance des voiles au cisaillement se fait avec la valeur de l'effort tranchant trouvé à la base du voile majoré de 40% (Art 7.7.2 **RPA 99/version 2003**).

La contrainte de cisaillement est: $\tau_u = \frac{\overline{V}}{b.d} = \frac{1.4 \text{ xV}_u}{b.d}$

Avec:

V : L'effort tranchant à la base du voile.

B: Epaisseur de voile.

D: Hauteur utile, (d=0,9h).

h: Hauteur totale de la section brute.

La contrainte limite est: $\bar{\tau}_u = 0.20$. fc28.

Il faut vérifier la condition suivante: $\tau_u \leq \overline{\tau}_u$

$$\tau_{\rm u} = \frac{\overline{V}}{\rm b.d} = \frac{1.4 \text{ xV}_{\rm u}}{\rm b.d} = \frac{1.4 \text{ 54,74}}{300.600.0,9} = 0,47 \text{ MPa} < \overline{\tau}_{\rm u} = 0,20. \text{ fc28} = 5 \text{ MPa}$$

Conclusion:

La condition est vérifiée.

V.2.13.1.3 Calcul du ferraillage:

On a: τ_u =0,47 MPa

Donc: $\tau_u = 0.47 \text{ MPa} < 0.06.f_{c28} = 0.06.25 = 1.5 \text{MPa} \rightarrow 1^{\text{er}} \cos \tau_u < 0.06.f_{c28}$

Les aciers longitudinaux inferieurs et supérieurs sont calculés par la formule :

$$\mathsf{A}_{\mathsf{L}}{\geq}\frac{M}{Z.f_e}$$

Avec: M: moment du à l'effort tranchant V

Z=h-2.c

Ou: h : est la hauteur totale de linteau

C: est la distance d'enrobage

Etude des éléments structuraux

$$A_{L} = \frac{M}{Z.f_{e}} = \frac{22,41}{0,54.400000} = 1,04 \text{ cm}^{2}$$

• D'après le RPA on a

 $A_{min}=0.15\%$.b.h=0.0015.30.60=2.7cm²

 $A_{max}=2.7cm^2$

Choix: $A_L=2.(4T10)=3,14 \text{ cm}^2$

V.2.7.1.4 Armatures en diagonales:

On a: τ_u = 0,47 MPa

 τ_u =0,47 MPa < 0,06. f_{c28} =0,06.25=1,5MPa \rightarrow 1er cas τ_u <0,06. f_{c28}

Donc: $A_D=0$

V.2.7.1.2.5 Armatures transversales:

 τ_u =0,47 MPa<0,025. f_{c28} =0,625 MPa

D'âpres le RPA on a : A_t≥0,15%.b.s

> **On choisi**: T8mm

 \emptyset_t =8mm \rightarrow A_t=m_t..a_t= m_t. $\frac{\pi . d^2}{4}$ =2. $\frac{3,14.0,8^2}{4}$ =1,00cm²

 $S \le \frac{A_t}{0.0015.b} = \frac{1}{0.0015.30} = 22,22cm$

Vérification l'espacement :

 $S \le \begin{cases} 1,5.a=1,5.30=45cm \\ 30cm \\ \frac{h}{4} = \frac{60}{4} = 15cm \end{cases}$

$$\frac{h}{4} = \frac{60}{4} = 15$$
cm

 \checkmark **On prend**: S = 15cm

Etude des éléments structuraux

• Armature de peau (section courante):

 $A_{C} \ge 0.2\% b. h = 0.002.30.60 = 3.6 \text{cm}^2$

On prend: A_C =2. (3T10) = 4,72 cm²

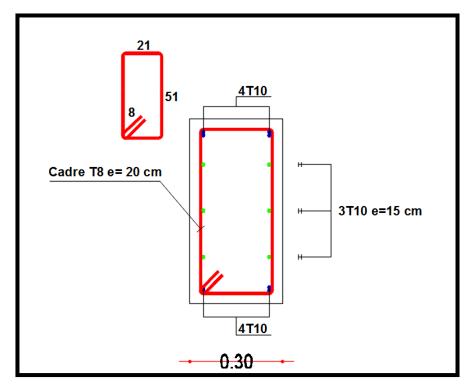


Figure V.2.13.5: Coupe transversale de ferraillage du linteau sous-sol

Etude des éléments structuraux

V.2.7.2 Ferraillage du linteau:

• Etage courant:

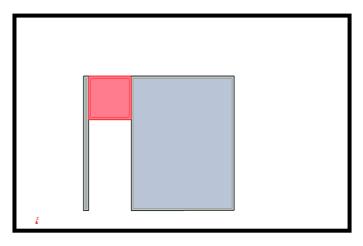


Figure V.2.13.6: linteau d'etage courant

V.2.7.2.1 L'effort tranchant max du linteau:

 $V = 636,41 \text{ KN} \rightarrow \text{cas: } 0.8.\text{G-Vx}$

b = 30 cm; h = 1.1 m

V.2.7.2.2 Vérification de la contrainte de cisaillement :

La vérification de la résistance des voiles au cisaillement se fait avec la valeur de l'effort tranchant trouvé à la base du voile majoré de 40% (Art 7.7.2 **RPA 99/version 2003**).

La contrainte de cisaillement est: $\tau_u = \frac{\overline{V}}{b.d} = \frac{1.4 \text{ xV}_u}{b.d}$

Avec:

V: l'effort tranchant à la base du voile.

d: Épaisseur de voile.

d: Hauteur utile, (d=0,9h).

h: Hauteur totale de la section brute.

La contrainte limite est: $\bar{\tau}_u = 0,20$. fc28.

Il faut vérifier la condition suivante: $\tau_u \leq \bar{\tau}_u$

$$\tau_{u} \ = \frac{\overline{v}}{_{b.d}} = \frac{_{1.4 \text{ xV}_{u}}}{_{b.d}} = \frac{_{1.4 \text{ x}636,41}}{_{300.1100.0,9}} = 2,99 \text{MPa} < \overline{\tau}_{u} = 0,20. \text{ fc28} = 5 \text{ MPa}$$

Etude des éléments structuraux

Conclusion:

La condition est vérifiée.

V.2.7.2.3 Calcul le ferraillage:

On a: $\tau_u = 1.8 \text{ MP}$

Donc: τ_u =2,99 MP>0,06. f_{c28} =0,06.25=1,5MPa → 2^{eme} cas τ_u >0,06. f_{c28}

Dans ce cas il y a lieu de disposer le ferraillage longitudinal (supérieur et inferieur) transversaux et en zone courante (armatures de peau) suivant minimum réglementaire les armatures en diagonale sont obligatoires.

V.2.7.2.4 Armatures en diagonales:

$$t_g = \frac{h-2.c}{L} = \frac{110-2.3}{120} = 0.86 \rightarrow \alpha = 40.91$$

$$A_D = \frac{V}{2.f_e.\sin\alpha} = \frac{636410}{2.40000.\sin 24,23} = 12,15 \text{ cm}^2$$

 $A_{D \, min}$ =0,15%.b.h=0,0015.30.110=4,95cm²

 $A_D=12,15 \text{ cm}^2 > A_{D \text{ min}}=4,95 \text{cm}^2$

Donc:

 A_D =8T16=16,08 cm²

Espacement exigé par le RPA :

On prend: des cadres de T8 S_t=10cm

• Armatures longitudinales :

 A_{min} =0,15%.bah=0,0015.30.110=4,95 cm²

✓ **On prend** : A_{min} =4T14=6,16cm²

• Armatures transversales :

 τ_u =2,99 MP>0,025. f_{c28} =0,625 MP

Etude des éléments structuraux

On choisi: T8mm

$$\emptyset_t$$
=8mm \rightarrow A_{t.}= $m_{t.}a_{t.}$ = $m_{t.}\frac{\pi . d^2}{4}$ =2. $\frac{3,14.0,8^2}{4}$ =1,00cm²

$$S \le \frac{A_t}{0,0025.b} = \frac{1}{0,0025.30} = 13,3cm$$

V.2.7.2.5 Vérification de l'espacement:

$$S \le \begin{cases} 1,5.a=1,5.30=45 \text{ cm} \\ 30 \text{ cm} \\ \frac{h}{4} = \frac{110}{4} = 27,5 \text{ cm} \end{cases}$$

✓ **On prend**: S = 10cm

V.2.7.2.6 Armature de peau (section courante) :

 $A_C \ge 0.2\%.b.h = 0.002.30.110 = 6.6cm^2$

✓ **On prend**: A_C =2. (4T12) =9,04 cm²

Etude des éléments structuraux

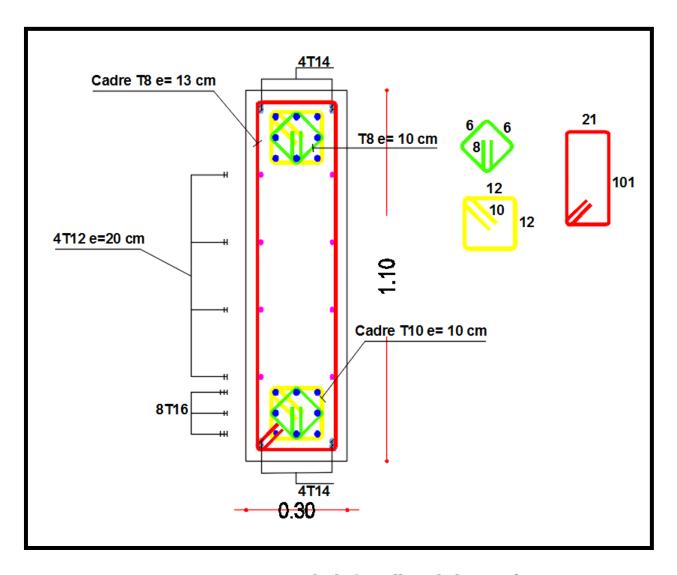


Figure V.2.13.7: Coupe transversale de ferraillage du linteau étage courant

Etude des éléments structuraux

V.2.7.3 Ferraillage du trumeau:

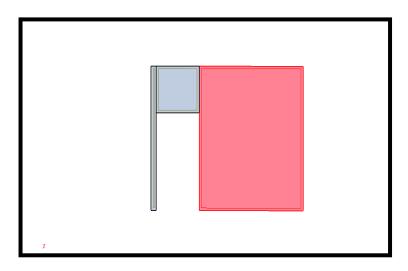


Figure V.2.13.8: la partie trumeau

V.2.7.1 Tableaux récapitulatifs de ferraillage de voile le plus sollicité:

• Sens X-X:

Ep. [m]	L [m]	Section	L _t	d _{max}	d ₁	d ₂
0,30	2,76	SPT	0,96	1,2	0,276	0,684

A _{d'about}	A _{bande 2}	A'	A _{c1}	A _{c2}	A _{min}
[cm²]	[cm ²]	[cm²]	[cm ²]	[cm ²]	[cm ²]
4,96	5,11	-	4,01	9,95	

A _{d'about} + A _{c1}	A _{bande 2} + A _{c2} [cm ²]	A _{Retenue} (d'about) [cm²]	A _{Retenue (bande2)} [cm ²]
8,97	15,06	8,97	15,06

Etude des éléments structuraux

V.2.7.3.1 Choix d'armature :

A d'about =8,97 cm² = 6T14 = 9,24 cm²
$$\rightarrow$$
 e = 10 cm

A bande 2=15,06 cm² = 8T16 = 16,08 cm²
$$\rightarrow$$
 e = 15 cm

A courante = 0,1%.b.L courante=2,21 cm² = 12T10= cm²
$$\rightarrow$$
 e = 15 cm



Figure V.2.13.9: Coupe horizontale de ferraillage du trumeau

Etude des éléments structuraux

V.3 Etude du voile périphérique:

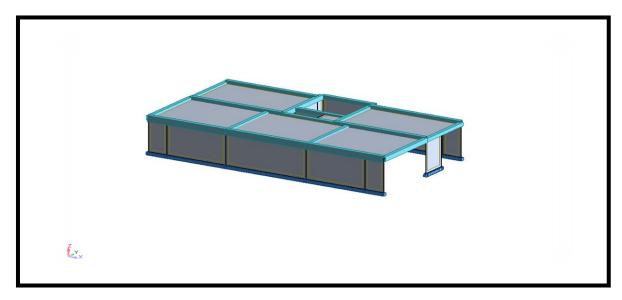


Figure V.3.1: les voiles périphériques (sous sol)

V.3.1 Détermination les sollicitations:

• Poids propre du voile périphérique:

$$P_{Pr} = \gamma_b . V_b$$

 $\gamma_b = 25 \text{ KN/m}^3$

 $V_B=1.h_e.e$

Avec:

P_{Pr}: Poids propre du voile.

h_e: La hauteur du voile.

e: Epaisseur de voile.

Donc:

 $V_B=1.2,9.0,15=0,435 \text{ m}^3$

$$P_r = \gamma_b.V_b = 25.0,435 = 10,88 \text{ KN}$$

• ELU

N_u=1,35. 10,88 =14,68 KN

• ELS

 $N_{ser} = P_r = 10,88 \text{ KN}$

V.3.2 Calcul de la poussée des terres

D'âpres la (THEORIE DE RANKINE 1860):

 $\sigma = K_P. \gamma.H$

Avec:

K_P: coefficient de poussée $K_P = tg^2(\frac{\pi}{4} - \frac{\varphi}{2})$

 γ : La masse volumique des terres.

