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Résumé

Dans cette thèse, nous nous intéressons à certaines classes d’équations différentielles qui sont

singulières sur l’axe du temps. Nous utilisons quelques moyens sophistiqués de l’analyse fonc-

tionnelle et le calcul fractionnaire, tels que les inégalités intégrales, qui sont très présentes

dans cette thèse. Ces moyens sont aussi les dérivées fractionnaires, la théorie des opérateurs

ainsi que la théorie des points fixes et la méthode de Runge Kutta. Nous étudions les

questions d’existence de solutions, d’existence et d’unicité, d’analyse des stabilités au sens

d’Ulam-Hyers. Nous présentons également quelques simulations numériques sur les dérivées

de Caputo pour étudier le deuxième problème de cette thèse. En particulier, nous nous

intéressons, d’abord, à une problème singulier plus général combiné avec des notions séquentielles

à n dérivées de Caputo. Certaines des questions ci-dessus sont étudiées et plusieurs exem-

ples sont présentés. Aussi, dans cette thèse, nous étudions une classe d’EDFs singulières

impliquant le calcul fractionnaire et les séries. En particulier, nous étudions la question de

l’existence et l’unicité des solutions en utilisant à la fois la théorie des points fixes et les

inégalités intégrales. Puis, nous passons à l’étude de la question de la stabilité des solutions

au sens d’Ulam-Hyers. Quelques exemples sont présentés dans cette partie. A la fin de notre

thèse, nous présentons une étude sur la question des approximations de solutions en utilisant

des résultats récents sur les approximations de Caputo à l’aide de la méthode numérique de

Rung Kutta.

Mots clés: Riemann-Liouville, Caputo derivative, séquentiel, inégalités intégrales, point

fixe, existence, unicité, stabilité Ulam-Hyers, EDF singulière.
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Abstract

In this thesis, we are concerned with some classes of differential equations that are singular

on the time axis. With the help of some sophisticated means of functional analysis and

fractional calculus, like for instance, the integral inequalities theory which are very present,

the fractional derivatives, the operator theory as well as the fixed point theory and the

well known Runge Kutta method, we study the questions of existence of solutions, the

existence and uniqueness, the analysis of stabilities in the sense of Ulam-Hyers. We also

present some numerical simulations on Caputo derivatives to study the second problem that

is presented in this thesis. In particular, we are concerned, first, with a more general singular

problem which is combined with some sequential notions with n Caputo derivatives. Some

of the above questions are studied and several examples are illustrated. Also, we study a

class of singular differential equations involving fractional calculus and convergent series.

Especially, we study the question of existence and uniqueness of solutions by using both

fixed point theory and integral inequalities. Then, we pass to study the question of stability

of solutions in the sense of Ulam-Hyers. Some examples are presented in this part. At the

end, we investigate the question of approximations of solutions by using some recent results

on Caputo approximations and Rung Kutta numerical Method.

Keywords: Riemann-Liouville, Caputo derivative, sequential, fixed point,integral in-

equalities, fixed point, existence, uniqueness, Ulam-Hyers stability, singular FDE.



 

 ممخص
في هذه الأطروحة، نهتم بدراسة بعض الأصناف من المعادلات التفاضمية ذات مشتقات برتبة كيفية 

   .نقاطا شاذة عمى محور الزمن ،في أحد حدودها ،المعادلات تممك هذهبحيث 
الكسري باستعمال بعض التقنيات والأفكار الخاصة بالمتراجحات التكاممية، التحميل الدالي وكذا الحساب 

الوحيدة، ، نقوم بدراسة مشاكل الحمول 4 كوطارتية-ومقاربة النقطة الثابتة وكذا الطريقة العددية لرونج
هيارز. كذلك نقارب مشتقات كابوتو من -بمعنى أولامنقوم كذلك بدراسة استقرار الحمول  وجود لمحمول.ال

اصة، نقوم أولا بدراسة صنفا من بصفة خ .أجل إعطاء بعض الدراسة العددية لأحد المشاكل المطروحة
كذلك المعادلات الكسرية الشاذة بمشتقات كابوتو متتالية: بعض المسائل المطروحة أعلاه نجيب عنها و 

 . نتائج المحصل عميهاالنعطي بعض من الأمثمة عمى 
م ندرس صنفا آخر من المعادلات الشاذة ذات السلاسل المتقاربة، حيث نهت ،كذلك في هذه الأطروحة
عطاء أمثمة ثم ندرس تقريبات لكابوتو وكذا المشكل المطروح في هذه  استقرارهابوحدانية الحمول وكذا  وا 

  .الحالة
مشتق كابوتو، تكامل ريمان وليوفيل، نقطة صامدة، متراجحات تكاممية، وجود،  :الكممات المفتاحية

 . وحدانية، معادلة تفاضمية شاذة
 



General Introduction

Fractional calculus is an important topic in mathematics with its models of real-world prob-

lems in various fields of science, technology, and engineering [35, 55, 60]. Its roots extend

back to more than three centuries, perhaps one of the beginnings of its appearance was

since the regular calculus, with the first reference probably being associated with Leibniz

and L’Hôspital in 1695 where half-order derivative was discussed. Then, many works were

made: Lagrange developed the law of exponents for differential operators and Laplace de-

fined the fractional derivative by using of integral. In the early 19th century, Abel used frac-

tional operations to the solution of tautochrome problem and Liouville touched on fractional

calculus[54]. Since the beginning of the nineties of XXth century, the fractional calculus

attracted the attention of many mathematicians, and engineers that have been supporting

its development and originating many formulations and mainly using it to explain some nat-

ural and engineering phenomena[53]. At present, the number of applications of fractional

calculus rapidly grows, we refer the reader to the following papers of applications in effects of

economy crises, hydro-magnetic in plasma, hydro magnetic waves and vibration with large

membranes [14, 15, 29, 40, 41, 42].

To investigate fractional differential problems, in our opinion, there are two important

approaches. The first approach is the Riemann Liouville definition in which fractional deriva-

tive of a constant is not zero. The second one is the Caputo approach, which is characterized

by fractional derivative of a constant to be equal to zero. It is used in cases of initial value

problems of fractional differential equations [31]. We recall that the Caputo fractional deriva-

tive is very useful in many applied problems, because it saisfies its initial data which contains

y(0), y
′
(0), etc., as well as the same data for boundary conditions [50].

The main objective in this project is to complete the content of other works in fractional

calculus, the focus is on studying certain classes of nonlinear singular differential equations

of arbitrary order. We study the questions of existence, existence and uniqueness, stability
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of solutions, approximation of solution. All these notions are investigated using inequalities.

This thesis is organized as follows:

The first chapter includs basic concepts in fractional calculus, which are important tools for

the other main chapters.

The second chapter gives some properties of functional analysis, the focus is on integral in-

equalities and their applications in existence and uniqueness ( and the existence of at least)

of fixed points. This theory is very present in the last two chapters.

In the third chapter, a nonlinear singular differential problem is dealt with. It involves

n fractional Caputo derivatives under the conditions that neither commutativity nor semi

group property is satisfied for the derivatives. We demonstrate an existence and uniqueness

result by application of Banach contraction principle. Then, another result that deals with

the existence of at least one solution is delivered and some sufficient conditions related to

this result are established by means of the fixed point theorem of Schaefer. We conclude the

chapter by providing some illustrative examples in order to show the validity of the results.

The fourth chapter is concerned with a new type of nonlinear fractional integro-differential

equations with nonlocal integral conditions, having one nonlinearity with time variable sin-

gularity. It involves also some convergent series combined to Riemann-Liouville integrals.

The uniqueness of the solutions to the proposed problem is demonstrated, and some exam-

ples are provided to illustrate this result. Also, we review the Ulam-Hyers stability for the

problem. Some numerical simulations, using Rung Kutta method, are discussed too.

Finally, a conclusion follows. It explains what we have done in our project and what we will

be able to do in the future.
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Chapter 1

Preliminaries

1.1 Some important functions

In this part, we are interested in introducing both the gamma and beta functions, as they

are important tools on which the theory of fractional differential equations is based. So

we will present, in the following, some important properties of these two functions and the

relationship between them.

1.1.1 Gamma function

Définition 1.1.1 Let ζ ∈ R∗
+. The gamma function (Γ) is defined as:

Γ (ζ) =

∫ +∞

0

e−ttζ−1dt.

Proposition 1.1.1 The Gamma function is well defined on R∗
+.

Proof.

The function Γ (ζ) is written as

Γ (ζ) :=

∫ +∞

0

e−ttζ−1dt =

∫ 1

0

e−ttζ−1dt+

∫ +∞

1

e−ttζ−1dt.

We put S1 =
∫ 1

0
e−ttζ−1dt and S2 =

∫ +∞
1

e−ttζ−1dt, so Γ (ζ) = S1 + S2.

We have

S1 =

∫ 1

0

e−ttζ−1dt <

∫ 1

0

tζ−1dt =
1

ζ
,
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from where S1 is convergent for 0 < ζ ≤ 1.

Let us study the convergence of S2. We have

tζ−1

e−
t
2

≤ 1, because lim
t−→+∞

tζ−1

e−
t
2

= 0.

Then, we can write

S2 =

∫ +∞

1

e−ttζ−1dt <

∫ +∞

1

e−
t
2dt = 2e−

1
2 .

Hence the Gamma function is defined for every ζ > 0.

Proposition 1.1.2 Let ζ ∈ R such as ζ > 0, then the Gamma function satisfies the follow-

ing properties:

(P1): Γ (ζ + 1) = ζΓ (ζ) .

(P2): Γ (n+ 1) = n!, n ∈ Z+.

Proof.

(P1): Let ζ > 0, we have

Γ(ζ + 1) =

∫ +∞

0

tζe−t.

We put {
u = tζ

dv = e−t.

So, it yields that {
du = ζtζ−1

v = −e−t.

By integration, we find

Γ(ζ + 1) =

∫ +∞

0

tζe−tdt

=
[
−tζe−t

]+∞
0

+ ζ

∫ +∞

0

tζ−1e−tdt

= ζ

∫ +∞

0

tζ−1e−tdt

= ζΓ(ζ).
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(P2): Using the property (P1), we will be able to write

Γ(n+ 1) = nΓ(n)

= n(n− 1)Γ(n− 1)

= n(n− 1)(n− 2)Γ(n− 2)

...

= n(n− 1)(n− 2)× · · · × 2× 1× Γ(1)︸︷︷︸
=1

= n(n− 1)(n− 2)× · · · × 2× 1

= n!.

Proposition 1.1.3 We have the following two properties

(P ∗
1 ): Γ (ζ) = lim

n−→+∞

n! nζ

ζ (ζ + 1) ... (ζ + n)
, ζ ̸= 0,−1,−2, ...

(P ∗
2 ):

1

Γ (ζ)
= ζeψζ

∞∏
n=1

(
1 +

ζ

n

)
e
−
ζ

n , (ψ is the Euler-Mascheroni constant.)

Proof.

(P ∗
1 ): We consider the following function

ϕn(ζ) =

∫ n

0

(
1− t

n

)n
tζ−1dt.

We put s = t
n
, so we have

ϕn(ζ) = nζ
∫ 1

0

(1− s)nsζ−1ds.

By integration by parts, we put {
u = (1− s)n

dv = sζ−1.

So, it yields that {
du = −n(1− s)n−1

v = 1
ζ
sζ .

12



We have

ϕn(ζ) = nζ

([
(1− s)n)

ζ
sζ
]1
0

+
n

ζ

∫ 1

0

(1− s)n−1sζ

)
ds

=
nζ

ζ
n

∫ 1

0

(1− s)n−1sζds.

By integrating n times, we find that

ϕn(ζ) =
nζn!

ζ(ζ + 1) · · · (ζ + n)

∫ 1

0

(1− s)n−nsζ+n−1ds

=
nζn!

ζ(ζ + 1) · · · (ζ + n)

∫ 1

0

sζ+n−1

=
nζn!

ζ(ζ + 1) · · · (ζ + n− 1)

[
sζ+n

ζ + n

]1
0

=
nζn!

ζ(ζ + 1) · · · (ζ + n)
(∗).

By definition, we can write

lim
n→+∞

ϕn(ζ) = lim
n→+∞

∫ n

0

(
1− tn

n

)
tζ−1dt

=

∫ +∞

0

e−ttζ−1

= Γ(ζ) (∗∗).

From (∗) and (∗∗), we find

Γ(ζ) = lim
n→+∞

nζn!

ζ(ζ + 1)(ζ + 2) · · · (ζ + n)
.

(P ∗
2 ): Please see [56] for more details.

1.1.2 Beta function

Définition 1.1.2 Let ζ, ζ∗ ∈ R∗
+. The Beta function is defined as:

B (ζ, ζ∗) :=

∫ 1

0

tζ−1 (1− t)ζ
∗−1 dt.
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Proposition 1.1.4

B(ζ, ζ∗) = 2

∫ π
2

0

sin2ζ−1 θ cos2ζ
∗−1 θdθ.

Proof.

