PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH
ABDELHAMID IBN BADIS UNIVERSITY OF MOSTAGANEM

UNIVERSITE

Abdelhamid Ibn Badis
MOSTAGANEM

THESIS

for the Degree of

DOCTOR OF SCIENCES
Speciality: Mathematics
Option: Fractional Calculus
Presented by
Yazid GOUARI
Title

ON CERTAIN SINGULAR BOUNDARY VALUE PROBLEMS
AND INTEGRAL INEQUALITIES

Defended publicly in front of the Jury Members:

Chairperson: Samira HAMANI, Prof., Univ. of Mostaganem
Examiner: Abdelkader SNOUCI, Prof., Univ. of Tiaret
Examiner: Amar DEBBOUCHE, Prof., Univ. of Guelma
Supervisor: Zoubir DAHMANI, Prof., Univ. of Mostaganem



Thanks
I express my gratitude to Zoubir DAHMANI, Professor at the University of Mostaganem,
who guided me during my thesis. I thank him for the help he gave me, for his great
patience and his encouragement to finish this work. I would like to express my thanks to
Samira HAMANI BELARBI, Professor at the University of Mostaganem for having done
me the honor of chairing the jury for this thesis. I would also like to thank the Professors
Abdelkader SNOUCI and Amar DEBBOUCHE for agreeing to judge my work and to be
members of the jury. I address a special thought to the teachers who contributed to my

training in graduation and post-graduation.



Résumé

Dans cette these, nous nous intéressons a certaines classes d’équations différentielles qui sont
singulieres sur ’axe du temps. Nous utilisons quelques moyens sophistiqués de I’analyse fonc-
tionnelle et le calcul fractionnaire, tels que les inégalités intégrales, qui sont tres présentes
dans cette these. Ces moyens sont aussi les dérivées fractionnaires, la théorie des opérateurs
ainsi que la théorie des points fixes et la méthode de Runge Kutta. Nous étudions les
questions d’existence de solutions, d’existence et d’unicité, d’analyse des stabilités au sens
d’Ulam-Hyers. Nous présentons également quelques simulations numériques sur les dérivées
de Caputo pour étudier le deuxieme probleme de cette these. En particulier, nous nous
intéressons, d’abord, a une probleme singulier plus général combiné avec des notions séquentielles
a n dérivées de Caputo. Certaines des questions ci-dessus sont étudiées et plusieurs exem-
ples sont présentés. Aussi, dans cette theése, nous étudions une classe d’EDFs singuliéres
impliquant le calcul fractionnaire et les séries. En particulier, nous étudions la question de
I'existence et 'unicité des solutions en utilisant a la fois la théorie des points fixes et les
inégalités intégrales. Puis, nous passons a I'étude de la question de la stabilité des solutions
au sens d’Ulam-Hyers. Quelques exemples sont présentés dans cette partie. A la fin de notre
these, nous présentons une étude sur la question des approximations de solutions en utilisant
des résultats récents sur les approximations de Caputo a l'aide de la méthode numérique de
Rung Kutta.

Mots clés: Riemann-Liouville, Caputo derivative, séquentiel, inégalités intégrales, point

fixe, existence, unicité, stabilité Ulam-Hyers, EDF singuliere.



Abstract

In this thesis, we are concerned with some classes of differential equations that are singular
on the time axis. With the help of some sophisticated means of functional analysis and
fractional calculus, like for instance, the integral inequalities theory which are very present,
the fractional derivatives, the operator theory as well as the fixed point theory and the
well known Runge Kutta method, we study the questions of existence of solutions, the
existence and uniqueness, the analysis of stabilities in the sense of Ulam-Hyers. We also
present some numerical simulations on Caputo derivatives to study the second problem that
is presented in this thesis. In particular, we are concerned, first, with a more general singular
problem which is combined with some sequential notions with n Caputo derivatives. Some
of the above questions are studied and several examples are illustrated. Also, we study a
class of singular differential equations involving fractional calculus and convergent series.
Especially, we study the question of existence and uniqueness of solutions by using both
fixed point theory and integral inequalities. Then, we pass to study the question of stability
of solutions in the sense of Ulam-Hyers. Some examples are presented in this part. At the
end, we investigate the question of approximations of solutions by using some recent results

on Caputo approximations and Rung Kutta numerical Method.