H: hauteur de voile

Avec: $\delta = \frac{2}{3} \cdot \varphi$; $\varphi = 35^{\circ}$

 δ : Frotement mur / sol

V.3.3 Calcul des contraintes:

 $\sigma = K_P. \gamma.H$

Avec:

$$K_P = tg^2(\frac{\pi}{4} - \frac{\varphi}{2}) = 0.271$$

 γ =18 KN/m³

Donc:

 $\hat{\mathbf{A}}$: H = 0 m

$$\sigma = K_P. \gamma.H = 0,247. 18.0 = 0$$

 \hat{A} ; H = 2,9 m

Etude des éléments structuraux

• On considère le voile comme une dalle s'appuyant sur 4 cotés avec une charge uniformément repartie:

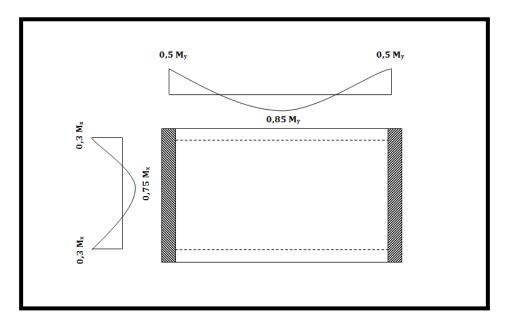


Figure V.3.2: schéma du panneau de dalle

V.3.4 Les combinaisons fondamentales:

On a: $G = \frac{12.9}{2} = 6.45 \text{ KN/m}^2$

• **ELU**:

Q u= 1,35.G.1=1,35.6,45.1=8,71 KN/ml

• ELS:

 $Q_S = G.1 = 6,45.1 = 6,45 \text{ KN/ml}$

V.3.5 Calcul des sollicitations:

• **ELU**:

$$M^u_x = \ \mu^u_x.\, q_u.\, L^2_x$$

$$M_y^u = \mu_y^u . M_x^u$$

Etude des éléments structuraux

• ELS:

$$\begin{split} M^u_x &= \ \mu^u_x.\, q_u.\, L^2_x \\ M^u_v &= \ \mu^u_v.\, M^u_x \end{split}$$

Avec:
$$\mu_X$$
; $\mu_Y = f(\rho; v)$ et $\rho = \frac{l_x}{l_y}$

Alors:
$$\rho = \frac{l_x}{l_y} = \frac{2.9}{6.48} = 0.45 \rightarrow 0.4 \le 0.45 \le 1$$
: dalle porte suivant deux sens

V.3.5 Calcul des moments:

Pour: ρ = 0,45 on adopte ces résultats

V.3.1 Tableau recupilatif des valeurs de μ_{Y_i} μ_{X} en ELU et ELS:

EI	LU	ELS		
μχ	μγ	μχ	μ_{Y}	
0,1017	0,250	0,1046	0,333	

$$\begin{split} &M_x^u \ = \ \mu_x^u.\, q_u.\, L_x^2 = 0,\!1017.\,8,\!71.2,\!92 =\!\!7,\!45 \ KN.ml \\ &M_y^u \ = \ \mu_y^u.\, M_x^u =\!\!0,\!250.7,\!45 \!=\! 1,\!86 \ KN.ml \end{split}$$

• ELS:

$$M_x^u = \ \mu_x^u. \, q_u. \, L_x^2 \text{= 0,1046.6,45.2,9 =1,96 KN.ml}$$

$$M_y^u \, = \, \, \mu_y^u.\, M_x^u \, = \! 0,\! 333.1,\! 96 \! = \! 0,\! 65 \,\, KN.ml$$

Etude des éléments structuraux

V.3.2 Tableau récapitulatif des moments en travées et en appuis:

	ELU		ELS	
	x-x	у-у	x-x	у-у
M _t (KN.ml)	5,59	1,60	1,47	0,60
M _{ar} (KN.ml)	2,24	M _{ai} =0,93	0,59	M _{ai} =0,33
M _{ai} (KN.ml)	$M_{ar} = 2,24$	0,93	M _{ar} =0,59	0,33

Etude des éléments structuraux

V.3.3 Tableau récapitulatif des moments fléchissants:

				Elu ν = 0						ELS $v = 0.2$				
			μu		Mu			μs		Ms				
		lx	Ly	ρ	qu'	μх	μу	Maux	Muy		μх	μу	MS	MS
	V1	2,90	6,48	0,45	8,71	0,1017	0,25	7,45	1,86	6,45	0,1046	0,333	5,67	1,89
	V2	2,90	4,75	0,61	8,71	0,0798	0,3170	5,85	1,85	6,45	0,0849	0,4870	4,61	2,24
	V3	2,90	5,86	0,49	8,71	0,0960	0,2500	7,03	1,76	6,45	0,0993	0,3650	5,39	1,97
	V4	2,90	4,26	0,68	8,71	0,0707	0,4080	5,18	2,11	6,45	0,0766	0,5630	4,16	2,34

Etude des éléments structuraux

V.3.4 Tableau récapitulatif des moments fléchissant a ELU:

	M _u (1	N.m)	M _t (KN.ml)		M _{ar} (K	N.ml)	M _{ai} (KN.ml)	
	x-x	у-у	x-x	у-у	x-x	у-у	x-x	у-у
V1	7,45	1,86	5,59	1,60	2,24	M _{ai} =0,93	$M_{ar} = 2,24$	0,93
V2	5,85	1,85	4,40	1,60	1,80	M _{ai} =0,93	M _{ar} =1,76	0,93
V3	7,03	1,76	5,27	1,50	2,11	M _{ai} =0,88	M _{ar} =2,11	0,88
V4	5,18	2,11	3,90	1,80	1,60	M _{ai} =1,10	M _{ar} =1,60	1,10

$V. 3.5\ Tableau\ r\'ecapitulatif\ des\ moments\ fl\'echissant\ a\ ELS:$

	M _u (N.m)		M _t (KN.ml)		M _{ar} (K	N.ml)	M _{ai} (KN.ml)	
	x-x	у-у	x-x	у-у	x-x	у-у	x-x	у-у
V1	5,67	1,89	4,30	1,61	1,70	M _{ai} =0,95	M _{ar} =1,70	0,95
V2	4,61	2,24	3,46	1,90	1,40	M _{ai} =1,12	M _{ar} =1,40	1,12
V3	5,39	1,97	4,04	1,68	1,62	M _{ai} =0,99	M _{ar} =1,62	0,99
V4	4,16	2,34	3,12	1,99	1,25	M _{ai} =1,17	M _{ar} =1,25	1,17

Etude des éléments structuraux

V.3.6 Tableau récapitulatif des moments fléchissant maximum a ELU :

M _t (K	N.ml)	M _a (KN.ml)			
X-X	у-у	x-x	у-у		
5,59	1,80	2,24	1,10		

V.3.7 Tableau récapitulatif des moments fléchissant maximum ELS :

M _t (K)	N.ml)	M _a (KN.ml)			
х-х	у-у	x-x	у-у		
4,30	1,99	1,70	1,17		

V.3.7 Calcul de l'enrobage :

$$\emptyset \le \frac{h_d}{10} = \frac{15}{10} = 1.5$$
 cm on prendra $\rightarrow \emptyset = 10$ mm

$$C_x = a + \frac{\phi}{2} = 10 + 5 = 15$$
mm

$$C_Y = a + \emptyset + \frac{\emptyset}{2} = 25$$
mm

$$d_x = h - C_x = 13,5 cm$$

$$d_y = h - C_y = 12,5cm$$

V.3.8 Ferraillage de la dalle pleine :

- ELU:
- Sens x-x:
- En travée:

 $M_u = 5,59KN.ml$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d_x}^2} = \frac{5,59.10^3}{14,2.100.13,5^2} = 0,022$$

On a: μ_L = 0,392 (acier FeE400)

Donc : μ < μ _L alors A' n'existe pas et 1000 ε _L < 1000 ε _S

Etude des éléments structuraux

$$\sigma_s = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 348 \text{ Mpa}$$

 $\alpha = 1,25 (1 - \sqrt{1 - 2\mu}) \rightarrow \alpha = 0,027$
 $\beta = (1 - 0,4\alpha) \rightarrow \beta = 0,99$

A =
$$\frac{M_u}{\sigma_S.\beta.d}$$
 = $\frac{5,59.10^3}{348.0,99.13,5}$ = 1,20 cm²/ml

V.3.8.1 Condition de non fragilité:

$$A_{min} = 0,0008$$
. b. $h = 0,0008.100.15 = 1,2$ cm² /ml

V.3.8.2 Condition exigée par le RPA99/2003 :

 $A_{RPA}=0.001.b.h=1.5 \text{ cm}^2/\text{ml}$

 $A=max (A_{ca}; A_{RPA}; A_{min}) = 1.5 cm^2 / ml$

• Choix d'armature :

 $A = 4T10/ml = 3,14 \text{ cm}^2/ml$

• **ELS**:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

• En travée:

 $M_u = 5,59 \text{ KN.ml}$

$$M_s = 4,30 \text{ KN.ml}$$

$$\gamma = \frac{5,59}{4.30} = 1,3$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{1,3-1}{2} + \frac{25}{100} = 0,40$$

$$\alpha = 0.027 < 0.40 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15 MP

Donc les armatures calculées à ELU conviennent à ELS.

Etude des éléments structuraux

• En appuis:

 $M_u = 2,24 \text{ KN.ml}$

- Vérification l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.{\rm b.d}^2} = \frac{2,24.10^3}{14,2.100.13,5^2} = 0.01$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc : $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ MP}$$

$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu}) \rightarrow \alpha = 0.01$$

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.99$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{2,24.10^3}{348.0,99.13,5}$ = 0,48 cm² /ml

V.3.8.3 Condition de non fragilité:

$$A_{min} = 0,0008$$
. b. $h = 0,0008.100.15 = 1,2$ cm² /ml

V.3.8.4 Condition exigée par le RPA99/2003 :

$$A_{RPA}=0.001.b.h=1.5 \text{ cm}^2/\text{ml}$$

$$A=max (A_{ca}; A_{RPA}; A_{min}) = 1.5 cm^2 / ml$$

• Choix d'armature :

$$A = 4T10 / ml = 3,14 cm^2 / m$$

• ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

• En appuis:

$$M_u = 2,24 \text{ KN.ml}$$

$$M_s = 1,70 \text{ KN.ml}$$

Etude des éléments structuraux

$$y = \frac{2,24}{1,70} = 1,32$$

$$\alpha \le \frac{y-1}{2} + \frac{fc_{28}}{100} \implies \frac{1,32-1}{2} + \frac{25}{100} = 0,41$$

$$\alpha = 0,01 < 0,41 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6.f_{c28} = 15 MP

Donc les armatures calculées à ELU conviennent à ELS.

- Sens Y-Y:
- En travée:

 $M_u = 1,80 KN.ml$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d_x}^2} = \frac{1,80.10^3}{14,2.100.12,5^2} = 0,01$$

On a : μ_L =0,392 (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_s = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 348 \text{ Mpa}$$

 $\alpha = 1,25 \left(1 - \sqrt{1 - 2\mu}\right) \rightarrow \alpha = 0.01$

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.99$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{1,80.10^3}{348.0,99.12,5}$ = 0,42 cm²/ml

V.3.8.5 Condition de non fragilité:

$$A_{min} = 0.0008$$
. b. $h = 0.0008.100.15 = 1.2 \text{ cm}^2 / \text{ml}$

V.3.8.6 Condition exigée par le RPA99/2003 :

$$A_{RPA}$$
=0,001.b.h=1,5 cm² /ml

$$A=max (A_{ca}; A_{RPA}; A_{min}) = 1.5 cm^2 / ml$$

• Choix d'armature :

$$A = 4T10/ml = 3,14cm^2/ml$$

• ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Etude des éléments structuraux

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_c}$ Il n'y a aucune vérification effectuée pour l'ELS.

• En travée:

$$M_u = 1.80 \text{ KN.ml}$$

$$M_s = 1,99KN.ml$$

$$\gamma = \frac{1,80}{1,99} = 0,90$$

$$\alpha \le \frac{y-1}{2} + \frac{fc_{28}}{100} \implies \frac{0,90-1}{2} + \frac{25}{100} = 0,20$$

$$\alpha = 0.01 < 0.20 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6.f_{c28} = 15 MP

Donc les armatures calculées à ELU conviennent à ELS.

• En appuis:

 $M_u = 1,10 \text{ KN.ml}$

- Vérification de l'existence de A':
- Calcul du moment réduit:

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d^2}} = \frac{1,10.10^3}{14,2.100.12,5^2} = 0,01$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc : $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1.15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,01

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.99$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{1,10.10^3}{348.0,99.12,5}$ = 0,25 cm²/ml

V.3.8.7 Condition de non fragilité:

$$A_{min} = 0,\!0008.\,b.\,h = 0,\!0008.100.15 = 1,\!2~cm^2~/ml$$

V.3.8.8 Condition exigée par le RPA99/2003 :

$$A_{RPA}$$
=0,001.bah=1,5 cm² /ml

$$A=max (A_{ca}; A_{RPA}; A_{min}) = 1.5 cm^2 / ml$$

• Choix d'armature :

$$A = 4T10 / ml = 3.14 cm^2 / ml$$

Etude des éléments structuraux

• ELS:

Fissurations non préjudiciables Flexion simple Section rectangulaire FeE400

Si $\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100}$ avec $\gamma = \frac{M_u}{M_s}$ Il n'y a aucune vérification effectuée pour l'ELS.

• En appuis:

$$M_u = 1,10 \text{ N.m}$$

$$M_s = 1,17 \text{ N.m}$$

$$y = \frac{1,10}{1,17} = 0,94$$

$$\alpha \le \frac{\gamma - 1}{2} + \frac{fc_{28}}{100} \implies \frac{0.94 - 1}{2} + \frac{25}{100} = 0.22$$

$$\alpha = 0.01 < 0.22 \rightarrow C.V$$

$$\sigma_b \leq \overline{\sigma_b}$$
 = 0,6. f_{c28} = 15 MP

Donc les armatures calculées à ELU conviennent à ELS.

Etude des éléments structuraux

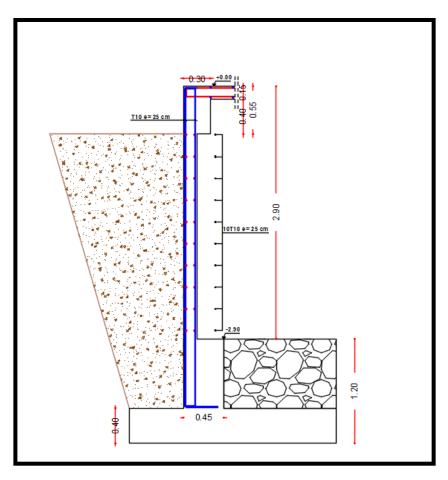


Figure V.3.3: coupe transversale du ferraillage voile périphérique

Etude de l'infrastructure

Etude de l'infrastructure

Etude de l'infrastructure

IV.1 Etude l'infrastructure:

VI.1.1 Introduction:

Une fondation se définit comme la partie d'un bâtiment ou d'un ouvrage de travaux publics qui assure la transmission dans le sol des charges, poids propre, forces climatiques, sismiques et charges d'exploitation).

Les fondations d'un bâtiment représentent un enjeu essentiel de sa construction car elles forment la partie structurelle qui assure sa portance et permet de contrôler les tassements dus aux charges qu'il applique au sol et les infiltrations dues a la présence éventuelle d'eau dans le terrain.

Suivant la capacité portante du sol, l'environnement de l'ouvrage à fonder, les forces mises en jeu les tassements admissibles, le constructeur choisira une solution du type fondation superficielle, semi profonde ou profonde qui diffèrent par leur niveau de fondation, leur géométrie et leur fonctionnement.

VI.1.2 Les différents types des fondations:

- Fondations superficielles :
 - Semelle isolée :
 - Semelle filante et
 - Radier général.

VI.1.3 Les combinaisons d'action:

D'après le **RPA 99v2003 de l'article 10.1.4.**1 les fondations superficielles sont dimensionnées selon les combinaisons d'action suivantes :

- G+Q±E
- 0.8.G±E

D' après le **DTR de l'article 2.33.1**:

- 1,35.G+1,5.Q
- G+O

VI.1.4 Dimensionnement des semelles:

• Semelles filantes:

Nous proposons de une semelle filante plus approche de réaliser:

D' après le rapport géotechnique la contrainte admissible égale 2 bars et la surface d'impacte de bâtiment est 211,12m².