We put t = sin2 θ. We have{
1− t = 1− sin2 θ = cos2 θ

dt = 2 cos θ sin θ.

So, its yields

B(ζ, ζ∗) =

∫ 1

0

tζ−1(1− t)ζ
∗−1dt

= 2

∫ π
2

0

(
sin2 θ

)ζ−1 (
cos2 θ

)ζ∗−1
cos θ sin θdθ

= 2

∫ π
2

0

(sin θ)2ζ−2(cos θ)2ζ
∗−2 cos θ sin θdθ

= 2

∫ π
2

0

sin2ζ−1 θ cos2ζ
∗−1 θdθ.

This ends the proof.

1.1.3 Gamma and Beta relation

Proposition 1.1.5 Let ζ, ζ∗ ∈ R such as ζ, ζ∗ > 0. Then we have

B (ζ, ζ∗) =
Γ (ζ) Γ (ζ∗)

Γ (ζ + ζ∗)
. (1.1)

Proof.

Let ζ, ζ∗ > 0. Then we obtain

Γ(ζ)Γ(ζ∗) =

∫ +∞

0

tζ−1e−tdt

∫ +∞

0

sζ
∗−1e−sds

=

∫ +∞

0

∫ +∞

0

tζ−1sζ
∗−1e−(t+s)dtds.
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We put r = t+ s, hence we can write

Γ(ζ)Γ(ζ∗) =

∫ +∞

0

∫ +∞

0

(r − s)ζ−1sζ
∗−1e−rdrds

=

∫ +∞

0

∫ +∞

0

rζ−1
(
1− s

r

)ζ−1

sζ
∗−1e−rdrds

=

∫ +∞

0

rζ+ζ
∗−2e−rdr

∫ r

0

(
1− s

r

)ζ−1 (s
r

)ζ∗−1

ds.

After we use the change of variable z = s
r
, we get

Γ(ζ)Γ(ζ∗) =

∫ +∞

0

rζ+ζ
∗−2e−rdr

∫ 1

0

(1− z)2

=

∫ +∞

0

rζ+ζ
∗−1e−rdr

∫ 1

0

(1− z)2

=

(∫ +∞

0

rζ+ζ
∗−1e−rdr

)(∫ 1

0

(1− z)2.

Remark 1.1.1

1) The Beta function verifies the property of symmetry, i.e.

B (ζ, ζ∗) = B (ζ∗, ζ) .

Also, we have

2) B(ζ + 1, ζ∗) = ζ
ζ+ζ∗

B(ζ, ζ∗), B(ζ, ζ∗ + 1) = ζ∗

ζ+ζ∗
B(ζ, ζ∗).

3) B(ζ, ζ∗) = B(ζ, ζ∗ + 1) +B(ζ + 1, ζ∗).

1.2 Fractionalisation of integrations and derivatives

In what follow, we shall present the two important approches of fractional calculs; we present,

first, the approch of Riemann-Liouville. Then, we introduce the approch of Caputo.
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1.2.1 Fractionalisation of Riemann-Liouville

Définition 1.2.1 [48] Let f ∈ L1 ([a, b]) . The Riemann-Liouville fractional integral of order

α > 0 of f is given by

(
RLIαa f

)
(t) :=

1

Γ (α)

∫ t

a

(t− s)α−1 f (s) ds, t ∈ [a, b]. (1.2)

Remark 1.2.1

1) In the case α = 0, the fractional integral I0 is interpreted as an identity operator.

2) If α = n ∈ N, then definition 1.2.1 coincids with the integral:

(Ina f) (t) =

∫ x

a

dt1

∫ t1

a

dt2...

∫ tn

a

f (tn) dtn

=
1

(n− 1)!

∫ x

a

(x− t)n−1 f (t) dt.

Example 1.2.1

Let f(ξ) = (ξ − a)λ , , λ > −1, then for α > 0, we have

(
RLIαa f

)
(ξ) =

1

Γ (α)

∫ ξ

a

(ξ − τ)α−1 (ξ − a)λ dτ, ξ ∈ [a, b]. (1.3)

We put ξ = a+ ρ (ξ − τ) , 0 ≤ ρ ≤ 1. Then the formula (1.3) is written in the form

(
RLIαa f

)
(ξ) =

(ξ − a)α+λ

Γ (α)

∫ 1

0

ρλ (1− ρ)α−1 dρ,

Thanks to (1.1) , we get

(
RLIαa f

)
(ξ) =

Γ (λ+ 1)

Γ (λ+ 1 + α)
(ξ − a)α+λ .

If λ = 0, then
(
RLIαa 1

)
(ξ) =

1

Γ (α)
(ξ − a)α .

Proposition 1.2.1 Let α ∈ R such as α > 0, then the operator RLIαa is well defined.

Proof.

16



Let f ∈ L1 ([a, b]) and α ∈ R (α > 0) . According to Fubini theorem, we have∫ t

a

|Iαa f(t)| dt ≤ 1

Γ (α)

∫ b

a

∫ t

a

(t− s)α−1 |f (s)| dsdt

≤ 1

Γ (α)

∫ b

a

|f (s)|
(∫ b

s

(t− s)α−1 dt

)
ds

≤ 1

αΓ (α)

∫ b

a

|f (s)| (b− s)α ds

≤ bα

Γ (α + 1)

∫ b

a

|f (s)| ds <∞.

Proposition 1.2.2 Let f ∈ L1 ([a, b]) . Then, we have

RLIαa
(
Iβa f (x)

)
=RL Iα+βa f(t), α > 0, β > 0.

Proof.

By definition, we have

RLIαa I
β
a f (x) =

1

Γ (α)

∫ x

a

(x− u)α−1 du
1

Γ (β)

∫ u

a

(u− t)β−1 f (t) dt

=
1

Γ (α)

1

Γ (β)

∫ x

a

f (t) dt

∫ x

t

(x− u)α−1 (u− t)β−1 du.

We put y =
u− t

x− t
, so we can write

RLIαa I
β
a f (x) =

1

Γ (α)

1

Γ (β)

∫ x

a

f (t) dt (x− t)α+β−1

∫ 1

0

(1− y)α−1 yβ−1dy

=
B (α, β)

Γ (α) Γ (β)

∫ x

a

(x− t)α+β−1 f (t) dt =RL Iα+βa f(t).

The relation is thus proved.

Définition 1.2.2 Let f ∈ L1 ([a, b]) . The fractional derivative of Riemann-Liouville of order

α ∈ R (α > 0) is given by

(
RLDα

a f
)
(t) : =

(
d

dt

)n (
In−αa f

)
(t) (1.4)

=
1

Γ (n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1 f (s) ds, n ∈ N∗, n− 1 < α ≤ n, t ∈ [a, b].
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Remark 1.2.2

If α = n ∈ Z+, then (
RLDα

a f
)
(t) = f (n) (t) ,

where f (n) is the standard derivative of order n of the function f .

Example 1.2.2

Let f be the function defined by f (t) = tλ, t ∈ [0, b], b > 0, λ > −1 and n−1 < α ≤ n, n ∈ N∗.

So, we have

(
RLDα

0 f
)
(x) : =

(
d

dx

)n(
1

Γ (m− α)

∫ x

0

(x− s)n−α−1 sλds

)
=

1

Γ (m− α)

(
d

dx

)n(
xn−α+λ

∫ 1

0

(1− u)n−α−1 uλdu

)
=

1

Γ (m− α)
B (λ+ 1, n− α)

(
d

dx

)n
xn−α+λ.

Since (
d

dx

)n
xp = p (p− 1) ... (p− n+ 1)xp−n =

Γ (p+ 1)

Γ (p− n+ 1)
xp−n,

for anny p ∈ R\ {−1,−2,−3, ...} .
Therefore, we obtain

(
RLDα

0 f
)
(x) =

1

Γ (n− α)
× Γ (λ+ 1)Γ (n− α)

Γ (λ+ 1 + n− α)
× Γ (n− α + λ+ 1)

Γ (n− α + λ−m+ 1)
xλ−α

=
Γ (λ+ 1)

Γ (λ− α + 1)
xλ−α.

Remark 1.2.3

As a special case, if λ = 0, then we get

RLDα
0 1 =

x−α

Γ (1− α)
, ∀α ∈ R+\ {0, 1, 2, 3, ...} .

RLDα
0 1 = 0,∀α ∈ Z+.

Remark 1.2.4 The fractional derivative in the sense of Riemann-Liouville of a constant

function is not zero.
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Proposition 1.2.3 Let α, β > 0 such as n− 1 < α ≤ n and m− 1 < β ≤ m,n,m ∈ N∗. If

α > β > 0, then for f ∈ L1 ([a, b]) , we have

(
RLDβIαa f

)
(t) = Iα−βa f (t) .

Proposition 1.2.4 Let α > 0 such as n− 1 < α ≤ n, n ∈ N∗. For f ∈ L1 ([a, b]) , we have

(
RLDαIαa f

)
(t) = f (t) .

Proposition 1.2.5 Let n− 1 < α ≤ n, n ∈ N∗,m ∈ N∗ and f ∈ L1 ([a, b]) . If the fractional

derivatives
(
RLDαf

)
(t) and (Dα+mf) (t) exist, then we have

(DmDαf) (t) =
(
Dα+mf

)
(t) .

1.2.2 Fractionalisation of Caputo

Définition 1.2.3 The Caputo fractional derivative of order α ∈ R (α > 0) of a function

f ∈ Cn ([a, b]) is defined by

cDα
a f(t) :=

RL In−αa f (n) (t) =
1

Γ (n− α)

∫ t

a

(t− s)n−α−1 f (n) (s) ds, n ∈ N∗, n−1 < α < n, t > a.

Remark 1.2.5

1) In particular, when 0 < α < 1 and f ∈ C ([a, b]) , then

cDα
a f(t) =

1

Γ (1− α)

∫ t

a

(t− s)−α f ′ (s) ds = I1−αa f ′ (t) .

2) If α ∈ N, then we have
cDα

a f(t) = f (n) (t) .

Example 1.2.3

Let f(t) = C, t ∈ [a, b], the constant function, then we have

cDαf(t) = 0 but RLDαf(t) ̸= 0.

Proposition 1.2.6 Let f and g be two functions such that cDαf(t),cDαg(t) exist. Then

the Caputo fractional derivation is a linear operator:
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cDα
a (λf + γg) (t) = λcDα

a f (t) + γcDα
a g(t), ∀λ, γ ∈ R.

Proposition 1.2.7 Let n − 1 < α < n, n ∈ N∗,m ∈ N and let the function f such that
cDαf(t) exists. Then:

cDαDmf(t) =c Dα+mf(t) ̸= DmcDαf(t).

The following theorem establishes the relation between the fractional derivative in the

sense of Caputo and that in the sense of Riemann-Liouville.

Théorème 1.1 Let α > 0 with n − 1 < α < n, n ∈ N∗, and let f be a function such that
cDα

a f (t) et
RLDα

a f (t) exist. Then, we have:

cDα
a f (t) =

RL Dα
a f (t)−

n−1∑
k=0

f (k) (a)

Γ (k − α + 1)
(t− a)k−α .

1.2.3 Important notes

In this section, we provide some lemmas of fractional derivatives, witch will play major roles

in our analysis, see [8, 10, 25].

Lemma 1.1 Let α > 0. Then the general solution of the equation cDα
ax (t) = 0, t ∈ [a, b]

can be given by:

x (t) =
n−1∑
i=0

ci (t− a)i , t ∈ [a, b],

such that ci ∈ R, i = 0, 1, 2, .., n− 1, n = [α] + 1.

Lemma 1.2 We consider an α > 0. Then, it yields that

RLIαDαx (t) = x (t) +
n−1∑
i=0

ci (t− a)i , t ∈ [a, b],

for ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.
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Chapter 2

Integral Inequalities for Fixed Points

2.1 Introduction

In this chapter, we are concerned with some important notions on fixed point theory. Some

integral inequalities are shown to the reader in order to be used in the two last chapters

[28, 43, 61].

2.2 Some needed concepts

2.2.1 Banach space

Définition 2.2.1 Let B be a vector normed space and σ a metric on B. A metric space

(B, σ) is complete if every Cauchy sequence in B has a limit.

Définition 2.2.2 We call a Banach space every normed vector space where the induced

metric is complete.

2.2.2 Completely continuous operators

Définition 2.2.3 A function f : X → Y (between metric spaces) is continuous when it

preserves convergence, this means:

χn → χ ∈ X ⇒ f (χn) → f(χ) ∈ Y, (2.1)
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where {χn}n∈N.
In this case, f (limn→+∞ χn) = limn→+∞ f (χn).

Définition 2.2.4 Any set B is bounded when the distance between any two points in B has

an upper bound,

∃r > 0, ∀χ, y ∈ B, d(χ, y) ≤ r. (2.2)

Définition 2.2.5 Let us have the spaces X and Y that are of Banach and let T : D ⊂ X →
Y

1) We say that the operator T is bounded if it any bounded application subset of D into a

bounded subset of Y .

2) We say that the operator T is completely continuous if it is continuous and any bounded

application subset of D into a relatively compact subset of Y .