Keywords: Riemann-Liouville, Caputo derivative, sequential, fixed point,integral in-

equalities, fixed point, existence, uniqueness, Ulam-Hyers stability, singular FDE.
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General Introduction

Fractional calculus is an important topic in mathematics with its models of real-world prob-
lems in various fields of science, technology, and engineering [35, 55, 60]. Its roots extend
back to more than three centuries, perhaps one of the beginnings of its appearance was
since the regular calculus, with the first reference probably being associated with Leibniz
and L’Hospital in 1695 where half-order derivative was discussed. Then, many works were
made: Lagrange developed the law of exponents for differential operators and Laplace de-
fined the fractional derivative by using of integral. In the early 19th century, Abel used frac-
tional operations to the solution of tautochrome problem and Liouville touched on fractional
calculus[54]. Since the beginning of the nineties of XXth century, the fractional calculus
attracted the attention of many mathematicians, and engineers that have been supporting
its development and originating many formulations and mainly using it to explain some nat-
ural and engineering phenomenal53]. At present, the number of applications of fractional
calculus rapidly grows, we refer the reader to the following papers of applications in effects of
economy crises, hydro-magnetic in plasma, hydro magnetic waves and vibration with large
membranes [14, 15, 29, 40, 41, 42].

To investigate fractional differential problems, in our opinion, there are two important
approaches. The first approach is the Riemann Liouville definition in which fractional deriva-
tive of a constant is not zero. The second one is the Caputo approach, which is characterized
by fractional derivative of a constant to be equal to zero. It is used in cases of initial value
problems of fractional differential equations [31]. We recall that the Caputo fractional deriva-
tive is very useful in many applied problems, because it saisfies its initial data which contains
y(0), 4 (0), etc., as well as the same data for boundary conditions [50].

The main objective in this project is to complete the content of other works in fractional
calculus, the focus is on studying certain classes of nonlinear singular differential equations

of arbitrary order. We study the questions of existence, existence and uniqueness, stability



of solutions, approximation of solution. All these notions are investigated using inequalities.
This thesis is organized as follows:

The first chapter includs basic concepts in fractional calculus, which are important tools for
the other main chapters.

The second chapter gives some properties of functional analysis, the focus is on integral in-
equalities and their applications in existence and uniqueness ( and the existence of at least)
of fixed points. This theory is very present in the last two chapters.

In the third chapter, a nonlinear singular differential problem is dealt with. It involves
n fractional Caputo derivatives under the conditions that neither commutativity nor semi
group property is satisfied for the derivatives. We demonstrate an existence and uniqueness
result by application of Banach contraction principle. Then, another result that deals with
the existence of at least one solution is delivered and some sufficient conditions related to
this result are established by means of the fixed point theorem of Schaefer. We conclude the
chapter by providing some illustrative examples in order to show the validity of the results.
The fourth chapter is concerned with a new type of nonlinear fractional integro-differential
equations with nonlocal integral conditions, having one nonlinearity with time variable sin-
gularity. It involves also some convergent series combined to Riemann-Liouville integrals.
The uniqueness of the solutions to the proposed problem is demonstrated, and some exam-
ples are provided to illustrate this result. Also, we review the Ulam-Hyers stability for the
problem. Some numerical simulations, using Rung Kutta method, are discussed too.
Finally, a conclusion follows. It explains what we have done in our project and what we will
be able to do in the future.
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Chapter 1

Preliminaries

1.1 Some important functions

In this part, we are interested in introducing both the gamma and beta functions, as they
are important tools on which the theory of fractional differential equations is based. So
we will present, in the following, some important properties of these two functions and the

relationship between them.

1.1.1 Gamma function

Définition 1.1.1 Let ¢ € R*.. The gamma function (I') is defined as:

I = /;Oo et dt.