VI.1.4.1 Calcul de la surface totale des semelles:

- Sens y-y:
- Voile type 06:

$$N_s^{max}$$
 = 3262,80 KN ; σ_{sol} = 2 bars; ; $\sigma = \frac{N_s}{B.L}$

$$B = ?$$

$$L = 5,47 \text{ m}$$

• Vérification la condition suivant :

$$\sigma \leq \sigma_{sol}$$

• Calcul de la largeur B :

$$\sigma = \frac{N_s}{B.L} \le \sigma_{sol}$$

Donc:

$$B \ge \frac{N_s}{\sigma_{sol} \cdot L} = \frac{3262,80}{200.5,47} = 2,98$$

On adopte: B=300 cm

• Alors:

$$\sigma = \frac{N_s}{B.L} = \frac{3262,80}{3.5,47} = 1,99 \text{ bars} \le \sigma_{sol} = 2 \text{ bars} \Longrightarrow \text{condition verifiée}$$

- Sens x-x:
- Voile périphérique :

$$N_s^{max}$$
 = 772,49 KN ; σ_{sol} = 2 bars; $S_{b\hat{a}timent}$ = 208,02 m²; $\sigma = \frac{N_s}{B.L}$

$$B = ?$$

Etude de l'infrastructure

L = 5,47 m

• Vérification la condition suivant :

$$\sigma \leq \sigma_{sol}$$

• Calcul la largeur B :

$$\sigma = \frac{N_s}{B.L} \le \sigma_{sol}$$

Donc:

$$B \ge \frac{N_s}{\sigma_{sol} \cdot L} = \frac{772,49}{200.5,86} = 0,66 \, m$$

On adopte: B=100cm

Alors:

$$\sigma = \frac{N_s}{B.\,L} = \frac{772,\!49}{100.5,\!86} = 1,\!32 \; bars \leq \; \sigma_{sol} = 2 \; bars \Longrightarrow condition \; verifier$$

• Conclusion:

D'après le dimensionnement de la semelle du voile type 06 sens y-y et le voile périphérique sens x-x on remarque il y a un chevauchement donc on opte pour un radier général comme type de fondation.

VI.1.5 Etude du radier général:

Le radier est une fondation superficielle de type plateforme maçonnée qui est la base de départ d'un bâtiment. Ce système permet la répartition des charges sur un terrain peu stable. La réalisation d'un radier nécessite une étude béton armé préalable, avec vérification du tassement général de la construction.

Etude de l'infrastructure

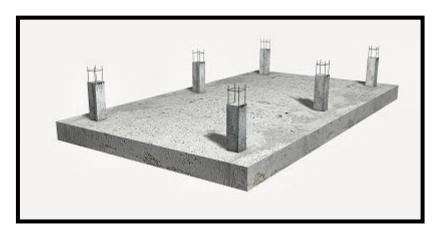


Figure VI.1.5.1: radier général

VI.1.5.1 Dimensionnement du radier:

- L'épaisseur du radier :
- Il faut les conditions suivant doit être vérifier :
 - Condition forfaitaire;
 - Condition de rigidité;
 - Condition de non cisaillement et
 - Condition de non poinçonnement.

1) Condition forfaitaire:

$$\frac{L_{max}}{8} \le H \le \frac{L_{max}}{5}$$

Avec:

L_{max}: la plus grand distance entre deux voiles.

H: l'épaisseur de radier.

Application numérique :

On a:

 $L_{max} = 7,36 \text{ m}$

Donc:

Etude de l'infrastructure

$$\frac{L_{max}}{8} \le H \le \frac{L_{max}}{5} \implies \frac{736}{8} \le H \le \frac{736}{5} \implies 92 \text{ cm} \le H \le 147,2 \text{ cm}$$

On adopte : H = 100 cm

2) Condition de rigidité:

$$L_{max} \leq \frac{\pi. L_e}{2}$$

Avec:

 L_{max} : la plus grand distance entre deux voiles.

Le: longueur élastique.

$$L_{e} = \sqrt[4]{\frac{4.\,\mathrm{EI}}{\mathrm{K.\,b}}}$$

E: module d'élasticité.

I: inertie d'une bande de 1 m de radier.

K: coefficient de raideur du sol.

b: largeur du radier

$${L_e}^4 = \frac{4.\,EI}{K.\,b} \qquad ; \quad I = \frac{b.\,h^3}{12} \label{eq:Leff}$$

D'où:

• Application numérique :

$$H \ge \sqrt[3]{\frac{3. \, \text{K}}{E} \cdot \left(\frac{2. \, L_{max}}{\pi}\right)^4} \Longrightarrow \sqrt[3]{\frac{3.40}{3, 2. \, 10^4} \cdot \left(\frac{2.736}{3, 14}\right)^4} = 120 \, \text{cm}$$

✓ On adopte: H = 120 cm

Etude de l'infrastructure

- Dimensionnement de la nervure :
- La hauteur de la nervure :

$$h_n \ge \frac{L}{10} = \frac{736}{10} = 73,36 \text{ cm}$$

On prend: h_n =80 cm

• Epaisseur de la dalle :

$$e \ge \frac{L}{20} = \frac{504}{20} = 12,6 \ cm$$

On prend: e=40 cm

• Pré dimensionnement des poutres :

Les dimensions des poutres doivent satisfaire les conditions suivantes :

$$0.3. h \le b_0 \le 0.4. h$$

$$b_1 \le \min\left(\frac{L - b_0}{2}; \frac{L}{10}\right)$$

- Application numérique :
- Sens x-x:

$$0.3. h \le b_0 \le 0.4. h$$

$$0.3.120 \le b_0 \le 0.4.120$$

$$36 \text{ cm} \le b_0 \le 48 \text{ cm}$$

• **On prend** : $b_0 = 45 \text{ cm}$

$$b_1 \leq \min{(\frac{L-b_0}{2}~;~\frac{L}{10})}$$

$$b_1 \le \min\left(\frac{504 - 45}{2}; \frac{504}{10}\right)$$

$$b_1 \le min (229,5 cm ; 50,4 cm)$$

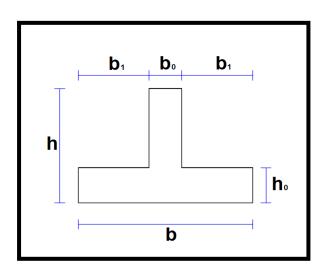


Figure VI.1.5.2: les dimensions de la poutre

Etude de l'infrastructure

 $b_1 \le 50,4 \text{ cm}$

✓ On prend : $b_1 = 50$ cm

Pour le sens y-y les poutres secondaires on prend les mêmes dimensions que les poutres principales :

VI.1.5.1 Tableau recapitulatif des dimmesnions des poutres principales et secondaires :

Type des poutres	h (cm)	h _n (cm)	h ₀ (cm)	b ₀ (cm)	b ₁ (cm)	b (cm)
Poutres principales	120	80	40	45	50	145
Poutres secondaires	120	80	40	45	50	145

3) Condition de non poinçonnement :

$$N_u \le 0.045$$
. U_c . $h \cdot \frac{f_{c28}}{\gamma_b}$

Avec:

 $N_u \! :$ charge maximale appliquée par le voile sur le radier, calculée à l'ELU

Uc: périmètre du coutour au niveau du feuillet moyen

H: épaisseur totale du radier

$$U_c=2.(a_1+b_1)$$

$$a_1 = (a+h)$$

$$b_1 = (b+h)$$

$$U_c=2. (a_1+b_1)=2.(a+b+2.h)=2.(0,30+5,47+2.h)=5,77+4.h$$

a : section du voile le plus sollicité.

Donc:

Etude de l'infrastructure

$$N_u \le 0.045. (5.77 + 4.h).h. \frac{25}{1.5}$$

$$N_u \le 0.045.(5.77 + 4.120).120.\frac{2500}{1.5}$$

$$4481,50 \text{ KN} \le 95130000 \text{ KN}$$

Conclusion:

La condition est vérifiée.

4) Condition de non cisaillement :

$$\tau_u \leq \bar{\tau}_u$$

$$\tau_u = \frac{V_u}{b.d} = \frac{V_u}{b.0,9.h} \le \bar{\tau}_u = 0.07. \frac{f_{c28}}{1.5}$$

 au_u : Contrainte tangentielle.

 $\bar{ au}_u$: Contrainte tangentielle admissible.

 V_u : effort tranchant.

S_{radier}: surface du radier

Calcul de l'effort tranchant:

Le panneau 02:

$$0.4 \le \rho \le 1$$

$$0.4 \le \frac{4.17}{6.91} \le 1$$

$$0.4 \le 0.60 \le 1$$

Donc: la dalle porte sur deux sens.

$$V_x = \frac{\overline{q_u}.\,L_x}{2}.\frac{{L^4}_y}{{L^4}_v + {L^4}_x}$$

$$V_x = \frac{\overline{q_u}.L_y}{2}.\frac{{L^4}_x}{{L^4}_y + {L^4}_x}$$

Etude de l'infrastructure

Calcul $\overline{q_u}$:

Calcul du débordement :

 $S_{debord} d \ge max \left(\frac{h}{2}; 30cm\right) = max (60cm; 30 cm) \implies d = 60 cm de chaque cote.$

La surface du radier est :

$$S_{radier} = S_{batiment} + S_{debord}$$

$$S_{radier}$$
=211,12+38,31 =249,43 m²

• Le poids de la superstructure :

$$G = 21664,1539 \text{ KN}$$
; $Q=5 \text{ KN/m}^2$

$$\overline{q_u} = 1,35. \frac{G}{S_{radier}} + 1,5. Q = 1,35. \frac{21664,1539}{249,43} + 1,5.5 = 124,76 \text{ KN/m}^2$$

Pour une bande de 1 m de largeur :

$$V_{x} = \frac{\overline{q_{u}} \cdot L_{x}}{2} \cdot \frac{L_{y}^{4}}{L_{y}^{4} + L_{x}^{4}} = \frac{124,76.4,17}{2} \cdot \frac{6,91^{4}}{6,91^{4} + 4,17^{4}} = 229,67KN$$

$$V_y = \frac{\overline{q_u} \cdot L_y}{2} \cdot \frac{L_x^4}{L_y^4 + L_x^4} = \frac{124,76.6,91}{2} \cdot \frac{4,17^4}{6,91^4 + 4,17^4} = 50,47 \text{ KN}$$

On adoptera:

$$V_{\text{max}} = 229,67 \text{ KN}$$

Donc:

$$h \ge \frac{V_u}{b.0,9.h} = \frac{229,67.10^3}{100.0,9.1,17.10^2} = 21,81 \text{ cm}$$

VI.1.5.2 Vérification du soulèvement:

On doit vérifier que sous la pression hydrostatique le bâtiment ne se soulève pas :

$$P \geq 1,5.S.\gamma.Z$$

Etude de l'infrastructure

Avec:

P: Poids de bâtiment.

S: Surface du bâtiment.

Z: L'ancrage.

 γ : Poids voumique du l'eau 10 KN/m².

L: La somme des longueurs totales des poutres principales.

L': La somme des longueurs totales des poutres secondaires.

P_{poutre p}: Poids propre des poutres principales.

P_{poutre s}: Poids propre des poutres secondaires.

Pour la structure étudiée:

$$P_{\text{radier}} = S_r. h_0. \gamma_b = 249,51.0,4.25=2495,1$$

$$P_{poutre\ p}$$
 = L. (h $-$ h $_0$). b_0 . γ_b = 61,17. (1,20 $-$ 0,40). 0,45.25 = 550,53

$$P_{\text{poutre s}} = L'. (h - h_0). b_0. \gamma_b = 42,14. (1,20 - 0,40). 0,45.25 = 379,26$$

$$P = P_{batiment} + P_{radier+poutres} = 21664,1539 + 3424,9 = 25089,3 \text{ KN}$$

$$P \geq 1,5.S.\gamma.Z$$

$$25089,3 \text{ KN} \ge 1,5.249,51.10.5,44 = 2036,002 \text{ KN}$$

Conclusion:

La structure est stable donc il n'y a pas un soulèvement.

Etude de l'infrastructure

VI.1.5.3 Modélisation du radier :

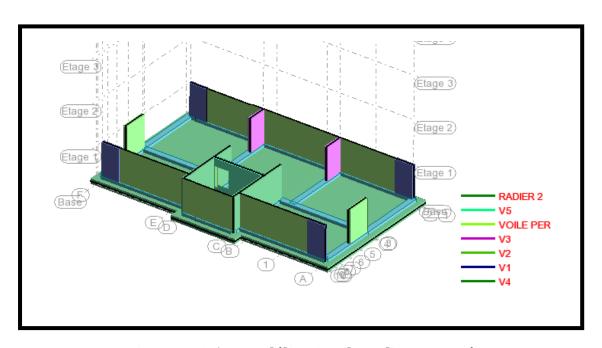


Figure VI.1.5.3: modélisation du radier nervuré

Etude de l'infrastructure

VI.1.5.4 Vérification de la contrainte à l'état limite de service :

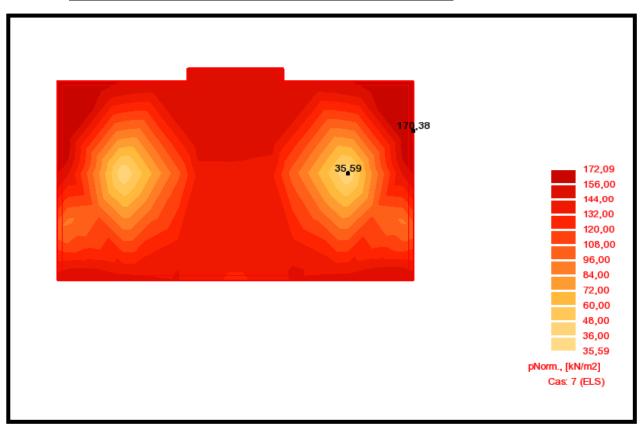


Figure VI.1.5.4: cartographie des contraintes du sol de radier nervuré

❖ D' après le logiciel ROBOT ANALYSIS STRUCTURAL 2014 on obtient la contrainte à l'ELS :

$$\sigma_{max} = 1,70 \text{ bars}$$
; $\sigma_{min} = 0,36 \text{ bars}$

On vérifie que :

$$\sigma \leq \sigma_{sol}$$

Donc:

$$\sigma_{\text{moy}} = \frac{3. \, \sigma_{max} + \sigma_{min}}{4} = \frac{3.1,70 + 0,36}{4} = 1,37 \text{ bars} \le \sigma_{sol} = 2 \text{ bars}$$

Donc la condition est vérifiée.

Etude de l'infrastructure

VI.1.5.5 Vérification de la contrainte à l'état limite ultime :

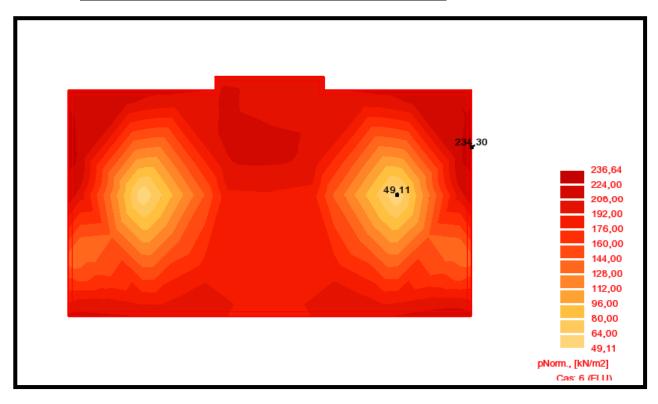


Figure VI.1.5.5: cartographie des contraintes du sol de radier nervuré

❖ D' après le logiciel robot analysais structural 2014 on obtient les contraintes à l'ELU :

$$\sigma_{max} = 2.34 \text{ bars}$$
; $\sigma_{min} = 0.50 \text{bars}$

On vérifie que :

$$\sigma \leq \sigma_{sol}$$

Donc:

$$\sigma_{\text{moy}} = \frac{3.\,\sigma_{max} + \sigma_{min}}{4} = \frac{3.2,34 + 0,50}{4} = 1,88 \text{ bars} \le \sigma_{sol} = \frac{2.3}{2} = 3 \text{ bars}$$

✓ Donc la condition est vérifiée.