2.3 Around fixed points

2.3.1 Banach Contraction Principle (BCP)

Définition 2.3.1 Let (X, d) a complete metric space and T an application of X in X. We

say that T is an Lipschitizienne application if it exists a positive constant k as we have:

∀x, y ∈ X : d(T (x), T (y)) ≤ kd(x, y).

If k < 1, T is then called a contraction.

Théorème 2.1 Let T be a continuous application on a Banach space X. Then the following

assertions are true:

1)If there exist x, y ∈ X with

lim
n→+∞

T n(x) = y,

then, T (y) = y.

2) If T (X) is a compact set on X and for all ϵ > 0 there is a xϵ ∈ X with

∥T (xϵ)− xϵ∥ < ϵ

hence, T admits a fixed point.
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Proof.

1) Let yn = T n(x), n = 1, 2, . . . . If T is a continuous application, so

T (y) = T

(
lim

n→+∞
yn

)
= lim

n→+∞
T (yn) = lim

n→+∞
yn+1 = y,

which ends the proof of the first assertion.

2) Suppose that the assumptions of 2) are fulfilled. Hence, for n = 1, 2, . . . , we have

xn ∈ X and:

∥T (xn)− xn∥ < 1
n

(2.3)

T (X) is a compact set implies that there exists a convergent subsequence (T (xnk
))+∞
n=1

of (T (xn))
+∞
n=1 of limit x. So thanks to (2.3) and the fact that T is continuous, we

deduce that x is a fixed point of T .

Théorème 2.2 (Banach BCP) Let be X a Banach space and T : X −→ X be a contracting

application. Then T has a unique fixed point.

Proof.

Existence:

We consider the sequence (xn)n∈N defined by{
xn = T (xn) , n ≥ 1

x0 ∈ X.

We demonstrate that (xn) is a Cauchy sequence in X. For m < n, we have :

∥xn − xm∥ ≤ ∥xm+1 − xm∥+ ∥xm+2 − xm+1∥+ . . . . . .+ ∥xn − xn−1∥

Since T is a contraction, so:

∥xp+1 − xp∥ = ∥Txp − Txp−1∥ ≤ k ∥xp − xp−1∥ , p ≥ 1.
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Repeating this inequality, we get:

∥xn − xm∥ ≤
(
km + km+1 + . . . . . . kn−1

)
∥x1 − x0∥

≤ km
(
1 + k + . . . . . .+ kn−m−1

)
∥x1 − x0∥

≤ km

1− k
∥x1 − x0∥ .

We deduce that (xn)n is Cauchy in X which is complete, hence, (xn)n converges to x in X.

Since T is continuous, so:

x = lim
x→+∞

xn = lim
x→+∞

T (xn−1) = T

(
lim

x→+∞
xn−1

)
= Tx.

Therefore, x is a fixed point of T .

Uniqueness:

We suppose that Tx = x and Ty = y. Thus, it yields that

∥x− y∥ = ∥Tx− Ty∥ ≤ k∥x− y∥.

Since k < 1, we deduce that ∥x − y∥ = 0, it means x = y, therefore the uniqueness of the

fixed point of T is guaranted.

We propose to the reader also the following theorem:

Théorème 2.3 Let T be an application on a Banach space X, such as TN is contraction

on X for a positive integer N . So T admits a unique fixed point.

Proof.

The Banach BCP implies that there exists a fixed point for TN . let us call it x0. Now,

we just note:

∥T (x0)− x0∥ =
∥∥TN (T (x0))− TN (x0)

∥∥ ≤ k ∥T (x0)− x0∥ .

This implies that T (x0) = x0, this is because 0 < k < 1. The uniqueness is evidently since

a fixed point of T is also a fixed point for TN .

2.3.2 Schaefer Fixed Point Theorem

We recall the theorem.
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Théorème 2.4 Let B be a Banach space and T : B → B be a completely continuous

operator. If the set:

Ω := {u ∈ B : u = µTu, µ ∈]0, 1[}

is bounded, hence T has at least one fixed point.

2.3.3 Arzela-Ascoli and relative compactness

We also present the result.

Théorème 2.5 Let A ⊂ C (K,Rn) , (K = [a, b] ⊂ R). A is relatively compact if and only if:

1. A is uniformly bounded.

2. A is equicontinuous.

we remember that a function f is uniformly bounded in A if there is a constant M > 0 with:

∥f∥ = sup
x∈K

|f(x)| ≤M, ∀f ∈ A.

2.3.4 Finite dimension theorem and inequalities

The following Brower theorem is well used with its estimates for proving existence of fixed

points in finite dimension.

Définition 2.3.2 We say that a topological space X has the property of the fixed point if

any application continues T : X → X has a fixed point.

Théorème 2.6 (Brouwer theorem) Let Bn be the closed unit ball of RN . It has the property

of the fixed point for all n ∈ N∗.

2.3.5 Infinite dimension theorem and inequalities

This theorem uses inequality theory to prove and to extend the result of Brouwer for the

proof of the existence of a fixed point of a continuous application on a compact convex in a

Banach space. It is important to be recalled in what follows.

Théorème 2.7 (Schauder theorem) Let K be a compact and convex subset of a Banach

space X and T : K → K be a continuous application. So, T admits a fixed point.
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Proof.

Let T : K → K be a continuous application. Since K is compact, so T is uniformly

continuous. Thus for ε fixed, there exists δ > 0; for all x, y ∈ K, we have the inequality:

∥x− y∥ ≤ δ =⇒ ∥T (x)− T (y)∥ ≤ ε.

Moreover, there exists a finite set of points {x1, x2, . . . , xp} ⊂ K such as open radius ball

δ centered at point xi recover K; that means: K ⊂
∪

1≤j≤pB (xj, δ) . If we put L =

vect (T (xj))1≤j≤p, so L est is of finite dimension, and K∗ = K ∩ L is compact convex

of finite dimension. For 1 ≤ j ≤ p, we define the continuous function ψj : X → R by :0 if ∥x− xj∥ ≥ δ

1− ∥x−xj∥
δ

if not

It’s clear that ψj is strictly positive on B (xj, δ) and nul outsite. So we have, for all x ∈
K,
∑p

j=1 ψj(x) > 0, we can define on K the positive continuous functions φj by :

φj(x) =
ψj(x)∑p
k=1 ψk(x)

,

for which we have
∑p

j=1 φj(x) = 1, for all x ∈ K.

Let us now pose, for x ∈ K,

g(x) =

p∑
j=1

φj(x)T (xj) .

The function g is continuous (sum of continuous functions) and takes its values in K∗ (be-

cause g is a barycenter of T (xj) ). If we take the restriction g/K∗ : K∗ → K∗, (according

to Brouwer theorem) g has a fixed point y ∈ K∗. Further:

T (y)− y = T (y)− g(y)

=

p∑
j=1

φj(y)T (y)−
p∑
j=1

φj(y)T (xj)

=

p∑
j=1

φj(y) (T (y)− T (xj)) .

But if φj(y) ̸= 0 so ∥y − xj∥ < δ, and consequently ∥T (y)− T (xj)∥ < ε.
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so, we have for all j,

∥T (y)− y∥ ≤
p∑
j=1

φj(y) ∥T (y)− T (xj)∥

≤
p∑
j=1

εφj(y) = ε.

So, for all whole number m , we can find a point ym ∈ K in which ∥T (ym)− ym∥ ≤ 2−m.

and since K is compact, then from the sequence (ym)m∈Z we can extract a sub-sequence

(ymk
) which converges to a point y∗ ∈ K. So T being continuous, The sequence (T (ymk

))

converge to T (y∗), and we conclude that T (y∗) = y∗, that’s means y∗ is a fixed point of T

on K.

Théorème 2.8 We suppose that T is a continuous application between two Banach space

X et Y . If K is a compact set in X so, T (K) is a compact set in Y .

Let T : X → Y an application between twho Banach space. The different notions of

continuity used in this chapter are:

We say that T is

- Continuous: if for all x ∈ X and for ϵ > 0, it exists δ = δ(x, ϵ) in which whatever y ∈ X :

∥y − x∥X < δ ⇒ ∥T (y)− T (x)∥Y < ϵ.

- Uniformly continuous on A : (A ∈ X), if for all ϵ > 0, it exists δ = δ(ϵ) in which whatever

are x, y ∈ A we have:

∥y − x∥X < δ ⇒ ∥T (y)− T (x)∥Y < ϵ.

If Ti : X → Y is a set of applications between two Banach spaces. Ti is equicontinue on X,

if for all ϵ > 0, it exists δ = δ(ϵ) in which for any x, y ∈ X and any i ∈ I, we have :

∥y − x∥X < δ ⇒ ∥Ti(y)− Ti(x)∥Y < ϵ.

2.3.6 Inequalities using both Banach BCP and Schauder theorem

We have already presented the two main theorems of the fixed point theory, Schauder the-

orem and Banach BCP. The result of Krasnoselskii combines these two theorems. So, we

have:
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Théorème 2.9 Let F be a closed and convex set of a Banach space X, and let T1 and T2

be two applications of F in X, with:

1. T1(x) + T2(y) ∈ F, ∀x, y ∈ F ,

2. T1 is a contraction.

3. T2 is compact and continuous.

So, T1 + T2 admits a fixed point in F .

Remark 2.3.1

In the proof, we use the inequality:

∥T1(x)− T1(y)∥ ≤ k∥x− y∥, x, y ∈ F, k ∈ (0, 1).

Also, we are invited to use:

∥ (I − T1) (x)− (I − T1) y) ∥ ≥ ∥x− y∥ − ∥T1(x)− T1(y)∥ ≥ (1− k)∥x− y∥

and

∥ (I − T1) (x)− (I − T1) y) ∥ ≤ ∥x− y∥+ ∥T1(x)− T1(y)∥ ≤ (1 + k)∥x− y∥.

These two inequalities are very used in our main results.
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Chapter 3

A Class of Time Singular Fractional

BVP of Sequential Caputo Derivatives

3.1 Introduction

Research on the existence of unique solutions for fractional differential equations is of big

importance since it help physician to better know on the behaviour of real phenomena. For

more details, see the papers [2, 17, 21, 23, 24, 26, 36]. Moreover, the singular differential

equations are also very important in applied sciences, see [5, 12, 13, 49]. Among these

equations, we cite the standard Lane-Emden equation which is part of the present work

but in a general case. This equation has a considerable importance in astrophysics, for more

details, [38, 52, 57] and the reference therein. Before we begin recalling some other equations

and problems that have motivated the present work, we invite the reader to know on the

standard form of Lane Emden equation, it is written as follows:

y
′′
(t) +

a

t
y

′
(t) + f (t, y (t)) = g (t) , t ∈ ]0, 1] , (3.1)

by taking

y (0) = a1, y
′
(0) = a2,
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where f and g are continuous functions (see [62]).

In [47], the authors have worked on the following interesting problem:
Dαy (t) +

k

tα−β
Dβy (t) + f (t, y (t)) = g (t) , t ∈ (0, 1] ,

k ≥ 0, 1 < α ≤ 2, 0 < β ≤ 1,

(3.2)

with

y (0) = y0, y
′
(0) = y1,

where y0 and y1 are real constants, f and g are some continuous functions and the derivatives

are in the sense of Riemann-Liouville. They have used a numerical method to establish some

solutions for the problem.

In [37, 38], Rabha W. Ibrahim has studied two equations. The equations are given by:{
Dβ
(
Dα + a

t

)
u (t) + f (t, u (t)) = g (t) ,

0 < α, β ≤ 1, 0 < t ≤ 1, a ≥ 0.
(3.3)

For the first equation, Rabha W. Ibrahim has taken the conditions u(0) = u(1) = u(r) =

0, 0 < r < 1; the existence of solutions by Krasnoselskii theorem has been studied in [37].

The second problem has the conditions u (0) = µ, u (1) = ν; for this second problem, the

Ulam stability of solutions has been discussed in [21].

Also in [16], A. Bekkouche et al. have studied the existence of solutions and the ∆−Ulam

stabilities for the following two dimension system:

Dβ1 (Dα1 + b1g1 (t))x1 (t) + f1 (t, x1 (t) , x2 (t))

= ω1S1 (t, x1 (t) , x2 (t)) , 0 < t < 1,

Dβ2 (Dα2 + b2g2 (t))x2 (t) + f2 (t, x1 (t) , x2 (t))

= ω2S2 (t, x1 (t) , x2 (t)) , 0 < t < 1,

xk(0) = 0, Dαxk(1) + bkgk(1)xk(1) = 0,

(3.4)

under the conditions: 0 < βk < 1, 0 < αk < 1, bk ≥ 0, 0 < ωk < ∞, k = 1, 2 and the

derivatives Dβk and Dαk are in the sense of Caputo. The functions fk : [0, 1]×R2 → R and

Sk : [0, 1]×R2 → R are continuous, gk : ]0, 1] → [0,+∞) is continuous and singular at t = 0.