Proposition 1.1.1 The Gamma function is well defined on R

Proof.
The function I' (¢) is written as

+o0 1 +o00
I'(¢) ::/ ett“dt:/ ett<1dt+/ e,
0 0 1

We put S; = fol e 1t 1dt and Sy = 1+°O e 't dt, so T (¢) = S1 + Ss.

We have . .
1
51:/ e—ttC—ldt</ 7 ldt = =,
0 0 ¢

10



from where S is convergent for 0 < { < 1.
Let us study the convergence of S5. We have
! <!

—~ <1, because lim - = 0.
e 2 t—>+OO€7§

Then, we can write

+0o0 +00 . 1
So :/ et dt </ e 2dt = 2e 2.
1 1

Hence the Gamma function is defined for every ¢ > 0.

Proposition 1.1.2 Let ( € R such as ( > 0, then the Gamma function satisfies the follow-

mg properties:

(P1): T(C+ 1) =CT(¢)
(B): T'(n+1)=nlneZ,.
Proof.

(Py): Let ¢ > 0, we have

r¢+1) = /0+OO et

u=t¢
dv = e 1.

du = (1
v=—e"t

We put
So, it yields that

By integration, we find

+o0
F(C—H):/ tSe~tdt
0

+o0
= [—tge*t} ;roo + C/o e tdt

+oo
=( e dt
0
= (I(Q)-

11



(P,): Using the property (P;), we will be able to write

I'(n+1)=nl(n)
n(n—1)I'(n —1)
=n(n—1)(n—2)I'(n — 2)

=nn—1)(n—2)x---x2x1xI(1)
>
=nn—1)Mn-—-2)x---x2x1

=nl.

Proposition 1.1.3 We have the following two properties

P):T(¢) = li ntnt
NSO N _ |
(Py): NG Ce¥s n];[l (1 + n) n, (¢ is the Euler-Mascheroni constant.)

Proof.
(Py): We consider the following function

() = /On <1 — %)ntcldt.

We put s = £, so we have

1
0O = [ (1= 95 s
0
By integration by parts, we put

dv = ¢~ 1.

So, it yields that

12



We have

m@:¢<“*3 } [ _nlﬁs

¢
= n—n/ (1 —s5)""1s%ds.
¢ Jo

By integrating n times, we find that

nén!

1 — 5) gt
e 0 !

B nén! ! Ctn—1
_<@+1%~@+nLAS

nén! s6+n 7!
S CCHY (-1 L‘i‘”]o
nén! (%)

Y (Cn)

¢n(<) =

By definition, we can write

lim ¢,(¢) = lim n(1—t—) ttdt
0

n—-+4o0o n—-+o0o n
+o00
[ e
0
=T1(0) (¥x).
From (x) and (), we find
nén!

HO= I s+ rn)

(Py): Please see [56] for more details.

1.1.2 Beta function

Définition 1.1.2 Let (,(* € RY. The Beta function is defined as:

B((,¢Y) = /OltC—l (1—1)"at.

13



Proposition 1.1.4

jus

B((,¢7) = 2/2 sin®* =16 cos® 1 Gd.
0

Proof.
We put t = sin? . We have

1—t=1-—sin%6 = cos? 0
dt = 2 cosfsin 6.

So, its yields

/ 71— ) at
0

2 (sm 9) (cos2 9) 1 eos Osin 0d6

s
2

2 [ (sin8)*?(cos §)* 2 cos O sin Odf

th\

us
2

=2 sin? 71 0 cos® 1 0db.

This ends the proof.