Etude de l'infrastructure

VI.1.5.6 Ferraillage du radier:

VI.1.5.6.1 Ferraillage de la dalle:

Le calcul se fait pour bande de 1m de largeur en flexion simple :

La fissuration est considérée comme préjudiciable.

VI.1.5.6.2 Exemple de calcul:

Détermination des sollicitations:

Pour une bande de 1 m:

$$q=\sigma_m \cdot \frac{L}{4} 1ml$$

Le panneau 02 :

$$L_x$$
= 7,36-0,45=6,91 m;

$$0,4 \le \rho \le 1$$

$$0.4 \le \frac{4.17}{6.91} \le 1$$

 $0.4 \le 0.60 \le 1$

Donc : la dalle porte sur deux sens

Calcul des moments :

$$\begin{split} M_x = & \;\; \mu_x.\,q.\,L_x^2 \\ M_v = & \;\; \mu_v.\,M_x^u \end{split}$$

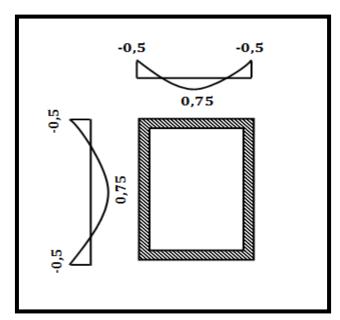


Figure VI.1.5.6: schéma statique du mode d'encastrement du panneau

Etude de l'infrastructure

ELU:

$$q_u = \sigma_m \cdot \frac{L}{4} 1 m l = 188 \cdot \frac{4,17}{4} \cdot 1 = 195,99 \text{ KN/m}$$

VI.1.5.2 Tableau recupilatif des valeurs de μ_{Y_i} μ_X en ELU:

ELU				
μх μγ				
0,0812	0,305			

$$\begin{split} &M_x^u \,=\, \, \mu_x^u.\, q_u.\, L_x^2 = 0,\!0812.\,195,\!99.\,4,\!17^2 = 276,\!73\;\text{KN.}\,m \\ &M_y^u \,=\, \, \mu_y^u.\, M_x^u =\!0,\!305.\,276,\!73 = 84,\!40\;\text{KN.}\,m \end{split}$$

ELS:

$$q_s$$
= $\sigma_m \, . \frac{L}{4} \, 1ml$ = 137. $\frac{4,17}{4} \, . \, 1$ = 142,82 KN/ml

VI.1.5.3 Tableau recupilatif des valeurs de μ_{Y_1} μ_{X} en ELU et ELS :

ELS					
μχ μγ					
0,0861	0,476				

$$M_x^u = \ \mu_x^u. \, q_u. \, L_x^2 = 0,\!0861.\,142,\!82\,.\,4,\!17^2 = 213,\!82 \; \text{KN.} \, m$$

$$M_y^u = \; \mu_y^u.\, M_x^u \; \text{=0,305.213,82} \;\; = 65,\!22 \; \text{KN.} \, m$$

ELU:

• Moment en travée :

$$M_{tx} = 0.75.M_x = 0.75. 276.73 = 243.24KN.ml$$

 $M_{ty} = 0.75.M_y = 0.75. 84.40 = 45.40 KN.ml$

• Moment en appuis intermédiaire :

$$M_{aix}$$
= 0,5. M_x =0,5.276,73= 100,90 KN.ml
 M_{aiy} = 0,5. M_y =0,5.84,40 =30,75 KN.ml

Etude de l'infrastructure

ELS:

• Moment en travée :

 $M_{tx} = 0.75.M_x = 0.75.213.82 = 220.01 \text{ KN.ml}$

 M_{ty} = 0,75. M_y =0,75.65,22 = 104,80 KN.ml

• Moment en appuis intermédiaire :

 M_{aix} = 0,5. M_x =0,5. 213,82 = 146,72 KN.ml

 M_{aiy} = 0,5. M_y =0,5. 65,22 = 69,90 KN.ml

Etude de l'infrastructure

VI.1.5.4 Tableau récapitulatif des moments fléchissant et les efforts tranchant :

					ELu ν = 0				ELS $v = 0.2$				
					μu Mu			μ	s	M	Is		
	lx	ly	ρ	qu	μх	μу	Mux	Muy	qs	μх	μу	Msx	Msy
P1	5,04	6,03	0,84	236,88	0,052	0,667	312,89	208,70	172,62	0,0589	0,7246	258,27	187,14
P2	4,17	6,91	0,60	195,99	0,0812	0,305	276,73	84,40	142,82	0,0861	0,6710	213,83	143,48
Р3	5,04	5,8	0,87	236,88	0,0488	0,721	293,64	211,71	172,62	0,0559	0,804	245,11	197,07

Etude de l'infrastructure

VI.1.5.5 Tableau récapitulatif des moments fléchissant en ELU:

	M _u (KN.ml)		M _t (KN	N.ml)	M _{ai} (KN.ml)		
	x-x	у-у	x-x	у-у	x-x	у-у	
P01	312,89	208,70	234,70	156,53	156,45	104,35	
P02	276,73	84,40	207,55	63,3	138,70	42,20	
P03	293,64	211,71	220,23	158,78	146,82	105,86	

VI.1.5.6 Tableau récapitulatif des moments fléchissant en ELS:

	M _u (KN.m)		M _t (KN	N.ml)	M _{ai} (KN.ml)		
	x-x	у-у	x-x	у-у	x-x	у-у	
P01	258,27	187,14	193,70	140,36	129,14	93,57	
P02	213,83	143,48	160,37	107,61	106,92	71,74	
P03	245,11	197,07	183,83	147,80	122,56	98,54	

Etude de l'infrastructure

VI.1.5.7 Tableau récapitulatif des moments fléchissant maximum ELU :

M _t (K	N.ml)	M _a (KN.ml)		
х-х	у-у	x-x	у-у	
234,70	158,78	156,45	105,86	

VI.1.5.8 Tableau récapitulatif des moments fléchissant maximum ELS :

M _t (K)	N.ml)	M _a (KN.ml)		
х-х	у-у	x-x	у-у	
193,70	140,36	129,14	93,57	

VI.1.5.6.3 Calcul de l'enrobage:

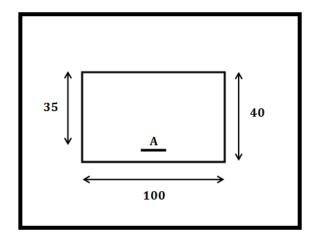
Fissuration est considérée comme préjudiciable donc a = 4 cm

D'âpres le B.A.E.L 91:

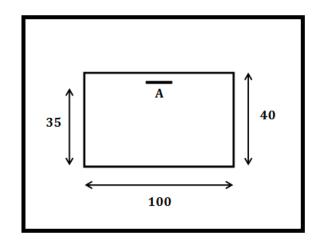
$$\emptyset \le \frac{h_d}{10} = \frac{40}{10} = 4$$
 cm on prendra $\rightarrow \emptyset = 20$ mm

$$C_x = a + \frac{\emptyset}{2} = 40 + 10 = 50 \text{ mm}$$

$$C_y = a + \emptyset + \frac{\emptyset}{2} = 70 \text{ mm}$$

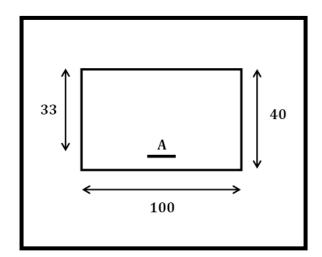

$$d_x = h_d - c_x = 35 \text{ cm}$$

$$d_y = h_d - c_y = 33 \text{ cm}$$

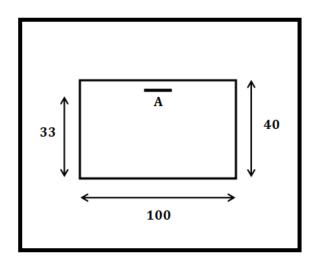

Etude de l'infrastructure

VI.1.5.6.4 Les sections du ferraillage:

Sens X-X:



En appuis



En travée

Sens Y-Y:

En appuis

En travée

Etude de l'infrastructure

- **&** ELU:
- Sens x-x:
- En travée:

 $M_u = 234,70 \text{ KN.ml}$

- Vérification de l'existence de A' :
- Calcule du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d_x}{}^2} = \frac{234,70.10^3}{14,2.100.35^2} = 0,135$$

On a: μ_L = 0,392 (acier FeE 400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{v_{\rm S}} = \frac{400}{1.15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,181

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.93$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{234,70.10^3}{348.0,93.35}$ = 20,78 cm²/ml

• Condition de non fragilité:

$$A > 0.0008$$
. $b.h = 0.0008.100.40 = 3.2 cm2 /ml$

$$A > 3.2 \text{cm}^2/\text{ml}$$

• Choix d'armature :

$$A = 11T16 / ml = 22,12 cm^2 / ml \rightarrow e = 9 cm$$

ELS:

Fissurations préjudiciables Flexion simple Section rectangulaire FeE400

- En travée:
- Y la solution d'équation de deuxième degré :

$$b.y^2+30(A_S+A_{s'}).y-(30(A_S.d+A_{s'}.d))=0$$

Etude de l'infrastructure

$$100.y^2 + 663.6 y - 23226 = 0$$

$$\Delta$$
=663,6 ²-4(100). (-23226) =9730764,96

$$\sqrt{\Delta} = 3119.42$$

Donc:

Y=12,28 cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

I= 233001.44 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{193,70.10^6}{233001,44.10^4} = 0,08$$

$$\sigma_{bc}=k.\,y=0.08.122.8=10.21\,\text{MPa}<\overline{\sigma_{bc}}=0.6.\,f_{c28}=15\text{MPa}\rightarrow\text{C.\,V}$$

$$\sigma_{st} = 15. \, k(d-y) = 272,\!64 \, \text{MPa} > \overline{\sigma_{st}} = \! \min[\!(\frac{2}{3},400;110.\sqrt{1,\!6.2,\!1}) \text{MPa}$$

$$\sigma_{\rm st} = 272,64~{\rm MPa} > \bar{\sigma}_{\rm s} = 201,63~{\rm MPa} \rightarrow {\rm C.N.V}$$

Donc les armatures calculées à ELU ne conviennent pas à ELS.

D' après le **B.A.E.L 91** si $\sigma_{st} \le \overline{\sigma_{st}}$ la condition n'est pas remplie il faut recalculer la section d'aciers tendus A_s en admettent que ces armatures travaillent au maximum possible c'est-à-dire a la contrainte limite de service:

On calcule:

$$\lambda = 1 + (30.M_{ser}/b.d^2.\overline{\sigma_{st}}) = 1.24$$

Puis: Cos $\varphi = \lambda^{-3/2}$ d'où φ en degres

$$\cos \varphi = 0.73 \Rightarrow \varphi = 43.25^{\circ}$$

On trouve:
$$\alpha = 1 + 2\sqrt{\lambda} \cos(240 + \varphi/3) = 0.40$$

Le diagramme fourni en annexes donne directement les valeurs de : α

Etude de l'infrastructure

Ayant obtenu α , on calcule : $\sigma_{bc} = (\overline{\sigma_{st}}/n)$. $\alpha/(1-\alpha) = 8.99$ MPa

On vérifie que: $\sigma_{bc} \le 0.6.f_{cj} \rightarrow \sigma_{bc} = 8.99 \text{ MPa} \le \overline{\sigma_{bc}} = 15\text{MPa} \rightarrow \text{C.V}$

Puis on obtient: $A_s = \frac{\alpha.b.d.\sigma_{bc}}{(2\overline{\sigma_{st}})} = 31,20 \text{ cm}^2$

• Choix d'armature :

 $10T20 = 31,42 \text{ cm}^2 \rightarrow \text{e} = 10 \text{ cm}$

• En appuis:

 $M_u = 156,45 \text{ KN.ml}$

- Vérification de l'existence de A' :
- Calcule du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.{\rm b.d}^2} = \frac{156,45.10^3}{14,2.100.35^2} = 0,0899$$

On a: μ_L = 0,392 (acier FeE 400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm s} = \frac{f_e}{\gamma_{\rm s}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,118

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.95$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{156,45.10^3}{348.0,95.35}$ = 13,48 cm² /ml

• Condition de non fragilité:

A > 0.0008. b. h = 0.0008.100.40 = 3.2 cm² /ml

$$A > 3.2 \text{cm}^2/\text{ml}$$

Choix d'armature:

 $A = 9T14 / ml = 13,85 cm^2 / ml$

• ELS:

Fissurations préjudiciables Flexion simple Section rectangulaire FeE400

Etude de l'infrastructure

- En appuis:
- Y la solution d'équation de deuxième degré :

$$b.y^2+30(A_S+A_{s'}).y - (30(A_S.d+A_{s'}.d)) = 013,85$$

$$100.y^2 + 415,5.y - 14542,5 = 0$$

$$\Delta$$
=415,5²-4(100). (-14542,5) =5989640,25

$$\sqrt{\Delta}$$
=2447,40

Donc:

Y=10,16 cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

I= 163146,14 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{129,14.10^6}{163146,14.10^4} = 0,08$$

$$\sigma_{bc}=k.\,y=0.08.101.6=8.04\,\text{MPa}<\overline{\sigma_{bc}}=0.6.\,f_{c28}=15\text{MPa}\rightarrow\text{C.\,V}$$

$$\sigma_{\rm st} = 298,08 {\rm MPa} > \bar{\sigma}_{\rm s} = 201,63 {\rm MPa} \rightarrow {\rm C.N.V}$$

Donc les armatures calculées à ELU ne conviennent pas à ELS.