In the paper [17], A. Benzidane and Z. Dahmani have considered the following class of
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nonlinear equations:

Dβ1

(
Dα1 + g1(t)

)
x1(t) + f1(t, x1(t), x2(t), D

δ1x1(t), D
δ2x2(t))

= h1(t, x1(t), x2(t)),

Dβ2

(
Dα2 + g2(t)

)
x2(t) + f2(t, x1(t), x2(t), D

δ1x1(t), D
δ2x2(t))

= h2(t, x1(t), x2(t)),

xk(0) = ak, xk(1) = bk, t ∈ J,

(3.5)

where J = [0, 1], 0 < αk, βk < 1, 0 < δk < αk < 1, k = 1, 2; the functions fk : [0, 1] × R4,

k = 1, 2 are continuous, gk : (0, 1] −→ [0,+∞) are continuous functions, singular at t = 0,

and limt→0+ gk(t) = ∞; the operators Dαk , Dβk and Dδk k = 1, 2 are the derivatives in the

sense of Caputo and the constants ak, bk are reals. The authors have studied the existence

and uniqueness of solutions and the Ulam stability for the considered class.

Y. Bahous ans Z. Dahmani [11] have considered a problem involving both Caputo derivative

and Riemann-Liouville integral. Thier problem is given by:

Dβ
(
Dα + k

tλ

)
y(t) + f(t, y(t), Dδy(t)) + g(t, y(t), Iρy(t))

= h(t), t ∈]0, 1[,

y(0) = ν, y(1) = b

∫ η

0

q(s)y(s)ds, 0 < η < 1,

0 < β, α < 1, k > 0, λ > 0,

(3.6)

whereDα is of Caputo, Iρ is of Riemann-Liouville integral of ρ, the functions f, g : [0, 1]R2 −→
R are continuous, and h and q are continuous on [0, 1]. The authors have investigated the

existence and uniqueness of solutions. Then, they have studied the Ulam-Hyers stability.

Also, Y. Gouari et al. [31] have presented the study of the following nonlinear singular
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integro-differential equation:

Dβ
(
Dα + k

tλ

)
y(t) + ∆1f(t, y(t), D

δy(t)) + ∆2g(t, y(t), I
ρy(t))

+h(t, y(t)) = l(t)

y(0) = 0

y(1) = b

∫ η

0

y(s)ds, 0 < η < 1

Iqy(u) = y(1), 0 < u < 1

k > 0, 0 < λ ≤ 1, 1 ≤ β ≤ 2, 0 ≤ α, δ ≤ 1,

(3.7)

where ∆1 > 0,∆2 > 0 are positive real numbers, Iρ is the Riemann-Liouville integral of order

ρ, and f, g are two given functions defined on [0, 1]×R2, and h and l are two given functions

defined over [0, 1]. The authors have proved the existence and uniqueness of solutions by

application of Banach contraction principle, then, by means of Schaefer fixed point theorem,

they have studied the existence of at least one solution for the problem.

In this chapter, we are concerned with the following time-singular fractional problem[32]:

Dα1(Dα2 ...(Dαn(Dβ +
k

tλ
))...)u(t) + f(t, u(t), Dδu(t)) + g(t, u(t), Iρu(t))

+h(t, u(t)) = l(t), t ∈]0, 1[,

u(0) = 0,

u(1) = θ, θ ∈ R,

Dαn(Dβu(0)) = 0,

Dαn−1(Dαn(Dβu(0))) = 0,
...

Dα3(Dα4 ...(Dαn(Dβu(0)))...) = 0,

Dα2(Dα3 ...(Dαn(Dβu(1) + ϕk,λ(1)u(1)))...) = 0,

k > 0.

(3.8)

For (3.8), we need to consider J := [0, 1], 0 ≤ β ≤ 1, 0 ≤ αi < 1; ; i = 1, 2, ..., n, δ <

min(β, αi), ϕk,λ(t) =
k

tλ
, the derivatives are in the sense of Caputo, Iρ denotes the Riemann-

Liouville fractional integral of order ρ, and f, g : J × R2 → R are two given functions, also

h : J × R → R is a given function and l is a function which is defined on J.
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We need also to shed light on the following remarks:

1. We introduce the Caputo derivatives and the Riemann Liouville-integral in the problem.

3. The problem includes n parameters of Caputo derivations which allow us to introduce a

problem with absence of commutativity and semi group properties between the introduced

derivatives. So, we have to obtain some arguments to solve this problem.

4. Another important remark in this chapter is the time singularity at the origin for the

above problem.

So based on the above conditions, we are concerned with a more general sequential prob-

lem of Lane Emden type; it is more general in the sense that it can be used to describe

many problems that arise in mathematical physics, since it includes several particular types

of equations with some applications. For example, our problem includes the standard La-

neEmden equation as a special case. Also, it includes the EmdenFowler equation that was

used to model several phenomena in mathematical physics and astrophysics, such as the

theory of stellar structure and thermionic currents. Also, the fractional LaneEmden model

proposed by Mechee and Senu [47] can be derived from the above problem under some spe-

cial values on the parameters and the functions.

To the best of our knowledge this is the first time in the literature where such problem is

investigated.
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3.2 Solutions: existence, existence and uniqueness

3.2.1 Representation of the integral solution

Lemma 3.1 Let G ∈ C([0, 1]). Then, we can state that the problem

Dα1(Dα2 ...(Dαn(Dβ +
k

tλ
))...)u(t) = G(t), t ∈]0, 1[,

u(0) = 0,

u(1) = θ, θ ∈ R,
Dαn(Dβu(0)) = 0,

Dαn−1(Dαn(Dβu(0))) = 0,
...

Dα3(Dα4 ...(Dαn(Dβu(0)))...) = 0,

Dα2(Dα3 ...(Dαn(Dβu(1) + ϕk,λ(1)u(1)))...) = 0,

k > 0, 0 ≤ αi < 1, 0 ≤ β ≤ 1; i = 1, 2, ..., n

(3.9)

admits the following representation as solution:

u(t) =
1

Γ(β)

∫ t

0

(t− s)β−1

 1

Γ(
n∑
i=1

αi)

∫ s

0

(s− τ)

n∑
i=1

αi − 1

G(τ)dτ − k

sλ
u(s)

 ds

−

∫ 1

0

(1− s)α1−1G(s)ds

Γ(α1)Γ(
n∑
i=2

αi + β + 1)

t

n∑
i=2

αi + β

+


∫ 1

0

(1− s)α1−1G(s)ds

Γ(α1)Γ(
n∑
i=2

αi + β + 1)

 tβ

−

 1

Γ(β)

∫ 1

0

(1− s)β−1

 1

Γ(
n∑
i=1

αi)

∫ s

0

(s− τ)

n∑
i=1

αi − 1

G(τ)dτ − k

sλ
u(s)

 ds+ θ

 tβ.
(3.10)

Proof.
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We use the property established in Lemma 1.2 to (3.8). So we have

u(t) = Iβ

I
n∑
i=1

αi
G(s)− k

sλ

 (t) +
c0

Γ(
n∑
i=2

αi + β + 1)

t

n∑
i=2

αi + β

+
c1

Γ(
n∑
i=3

αi + β + 1)

t

n∑
i=3

αi + β

+
c2

Γ(
n∑
i=4

αi + β + 1)

t

n∑
i=4

αi + β

+ ...+
cn−2

Γ(αn + β + 1)
tαn+β +

cn−1

Γ(β + 1)
tβ + cn.

(3.11)

Some of our conditions allow us to get

u(0) = 0 ⇒ cn = 0

Dα2(Dα3 ...(Dαn(Dβu(1) + ϕk,λ(1)u(1)))...) = 0 ⇒ c0 = −Iα1G(1)

Dαn(Dβu(0)) = 0 ⇒ cn−2 = 0

Dαn−1(Dαn(Dβu(0))) = 0 ⇒ cn−3 = 0
...

Dα4(Dα5 ...(Dαn(Dβu(0)))...) = 0 ⇒ c2 = 0

Dα3(Dα4 ...(Dαn(Dβu(0)))...) = 0 ⇒ c1 = 0

u(1) = θ ⇒

cn−1

Γ(β + 1)
=

∫ 1

0

(1− s)α1−1G(s)ds

Γ(α1)Γ(
n∑
i=2

αi + β + 1)

− 1

Γ(β)

∫ 1

0

(1− s)β−1

 1

Γ(
n∑
i=1

αi)

∫ s

0

(s− τ)

n∑
i=1

αi − 1

G(τ)dτ − k

sλ
u(s)

 ds+ θ.

(3.12)

Replacing c0, c1, c2, ..., cn in (4.3), we end the proof of the result.

Let us now transforming the above problem to a fixed point one.

We begin by considering the Banach space:
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X := {x ∈ C(J,R), Dδx ∈ C(J,R)} (3.13)

and its norm:

∥x∥X =Max{∥x∥∞ , ∥Dδx∥∞}, (3.14)

where by definition, we put:

∥x∥∞ = sup
t∈J

|x(t)| , ∥Dδx∥∞ = sup
t∈J

|Dδx(t)|. (3.15)

Then, we pass to consider the nonlinear operator H : X → X defined by:

Hu(t) =
1

Γ(β)

∫ t

0

(t− s)β−1
[ 1

Γ(
n∑
i=1

αi)

∫ s

0

(s− τ)

n∑
i=1

αi − 1(
l(τ)− h(τ, u(τ))− f(τ, u(τ), Dδu(τ))

−g(τ, u(τ), Iρu(τ))
)
dτ − k

sλ
u(s)

]
ds− t

n∑
i=2

αi + β

+ tβ

Γ(α1)Γ(
n∑
i=2

αi + β + 1)

∫ 1

0

(1− s)α1−1
(
l(s)

−h(s, u(s))− f(s, u(s), Dδu(s))− g(s, u(s), Iρu(s))
)
ds−

[ 1

Γ(β)

∫ 1

0

(1− s)β−1
( 1

Γ(
n∑
i=1

αi)

×
∫ s

0

(s− τ)

n∑
i=1

αi − 1(
l(τ)− h(τ, u(τ))− f(τ, u(τ), Dδu(τ))− g(τ, u(τ), Iρu(τ))

)
dτ

− k

sλ
u(s)

)
ds+ θ

]
tβ,

(3.16)

such that λ < 1.

To prove the main results, we need to work with the following considerations:

(A1) : The functions f and g defined on J × R2 are continuous and h defined on J × R
is also continuous.
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(A2) : There exist nonnegative constants Lf1, Lf2, Lg1, Lg2 such that, for any t ∈ J ,

xi, x
∗
i ∈ R,

|f(t, x1, x2)− f(t, x1
∗, x2

∗)| ≤
2∑
i=1

Lfi|xi − xi
∗|, (3.17)

|g(t, x1, x2)− g(t, x1
∗, x2

∗)| ≤
2∑
i=1

Lgi|xi − xi
∗|, (3.18)

and there is a positive number r0 such that, for any t ∈ J , x, y ∈ R,

|h(t, x)− h(t, y)| ≤ r0|x− y|. (3.19)

We take, also, the quantities:

L′
f :=Max(Lf1, Lf2), L

′
g :=Max(Lg1, Lg2). (3.20)

(A3) : There exist non negative constants Mf ,Mg,Mh, such that, for any t ∈ J , x ∈ R2, y ∈
R, we have

|f(t, x)| ≤Mf , |g(t, x)| ≤Mg, |h(t, y)| ≤Mh. (3.21)

(A4) : We take: ∥l∥∞ =Ml.

Also we consider the quantities:

D1 = 2

[(
r0 + 2L

′

f + L
′

g +
L′
g

Γ(ρ+ 1)

)(
1

Γ(
n∑
i=1

αi + β + 1)

+
1

Γ(
n∑
i=2

αi + β + 1)Γ(α1 + 1)

)

+
kΓ(1− λ)

Γ(β − λ+ 1)

]
,

(3.22)
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D2 =

(
r0 + 2L

′

f + L
′

g +
L′
g

Γ(ρ+ 1)

)(
1

Γ(
n∑
i=1

αi + β − δ + 1)

+
1

Γ(
n∑
i=2

αi + β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
n∑
i=2

αi + β + 1)Γ(β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
n∑
i=1

αi + β + 1)Γ(β − δ + 1)

)
+ kΓ(1− λ)

(
1

Γ(β − δ − λ+ 1)
+

1

Γ(β − λ+ 1)

)
.

(3.23)

3.2.2 One solution

The first main result deals with the existence of a unique solution for (4.1). It is based on

the application of BCP theorem. We prove:

Théorème 3.1 If the conditions (A i)i=2,3,4 are satisfied and D < 1, D := max {D1, D2} ,
then, the problem (3.8) has a unique solution on J.

Proof.

It is sufficient for us to prove that H is a contraction mapping.

Let (x, y) ∈ X2. Then, we can write

∥Hy −Hx∥∞ ≤ 2

[(
r0 + 2L

′

f + L
′

g +
L′
g

Γ(ρ+ 1)

)(
1

Γ(
n∑
i=1

αi + β + 1)

+
1

Γ(
n∑
i=2

αi + β + 1)Γ(α1 + 1)

)

+
kΓ(1− λ)

Γ(β − λ+ 1)

]
∥y − x∥X .