1.1.3 Gamma and Beta relation

Proposition 1.1.5 Let (,(* € R such as (,* > 0. Then we have

FOre)

PO TR e

(1.1)

Proof.
Let ¢,(* > 0. Then we obtain

+o0o +oo .
NGNS :/ tc_le_tdt/ s le5ds
0 0

—+oc0o —+oc0
= / / 1616 1= (49) gt s
0 0

14



We put r =t + s, hence we can write

400 o0 .
— / / (r — s)c_lsC e "drds
+oo +o00o ¢—1 .
/ / P& 1 —> s e drds
:/ (+( Tdr/«r (1 B §>C—1 (f){*_l ds.
0 0 r r

After we use the change of variable z = 2, we get
+oo

I«w«ﬂzf P2

0

o0 .
:/ A
0
+o0 .
= (/ rote 16Td7“) ( (1—2)2
0 0

l—z

1—2

c\c\

Remark 1.1.1

1) The Beta function verifies the property of symmetry, i.e.
B((. () =B((. Q).

Also, we have

2) BC+1,C) = £=B.C), BGC +1) = £5B(G, ).
8) B((,¢") = B(C,.¢* + 1)+ BC+1,¢").

1.2 Fractionalisation of integrations and derivatives

In what follow, we shall present the two important approches of fractional calculs; we present,

first, the approch of Riemann-Liouville. Then, we introduce the approch of Caputo.

15



1.2.1 Fractionalisation of Riemann-Liouville

Définition 1.2.1 /48] Let f € L' ([a,b]) . The Riemann-Liowville fractional integral of order
a >0 of f is given by

(RL12F) (1) = ﬁ/ (t— )"  f(s)ds, t € [a,0)] (12)

Remark 1.2.1

1) In the case a = 0, the fractional integral I° is interpreted as an identity operator.

2) If @ =n € N, then definition 1.2.1 coincids with the integral:

() (1) = /:dtl/atl dtQ.../:nf(tn)dtn
1 T

_ (n—1>!/a (x— £ f () dt.

Example 1.2.1
Let f(£) = (€ —a)*,, A > —1, then for o > 0, we have

1

¢ 1 A
(1)) = 7 / (€ — 1) (€ — ) dr.€ € [a.b]. (1.3)

Weput £ =a+p(§—7),0<p<1. Then the formula (1.3) is written in the form

(L1 F) (€) = % [ o a-pran

Thanks to (1.1), we get

(“120) (O = s (e o
It A= 0, then (PF1°1) () = ﬁ (€—a).

Proposition 1.2.1 Let o € R such as o > 0, then the operator BEI% is well defined.

Proof.

16



Let f € L' ([a,b]) and @ € R (a > 0) . According to Fubini theorem, we have

[zsona < = [ [ a- ot
g oo
< o [1reI0-0r

< m/ﬂ |f (s)]ds < 0.

Proposition 1.2.2 Let f € L' ([a,b]). Then, we have

BEIO(I0f () =" I8P (), @ > 0,8 > 0.

Proof.

By definition, we have

1

RL ja = — xx—u ! u— 1)1
BRI = /( - F5)/< 0 f )

_ F(la /f dt/ (& — — ) du.

We put y = Z : n SO we can write
11 !
RLIGIDf (2) = ——/ “w_l/ (1—y)* 'y Ny
I'(a) ' (8) 0
_ B(a B8) a+6 1 _RL jatf
F(a) B / f(t)dt ISP f(¢).

The relation is thus proved.

Définition 1.2.2 Let f € L' ([a,b]) . The fractional derivative of Riemann-Liouville of order
a€R (a>0) is given by

("tDgf) (1) Z(%>n(12“f)(t) (1.4)
~ e () [ e i e <oz

17



Remark 1.2.2

If «a =ne€Z,, then

("fD3f) (1) = F (),

where (™ is the standard derivative of order n of the function f.
Example 1.2.2

Let f be the function defined by f (t) = t*,t € [0,b],b > 0,A > —landn—1 < a < n,n € N*.

So, we have

o ¢ (L) (r [ - o)

- e () (o a-e

1 d\"
= —B()\—i—l,n—a)( ) ",

I'(m—«) dx
Since g\n I )
_ D+ _
L) =ppp—1 . (p—ntNap " =—LT pn
() @ =p@-Delomn o =
for anny p € R\ {—1,-2,-3,...}.
Therefore, we obtain
1 FA+1)T(n— I'(n-— A+1
(FLDSf) (z) = y A+1DI(n 04>>< (n—a+A+1) e
'n—a) T'A+1l4+n—a) TI'h—a+A—m+1)
_ F(/\+1) x)\fa
C TA—a+1) '
Remark 1.2.3
As a special case, if A =0, then we get
RL P r° +
Dil = —— R 1,2,3,...}.
0 F(l—a)’vae \{Oa ’ 737 }

BLpel = 0,Va € Z,.