D' après le **B.A.E.L 91** si $\sigma_{st} \le \overline{\sigma_{st}}$ la condition n'est pas remplie il faut recalculer la section d'aciers tendus A_s en admettent que ces armatures travaillent au maximum possible c'est-à-dire a la contrainte limite de service :

On calcule:

$$\lambda = 1 + (30.M_{ser}/b.d^2.\overline{\sigma_{st}}) = 1,16$$

Puis : Cos $\varphi = \lambda^{-3/2}$ d'où φ en degres

$$\cos \varphi = 0.80 \Rightarrow \varphi = 36.83^{\circ}$$

Etude de l'infrastructure

On trouve : $\alpha = 1 + 2\sqrt{\lambda} \cos(240 + \varphi/3) = 0.34$

Le diagramme fourni en annexes donne directement les valeurs de : α

Ayant obtenu α , on calcule : $\sigma_{bc} = (\overline{\sigma_{st}}/n)$. $\alpha/(1-\alpha)=6,97$ MPa

On vérifie que : $\sigma_{bc} \le 0.6.f_{cj} \rightarrow \sigma_{bc} = 6.97 \text{ MPa} \le \overline{\sigma_{bc}} = 15 \text{MPa} \rightarrow \text{C.V}$

Puis on obtient : $A_s = \frac{\alpha.b.d.\sigma_{bc}}{(2\sigma_{st})} = 20,56 \text{ cm}^2$

• Choix d'armature :

 $7T20 = 21,99 \text{ cm}^2 \rightarrow \text{e} = 14 \text{ cm}$

- Sens Y-Y:
- **ELU**:
- En travée:

 $M_u = 158,78 \text{ KN.ml}$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.{\rm b.d_x}^2} = \frac{158,78.10^3}{14,2.100.33^2} = 0,103$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,136

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.95$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{158,78.10^3}{348.0,95.33}$ = 14,62 cm²/ml

• Condition de non fragilité:

A > 0.0008. b. h = 0.0008.100.40 = 3.2 cm² /ml

$$A > 3.2 \text{cm}^2/\text{ml}$$

• Choix d'armature :

 $A = 8T16 / ml = 16,08 cm^2 / ml$

Etude de l'infrastructure

• ELS:

Fissurations préjudiciables Flexion simple Section rectangulaire FeE400

• Y la solution d'équation de deuxième degré :

b.y²+30(A_S+A_S').y - (30(A_S.d+ A_S'.d)) = 0
100.y² +482,4.y-15919,2=0

$$\Delta$$
=482,4²-4(100). (-15919,2) =6600389,8
 $\sqrt{\Delta}$ =2569,1

Donc:

Y=10,4 cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

$$I = 160324,61 \text{ cm}^4$$

• Calcul des contraintes :

$$\begin{split} & \text{K} = \frac{M_{ser}}{I} = \frac{147,80.10^6}{160324,61 \cdot .10^4} = 0,09 \\ & \sigma_{bc} = \text{k. y} = 0,09.104 = 9,38 \text{ MPa} < \overline{\sigma_{bc}} = 0,6. \, \text{f}_{c28} = 15 \text{MPa} \rightarrow \text{C. V} \\ & \sigma_{st} = 15. \, \text{k}(\text{d} - \text{y}) = 305,1 \, \text{MPa} > \overline{\sigma_{st}} = \text{min} \, \overline{\mathbb{Q}_3^2} \, .400; \, 110. \, \sqrt{1,6.2,1}) \text{MPa} \\ & \sigma_{st} = 305,1 \, \text{MPa} > \overline{\sigma_s} = 201,63 \, \text{MPa} \rightarrow \text{C.N.V} \end{split}$$

Donc les armatures calculées à ELU ne conviennent pas à ELS.

D' après le **B.A.E.L 91** si $\sigma_{st} \le \overline{\sigma_{st}}$ la condition n'est pas remplie il faut recalculer la section d'aciers tendus A_s en admettent que ces armatures travaillent au maximum possible c'est-à-dire a la contrainte limite de service :

Etude de l'infrastructure

On calcule:

$$\lambda = 1 + (30.M_{ser}/b.d^2.\overline{\sigma_{st}}) = 1,20$$

Puis : Cos $\varphi = \lambda^{-3/2}$ d'où φ en degres

$$\cos \varphi = 0.76 \rightarrow \varphi = 40.63^{\circ}$$

On trouve :
$$\alpha = 1 + 2\sqrt{\lambda} \cos(240 + \varphi/3) = 0.38$$

Le diagramme fourni en annexes donne directement les valeurs de : α

Ayant obtenu
$$\alpha$$
, on calcule : $\sigma_{bc} = (\overline{\sigma_{st}}/n)$. $\alpha/(1-\alpha)=8,23$ MPa

On vérifie que:
$$\sigma_{bc} \le 0.6.f_{cj} \rightarrow \sigma_{bc} = 8.23 \text{ MPa} \le \overline{\sigma_{bc}} = 15\text{MPa} \rightarrow \text{C.V}$$

Puis on obtient:
$$A_s = \frac{\alpha.b.d.\sigma_{bc}}{(2\overline{\sigma_{st}})} = 25,59 \text{ cm}^2$$

• Choix d'armature :

$$9T20 = 28,27 \text{ cm}^2 \rightarrow \text{e}=11 \text{ cm}$$

• En appuis:

$$M_u = 105,86 \text{ KN.ml}$$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_{u \ max}}{\sigma_{b}.b.d^{2}} = \frac{105,86 .10^{3}}{14,2.100.33^{2}} = 0,069$$

On a:
$$\mu_L$$
=0,392 (acier FeE400)

Donc : $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1 - 2\mu}$) $\rightarrow \alpha$ = 0,089

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.97$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{105,86 \cdot 10^3}{348.0,97.33}$ = 9,56 cm²/ml

Etude de l'infrastructure

Condition de non fragilité:

A > 0.0008. b. h = 0.0008.100.40 = 3.2 cm² /ml <math>A > 3.2 cm² /ml

- Choix d'armature :
- $A = 5T16 / ml = 10,05 cm^2 / ml$
- ELS:

Fissurations préjudiciables Flexion simple Section rectangulaire FeE400

• Y la solution d'équation de deuxième degré :

$$b.y^2 + 30(A_S + A_s').y - (30(A_S.d + A_s'.d)) = 0$$

$$\Delta$$
=301,5²-4(100). (-9949,5) =4070702,25

$$\sqrt{\Delta}$$
=2017,598

Donc:

Y=8,60 cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

I= 111095,97 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{98,54.10^6}{111095,97.10^4} = 0,09$$

Etude de l'infrastructure

$$\sigma_{bc} = k. y = 0.09.86 = 7.63 \text{ MPa} < \overline{\sigma_{bc}} = 0.6. f_{c28} = 15 \text{MPa} \rightarrow \text{C. V}$$

$$\sigma_{st} = 15.\,k(d-y) = 329,4\,\text{MPa} > \overline{\sigma_{st}} = \text{min}[\zeta_3^2.\,400;\,110.\,\sqrt{1,6.2,1})\text{MPa}$$

$$\sigma_{\rm st} = 329,4~{\rm MPa} > \bar{\sigma}_{\rm s} = 201,63~{\rm MPa} \rightarrow {\rm C.N.V}$$

Donc les armatures calculées à ELU ne conviennent pas à ELS.

D'âpres le **B.A.E.L 91** si $\sigma_{st} \le \overline{\sigma_{st}}$ la condition n'est pas remplie il faut recalculer la section d'aciers tendus A_s en admettent que ces armatures travaillent au maximum possible c'est-à-dire a la contrainte limite de service :

On calcule:

$$\lambda = 1 + (30.M_{ser}/b.d^2.\overline{\sigma_{st}}) = 1.14$$

Puis : Cos $\varphi = \lambda^{-3/2}$ d'où φ en degres

$$\cos \varphi = 0.82 \Rightarrow \varphi = 34.75^{\circ}$$

On trouve :
$$\alpha = 1 + 2\sqrt{\lambda} \cos(240 + \varphi/3) = 0.33$$

Le diagramme fourni en annexes donne directement les valeurs de : α

Ayant obtenu α , on calcule : $\sigma_{bc} = (\overline{\sigma_{st}}/n)$. $\alpha/(1-\alpha)=6,62$ MPa

On vérifie que : $\sigma_{bc} \le 0.6.f_{cj} \Rightarrow \sigma_{bc} = 6.62 \text{ MPa} \le \overline{\sigma_{bc}} = 15 \text{MPa} \Rightarrow \text{C.V}$

Puis on obtient : $A_s = \frac{\alpha.b.d.\sigma_{bc}}{(2\overline{\sigma_{st}})} = 17,88 \text{ cm}^2$

• Choix d'armature :

$$6T20 = 18,47 \text{ cm}^2 \rightarrow e=16 \text{ cm}$$

Etude de l'infrastructure

VI.1.5.6.5 Ferraillage de débordement:

Le débordement est 60 cm de chaque coté:

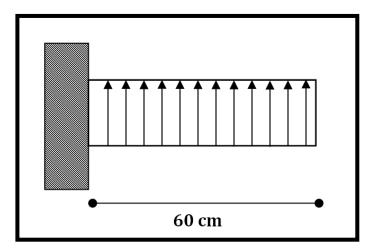


Figure VI.1.5.7: schéma statique de débordement

• Pour une bande de largeur de1 ml :

$$q_u = \sigma_m \cdot \frac{L}{4} 1 m l = 188.1 = 188 \text{ KN/ml}$$

VI.1.5.6.5.1 Calcul du moment fléchissant:

& ELU:

$$M_{\rm u} = -q.\frac{L^2}{2} = -188.\frac{0.60^2}{2} = 33.84 \text{ KN. ml}$$

VI.1.5.6.5.2 Calcul du ferraillage:

 $M_u = 33,84 \text{ KN.ml}$

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.b.d_{\rm x}^2} = \frac{33,84.10^3}{14,2.100.36^2} = 0,018$$

On a: μ_L = 0,392 (acier FeE 400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ MPa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,023

Etude de l'infrastructure

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.99$$

$$A = \frac{M_u}{\sigma_{S.B.d}} = \frac{33,84.10^3}{348.0.99.36} = 2,73 \text{ cm}^2/\text{ml}$$

Condition de non fragilité:

$$A_{\min} = 0.23. \, b. \, d \, \frac{2.1}{f_e} = 4.35 \, \text{cm}^2 \, / \text{ml}$$

$$A_{min} > A$$

• Choix d'armature :

$$A = 5T12 / ml = 5,65 \text{ cm}^2 / ml \rightarrow e = 20 \text{ cm}$$

& ELS:

Fissurations préjudiciables Flexion simple Section rectangulaire FeE400

• Pour une bande de largeur de1 ml:

$$q_{ser} = \sigma_m . 1ml = 137.1 = 137 \text{ KN/ml}$$

Calcul du moment fléchissant :

$$M_{ser} = -q. \frac{L^2}{2} = -137. \frac{0.60^2}{2} = 24.66 \text{ KN. ml}$$

• Y la solution d'équation de deuxième degré :

$$b.y^2+30(A_S+A_{s'}).y - (30(A_S.d+A_{s'}.d)) = 0$$

$$100.y^2 + 169.5 \cdot y - 6102 = 0$$

$$\Delta$$
=169,5 ²-4(100). (-6102) =2469530,25

$$\sqrt{\Delta}$$
=1571,5

Etude de l'infrastructure

Donc:

Y=7,01 cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

I= 82708,01 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{24,66.10^6}{82708,01.10^4} = 0.03$$

$$\sigma_{bc}=k.\,y=0.03.70.1=2.1 MPa<\overline{\sigma_{bc}}=0.6.\,f_{c28}=15 MPa\rightarrow C.\,V$$

$$\sigma_{st} = 15. \, \text{k(d-y)} = 130,05 \, \text{MPa} > \overline{\sigma_{st}} = \text{min} \overline{\mathbb{Q}_3^2}.400; 110. \sqrt{1,6.2,1}) \text{MPa}$$

$$\sigma_{\rm st} = 130,05 \, \text{MPa} > \bar{\sigma}_{\scriptscriptstyle S} = 201,63 \, \text{Mpa} \Rightarrow \text{C.N.V}$$

Conclusion:

Donc les armatures calculées à ELU conviennent à ELS.

VI.1.5.6.6 Vérification de l'effort tranchant:

$$Tu = q_u.L = 188.0,60 = 112,8 \text{ KN}$$

Pour des fissurations préjudiciables on doit vérifier que:

$$\tau_{u} = \frac{T_{u}}{b. d} \le \overline{\tau_{u}}$$

$$A\text{vec} = \overline{\tau_{u}} = \min\left(\frac{0.15.f_{c28}}{\gamma_{b}}; 4 \text{ MPa}\right) = \min\left(2.5; 4\right) = 2.5 \text{ MPa}$$

$$\Rightarrow \tau_{u} = \frac{112.8.10^{3}}{1000.360} = 0.31 \text{ MPa} < 2.5 \text{ MPa}$$

Donc la condition est vérifiée.

Etude de l'infrastructure

VI.1.5.6.7 Vérification de la contrainte de compression (bielle) :

Condition à respecter:

$$\sigma_{\rm b} = \frac{2.V_{\rm u}}{b_{\rm 0}.a} \le 0.8.\frac{f_{\rm cj}}{\gamma_{\rm b}}$$

• Avec:

a: profondeur utile de l'appuis.

 $a.\frac{\sqrt{2}}{2}$: largeur utile de la bielle.

 $V_u.\sqrt{2}$: Effort de compression dans bielle.

 σ_b : Contrainte de compression dans bielle.

• Il faut que:

$$V_u \leq 0,267. b_0. a. f_{c28}$$

On a:

a =0,9.d=32,4 cm; b_0 =100 cm; f_{c28} =25 MPa; T_u = 112,8 KN

Alors:

Conclusion:

Il n'y a pas d'influence de l'effort tranchant au voisinage des appuis.

Remarque:

Pour des raisons pratiques on utilise pour le ferraillage du débordement le prolongement des armatures en travées et en appuis du radier.

Etude de l'infrastructure

VI.1.5.7 Calcul des poutres de redressement:

D'après le **ROBOT ANALYSIS STRUCTURAL** on a obtenu les sollicitations suivantes:

VI.1.5.9 tableau récapitulatif des sollicitations des poutres :

	M _t (KN.m)			M _a (KN.m)			Effort tranchant	
	ELU	ELS	ACC	ELU	ELS	ACC	ELU	ACC
Poutres principales	718,67	523,13	651,51	670,25	487,89	761,64	584,69	719,53
poutre secondaire	563,74	409,47	505,64	364,06	265,25	474,56	508,70	578,52

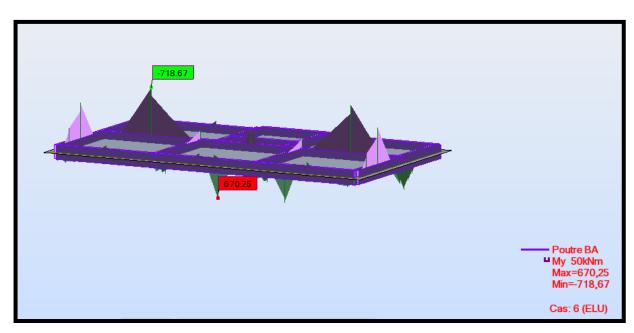


Figure VI.1.5.8: diagramme des moments fléchissant en travées et en appuis (poutre principale)

Etude de l'infrastructure

VI.1.5.7.1 Les dimensions des nervures:

VI.1.5.10 Tableau recapitulatif des dimmesnions des poutres principales et secondaires :

Type des poutres	h (cm)	h _n (cm)	h ₀ (cm)	b ₀ (cm)	b ₁ (cm)	b (cm)
Poutre principale	120	80	40	45	50	165
Poutre secondaire	120	80	40	45	50	165

b₁

b₀

b

 b_1

h_o

VI.1.5.7.2 Calcul du ferraillage:

1) Poutres principales:

& ELU:

• En travée:

$$M_u = 718,67 \text{ KN.m}$$

Moment qui équilibre la table de compression :

$$M_t = b. h_0. \sigma_h (d - h_0 / 2)$$

$$M_t = 1,65 \times 0,40 \times 14200 ((0.9 \times 1,20) - 0.40/2))$$

 $M_t = 8247,36 \text{ KN.m} \rightarrow M_u < M_t \rightarrow l'$ axe neutre se trouve dans la table

La section de calcul sera section rectangulaire de dimension (b ×h)

• Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.\rm b.d^2} = \frac{718,67.10^3}{14,2.165.108^2} = 0,03$$

On a: μ_L = 0,392 (acier FeE400)

Donc : μ < μ _L alors A' n'existe pas et 1000 ε _L < 1000 ε _S

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu}) \rightarrow \alpha = 0.04$$

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.98$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{718,67.10^3}{348.0,98.108}$ = 19,51 cm²

Etude de l'infrastructure

Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ Mpa

$$A_{min} = 0.23 \text{ . b . d .} \frac{f_{tj}}{f_e} = 0.23 \text{ . 45 . } 108 \text{ .} \frac{2.1}{400} = 5.87 \text{ cm}^2$$

$$A > A_{min}$$

• En appuis:

$$M_u = 670,25 \text{ KN.m}$$

Vu que le moment en appuis est négatif et la partie tendue se trouve au niveau de la table on néglige les ailettes, donc la section de calcul sera une section rectangulaire de largeur b_0 =45 cm et de hauteur h =120 cm.

• Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_b.b.d^2} = \frac{670,25.10^3}{14,2.45.108^2} = 0,09$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc : $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,12

$$\beta = (1-0.4\alpha) \rightarrow \beta = 0.95$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\rm B.d}$$
 = $\frac{670.25 \cdot 10^3}{348.0.95.108}$ = 18,72 cm²

• Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ Mpa

$$A_{min} = 0.23 \text{ . b . d .} \frac{f_{tj}}{f_e} = 0.23 \text{ . 45 . } 108 \text{ .} \frac{2.1}{400} = 5.87 \text{ cm}^2$$

$$A > A_{min}$$

- ***** ACC:
- En travée:

$$M_u = 651,51 \text{ KN.m}$$

Etude de l'infrastructure

Moment qui équilibre la table de compression :

$$M_t = b. h_0. \sigma_b (d - h_0 / 2)$$

$$M_t = 1,65 \times 0,40 \times 18,48 ((0.9 \times 1,20) - 0.40/2))$$

 $M_t = 1073,31 \text{ KN.m} \rightarrow M_u < M_t \rightarrow l'$ axe neutre se trouve dans la table

La section de calcul sera section rectangulaire de dimension (b ×h)

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.{\rm b.d}^2} = \frac{651,51.10^3}{18,48.145.108^2} = 0.02$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{v_{\rm S}} = \frac{400}{1} = 400 \text{Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,026

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.99$$

A =
$$\frac{M_u}{\sigma_{S,B,d}} = \frac{651,51.10^3}{400.0,99.108} = 15,24 \text{ cm}^2$$

Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ Mpa

$$A_{min} = 0.23 \text{ . b . d .} \frac{f_{tj}}{f_e} = 0.23 \text{ . 45 . } 108 \text{ .} \frac{2.1}{400} = 5.87 \text{ cm}^2$$

$$A > A_{\min}$$

• En appuis:

$$M_u = 761,64 \text{ KN.m}$$

Vu que le moment en appuis est négatif et la partie tendue se trouve au niveau de la table on néglige les ailettes, donc la section de calcul sera une section rectangulaire de largeur b_0 =45 cm et de hauteur h =120 cm.

Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b.b.d^2}} = \frac{761,64.10^3}{18,48.45.108^2} = 0.08$$

On a: $\mu_L = 0.392$ (acier FeE400)

Etude de l'infrastructure

Donc : $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1} = 400 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,102

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.96$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{761,64.10^3}{400.0,96.108}$ = 18,38 cm²

• Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ Mpa

$$A_{min} = 0.23 \cdot b \cdot d \cdot \frac{f_{tj}}{f_e} = 0.23 \cdot 45 \cdot 108 \cdot \frac{2.1}{400} = 5.87 \text{ cm}^2$$

$$A > A_{min}$$

- Choix des armatures :
 - En travée:

$$A = max (A_{ELU}, A_{min}; A_{ACC}) = max (19,51; 5,87; 15,24) cm^2$$

$$A=19,51 \text{ cm}^2$$

• En appuis:

$$A = max (A_{ELU}, A_{min}; A_{ACC}) = max (18,72; 5,87; 18,38) cm2$$

$$A = 5T16 + 5T16 = 20,11cm^2$$

- ❖ Vérification à l'ELS :
 - En travée:

Fissurations préjudiciables Flexion simple Section Té FeE400

Etude de l'infrastructure

• Position de l'axe neutre :

$$H = \frac{b \cdot h_0^2}{2} - 15. A. (d - h_0) = \frac{145.40^2}{2} - 15.20,11. (108 - 40) = 95487,8 < 0$$

→L'axe neutre se trouve dans la table de compression.

• Y la solution d'équation de deuxième degré :

$$b.y^2+30(A_S+A_S').y-(30(A_S.d+A_S'.d))=0$$

$$\Delta$$
=603,32-4(145). (-65156,4) =38154682,89

$$\sqrt{\Delta}$$
=6176,95

Donc:

Y=19,22 cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

I= 2720739,73 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{523,13.10^6}{2720739,73.10^4} = 0,02$$

$$\sigma_{bc}=k.\,y=0,\!02.192,\!2=3,\!76\,\text{MPa}<\overline{\sigma_{bc}}=0,\!6.\,f_{c28}=15\text{MPa}\rightarrow\text{C.\,V}$$

$$\sigma_{st} = 15. \, k(d-y) = 266,\!34 \, \text{MPa} > \overline{\sigma_{st}} = \! \min[\!(\tfrac{2}{3}.400;110.\sqrt{1,\!6.2,\!1}) \text{MPa}]$$

$$\sigma_{\rm st} = 266,34~{\rm MPa} > \bar{\sigma}_{\rm s} = 201,63~{\rm MPa} \Rightarrow {\rm C.N.V}$$

Donc les armatures calculées à ELU ne conviennent pas à ELS.

D'âpres le **B.A.E.L 91** si $\sigma_{st} \le \overline{\sigma_{st}}$ la condition n'est pas remplie il faut recalculer la section d'aciers tendus A_s en admettent que ces armatures travaillent au maximum possible c'est-à-dire a la contrainte limite de service :

On calcule:

$$\lambda = 1 + (30.M_{ser}/b.d^2.\overline{\sigma_{st}}) = 1.07$$

Etude de l'infrastructure

Puis : Cos $\varphi = \lambda^{-3/2}$ d'où φ en degres

 $\cos \varphi = 0.90 \Rightarrow \varphi = 25.38^{\circ}$

On trouve : $\alpha = 1 + 2\sqrt{\lambda} \cos(240 + \varphi/3) = 0.24$

Le diagramme fourni en annexes donne directement les valeurs de : α

Ayant obtenu α , on calcule : $\sigma_{bc} = (\overline{\sigma_{st}}/n)$. $\alpha/(1-\alpha) = 4.25$ MPa

On vérifie que : $\sigma_{bc} \le 0.6.f_{cj} \rightarrow \sigma_{bc} = 4.25 \text{ MPa} \le \overline{\sigma_{bc}} = 15 \text{MPa} \rightarrow \text{C.V}$

Puis on obtient : $A_s = \frac{\alpha.b.d.\sigma_{bc}}{(2\overline{\sigma}_{st})} = 39,61 \text{ cm}^2$

- Choix d'armature :
- $13T20 = 40,84 \text{ cm}^2$
- En appuis:

Fissurations préjudiciables Flexion simple Section rectangulaire FeE400

• Position de l'axe neutre :

$$H = \frac{b}{2} \cdot h^2 - 15$$
. A. $(d - h) = \frac{145}{2} \cdot 120^2 - 15.20$, 11. $(108 - 120) = 1047619$, $8 < 0$

→L'axe neutre se trouve dans la table de compression.

• Y la solution d'équation de deuxième degré :

$$b.y^2 + 30(A_S + A_s').y - (30(A_S.d + A_s'.d)) = 0$$

$$\Delta$$
=603,32-4(145). (-65156,4) =38154682,89

$$\sqrt{\Delta}$$
=6176,95

Etude de l'infrastructure

Donc:

Y=19,22 cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

I= 2720739,73 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{487,89.10^6}{2720739,73.10^4} = 0,02$$

$$\sigma_{bc} = k.y = 0.02.192,2 = 3.76 \text{ MPa} < \overline{\sigma_{bc}} = 0.6. f_{c28} = 15 \text{MPa} \rightarrow \text{C.V}$$

$$\sigma_{st} = 15. \, k(d-y) = 266,34 \, \text{MPa} > \overline{\sigma_{st}} = \min[C_3^2, 400; 110. \sqrt{1,6.2,1}) \, \text{MPa}$$

$$\sigma_{\rm st} = 266,34~{\rm MPa} > \bar{\sigma}_{\rm s} = 201,63~{\rm MPa} \rightarrow {\rm C.N.V}$$

Donc les armatures calculées à ELU ne conviennent pas à ELS.

D' après le **B.A.E.L 91** si $\sigma_{st} \le \overline{\sigma_{st}}$ la condition n'est pas remplie il faut recalculer la section d'aciers tendus A_s en admettent que ces armatures travaillent au maximum possible c'est-à-dire a la contrainte limite de service :

On calcule:

$$\lambda = 1 + (30.M_{ser}/b.d^2.\overline{\sigma_{st}}) = 1,06$$

Puis : Cos $\varphi = \lambda^{-3/2}$ d'où φ en degres

$$\cos \varphi = 0.91 \Rightarrow \varphi = 24.02^{\circ}$$

On trouve :
$$\alpha = 1 + 2\sqrt{\lambda} \cos(240 + \varphi/3) = 0.23$$

Le diagramme fourni en annexes donne directement les valeurs de : α

Ayant obtenu
$$\alpha$$
, on calcule : $\sigma_{bc} = (\overline{\sigma_{st}}/n)$. $\alpha/(1-\alpha) = 4.01$ MPa

On vérifie que :
$$\sigma_{bc} \le 0.6.f_{cj} \Rightarrow \sigma_{bc} = 4.01 \text{ MPa} \le \overline{\sigma_{bc}} = 15 \text{MPa} \Rightarrow \text{C.V}$$

Puis on obtient :
$$A_s = \frac{\alpha.b.d.\sigma_{bc}}{(2\sigma_{st})} = 35,82 \text{ cm}^2$$

Etude de l'infrastructure

• Choix d'armature :

 $12T20 = 37,70 \text{ cm}^2$

VI.1.5.7.3 Vérification de l'effort tranchant:

& ELU:

Pour des fissurations préjudiciables on doit vérifier que:

$$\tau_{\mathrm{u}} = \frac{T_{\mathrm{u}}}{b_{0}.\,\mathrm{d}} \leq \overline{\tau_{\mathrm{u}}}$$

Avec :
$$\overline{\tau_u} = \min\left(\frac{0.15.f_{c28}}{\gamma_b}; 4 MPa\right) = \min(2.5; 4) = 2.5 MPa$$

$$T_u = 584,69 \text{ KN} \implies \tau u = \frac{584,69.10^3}{1450.1080} = 0,37 \text{ MPa} < 2,5 \text{ MPa} \rightarrow \text{C.V}$$

***** ACC:

Pour des fissurations peu préjudiciables on doit vérifier que:

$$\tau_{u} = \frac{T_{u}}{b_{0}.\,d} \le \overline{\tau_{u}}$$

Avec :
$$\overline{\tau_u} = \min\left(\frac{0.15.f_{c28}}{\gamma_b}; 4 MPa\right) = \min(3.30; 4) = 3.30 \text{ Mpa}$$

$$T_{acc} = 719,53 \text{ KN } \Rightarrow \tau_{acc} = \frac{719,53.10^{.3}}{1450,1080} = 0,46 \text{ MPa} < 3,30 \text{ MPa} \rightarrow \text{C.V}$$

VI.1.5.7.4 Vérification la contrainte de compression (bielle) :

Condition a respecté:

$$\sigma_b = \frac{2.V_u}{b_0.a} \le 0.8.\frac{f_{cj}}{\gamma_b}$$

Etude de l'infrastructure

• Avec:

b₀ : épaisseur de l'âme de la poutre.

a: profondeur utile de l'appuis.

 $a \cdot \frac{\sqrt{2}}{2}$: largeur utile de la bielle.

 $V_{u} \cdot \sqrt{2}$: Effort de compression dans bielle.

 σ_b : Contrainte de compression dans bielle.

• Il faut que :

$$V_u \leq 0.267$$
. b_0 . a . f_{c28}

On a:

a = 0,9.d=0,9.108=97,2 cm;
$$b_0$$
=45cm; f_{c28} =25 MPa; T_u = 584,69 KN

Alors:

Conclusion:

✓ Donc condition vérifiée.

VI.1.5.7.5 Vérification de l'effort tranchant sur les armatures longitudinal inférieures :

• La condition de stabilité exige :

$$A_i \cdot \frac{f_e}{v_s} > |T_u| + \frac{M_a^u}{0.9.d}$$

• Le moment Mu étant pris avec son signe :

$$|T_u| + \frac{M_a^u}{0.9.d} = 584,69 + \frac{-670,25}{97,2} = -104,9 < 0$$

Conclusion:

✓ Donc condition vérifiée.