(3.24)

On the other hand, since
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DδHu(t) =
1

Γ(β − δ)

∫ t

0

(t− s)β−δ−1
[ 1

Γ(
n∑
i=1

αi)

∫ s

0

(s− τ)

n∑
i=1

αi − 1(
l(τ)− h(τ, u(τ))

−f(τ, u(τ), Dδu(τ))− g(τ, u(τ), Iρu(τ))
)
dτ − k

sλ
u(s)

]
ds− t

n∑
i=2

αi + β − δ

Γ(α1)Γ(
n∑
i=2

αi + β − δ + 1)

×
∫ 1

0

(1− s)α1−1
(
l(s)− h(s, u(s))− f(s, u(s), Dδu(s))− g(s, u(s), Iρu(s))

)
ds

+
Γ(β + 1)tβ−δ

Γ(α1)Γ(
n∑
i=2

αi + β + 1)Γ(β − δ + 1)

∫ 1

0

(1− s)α1−1
(
l(s)− h(s, u(s))

−f(s, u(s), Dδu(s))− g(s, u(s), Iρu(s))
)
ds−

[ 1

Γ(β)

∫ 1

0

(1− s)β−1
( 1

Γ(
n∑
i=1

αi)

×
∫ s

0

(s− τ)

n∑
i=1

αi − 1(
l(τ)− h(τ, u(τ))− f(τ, u(τ), Dδu(τ))− g(τ, u(τ), Iρu(τ))

)
dτ

− k

sλ
u(s)

)
ds+ θ

] Γ(β + 1)

Γ(β − δ + 1)
tβ−δ,

(3.25)

then, with the same arguments as before, we have
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∥DδHy −DδHx∥∞ ≤
(
r0 + 2L

′

f + L
′

g +
L′
g

Γ(ρ+ 1)

)(
1

Γ(
n∑
i=1

αi + β − δ + 1)

+
1

Γ(
n∑
i=2

αi + β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
n∑
i=2

αi + β + 1)Γ(β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
n∑
i=1

αi + β + 1)Γ(β − δ + 1)

)
∥y − x∥X

+kΓ(1− λ)

(
1

Γ(β − δ − λ+ 1)
+

1

Γ(β − λ+ 1)

)
∥y − x∥X .

(3.26)

Thanks to (3.24) and (3.26), we obtain

∥Hy −Hx∥X ≤ D ∥x− y∥X .

The proof is thus achieved.

3.2.3 At least one solution

The following main result deals with the existence of at least one solution of the studied

problem.

Théorème 3.2 Under the hypotheses (A1), (A3) and (A4), the problem (3.8) has at least

one solution u(t), t ∈ J.

Proof.

Let us prove the result by considering the following main steps:

Continuous of H

The proof is evident then it is omitted.

Boundedness of H
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Let us take r > 0 and consider the (bounded) ball Br := {x ∈ X; ∥x∥X ≤ r}. For y ∈ Br,

in virtue of (A3) and (A4), we can write

∥Hy∥∞ ≤ 2

[(
Ml +Mh +Mf +Mg

)(
1

Γ(
n∑
i=1

αi + β + 1)

+
1

Γ(
n∑
i=2

αi + β + 1)Γ(α1 + 1)

)

+
kΓ(1− λ)

Γ(β − λ+ 1)

]
+ |θ| < +∞

(3.27)

and

∥DδHy∥∞ ≤
(
Ml +Mh +Mf +Mg

)(
1

Γ(
n∑
i=1

αi + β − δ + 1)

+
1

Γ(
n∑
i=2

αi + β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
n∑
i=2

αi + β + 1)Γ(β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
n∑
i=1

αi + β + 1)Γ(β − δ + 1)

)
+ kΓ(1− λ)

(
1

Γ(β − δ − λ+ 1)
+

1

Γ(β − λ+ 1)

)

+|θ| < +∞.

(3.28)

The above two inequalities show that ∥Hy∥X < +∞.

Consequently H is uniformly bounded.

Ascolli Arzella for H

We prove that for any bounded set Br for instance, we obtain that H(Br) is an equicon-

tinuous set of X.

Taking t1, t2 ∈ [0, 1], t1 < t2 and consider the above (bounded) ball Br of X. So by

considering y ∈ Br, we can state that
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|Hy(t1)−Hy(t2)| ≤ Ml +Mh +Mf +Mg

Γ(
n∑
i=1

αi + β + 1)

|t1

n∑
i=1

αi + β

− t2

n∑
i=1

αi + β

|

+kr
Γ(1− λ)

Γ(1− λ+ β)
|t1β−λ − t2

β−λ|

+
Ml +Mh +Mf +Mg

Γ(
n∑
i=2

αi + β + 1)Γ(1 + α1)

(
|t1

n∑
i=2

αi + β

− t2

n∑
i=2

αi + β

|+ |t1β − t2
β|
)

+
(Ml +Mh +Mf +Mg

Γ(
n∑
i=1

αi + β + 1)

+ kr
Γ(1− λ)

Γ(1− λ+ β)
+ θ
)
|t1β − t2

β|

(3.29)

and
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|DδHy(t1)−DδHy(t2)| ≤ Ml +Mh +Mf +Mg

Γ(
n∑
i=1

αi + β − δ + 1)

|t1

n∑
i=1

αi − δ + β

− t2

n∑
i=1

αi − δ + β

|

+kr
Γ(1− λ)

Γ(1− λ+ β − δ)
|t1β−δ−λ − t2

β−δ−λ|

+
Ml +Mh +Mf +Mg

Γ(
n∑
i=2

αi + β + 1)Γ(1 + α1)

|t1

n∑
i=2

αi + β − δ

− t2

n∑
i=2

αi + β − δ

|

+

(
Ml +Mh +Mf +Mg

)
Γ(β + 1)

Γ(
n∑
i=2

αi + β + 1)Γ(β − δ + 1)Γ(α1 + 1)

|t1β−δ − t2
β−δ|

+

(
Ml +Mh +Mf +Mg

Γ(
n∑
i=1

αi + β + 1)

+ kr
Γ(1− λ)

Γ(1− λ+ β)
+ θ

)
Γ(β + 1)

Γ(β − δ + 1)

×|t1β−δ − t2
β−δ|.

(3.30)

For (3.29) and (3.30), their right hand sides tend to zero for t1 → t2.

As a consequence the Ascoli-Arzela theorem, we conclude that H is completely continuous.

Boundedness of Aγ

The set Aγ := {x ∈ X : x = γ Hx, γ ∈]0, 1[} is bounded.

Let y ∈ Aγ. Then we have y = γHy for some 0 < γ < 1. Hence we can write
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∥y∥∞ ≤ γ

(
2

[(
Ml +Mh +Mf +Mg

)(
1

Γ(
n∑
i=1

αi + β + 1)

+
1

Γ(
n∑
i=2

αi + β + 1)Γ(α1 + 1)

)

+
kΓ(1− λ)

Γ(β − λ+ 1)

]
+ |θ|

)
.

(3.31)

We have also

∥Dδy∥∞ ≤ γ

((
Ml +Mh +Mf +Mg

)(
1

Γ(
n∑
i=1

αi + β − δ + 1)

+
1

Γ(
n∑
i=2

αi + β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
n∑
i=2

αi + β + 1)Γ(β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
n∑
i=1

αi + β + 1)Γ(β − δ + 1)

)
+ kΓ(1− λ)

(
1

Γ(β − δ − λ+ 1)
+

1

Γ(β − λ+ 1)

)

+|θ|

)
.

(3.32)

Using (3.27) and (3.28), we state that ∥y∥X <∞. The set is thus bounded.

Consequently, thanks to Schaefer fixed point theorem, we deduce that H has at least one

fixed point. Thus, the problem (4.1) has a solution.

3.3 Illustrative examples

let us give the following examples.

Example 3.3.1
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We concider the following example with 11 sequential derivatives:

D0.5(D0.2(D0.6(D0.5(D0.9(D0.8(D0.8(D0.4(D0.8(D0.5(D0.1 +
2

10t
1
2

))))))))))y(t)

+
1

80et+2

(
|y(t)|

2(1 + |y(t))|
+

cosD
1

100y(t)

et2+1

)
+

cos y(t) + cos I
1
2y(t)

95(π2 + t)
+

sin y(t)

300et
= et + t, t ∈]0, 1[,

y(0) = 0,

y(1) = 1,

D0.5(D0.1y(0)) = 0,

D0.8(D0.5(D0.1y(0))) = 0,

D0.4(D0.8(D0.5(D0.1y(0)))) = 0,

D0.8(D0.4(D0.8(D0.5(D0.1y(0))))) = 0,

D0.8(D0.8(D0.4(D0.8(D0.5(D0.1y(0)))))) = 0,

D0.9(D0.8(D0.8(D0.4(D0.8(D0.5(D0.1y(0))))))) = 0,

D0.5(D0.9(D0.8(D0.8(D0.4(D0.8(D0.5(D0.1y(0)))))))) = 0,

D0.6(D0.5(D0.9(D0.8(D0.8(D0.4(D0.8(D0.5(D0.1y(0))))))))) = 0,

D0.2(D0.6(D0.5(D0.9(D0.8(D0.8(D0.4(D0.8(D0.5(D0.1y(1) + ϕ 2
10
, 1
2
(1)y(1)))))))))) = 0,

ϕ 3
10
,0.1(t) =

2

10t
1
2

.

(3.33)

We have:

f(t, x1, x2) =
1

80et+2

(
|x1(t)|

2(1 + |x1(t))|
+

cosx2(t)

et2+1

)
,

g(t, x1, x2) =
cosx1(t) + cosx2(t)

95(π2 + t)
,

h(t, x) =
sinx(t)

300et
,

l(t) = et + t.
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We remark also that

L
′

f =
1

80e2
, L

′
g =

1

95π2
, r0 =

1

300
,

r0 + 2L
′

f + L
′
g +

L′
g

Γ(ρ+ 1)
= 0.009

1

Γ(
10∑
i=1

αi + β + 1)

= 0.007,

1

Γ(
10∑
i=2

αi + β + 1)Γ(α1 + 1)

= 0.0144,

kΓ(1− λ)

Γ(β − λ+ 1)
= 0.238.

Based on the above data, we have

1

Γ(
10∑
i=1

αi + β − δ + 1)

= 0.0071,

1

Γ(
10∑
i=2

αi + β − δ + 1)Γ(α1 + 1)

= 0.0146,

Γ(β + 1)

Γ(
10∑
i=2

αi + β + 1)Γ(β − δ + 1)Γ(α1 + 1)

+
Γ(β + 1)

Γ(
10∑
i=1

αi + β + 1)Γ(β − δ + 1)

= 0.0213,

kΓ(1− λ)

(
1

Γ(β − δ − λ+ 1)
+

1

Γ(β − λ+ 1)

)
= 0.2344.

Hence, it yields that

D1 = 0.4765, D2 = 0.4728,

D = max {D1, D2} = 0.4765.

The conditions of Theorem 3.1 hold. Therefore, the above example has a unique solution

y(t) on [0, 1].

Example 3.3.2
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Now, we consider another example involving five sequential derivatives:

D0.1(D0.4(D0.3(D0.2(D0.9 +
3

10t0.1
))))y(t) +

|y(t)|
(44π + t)(1 + |y(t)|)

+
|Dδy(t)|

(200 + t)(1 + |Dδy(t)|)
+
cos(y(t) + Iρy(t))

400(t2 + 1)
+

|y(t)|
(72et+2)(1 + |y(t)|)

= 3t, t ∈]0, 1[,

y(0) = 0,

y(1) = 1,

D0.2(D0.9y(0)) = 0,

D0.3(D0.2(D0.9y(0))) = 0,

D0.4(D0.3(D0.2(D0.9y(1) + ϕ 3
10
,0.1(1)y(1)))) = 0,

ϕ 3
10
,0.1(t) =

3

10t0.1
.

(3.34)

we remrk that

f(t, x1, x2) =
|x1|

(44π + t)(1 + |x1|)
+

|x2|
(200 + t)(1 + |x2|)

,

g(t, x1, x2) =
cos(x1 + x2)

400(t2 + 1)
,

h(t, x) =
|x|

(72et+2)(1 + |x|)
,

l(t) = 3t.

Also,

δ = 0.1, ρ = 0.5,

D1 = 0.9613, D2 = 0.9924,

D = max {D1, D2} = 0.9924.

The conditions of Theorem 3.1 hold. Therefore, the above example has a unique solution

y(t) on [0, 1].

Example 3.3.3
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The fllowing example is given to show the validity of the second main result. So we consider:

D0.2(D0.4(D0.4(D0.2(D0.2(D
1
2 +

2

5t0.2
)))))y(t) +

sin y(t) + sinDδy(t)

100et2+1
+

+
1

48et

(
cos y(t) +

|Iρy(t)|
1 + |Iρy(t)|

)
+

|y(t)|
(144et2)(1 + |y(t)|)

= 4t, t ∈]0, 1[,

y(0) = 0,

y(1) = 1,

D0.2(D
1
2y(0)) = 0,

D0.2(D0.2(D
1
2y(0))) = 0,

D0.4(D0.2(D0.2(D
1
2y(0)))) = 0,

D0.4(D0.4(D0.2(D0.2(D
1
2y(1) + ϕ 2

5
,0.2(1)y(1))))) = 0,

ϕ 2
5
,0.2(t) =

4

10t0.2
.