Remark 1.2.4 The fractional derivative in the sense of Riemann-Liouville of a constant

function is not zero.

18



Proposition 1.2.3 Let o, >0 suchasn—1<a<nandm—1<p <m,n,m e N*. If
a > >0, then for f € L' ([a,b]), we have

("“DPITF) (8) = 1777 F (1)

Proposition 1.2.4 Let a > 0 such asn —1 < a <n,n € N*. For f € L' ([a,b]), we have

("D IS (1) = £ (1)

Proposition 1.2.5 Letn—1<a <n,ne€N* m e N* and f € L' ([a,b]) . If the fractional
derivatives (RED° f) (t) and (D*T™ f) (t) exist, then we have

(D™D[) (£) = (D" f) (£) .

1.2.2 Fractionalisation of Caputo
Définition 1.2.3 The Caputo fractional derivative of order o € R (o > 0) of a function
feC™([a,b]) is defined by

t
cDef(t) =BE e (1) = (t—s)" """ f™ (s)ds, n e N n—1 <a <n,t>a.
) Ja

I'(n—«
Remark 1.2.5

1) In particular, when 0 < o < 1 and f € C([a,b]), then

1

DO = =y | =9 ) ds = 101 (1),

2) If o € N, then we have
Dy f(t) = f" (1)

Example 1.2.3

Let f(t) = C,t € [a, b], the constant function, then we have
°Df(t) = 0 but #*Df(t) # 0.

Proposition 1.2.6 Let f and g be two functions such that D*f(t), D*g(t) exist. Then

the Caputo fractional derivation is a linear operator:

19



‘DY (M 4+7g) () = XDsf (t) +~°Dgg(t), YA, v € R.

Proposition 1.2.7 Let n — 1 < a < n,n € N*m € N and let the function f such that
¢D*f(t) exists. Then:

°DYD™ f(t) = DT f(t) #£ D™D f(t).
The following theorem establishes the relation between the fractional derivative in the
sense of Caputo and that in the sense of Riemann-Liouville.

Théoréme 1.1 Let « > 0 withn —1 < a < n,n € N*, and let f be a function such that
cDef(t) et BLD2f (t) exist. Then, we have:

Do f (t) ="" Dyf (t) —

1.2.3 Important notes

In this section, we provide some lemmas of fractional derivatives, witch will play major roles

in our analysis, see [8, 10, 25].

Lemma 1.1 Let o > 0. Then the general solution of the equation *DSx (t) = 0,t € |a, b

can be given by:
n—1

(1) =Yt —a) t € [a,b],
such that ¢; € R;i=0,1,2,...,n—1, n=[a] + 1.
Lemma 1.2 We consider an o > 0. Then, it yields that

RLpepes )y =z (t)+ > ¢ (t—a),tela,b],

)

Il
o

forc, eRi=0,1,2,...,n—1,n=[a] + 1.

20



Chapter 2

Integral Inequalities for Fixed Points

2.1 Introduction

In this chapter, we are concerned with some important notions on fixed point theory. Some
integral inequalities are shown to the reader in order to be used in the two last chapters
[28, 43, 61].

2.2 Some needed concepts

2.2.1 Banach space

Définition 2.2.1 Let B be a vector normed space and o a metric on B. A melric space

(B, o) is complete if every Cauchy sequence in B has a limit.

Définition 2.2.2 We call a Banach space every normed vector space where the induced

metric is complete.