Etude de l'infrastructure

VI.1.5.7.6 Calcul des armatures transversales :

L'acier choisi pour les armatures transversales est de type rond lisse de nuance FeE235 (Fe = 235 MPa).

$$\emptyset_t \le \min\left(\frac{h}{35}; \emptyset_l; \frac{b}{10}\right)$$

$$\emptyset_t \le Min (3,43 \text{ cm}; 2 \text{ cm}; 14,5 \text{ cm}) = 2 \text{ cm}$$

✓ **On adopte** :
$$\emptyset_t = 8 \text{ mm} \to 4\text{T8} = 2,01 \text{ cm}^2$$

VI.1.5.7.7 Calcul l'espacement des armatures transversales :

k=1 (flexion simple)

$$\alpha = 90^{\circ}0.33$$

$$\rho_{t0} = \frac{A_t}{b_0.S_t} = \frac{(\tau_u - 0.3.f_{t28}.K)}{0.9.\frac{f_e}{\gamma_s}}$$

$$S_{tmax} = min[0,9d;40cm]$$

$$\rho_{tmin} \, = Max \, (0.5. \, \tau_u; \, 0.4 Mpa)/f_e$$

$$\rho_{t0} = \frac{{}_{0,93}^{-33,2,1.1}}{{}_{0,9}^{-\frac{235}{1.15}}} = 0,001$$

$$S_{tmax} = min[97,2;40cm] = 40cm$$

$$\rho_{tmin} = Max (0.5. \tau_u; 0.4 Mpa)/fe=0.002$$

$$\rho_{t} = \text{Max} (\rho_{tmin}; \rho_{t0})$$

$$S_{t} = \frac{A_{t}}{b_{0}.\rho_{t}} = 22,33 \text{ cm}$$

$$S_{tmax} = 40 \text{ cm}$$

$$S_t \leq S_{tmax}$$

Conclusion:

- ✓ Donc condition vérifiée.
- D' après l'RPA et le B.A.E.L 91 :

$$S_t \leq Min(S_{tmax}; 30cm; S_t; \frac{h}{4}; 12. \emptyset_l) \rightarrow Zone nodale$$

Etude de l'infrastructure

 $S_t \leq Min(S_{tmax}; 40cm; S_t; \frac{h}{2}) \Rightarrow Zone courant$

Donc:

 $S_t \leq Min (40 \text{ cm}; 30 \text{ cm}; 22,33 \text{ cm}; 30 \text{ cm}; 24 \text{ cm}) \rightarrow Zone nodale$

 $S_t \leq Min (40 \text{ cm}; 40 \text{ cm}; 22,33 \text{ cm}; 60 \text{ cm}) \rightarrow Zone \text{ courant}$

Alors:

 $S_t \le 22,33 \text{ cm} \rightarrow \text{Zone nodale}$

 $S_t \le 22,33 \text{ cm} \rightarrow \text{Zone courant}$

✓ On adopte :

 $S_t = 10 \text{ cm} \rightarrow \text{Zone nodale}$

 $S_t = 15 \text{ cm} \rightarrow \text{Zone courant}$

2) Poutre secondaire:

- **&** ELU:
- En travée:

 $M_u = 563,74KN.m$

Moment qui équilibre la table de compression :

$$\sigma_{\rm b} = 0.85. \frac{f_{\rm c28}}{\gamma_{\rm b}} = 14.2 \ {
m MPa}$$

 $M_t = b. h_0. \sigma_b (d - h_0 / 2)$

 $M_t = 1,65 \times 0,40 \times 14200 ((0.9 \times 1,20) - 0.40/2))$

 $M_t = 3186,5 \text{ KN.m} \rightarrow M_u < M_t \rightarrow l'$ axe neutre se trouve dans la table

La section de calcul sera section rectangulaire de dimension (b ×h)

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{b.b.d}^2} = \frac{563,74.10^3}{14.2.145.108^2} = 0,024$$

On a : μ_L =0,392 (acier FeE400)

 \boldsymbol{Donc} : μ < μ_L alors A' n'existe pas et $1000\varepsilon_L$ < $1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1,15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,03

Etude de l'infrastructure

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.99$$

A =
$$\frac{M_u}{\sigma_{\text{S},\text{B.d}}}$$
 = $\frac{563,74.10^3}{348.0,99.108}$ = 15,16 cm²

Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ Mpa

$$A_{min} = 0.23 \text{ . b . d .} \frac{f_{tj}}{f_{P}} = 0.23 \text{ . 45 . } 108 \text{ .} \frac{2.1}{400} = 5.87 \text{ cm}^2$$

$$A > A_{min}$$

• En appuis:

$$M_u = 265,25 \text{ KN.m}$$

Vu que le moment en appuis est négatif et la partie tendue se trouve au niveau de la table on néglige les ailettes, donc la section de calcule sera une section rectangulaire de largeur b_0 =45 cm et de hauteur h =120 cm.

• Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.\rm b.d^2} = \frac{265,25.10^3}{14,2.45.108^2} = 0,04$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{v_{\rm S}} = \frac{400}{1.15} = 348 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,051

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.98$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{265,25.10^3}{348.0,97.108}$ = 7,21 cm²

Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ MPa

$$A_{min} = 0.23 \text{ . b . d .} \frac{f_{tj}}{f_{P}} = 0.23 \text{ . 45 . } 108 \text{ .} \frac{2.1}{400} = 5.87 \text{ cm}^2$$

$$A > A_{\min}$$

Etude de l'infrastructure

- ***** ACC:
- En travée:

 $M_u = 505,64 \text{ KN.m}$

Moment qui équilibre la table de compression :

$$\sigma_{b} = 0.85. \frac{f_{c28}}{\gamma_{b}} = 18.48 \text{ MPa}$$

$$M_t = b. h_0. \sigma_h.(d - h_0 / 2)$$

$$M_t = 1,65.0,40.18480.((0.9 \times 1,20) - 0.40/2))$$

 M_t = 10733,2 KN.m \rightarrow M_u < M_t \rightarrow l'axe neutre se trouve dans la table

La section de calcul sera section rectangulaire de dimension (b ×h)

- Vérification de l'existence de A' :
- Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.\rm b.d^2} = \frac{505,64.10^3}{18,48.145.108^2} = 0,02$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_s$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1} = 400 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,02

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.99$$

A =
$$\frac{M_u}{\sigma_{\rm S}, \rm B.d}$$
 = $\frac{505,64.10^3}{400.0,99.108}$ = 11,79 cm²

Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ MPa

$$A_{min} = 0.23 \text{ . b . d .} \frac{f_{tj}}{f_{e}} = 0.23 \text{ . 45 . } 108 \text{ .} \frac{2.1}{400} = 5.87 \text{ cm}^{2}$$

 $A > A_{\min}$

• En appuis:

$$M_u = 578,52 \text{ KN.m}$$

Etude de l'infrastructure

Vu que le moment en appuis est négatif et la partie tendue se trouve au niveau de la table on néglige les ailettes, donc la section de calcule sera une section rectangulaire de largeur b_0 = 45 cm et de hauteur h =120 cm.

• Calcul du moment réduit :

$$\mu = \frac{M_u}{\sigma_{\rm b}.\rm b.d^2} = \frac{578,52.10^3}{18,48.45.108^2} = 0,06$$

On a: $\mu_L = 0.392$ (acier FeE400)

Donc: $\mu < \mu_L$ alors A' n'existe pas et $1000\varepsilon_L < 1000\varepsilon_S$

$$\sigma_{\rm S} = \frac{f_e}{\gamma_{\rm S}} = \frac{400}{1} = 400 \text{ Mpa}$$

$$\alpha$$
= 1,25 (1 - $\sqrt{1-2\mu}$) $\rightarrow \alpha$ = 0,077

$$\beta = (1 - 0.4\alpha) \rightarrow \beta = 0.97$$

A =
$$\frac{M_u}{\sigma_{\rm S}.\beta.d}$$
 = $\frac{578,52.10^3}{400.0,97.108}$ = 13,82 cm²

Condition de non fragilité:

$$f_{t28} = 0.6 + 0.06$$
. $f_{c28} = 2.1$ MPa

$$A_{min} = 0.23 \cdot b \cdot d \cdot \frac{f_{tj}}{f_e} = 0.23 \cdot 45 \cdot 108 \cdot \frac{2.1}{400} = 5.87 \text{ cm}^2$$

$$A > A_{\min}$$

- Choix des armatures :
 - En travée :

$$A = max (A_{ELU}, A_{min}; A_{ACC}) = max (15,16; 5,87; 11,79) cm^{2}$$

$$A=15,16$$
 cm²

$$A = 5T20 = 15,71 \text{ cm}^2$$

• En appuis:

$$A = max (A_{ELU}, A_{min}; A_{ACC}) = max (7,21; 5,87; 13,82) cm^{2}$$

$$A=13.82 \text{ cm}^2$$

$$A = 5T20 = 15.71 \text{ cm}^2$$

❖ Vérification a l'ELS :

• En travée:

Fissurations préjudiciables Flexion simple Section Té FeE400

Etude de l'infrastructure

• Position de l'axe neutre :

$$H = \frac{b \cdot h_0^2}{2} - 15. A. (d - h_0) = \frac{145.40^2}{2} - 15.15,71. (108 - 40) = 99975,8 < 0$$

→L'axe neutre se trouve dans la table de compression.

• Y la solution d'équation de deuxième degré :

$$b.y^2+30(A_S+A_S').y-(30(A_S.d+A_S'.d))=0$$

$$145.y^2 + 471,3.y - 50900,4 = 0$$

$$\Delta$$
=471,32-4(145). (-44776,8) =26192667,70

$$\sqrt{\Delta}$$
=5117.9

Donc:

Y=16,02 cm

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

I= 2192274,98 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{409,47.10^6}{2192274,98.10^4} = 0,02$$

$$\sigma_{bc}=k.\,y=0,\!02.160,\!2=2,\!99\,\text{MPa}<\overline{\sigma_{bc}}=0,\!6.\,f_{c28}=15\text{MPa}\rightarrow\text{C.\,V}$$

$$\sigma_{\rm st} = 15.\,{\rm k}({\rm d-y}) = 275,94\,{\rm MPa} > \overline{\sigma_{\rm st}} = {\rm min} \overline{\mathbb{Q}_3^2}.\,400;\,110.\,\sqrt{1,6.2,1}){\rm MPa}$$
 $\sigma_{\rm st} = 275,94\,{\rm MPa} > \overline{\sigma}_{\rm s} = 201,63\,{\rm MPa} \Rightarrow {\rm C.N.V}$

Donc les armatures calculées à ELU ne conviennent pas à ELS.

D'âpres le **B.A.E.L 91** si $\sigma_{st} \le \overline{\sigma_{st}}$ la condition n'est pas remplie il faut recalculer la section d'aciers tendus A_s en admettent que ces armatures travaillent au maximum possible c'est-à-dire a la contrainte limite de service :

On calcule:

$$\lambda = 1 + (30.M_{ser}/b.d^2.\overline{\sigma_{st}}) = 1.05$$

Etude de l'infrastructure

Puis : Cos $\varphi = \lambda^{-3/2}$ d'où φ en degres

 $\cos \varphi$ =0,93 $\rightarrow \varphi$ = 22,11°

On trouve : $\alpha = 1 + 2\sqrt{\lambda} \cos(240 + \varphi/3) = 0.21$

Le diagramme fourni en annexes donne directement les valeurs de : α

Ayant obtenu α , on calcule : $\sigma_{bc} = (\overline{\sigma_{st}}/n)$. $\alpha/(1-\alpha) = 3,60$ MPa

On vérifie que : $\sigma_{bc} \le 0.6.f_{cj} \rightarrow \sigma_{bc} = 3.60 \text{ MPa} \le \overline{\sigma_{bc}} = 15\text{MPa} \rightarrow \text{C.V}$

Puis on obtient : $A_s = \frac{\alpha.b.d.\sigma_{bc}}{(2\overline{\sigma}_{st})} = 29,36 \text{ cm}^2$

- Choix d'armature :
- 10T20 = 31,42 cm²
- En appuis:

Fissurations préjudiciables Flexion simple Section rectangulaire FeE400

• Position de l'axe neutre :

$$H = \frac{b}{2} \cdot h^2 - 15$$
. A. $(d - h) = \frac{145}{2} \cdot 120^2 - 15.15$, 71. $(108 - 120) = 1046827$, $8 < 0$

→L'axe neutre se trouve dans la table de compression.

• Y la solution d'équation de deuxième degré :

$$b.y^2 + 30(A_S + A_s').y - (30(A_S.d + A_s'.d)) = 0$$

$$145.y^2 + 471,3.y - 50900,4 = 0$$

$$\Delta$$
=471,32-4(145). (-44776,8) =26192667,70

$$\sqrt{\Delta}$$
=5117,9

Donc:

Y=16,02 cm

Etude de l'infrastructure

• Le moment quadratique :

$$I = \frac{b}{3} \cdot y^3 + 15 \cdot A \cdot (d - y)^2 = 0$$

I= 2192274,98 cm⁴

• Calcul des contraintes :

$$K = \frac{M_{ser}}{I} = \frac{265,25.10^6}{2192274,98.10^4} = 0,012$$

$$\sigma_{bc}=k.\,y=0$$
,012.160,2 = 1,94 MPa $<\overline{\sigma_{bc}}=0$,6. $f_{c28}=15$ MPa \rightarrow C. V

$$\sigma_{st} = 15. \, \text{k(d-y)} = 165,\!56 \, \text{MPa} > \overline{\sigma_{st}} = \text{min} \, \overline{\mathbb{Q}_3^2}. \, 400; \, 110. \, \sqrt{1,\!6.2,\!1}) \, \text{MPa}$$
 $\sigma_{st} = 165,\!56 \, \text{MPa} > \overline{\sigma}_s = 201,\!63 \, \text{MPa} \rightarrow \text{C.V}$

Donc les armatures calculées à ACC conviennent à ELS.

VI.1.5.7.8 Vérification de l'effort tranchant:

& ELU:

Pour des fissurations préjudiciables on doit vérifier que:

$$\tau_{\rm u} = \frac{T_{\rm u}}{b_0.\,\rm d} \le \overline{\tau_{\rm u}}$$

Avec:
$$\overline{\tau_u} = \min\left(\frac{0.15.f_{c28}}{\gamma_b}; 4 MPa\right) = \min(2.5; 4) = 2.5 MPa$$

$$T_u = 508,70 \text{ KN} \implies \tau u = \frac{508,70.10^3}{1450.1080} = 0,33 \text{ MPa} < 2,5 \text{ MPa} \rightarrow \text{C.V}$$

***** ACC:

Pour des fissurations peu préjudiciables on doit vérifier que:

$$\tau_{u} = \frac{T_{u}}{b_{0}.d} \leq \overline{\tau_{u}}$$

Avec :
$$\overline{\tau_u} = \min\left(\frac{0.15.f_{c28}}{\gamma_b}; 4 MPa\right) = \min(3.30; 4) = 3.30 \text{ Mpa}$$

Etude de l'infrastructure

$$T_{acc} = 578,52 \text{ KN} \implies \tau_{acc} = \frac{578,52.10^{-3}}{1450.1080} = 0,37 \text{ MPa} < 3,75 \text{ MPa} \rightarrow \text{C.V}$$

VI.1.5.7.9 Vérification la contrainte de compression (bielle) :

Condition a respecté:

$$\sigma_b = \frac{2.V_u}{b_0.a} \le 0.8.\frac{f_{cj}}{\gamma_b}$$

Avec :

b₀ : épaisseur de l'âme de la poutre.

a: profondeur utile de l'appuis.

 $\mathbf{a} \cdot \frac{\sqrt{2}}{2}$: largeur utile de la bielle. $\mathbf{a} \cdot \frac{\sqrt{2}}{2}$: largeur utile de la bielle.

 $V_u \cdot \sqrt{2}$: Effort de compression dans bielle.

 σ_b : Contrainte de compression dans bielle.

• Il faut que :

$$V_{\nu} \leq 0,267. b_0. a. f_{c28}$$

On a:

a = 0,9.d=0,9.108=97,2 cm;
$$b_0$$
=45cm; f_{c28} 25 MPa; V_u = 584,69 KN

Alors:

Conclusion:

✓ Donc condition vérifier.

VI.1.5.7.10 Vérification de l'effort tranchant sur les armatures longitudinal supérieur :

• La condition de stabilité exige :

$$\bullet \quad A_i.\frac{f_e}{\gamma_s} > |T_u| + \frac{M_a{}^u}{0.9.d}$$

• Le moment M_u étant pris avec son signe :

Etude de l'infrastructure

$$|T_u| + \frac{M_a^u}{0.9.d} = 508,70 + \frac{-265,25}{97,2} = 235,8 < 0 \rightarrow \text{C.N.V}$$

Il faut satisfaire : $A_i > \frac{\gamma_s}{f_e} (|T_u| + \frac{M_a^u}{0.9.d})$

$$34,74. > \frac{1,15}{400}$$
. 235800.10⁻² =6,8 cm²

Conclusion:

✓ Donc condition vérifiée.