(3.35)

It is clear that

f(t, x1, x2) =
sin x1 + sin x2

100et2+1
, g(t, x1, x2) =

1

48et

(
cosx1 +

|x2|
1 + |x2|

)
,

h(t, x) =
|x|

(144et2)(1 + |x|)
, l(t) = 4t.

Also, we have

δ = 1
2
, ρ = 1

7
.

Hence, we remark that

|f(t, x1, x2)| ≤
1

50
, |g(t, x1, x2)| ≤

1

24
, |h(t, x)| ≤ 1

144
, ∥l∥∞ = 4.

Since the functions f, g, h are continuous, then by Theorem 3.2, the problem presented in

this example has at least one solution on u(t), t ∈ [0, 1].
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Chapter 4

An Analytic and a Numerical Study

for a Class of Singular BVPs With

Series

4.1 Introduction

The differential equations, with time or space singularities, are of great interest since sev-

eral physical situations are modelled by problems of this kind, (for example, problems in

gas and fluid dynamics), see [17, 18, 46]. For this singular field theory, many authors have

paid a great attention to the questions of the existence and uniqueness of solutions to this

type of equations. For more details, we refer the reader to [30, 33, 38]. The reader can

also point out that stability of solutions of such equations is useful in solving many problems

in economics, mechanics, and also in control theory, see [38, 51, 52] and the reference therein.

4.2 The posed problem

Before introducing our problem, we need to cite some other results that have motivated our

aim. We begin by [1], where the authors have studied, for the first time, the existence and
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uniqueness of solutions for the following non singular system involving series:

Dαu (t) = f1(t, u(t), v(t)) +
∞∑
i=1

∫ t

0

(t− s)αi−1

Γ(αi)
φi(s)gi(s, u(s), v(s))ds, t ∈ [0, 1],

Dβv (t) = f2(t, u(t), v(t)) +
∞∑
i=1

∫ t

0

(t− s)βi−1

Γ(βi)
ϕi(s)hi(s, u(s), v(s))ds, t ∈ [0, 1],

n−2∑
k=0

(|u(k)(0)|+ |v(k)(0)|) = 0,

u(n−1)(0) = γIpu(η), η ∈ [0, 1],

v(n−1)(0) = δIpv(ζ), ζ ∈ [0, 1].

Then, based on the above paper, the authors in [58] have studied the following second non

singular fractional differential problem:

Dα1u (t) =
l∑

i=1

fi(t, u(t), v(t), D
γ1u(t), Dγ1v(t))

+
∞∑
j=1

∫ t

0

(t− s)δj−1

Γ(δj)
φi(s)gi(s, u(s), v(s), D

γ2u(s), Dγ2v(s))ds, t ∈ [0, 1],

Dα2v (t) =
l∑

i=1

ki(t, u(t), v(t), D
γ2u(t), Dγ2v(t))

+
∞∑
j=1

∫ t

0

(t− s)θj−1

Γ(θj)
ϕi(s)hi(s, u(s), v(s), D

γ2u(s), Dγ2v(s))ds, t ∈ [0, 1],

u(0) = a0, v(0) = b0,

u(j)(0) = v(j)(0) = 0, j = 1, 2, ..., n− 2,

u(n−1)(0) = Jpu(τ), p > 0, τ ∈]0, 1[,
v(n−1)(0) = Jqv(ρ), q > 0, ρ ∈]0, 1[.
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For the singular case without series, we can also cite the papers [31, 33], where the authors

have studied the questions of existence of solutions as well as the stability for the problem:

Dβ(Dα +
k

tλ
)y(t) + ∆1f(t, y(t), D

δy(t)) + ∆2g(t, y(t), I
ρy(t)) + h(t, y(t))

= l(t), t ∈]0, 1[,

y(0) = 0,

y(1) = b

∫ η

0

y(s)ds, 0 < η < 1,

Iqy(u) = y(1), 0 < u < 1,

k > 0, 0 < λ ≤ 1, 1 ≤ β ≤ 2, 0 ≤ α, δ ≤ 1,

where, ∆1 > 0, ∆2 > 0, J := [0, 1], the two fractional derivative of the problem are in the

sense of Caputo, Iρ is the Riemann-Liouville integral and f, g, h, l are some given functions.

Motivated by both the above two series-works and by the applications of singular differential

equations in fluid dynamics, in this paper, we study the following problem:



Dαu(t) + λf(u(t), u
′′
(t)) = δg(t, u(t), Dγu(t)) +

∞∑
i=1

νiΦi(t)I
αhi(t, u(t)), t ∈ (0, 1],

u
′′
(0) + u

′′
(1) = κ1

∫ ξ

0

u(s)ds, 0 < ξ < 1,

u
′
(0) + u

′
(1) = κ2

∫ θ

0

u(s)ds, 0 < θ < 1,

u(0) + u(1) = κ3

∫ η

0

u(s)ds, 0 < η < 1,

2 < α ≤ 3, 0 < γ < 1, κ1, κ2, κ3, λ, δ, νi ∈ R,
(4.1)

where we note that J := [0, 1], the functions f , hi and Φi will be specified later, g is singular

at t = 0, the operators Dα and Dγ are the derivatives in the sense of Caputo.

To the best of our knowledge, this is the first time in the literature where singular differential

equations, involving fractional calculus and convergent series on Riemann-Liouville integrals

and other terms, are investigated. So, in general, our aim is to present a first contribution

in this direction and try to fill this gap. Especially, we study the question of existence and

uniqueness of solutions by using both fixed point theory and integral inequalities, then we

pass to the investigate the question of stability of solutions in the sense of Ulam-Hyers where
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the integral inequalities and estimates will allow us to prove the results. Our results will

be concretized by some illustrated examples. Then, thanks to some numerical techniques

that allow us to approximate the Caputo derivatives, ( see the two papers [22, 44]), and by

using Rung Kutta method, we present a numerical study with some simulations in order to

present to the reader more comprehension on the proposed examples.

4.3 Uniqueness

4.3.1 Integral equation

We present to the reader the proof of the integral solution of the introduced problem.

Lemma 4.1 Let G in C(]0, 1]), (Hi)i=1,...,r and (Φi)i=1,...,r in C(J), r ∈ N∗, such that∑∞
i=1 ||νiΦiI

αHi||∞ is finite, then, one has

Dαu(t) = G(t) +
∞∑
i=1

νiΦi(t)I
αHi(t), t ∈ (0, 1],

u
′′
(0) + u

′′
(1) = κ1

∫ ξ

0

u(s)ds, 0 < ξ < 1,

u
′
(0) + u

′
(1) = κ2

∫ θ

0

u(s)ds, 0 < θ < 1,

u(0) + u(1) = κ3

∫ η

0

u(s)ds, 0 < η < 1,

2 < α ≤ 3, κ1, κ2, κ3, νi ∈ R
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if and only if

u(t) = IαG(t) +
∞∑
i=1

νiI
α
(
Φi(t)I

αHi(t)
)
+
[Λ1t

2 + ψ1t+∆1

φ

][
κ3

∫ η

0

IαG(s)ds

+
∞∑
i=1

κ3νi

∫ η

0

Iα
(
Φi(s)I

αHi(s)
)
ds− 1

Γ(α− 2)

∫ 1

0

(1− s)α−3G(s)ds−
∞∑
i=1

νi
Γ(α− 2)

×
∫ 1

0

(1− s)α−3
(
Φi(s)I

αHi(s)
)
ds
]
+
[Λ2t

2 + ψ2t+∆2

φ

][
κ2

∫ θ

0

IαG(s)ds

+
∞∑
i=1

κ2νi

∫ θ

0

Iα
(
Φi(s)I

αHi(s)
)
ds− 1

Γ(α− 1)

∫ 1

0

(1− s)α−2G(s)ds−
∞∑
i=1

νi
Γ(α− 1)

×
∫ 1

0

(1− s)α−2
(
Φi(s)I

αHi(s)
)
ds
]
+
[Λ3t

2 + ψ3t+∆3

φ

][
κ1

∫ ξ

0

IαG(s)ds

+
∞∑
i=1

κ1νi

∫ ξ

0

Iα
(
Φi(s)I

αHi(s)
)
ds− 1

Γ(α)

∫ 1

0

(1− s)α−1G(s)ds−
∞∑
i=1

νi
Γ(α)

×
∫ 1

0

(1− s)α−1
(
Φi(s)I

αHi(s)
)
ds
]
, (4.2)
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where, we need to take into consideration:

φ = F1(E2 − 2)(D3 − 1) + E1(F3 − 2)(D2 − 2) + (D1 − 4)F2(E3 − 1)− F1(E3 − 1)(D2 − 2)

−(F3 − 2)(E2 − 2)(D1 − 4)− E1F2(D3 − 1),

Λ1 = (F3 − 2)(E2 − 2)− F2(E3 − 1),

Λ2 = F1(E3 − 1)− E1(F3 − 2),

Λ3 = E1F2 − F1(E2 − 2),

ψ1 = F2(D3 − 1)− (F3 − 2)(D2 − 2),

ψ2 = (F3 − 2)(D1 − 4)− F1(D3 − 1),

ψ3 = F1(D2 − 2)− F2(D1 − 4),

∆1 = (E3 − 1)(D2 − 2)− (E2 − 2)(D3 − 1),

∆2 = E1(D3 − 1)− (E3 − 1)(D1 − 4),

∆3 = (E2 − 2)(D1 − 4)− E1(D2 − 2),

D1 =
κ3η

3

3
, E1 =

κ3η
2

2
, F1 = κ3η,

D2 =
κ2θ

3

3
, E2 =

κ2θ
2

2
, F2 = κ2θ,

D3 =
κ1ξ

3

3
, E3 =

κ1ξ
2

2
, F3 = κ1ξ,

φ ̸= 0.

Proof: We prove the first implication.
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Thanks to Lemma 1.2, we observe that

u(t) = IαG(t) +
∞∑
i=1

νiI
α
(
Φi(t)I

αHi(t)
)
+ c2t

2 + c1t+ c0,

u
′
(t) = Iα−1G(t) +

∞∑
i=1

νiI
α−1
(
Φi(t)I

αHi(t)
)
+ 2c2t+ c1,

u
′′
(t) = Iα−2G(t) +

∞∑
i=1

νiI
α−2
(
Φi(t)I

αHi(t)
)
+ 2c2,

(4.3)

By considering the conditions

u
′′
(0) + u

′′
(1) = κ1

∫ ξ

0

u(s)ds, 0 < ξ < 1,

u
′
(0) + u

′
(1) = κ2

∫ θ

0

u(s)ds, 0 < θ < 1,

u(0) + u(1) = κ3

∫ η

0

u(s)ds, 0 < η < 1,

and thanks to Cramer rule, we achieve the proof.

The second implication is evident and hence it is omitted.

In what follows, we use fixed point theory to study the above problem. First, it is important

to introduce the space:

X := {x ∈ C(J,R), x′′ ∈ C(J,R), Dγx ∈ C(J,R)}.

The norm:

∥x∥X = ∥x∥∞ + ∥x′′∥∞ + ∥Dγx∥∞

is also to be introduced.
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Then, we shall consider the nonlinear operator H : X → X defined by by:

Hu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds

+
∞∑
i=1

νi
1

Γ(α)

∫ t

0

(t− s)α−1
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1hi(τ, u(τ))dτ
)
ds

+
[Λ1t

2 + ψ1t+∆1

φ

][
κ3

∫ η

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ3νi

∫ η

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α− 2)

∫ 1

0

(1− s)α−3[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α− 2)

×
∫ 1

0

(1− s)α−3
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
+
[Λ2t

2 + ψ2t+∆2

φ

]
[
κ2

∫ θ

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ2νi

∫ θ

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α− 1)

∫ 1

0

(1− s)α−2[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α− 1)

×
∫ 1

0

(1− s)α−2
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
+
[Λ3t

2 + ψ3t+∆3

φ

]
[
κ1

∫ ξ

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ1νi

∫ ξ

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α)

∫ 1

0

(1− s)α−1[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α)

×
∫ 1

0

(1− s)α−1
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
.

At the end of this section, it is important to note that, we will be concerned with singular

differential equations, fixed point theory and integral inequalities to prove our main results.
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4.3.2 Uniqueness of solutions

We consider the following sufficient hypotheses:

(Q1) : The functions f is defined on R2, g is defined on (0, 1]×R2 and (hi)i=1,...,r, r ∈ N∗

are defined on J × R; all these functions are supposed continuous.