2.2.2 Completely continuous operators

Définition 2.2.3 A function f : X — Y (between metric spaces) is continuous when it

preserves convergence, this means:

Xn > X E€X = f(xa) = fX) €Y, (2.1)

21



where {Xn},en-

In this case, f (lim, 1o Xn) = limy, 00 f (Xn)-

Définition 2.2.4 Any set B is bounded when the distance between any two points in B has
an upper bound,
Ir>0, Vy,ye B, dx,y <r. (2.2)

Définition 2.2.5 Let us have the spaces X and Y that are of Banach and letT : D C X —
Y

1) We say that the operator T is bounded if it any bounded application subset of D into a
bounded subset of Y.

2) We say that the operator T is completely continuous if it is continuous and any bounded

application subset of D into a relatively compact subset of Y.

2.3 Around fixed points

2.3.1 Banach Contraction Principle (BCP)

Définition 2.3.1 Let (X,d) a complete metric space and T an application of X in X. We

say that T is an Lipschitizienne application if it exists a positive constant k as we have:
Ve,ye X 1 d(T(x),T(y)) < kd(z,y).
If k < 1, T is then called a contraction.

Théoreme 2.1 LetT be a continuous application on a Banach space X. Then the following
assertions are true:
1)If there exist x,y € X with

lim 7" (x) = v,

n—+oo
then, T(y) = y.
2) If T(X) is a compact set on X and for all € > 0 there is a v € X with

1T (ze) — || < e

hence, T admits a fixed point.

22



Proof.

1) Let y, =T"(x),n=1,2,.... If T is a continuous application, so

n—-+o0o

T =7 (,lip ) = 1T 0 = 1 s =

which ends the proof of the first assertion.

2) Suppose that the assumptions of 2) are fulfilled. Hence, for n = 1,2,..., we have
T, € X and:

IT () — @l < (2.3)

T(X) is a compact set implies that there exists a convergent subsequence (1" (z,,, )5

of (T (x,))2] of limit z. So thanks to (2.3) and the fact that 7' is continuous, we
deduce that x is a fixed point of T.

Théoréme 2.2 (Banach BCP) Let be X a Banach space and T : X — X be a contracting
application. Then T has a unique fized point.

Proof.
Existence:

We consider the sequence (), .y defined by

Tp =T (z,), n>1
Ty € X.

We demonstrate that (x,) is a Cauchy sequence in X. For m < n, we have :
|20 = Tl < |Tmir — Tl + [[Tmg2 — T | + oo + | — Zn1 ]
Since T' is a contraction, so:

[2pe1 = 2pll = T2y = Ty || < kllzy —2pall, p= 1.
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Repeating this inequality, we get:

H.%n—flme S (k)m+km+l+ ...... k’n_l) Hl'l —f]foH
<E"(T4+k+...... + ) oy — o)
< —
=7 |21 — 0|

We deduce that (x,), is Cauchy in X which is complete, hence, (z,), converges to z in X.

Since 1" is continuous, so:

T——+00 T—+00 T—+00

r= lim z,= lim T (z,_1) = T< lim :pn_l) =Tzx.

Therefore, x is a fixed point of T'.
Uniqueness:

We suppose that T'x = x and T'y = y. Thus, it yields that
|z =yl = 1Tz = Tyl < kllz —yl|.

Since k < 1, we deduce that ||z — y|| = 0, it means x = y, therefore the uniqueness of the
fixed point of T is guaranted.

We propose to the reader also the following theorem:

Théoréme 2.3 Let T be an application on a Banach space X, such as TV is contraction

on X for a positive integer N. So T admits a unique fixed point.

Proof.
The Banach BCP implies that there exists a fixed point for TV. let us call it z,. Now,

we just note:
IT (o) = woll = |7 (T () = T (w0) | < kIIT () — o]l

This implies that T (zg) = xo, this is because 0 < k < 1. The uniqueness is evidently since

a fixed point of T is also a fixed point for TV.

2.3.2 Schaefer Fixed Point Theorem

We recall the theorem.
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Théoreme 2.4 Let B be a Banach space and T : B — B be a completely continuous
operator. If the set:
Q:={ueB:u=uTu,u€0,1[}

18 bounded, hence T has at least one fized point.

2.3.3 Arzela-Ascoli and relative compactness

We also present the result.