VI.1.5.7.11 Calcul des armatures transversales :

L'acier choisi pour les armatures transversales est de type rond lisse de nuance FeE235 (Fe = 235 MPa).

$$\emptyset_t \le \min\left(\frac{h}{35}; \emptyset_l; \frac{b}{10}\right)$$

 $\emptyset_t \le \text{Min } (3,43 \text{ cm}; 2 \text{ cm}; 14,5 \text{ cm}) = 2 \text{ cm}$

✓ **On adopte** : $\emptyset_t = 8 \text{ mm} \rightarrow 4\text{T8} = 2,01 \text{ cm}^2$

VI.1.5.7.12 Calcul de l'espacement des armatures transversales :

k=1 (flexion simple)

$$\alpha = 90^{\circ}0,33$$

$$\rho_{t0} = \frac{A_t}{b_0.S_t} = \frac{(\tau_u - 0.3.f_{t28}.K)}{0.9.\frac{f_e}{\gamma_s}}$$

$$S_{tmax} = min[0.9d; 40cm]$$

 $\rho_{tmin} = Max (0.5. \tau_u; 0.4Mpa)/f_e$

$$\rho_{t0} = \frac{0.33 - 0.3.2.1.1}{0.9.\frac{235}{1.15}} = 0.002$$

 $S_{tmax} = min[97,2;40cm] = 40cm$

 $\rho_{\text{tmin}} = \text{Max} (0.5. \tau_{\text{u}}; 0.4 \text{Mpa})/\text{fe} = 0.002$

Etude de l'infrastructure

$$\rho_{t} = \text{Max} (\rho_{tmin}; \rho_{t0})$$

$$S_{t} = \frac{A_{t}}{b_{0}.\rho_{t}} = 22,33 \text{ cm}$$

$$S_{tmax} = 40 \text{ cm}$$

$$S_{t} \leq S_{tmax}$$

Conclusion:

✓ Donc condition vérifiée.

• D'âpres l'RPA et le B.A.E.L 91 :

 $S_t \leq Min(S_{tmax}; 30cm; S_t; \frac{h}{4}; 12.00) \rightarrow Zone nodale$

 $S_t \leq Min(S_{tmax}; 40cm; S_t; \frac{h}{2}) \Rightarrow Zone courant$

Donc:

 $S_t \leq Min (40 \text{ cm}; 30 \text{ cm}; 22,33 \text{ cm}; 30 \text{ cm}; 24 \text{ cm}) \rightarrow Zone nodale$

 $S_t \leq Min (40 \text{ cm}; 40 \text{ cm}; 22,33 \text{ cm}; 60 \text{ cm}) \rightarrow Zone \text{ courant}$

Alors:

 $S_t \le 22,33 \text{ cm} \rightarrow \text{Zone nodale}$

 $S_t \le 22,33 \text{ cm} \rightarrow \text{Zone courant}$

✓ On adopte :

 $S_t = 10 \text{ cm} \rightarrow \text{Zone nodale}$

 $S_t = 15 \text{ cm} \rightarrow \text{Zone courant}$

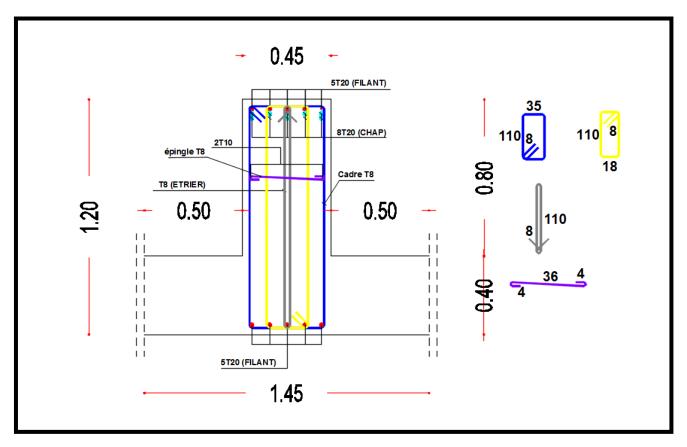


Figure VI.1.5.9: schéma de ferraillage du la poutre principale en travée

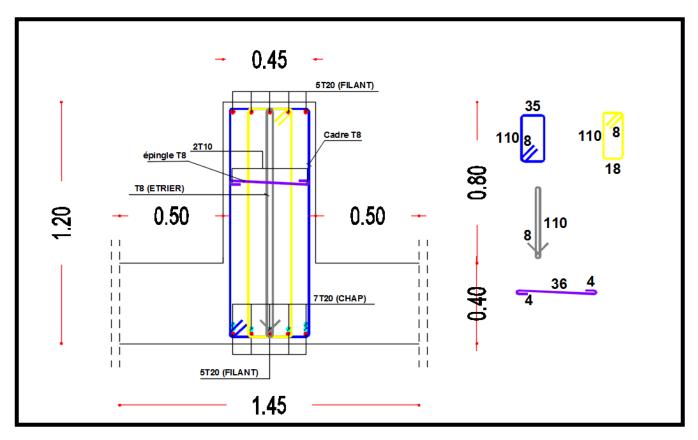


Figure VI.1.5.10: schéma de ferraillage du la poutre principale en appuis

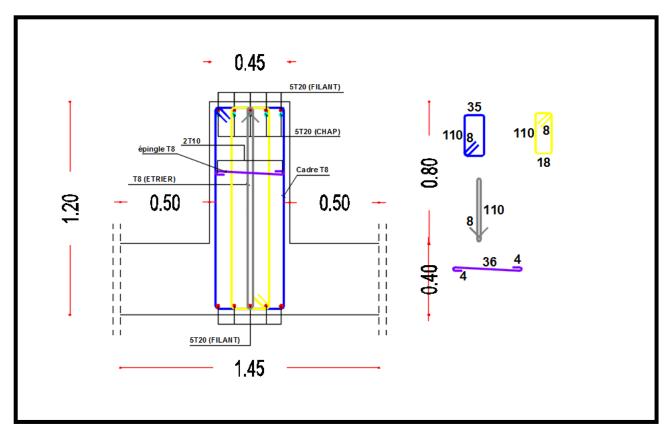


Figure VI.1.5.11: schéma de ferraillage du la poutre secondaire en travée

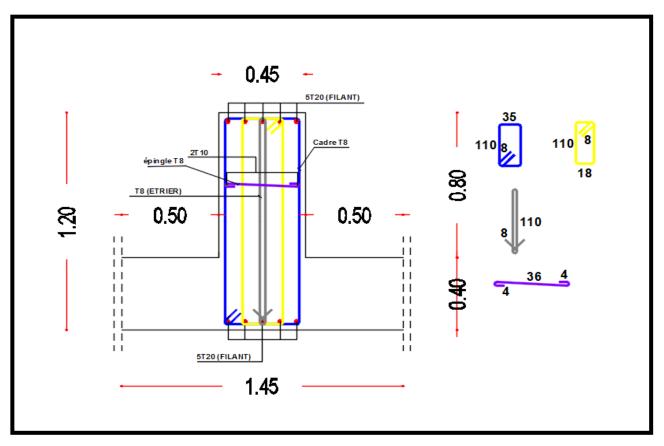
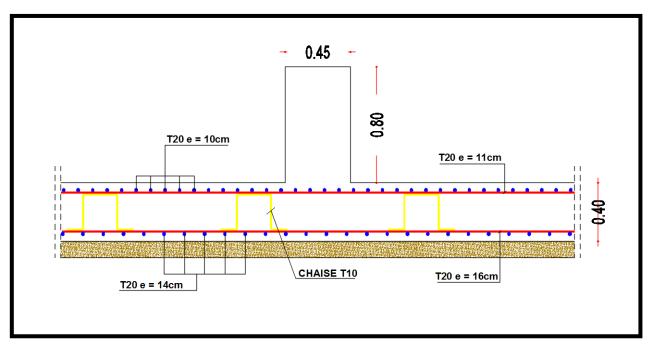



Figure VI.1.5.12: schéma de ferraillage du la poutre secondaire en appuis

Etude de l'infrastructure

Coupe sens Y-Y

Coupe sens X-X

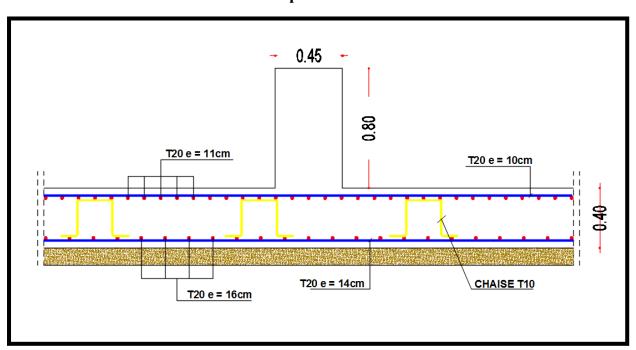


Figure VI.1.5.13: schéma de ferraillage de radier nervuré

Conclusion:

Ce projet nous a permis de nous familiariser avec toutes les informations que nous avons acquises au cours de notre formation universitaire en se basant sur les règlements techniques pour le calcul des éléments résistants et la maitrise des logiciels (ROBOT ANALYIS STRUCTURA; AUTOCAD; RDM6;...)

L'analyse modale est une partie très importante dans les études bâtiment, ça nous parmi de comprendre l'influence de séisme sur la structure avant de calculer les éléments structuraux (respectons le règlement parasismique algérien version 2003).

Il faut tenir en compte tout les poids de la structure pour avoir un calcul approché du réel, le système de construction en voiles porteurs est un système résistant pour la vie de la structure et plus résistant au séisme.

Le sol a une influence importante sur la superstructure, d'après notre observation il faut bien choisir le type de fondation et cela en passant par plusieurs étapes et en respectant les règlements (RPA V 2003), D.T.R. B.C.2.33.1 pour avoir une structure plus stable.

Et en dernier ce projet m'a parmi d'appliquer toutes mes informations et corriger les erreurs et apprendre des nouvelles informations utiles dans ce domaine.

Bibliographique:

Règlements:

- Règles de conception et de calcul des structures en béton armé (C.B.A.93).
- Règles Parasismiques Algériennes (RPA99/version2003).
- DTR B.C. 2.2 Charges permanentes et charges d'exploitation.
- D.T.R. B.C.2.33.1 Règles de calcul des fondations superficielles (1992).
- B.A.E.L.91 calcul des éléments simples et des structures de bâtiment.

Cours:

- Projet en béton armé Polycopie de cours Dr BERRADIA Mohamed université Chlef.
- Cours TD université L'arbi Ben M'hidi d'Oum el Bouaghi.
- Résumé vérification des efforts tranchant et vérification à ELS Mme BELBACHIR NESRINE.
- Résumé calcul des plancher Mr. AMMAR BRAHIM.

Livre:

• Livre calcul des ouvrages en béton arme Mr. BELAZOUGUI.

Fiche Excel:

- Fiche Excel calcul des contraintes de voile a ELU ELS ACC de Mr KEBAILI BACHIR.
- Fiches Excel calcul des contraintes du voile de Mr BELKACEM CHAIBDREA.
- Fiche Excel verification vis-à-vis l'effet P delta de Mr BELKACEM CHAIBDREA.
- Fiche Excel verification renversement de Mr BELKACEM CHAIBDREA.

Internet:

- Wikipédia.
- https://www.futura-sciences.com/maison/definitions/maison-beton-arme-10541/
- https://www.tarekdata.com/FR/tutoriels/robot presentation.html
- https://www.be-gph.fr/blog/115-le-radier-un-systeme-de-fondation-avec-beaucoup-de-prejuges.html
- https://www.editions-eyrolles.com/Dico-BTP/definition.html?id=7356
- https://www.pointp.fr/conseils-experts/tout-savoir-sur-les-differents-types-de-plancher
- https://www.futura-sciences.com/maison/definitions/maison-balcon-10529/
- https://www.editions-eyrolles.com/Dico-BTP/definition.html?id=123
- http://coursexosup.blogspot.com/2015/04/les-planchers-et-lesterrassesles 13.html?m=1
- https://www.toutcalculer.com/batiment/dimensionner-un-escalier.php

<u>Logiciels utilisés :</u>

- ROBOT ANALYSIS STRUCTURAL (version 2014) : Pour la modélisation de la structure ;
- AUTOCAD (version 2016) : Pour les dessins des plans ;
- Microsoft Office (version 2007) et
- RDM 6.
- Google map.

Les plans d'architecture :

Figure: coupe transversale du bâtiment

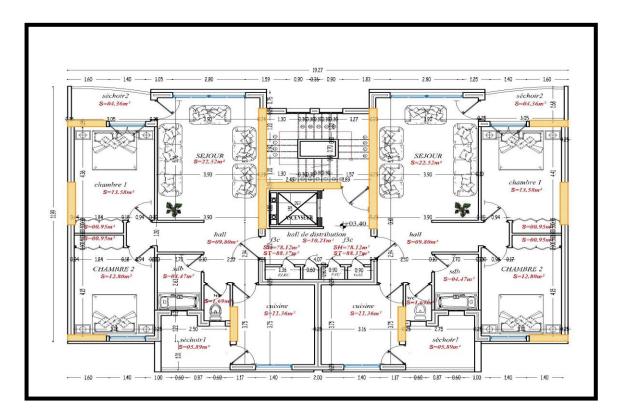


Figure: vue en plan étage courant

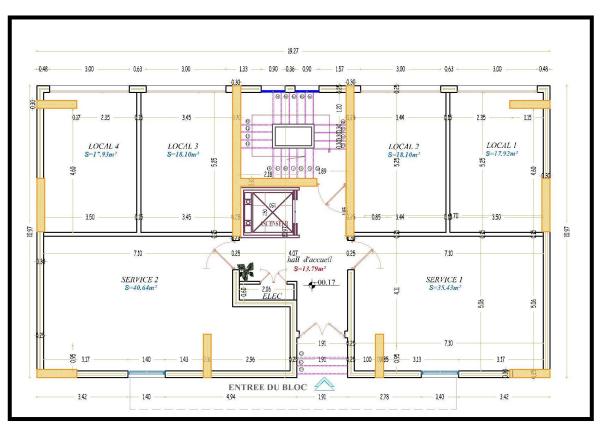


Figure: vue en plan RDC

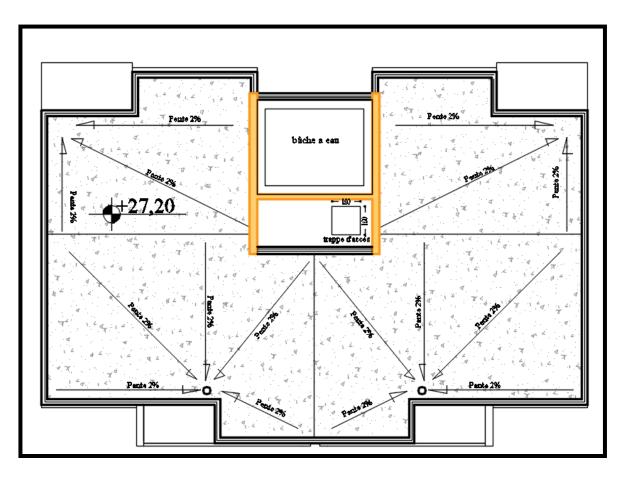


Figure: vue en plan de la terrasse

Figure: plan d'assemblage