(Q2) : There exist nonnegative constants ϖ1, ϖ2, such that for any t ∈ J , u1, v1, u2, v2 ∈
R,

|f(u1, u2)− f(v1, v2)| ≤ ϖ1
|u1 − v1|

1 + |u1 + u2|
+ϖ2

|u2 − v2|
1 + |v1 + v2|

,

There exist positive continuous functions ι1(t), ι2(t), such that for any t ∈ (0, 1], u1, v1, u2, v2 ∈
R,

|g(t, u1, u2)− g(t, v1, v2)| ≤ ι1(t) sin(u1 − v1) + ι2(t)
|u2 − v2|
1 + |u2v2|

.

And, There exist positive continuous functions ςi(t), for any integer i and any t ∈ J , u, v ∈ R,

|hi(t, u)− hi(t, v)| ≤ ςi(t)
|u− v|

(1 + t2)(|u|+ |v|)
.

We take the expressions:

N =Max(ϖ1, ϖ2),

M =Max(sup
t∈J

|ι1(t)|, sup
t∈J

|ι2(t)|),

Oi = sup
t∈J

|ςi(t)|,

O = sup
i∈N∗

Oi

(Q3) : Suppose that (Φi)i=1,...,r, r ∈ N∗ are defined on J , continuous and
∞∑
i=1

∥νiΦi∥∞ <

+∞.

Also,, we consider the following three quantities:
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Υ1 =

[
M |δ|+N |λ|
Γ(α + 1)

+
O

Γ(2α + 1)

∞∑
i=1

∥νiΦi∥∞

]
+

[
|Λ1|+ |ψ1|+ |∆1|

|φ|

]
×

[(
M |δ|+N |λ|

)

×

(
|κ3|ηα+1

Γ(α + 2)
+

1

Γ(α− 1)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ3|η2α+1

Γ(2α+ 2)
+

1

Γ(2α− 1)

)]

+

[
|Λ2|+ |ψ2|+ |∆2|

|φ|

][(
M |δ|+N |λ|

)(
|κ2|θα+1

Γ(α + 2)
+

1

Γ(α)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)

×

(
|κ2|θ2α+1

Γ(2α+ 2)
+

1

Γ(2α)

)]
+

[
|Λ3|+ |ψ3|+ |∆3|

|φ|

][(
M |δ|+N |λ|

)(
|κ1|ξα+1

Γ(α + 2)
+

1

Γ(α + 1)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ1|ξ2α+1

Γ(2α + 2)
+

1

Γ(2α + 1)

)]
,

Υ2 =

[
M |δ|+N |λ|
Γ(α− γ + 1)

+
O

Γ(2α− γ + 1)

∞∑
i=1

∥νiΦi∥∞

]
+

1

|φ|

[
2|Λ1|

Γ(3− γ)
+

|ψ1|
Γ(2− γ)

]

×

[(
M |δ|+N |λ|

)(
|κ3|ηα+1

Γ(α + 2)
+

1

Γ(α− 1)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ3|η2α+1

Γ(2α + 2)

+
1

Γ(2α− 1)

)]
+

1

|φ|

[
2|Λ2|

Γ(3− γ)
+

|ψ2|
Γ(2− γ)

][(
M |δ|+N |λ|

)(
|κ2|θα+1

Γ(α + 2)
+

1

Γ(α)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ2|θ2α+1

Γ(2α + 2)
+

1

Γ(2α)

)]
+

1

|φ|

[
2|Λ3|

Γ(3− γ)
+

|ψ3|
Γ(2− γ)

]

×

[(
M |δ|+N |λ|

)(
|κ1|ξα+1

Γ(α + 2)
+

1

Γ(α + 1)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)

×

(
|κ1|ξ2α+1

Γ(2α+ 2)
+

1

Γ(2α + 1)

)]
,

and
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Υ3 =

[
M |δ|+N |λ|
Γ(α− 1)

+
O

Γ(2α− 1)

∞∑
i=1

∥νiΦi∥∞

]
+

2|Λ1|
|φ|

[(
M |δ|+N |λ|

)(
|κ3|ηα+1

Γ(α + 2)

+
1

Γ(α− 1)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ3|η2α+1

Γ(2α+ 2)
+

1

Γ(2α− 1)

)]
+

2|Λ2|
|φ|

×

[(
M |δ|+N |λ|

)(
|κ2|θα+1

Γ(α + 2)
+

1

Γ(α)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ2|θ2α+1

Γ(2α + 2)
+

1

Γ(2α)

)]

+
2|Λ3|
|φ|

[(
M |δ|+N |λ|

)(
|κ1|ξα+1

Γ(α + 2)
+

1

Γ(α + 1)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)

×

(
|κ1|ξ2α+1

Γ(2α + 2)
+

1

Γ(2α + 1)

)]
.

We pass to prove the following result for unique solution.

Théorème 4.1 Assume that both the three hypotheses (Q1), (Q2), (Q3) and the condition

Υ < 1;Υ = Υ1 +Υ2 +Υ3 are satisfied. Then, the problem (4.1) has exactly one solution.

Proof.

We begin this proof by showing that H satisfies the Banach BCP.

For (u, v) ∈ X2, we can write

∥Hu−Hv∥∞

≤

[
M |δ|+N |λ|
Γ(α+ 1)

+
O

Γ(2α + 1)

∞∑
i=1

∥νiΦi∥∞

]
∥u− v∥X +

[
|Λ1|+ |ψ1|+ |∆1|

|φ|

]

×

[(
M |δ|+N |λ|

)(
|κ3|ηα+1

Γ(α + 2)
+

1

Γ(α− 1)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)

×

(
|κ3|η2α+1

Γ(2α + 2)
+

1

Γ(2α− 1)

)]
∥u− v∥X +

[
|Λ2|+ |ψ2|+ |∆2|

|φ|

][(
M |δ|+N |λ|

)

×

(
|κ2|θα+1

Γ(α + 2)
+

1

Γ(α)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ2|θ2α+1

Γ(2α + 2)
+

1

Γ(2α)

)]
∥u− v∥X

+

[
|Λ3|+ |ψ3|+ |∆3|

|φ|

][(
M |δ|+N |λ|

)(
|κ1|ξα+1

Γ(α + 2)
+

1

Γ(α + 1)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ1|ξ2α+1

Γ(2α+ 2)
+

1

Γ(2α + 1)

)]
∥u− v∥X .

(4.4)

On the other hand, we know that
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DγHu(t) =
1

Γ(α− γ)

∫ t

0

(t− s)α−γ−1[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds

+
∞∑
i=1

νi
1

Γ(α− γ)

∫ t

0

(t− s)α−γ−1
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1hi(τ, u(τ))dτ
)
ds

+
1

φ

[
2Λ1t

2−γ

Γ(3− γ)
+

ψ1t
1−γ

Γ(2− γ)

][
κ3

∫ η

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ),

u
′′
(τ))]dτds+

∞∑
i=1

κ3νi

∫ η

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α− 2)

∫ 1

0

(1− s)α−3[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α− 2)

×
∫ 1

0

(1− s)α−3
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
+

1

φ

[
2Λ2t

2−γ

Γ(3− γ)
+

ψ2t
1−γ

Γ(2− γ)

]
[
κ2

∫ θ

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ2νi

∫ θ

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α− 1)

∫ 1

0

(1− s)α−2[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α− 1)

×
∫ 1

0

(1− s)α−2
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds

]
+

1

φ

[
2Λ3t

2−γ

Γ(3− γ)
+

ψ3t
1−γ

Γ(2− γ)

]
[
κ1

∫ ξ

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ1νi

∫ ξ

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α)

∫ 1

0

(1− s)α−1[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α)

×
∫ 1

0

(1− s)α−1
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds

]
.

Then, based on the bove quantities and using the same arguments as before, the following

inequality
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∥DγHu−DγHv∥∞

≤

[
M |δ|+N |λ|
Γ(α− γ + 1)

+
O

Γ(2α− γ + 1)

∞∑
i=1

∥νiΦi∥∞

]
∥u− v∥X

+
1

|φ|

[
2|Λ1|

Γ(3− γ)
+

|ψ1|
Γ(2− γ)

][(
M |δ|+N |λ|

)(
|κ3|ηα+1

Γ(α + 2)
+

1

Γ(α− 1)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ3|η2α+1

Γ(2α + 2)
+

1

Γ(2α− 1)

)]
∥u− v∥X

+
1

|φ|

[
2|Λ2|

Γ(3− γ)
+

|ψ2|
Γ(2− γ)

][(
M |δ|+N |λ|

)(
|κ2|θα+1

Γ(α + 2)
+

1

Γ(α)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ2|θ2α+1

Γ(2α + 2)
+

1

Γ(2α)

)]
∥u− v∥X

+
1

|φ|

[
2|Λ3|

Γ(3− γ)
+

|ψ3|
Γ(2− γ)

][(
M |δ|+N |λ|

)(
|κ1|ξα+1

Γ(α + 2)
+

1

Γ(α + 1)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ1|ξ2α+1

Γ(2α + 2)
+

1

Γ(2α + 1)

)]
∥u− v∥X

(4.5)

is valid.

Also, the second derivative, which is needed in this proof, is given the following quantity.
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H
′′
u(t) =

1

Γ(α− 2)

∫ t

0

(t− s)α−3[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds

+
∞∑
i=1

νi
1

Γ(α− 2)

∫ t

0

(t− s)α−3
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1hi(τ, u(τ))dτ
)
ds

+
[2Λ1

φ

][
κ3

∫ η

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ3νi

∫ η

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α− 2)

∫ 1

0

(1− s)α−3[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α− 2)

×
∫ 1

0

(1− s)α−3
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
+
[2Λ2

φ

]
[
κ2

∫ θ

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ2νi

∫ θ

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α− 1)

∫ 1

0

(1− s)α−2[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α− 1)

×
∫ 1

0

(1− s)α−2
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
+
[2Λ3

φ

]
[
κ1

∫ ξ

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ1νi

∫ ξ

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α)

∫ 1

0

(1− s)α−1[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α)

×
∫ 1

0

(1− s)α−1
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
.

Using the H
′′
(t) quantity, we can write
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∥H ′′
u−H

′′
v∥∞ ≤

[
M |δ|+N |λ|
Γ(α− 1)

+
O

Γ(2α− 1)

∞∑
i=1

∥νiΦi∥∞

]
∥u− v∥X +

2|Λ1|
|φ|

[(
M |δ|

+N |λ|

)(
|κ3|ηα+1

Γ(α + 2)
+

1

Γ(α− 1)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ3|η2α+1

Γ(2α + 2)

+
1

Γ(2α− 1)

)]
∥u− v∥X +

2|Λ2|
|φ|

[(
M |δ|+N |λ|

)(
|κ2|θα+1

Γ(α + 2)
+

1

Γ(α)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ2|θ2α+1

Γ(2α + 2)
+

1

Γ(2α)

)]
∥u− v∥X

+
2|Λ3|
|φ|

[(
M |δ|+N |λ|

)(
|κ1|ξα+1

Γ(α + 2)
+

1

Γ(α+ 1)

)
+

(
O

∞∑
i=1

∥νiΦi∥∞

)

×

(
|κ1|ξ2α+1

Γ(2α+ 2)
+

1

Γ(2α + 1)

)]
∥u− v∥X .

(4.6)

From (4.4), (4.5) and (4.6) we conclude that

∥Hu−Hv∥X ≤
(
Υ1 +Υ2 +Υ3

)
∥u− v∥X .

With Banach BCP and the condition on Υ, we have the contraction of H. So, H admits a

unique fixed point x0. The proof is thus complete.

4.3.3 Examples

In this section, we present two examples to illustrate the validity of the result dealing with

the existence of exactly one solution.

Example 4.3.1
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We consider the following ln− problem:

D
5
2u(t) + 1

2
|u(t)+u′′ (t)|

10π(1+|u(t)+u′′ (t)|) =
1
20

(
sin(u(t))

et
2+6

+ |D
3
2 u(t)|

200(1+|D
3
2 u(t)|)

+ |ln(t)|
)

+
∞∑
i=1

3e−it
2

125(iπ)2
I

5
2

( |u(t)|
300i

[
(t2 + 1) + |u(t)|

]), t ∈ (0, 1],

u(0) + u(1) =

∫ 0.1

0

2u(s)ds,

u
′
(0) + u

′
(1) =

∫ 0.3

0

3u(s)ds,

u
′′
(0) + u

′′
(1) =

∫ 0.5

0

4u(s)ds,

Remrk that

α = 5
2
, λ = 1

2
, δ = 1

20
, γ = 3

2
,

Υ1 = 0.0416, Υ2 = 0.1550, Υ3 = 0.0397,

Υ = Υ1 +Υ2 +Υ3 = 0.2363.

So, thanks to Theorem 4.1, we confirm that this example has a unique solution.

Example 4.3.2

As a second illustrative example, we consider the problem with the singular function
1

t
.



D2.1u(t) + 3
10

|2u(t)+2u
′′
(t)|

π4(t+2)(1+3|u(t)+u′′ (t)|) =
3
2

(
et+sin(u(t))
30(t2+1)

+ |D1.2u(t)|
20et+1(1+|D1.2u(t)|) +

1
t

)
+

∞∑
i=1

e−it
2

50i2
I2.1
( |u(t)|
200i

[
(t+ 1) + |u(t)|

] + et
)
, t ∈ (0, 1],

u(0) + u(1) =

∫ 0.3

0

u(s)ds,

u
′
(0) + u

′
(1) =

∫ 0.5

0

2u(s)ds,

u
′′
(0) + u

′′
(1) =

∫ 0.1

0

u(s)ds,
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We see that

α = 2.1, λ = 3
10
, δ = 3

2
, γ = 1.2,

Υ1 = 0.1498, Υ2 = 0.4170, Υ3 = 0.0911,

Υ = Υ1 +Υ2 +Υ3 = 0.6579.

Also, by Theorem 4.1, our example has a unique solution.

4.4 Stabilities of solutions

It is to mention that the Ulam-Hyers (UH) stabilities for fractional differential problems are

useful for solving practical problems in biology, economics and mechanics. The examples of

the application of this theory can be found also in [3, 20, 21, 39]. It is important to notice

that there are many applications for UH stability in nonlinear analysis problems including

differential equations and integral equations [7]. Insteade of finding explicit solutions for

our BVPs, if there are UH stable, so all what is needed is to fing approximate solutions

for some integral inequalities. These types of stability is very important with respect to

Lyapounov/Lagrange one.

4.4.1 Basic concepts

We associate to our problem the following definitions with their integral inequalities.

Définition 4.4.1 The equation (4.1) has the UH stability if there exists a real number

Θ > 0, such that for each ε > 0, t ∈]0, 1] and for each u ∈ X solution of the inequality

∣∣Dαu(t) + λf(u(t), u
′′
(t))− σg(t, u(t), Dγu(t))−

∞∑
i=1

νiΦi(t)I
αhi(t, u(t))

∣∣ ≤ ε, (4.7)

there exists v ∈ X a solution of (4.1), such that

∥u− v∥X ≤ Θε.

Définition 4.4.2 The equation (4.1) has the UH stability in the generalized sense if there
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exists Ω ∈ C(R+,R+); Ω(0) = 0, such that for each ε > 0, and for any u ∈ X solution of

(4.7), there exists a solution v ∈ X of (4.1), such that

∥u− v∥X < Ω(ε).

4.4.2 Ulam-Hyers

Now, we are able to prove the first main result.

Théorème 4.2 Under the conditions of Theorem 4.1, we state that (4.1) is Ulam Hyers

stable.

Proof.

Let u ∈ X be a solution of (4.7), and let, by Theorem 4.1, v ∈ X be the unique solution

of (4.1).

By integration of (4.7), we obtain
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∣∣∣∣u(t)− 1

Γ(α)

∫ t

0

(t− s)α−1[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds

−
∞∑
i=1

νi
1

Γ(α)

∫ t

0

(t− s)α−1
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1hi(τ, u(τ))dτ
)
ds

−
[Λ1t

2 + ψ1t+∆1

φ

][
κ3

∫ η

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ3νi

∫ η

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α− 2)

∫ 1

0

(1− s)α−3[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α− 2)

×
∫ 1

0

(1− s)α−3
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
−
[Λ2t

2 + ψ2t+∆2

φ

]
[
κ2

∫ θ

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ2νi

∫ θ

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α− 1)

∫ 1

0

(1− s)α−2[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α− 1)

×
∫ 1

0

(1− s)α−2
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]
−
[Λ3t

2 + ψ3t+∆3

φ

]
[
κ1

∫ ξ

0

1

Γ(α)

∫ s

0

(s− τ)α−1[δg(τ, u(τ), Dγu(τ))− λf(u(τ), u
′′
(τ))]dτds

+
∞∑
i=1

κ1νi

∫ ξ

0

1

Γ(α)

∫ s

0

(s− τ)α−1
(
Φi(τ)

1

Γ(α)

∫ τ

0

(τ − χ)α−1hi(χ, u(χ))dχ
)
dτds

− 1

Γ(α)

∫ 1

0

(1− s)α−1[δg(s, u(s), Dγu(s))− λf(u(s), u
′′
(s))]ds−

∞∑
i=1

νi
Γ(α)

×
∫ 1

0

(1− s)α−1
(
Φi(s)

1

Γ(α)

∫ s

0

(s− τ)α−1Hi(τ, u(τ))dτ
)
ds
]∣∣∣∣ ≤ ε

Γ(α+ 1)
.

(4.8)
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By using (4.7) and (4.8), we can write

∥u− v∥∞ ≤ ε

Γ(α + 1)
+

[
M |δ|+N |λ|
Γ(α + 1)

+
O

Γ(2α + 1)

∞∑
i=1

∥νiΦi∥∞

]
∥u− v∥X

+

[
|Λ1|+ |ψ1|+ |∆1|

|φ|

][(
M |δ|+N |λ|

)(
|κ3|ηα+1

Γ(α+ 2)
+

1

Γ(α− 1)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ3|η2α+1

Γ(2α+ 2)
+

1

Γ(2α− 1)

)]
∥u− v∥X

+

[
|Λ2|+ |ψ2|+ |∆2|

|φ|

][(
M |δ|+N |λ|

)(
|κ2|θα+1

Γ(α+ 2)
+

1

Γ(α)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ2|θ2α+1

Γ(2α+ 2)
+

1

Γ(2α)

)]
∥u− v∥X

+

[
|Λ3|+ |ψ3|+ |∆3|

|φ|

][(
M |δ|+N |λ|

)(
|κ1|ξα+1

Γ(α+ 2)
+

1

Γ(α + 1)

)

+

(
O

∞∑
i=1

∥νiΦi∥∞

)(
|κ1|ξ2α+1

Γ(2α+ 2)
+

1

Γ(2α + 1)

)]
∥u− v∥X .

(4.9)

So

∥u− v∥∞ ≤ ε

Γ(α + 1)
+ Υ1∥u− v∥∞,

Therefore, we have

∥u− v∥∞ ≤ ε

Γ(α + 1)(1−Υ1)
≤ ε Ξ1.

On the other hand, we have

∥Dγ(u− v)∥∞ ≤ ε

Γ(α + 1)(1−Υ2)
≤ ε Ξ2.

Also, we have

∥u′′ − v
′′∥∞ ≤ ε

Γ(α + 1)(1−Υ3)
≤ ε Ξ3.

Thus,
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∥u− v∥X ≤ ε
(
Ξ1 + Ξ2 + Ξ3

)
.

Thus, (4.1) has the Ulam Hyers stability.

Remark 4.4.1

In the case Ω(ε) = ε
(
Ξ1+Ξ2+Ξ3

)
, we obtain the generalised Ulam Hyers stability for (4.1).

Remark And Example 4.4.1

The above two examples are UH stable since they fulfill the conditions of Theorem 4.1.

In particular, in both cases, we have proved that there is a solution v, such that for each

ε > 0, t ∈]0, 1] and for each u ∈ X solution of inequality (4.7), we can write, for the first

example:

∥u− v∥∞ ≤ 0.7849ε, ∥D 3
2 (u− v)∥∞ ≤ 0.8902ε, ∥u′′ − v

′′∥∞ ≤ 0.7834ε.

Thus,

∥u− v∥X ≤ 2.4585ε.

However, for the second example, we can write

∥u− v∥∞ ≤ 1.0675ε, ∥D1.2(u− v)∥∞ ≤ 1.5568ε, ∥u′′ − v
′′∥∞ ≤ 0.9986ε.

Thus,

∥u− v∥X ≤ 3.6229ε.

4.5 Numerical simulations

In this paragraph, we apply an effective numerical approach to Riemann-Liouville integral

and Caputo derivative. We need to recall the approximation theorems of the papers [22, 44].

Based on Caputo derivative approximation, we investigate, for some given parameters, the

behavior of the considered problem by studying one of the two proposed examples with a
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parameter α. In order to do this, we should initially obtain a reduced fractional differential

system which can be equivalent to the considered problem. The numerical simulations are

then used a Runge-Kutta method.

Théorème 4.3 [59] Let y ∈ C1([0, 1],R). Then, we have

Jαy(ti) ≃
hα

Γ(α + 2)

i∑
j=0

y(tj) σj(α), i = 0, . . . , n+ 1,

where,

σj(α) =

{
(n+ 2− j)(α+1) + (n− j)(α+1) − 2(n− j + 1)(α+1), j = 1 . . . i− 1.

(n)(α+1) − (n− α)(n+ 1)α, j = 0, and 1, j = i.

Théorème 4.4 [59] Let y ∈ C1([0, 1],R) and 0 < α ≤ 1. Then, we get:

Dαy(ti) ≃
h1−α

Γ(1− α + 2)

i∑
j=0

y(j)(tj)σj(1− α), i = 0, . . . , n,

where,

y(j) =
{ y1 − y0

h
, j = 0,

yj+1 − yj−1

2h
, j = 1 . . . i− 1,

yi − yi−1

h
, j = i.

Remark 4.5.1 The problem (4.1) can be reduced to the formula below:

D1u(t) = v(t) = f1(t, u(t), v(t), w(t))

D1v(t) = w(t) = f2(t, u(t), v(t), w(t))

D1w(t) = D3−α
(
− λf(u(t), w(t)) + δg(t, u(t), Dγu(t)) +

∞∑
i=1

νiΦi(t)I
αhi(t, u(t))

)
= f3(t, u(t), v(t), w(t))

and

w(0) + w(1) = κ1

∫ ξ

0

u(s)ds, 0 < ξ < 1,

v(0) + v(1) = κ2

∫ θ

0

u(s)ds, 0 < θ < 1,

u(0) + u(1) = κ3

∫ η

0

u(s)ds, 0 < η < 1,
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where

f3(t, u(t), v(t), w(t)) =
hα−2

Γ(α)

i∑
j=0

σj(α− 2)
[
− λf(u(tj), w(tj)) + δg(tj, u(tj), D

γu(tj))

+
∞∑
i=1

νiΦi(t)I
αhi(tj, u(tj))

)]
The complete numerical scheme for the computations is

K1 = f1(ti, ui, vi, wi) K2 = f1(ti +
h
2
, ui +

h K1

2
, vi, wi),

K3 = f1(ti +
h
2
, ui +

h K2

2
, vi, wi) K4 = f1(ti +

h
2
, ui + h K3, vi, wi),

P1 = f2(ti, ui, vi, wi) P2 = f2(ti +
h
2
, ui, vi +

h P1

2
, wi),

P3 = f2(ti +
h
2
, ui, vi +

h P2

2
, wi) P4 = f2(ti +

h
2
, ui, vi + h P3, wi),

L1 = f2(ti, ui, vi, wi) L2 = f2(ti +
h
2
, ui, vi, wi +

h L1

2
),

L3 = f2(ti +
h
2
, ui, vi, wi +

h L2

2
) L4 = f2(ti +

h
2
, ui, vi, wi + h L3),


ti+1 = t0 + ih, t0 = 0,

ui+1 = ui + hψ1

vi+1 = vi + hψ2

wi+1 = wi + hψ3

Where

ψ1 :=
K1 + 2K2 + 2K3 +K4

6
ψ2 :=

P1 + 2P2 + 2P3 + P4

6
, ψ3 :=

L1 + 2L2 + 2L3 + L4

6

Through numerical simulations achieved by a combination of Caputo approach and the

fourth-order Runge-Kutta method on the first example, we obtain:

71



Figure 4.1: Solution for the first example, on the plan u-w, for four values of α.

Figure 4.2: Behavior of the dynamics of the first example, on the plan v-w, for four values

of α.

Figure 4.3: Behavior of the solution for the first example, on the plan u-v, for different values

of α.
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Figure 4.4: 3D representation for the solution of the first example, for different values of α.

Remark 4.5.2

• Numerical simulation accounts for the effect of fractional order on reduced systems.

• The comparison of the numerical simulations made it possible to establish a significant

correlation between specific parameters. Unfortunately, it differs in other cases.

• Thanks to the continuous evaluation, we observe the influence of the approximations on

the display of the behaviors in the simulations for particular cases (for example when

α ≤ 2.75 the solution loses the shape of the curvature).

• It seems that we are in perfect harmony between the numerical simulations and the

result of for α→ 3.

73



Conclusion and Perspectives

In our thesis project, we have studied two classes of differential equations with singulari-

ties. In the first class, we have been concerned with singular differential equations that are

supposed with n sequential Caputo derivatives, this sequentiality does not satisfy the semi

group and commutativity properties. We have first presented and proved the unique integral

representation of the studied class. Then, using the integral inequality theory presented in

the second chapter, we have proved a first existence and uniqueness result. Another main

result has been then proved and some conditions on the data of the studied problem have

been imposed. Several examples have also been discussed in details. In this project, we have

also been concerned with another class of BVPs with time singularity that involves series.

For this class, we have studied the uniquness of solutions which has allowed us to pass to

study the UH stability of solutions. Some examples have been studied for the UH stability

results. At the end, some numerical simulations have been discussed; they have concerned

the approximation of Caputo derivatives for the problem.

As perspective of this thesis, we propose to study the sequential cases with series and sin-

gularities in time and space. We think, it is an important problem to be deal with in the

future.
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