Théoréme 2.5 Let A C C(K,R"), (K = [a,b] CR). A is relatively compact if and only if:
1. A is uniformly bounded.
2. A is equicontinuous.

we remember that a function f is uniformly bounded in A if there is a constant M > 0 with:
Il = sup |f(x)] < M, VfeA
FAS

2.3.4 Finite dimension theorem and inequalities

The following Brower theorem is well used with its estimates for proving existence of fixed

points in finite dimension.

Définition 2.3.2 We say that a topological space X has the property of the fixed point if
any application continues T : X — X has a fized point.

Théoréme 2.6 (Brouwer theorem) Let B, be the closed unit ball of RN . It has the property
of the fixed point for all n € N*.

2.3.5 Infinite dimension theorem and inequalities

This theorem uses inequality theory to prove and to extend the result of Brouwer for the
proof of the existence of a fixed point of a continuous application on a compact convex in a

Banach space. It is important to be recalled in what follows.

Théoréme 2.7 (Schauder theorem) Let K be a compact and convex subset of a Banach

space X and T : K — K be a continuous application. So, T admits a fixed point.
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Proof.
Let T': K — K be a continuous application. Since K is compact, so 7' is uniformly

continuous. Thus for ¢ fixed, there exists d > 0; for all z,y € K, we have the inequality:
o —yll <6 = [T(z) -T(y)| <e.

Moreover, there exists a finite set of points {x1,xs,...,2,} C K such as open radius ball
¢ centered at point x; recover K; that means: K C U, ;c, B(7;,0). If we put L =

vect (T'(25)) < j<p»

of finite dimension. For 1 < j < p, we define the continuous function ; : X — R by :

so L est is of finite dimension, and K* = K N L is compact convex

0 if ||z — ;|| > 6
1-— w if not
It’s clear that ¢; is strictly positive on B (z;,¢) and nul outsite. So we have, for all = €

K, >0 ;(x) > 0, we can define on K the positive continuous functions ¢; by :

Y;()

@](x) = 221 wk(l')’

for which we have >>7_, ¢;(z) =1, for all » € K.

Let us now pose, for x € K,

o) =D @@ (1)

The function g is continuous (sum of continuous functions) and takes its values in K* (be-
cause g is a barycenter of T'(z;) ). If we take the restriction g/K* : K* — K*, (according
to Brouwer theorem) ¢ has a fixed point y € K*. Further:

Il
(3~
S
[
<
=
=
s
|
~
=
<.

But if ;(y) # 0 so |ly — z;|| < d, and consequently ||T'(y) — T (z;)]| < e.
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so, we have for all 7,

17 (y) zm<§:% )T (y) =T ()l

S}:w%wz

So, for all whole number m , we can find a point y,,, € K in which |7 (y) — ym| < 27™.
and since K is compact, then from the sequence (y),,c; We can extract a sub-sequence
(Ym, ) which converges to a point y* € K. So T being continuous, The sequence (T (Y, ))
converge to T (y*), and we conclude that T (y*) = y*, that’s means y* is a fixed point of T’
on K.

Théoreme 2.8 We suppose that T is a continuous application between two Banach space
X etY. If K is a compact set in X so, T(K) is a compact set in'Y.

Let T : X — Y an application between twho Banach space. The different notions of
continuity used in this chapter are:
We say that T is
- Continuous: if for all z € X and for € > 0, it exists § = J(z, €) in which whatever y € X :

ly —zllx <6 =[T(y) - T()|y <e

- Uniformly continuous on A : (A € X), if for all € > 0, it exists 6 = d(€) in which whatever
are x,y € A we have:
ly —zllx <6 =[T(y) = T()|y <e

If T; : X — Y is a set of applications between two Banach spaces. Tj; is equicontinue on X,

if for all € > 0, it exists 6 = 0(€) in which for any x,y € X and any i € I, we have :
ly — zllx <= |Ti(y) — Ti(2)[ly <e

2.3.6 Inequalities using both Banach BCP and Schauder theorem

We have already presented the two main theorems of the fixed point theory, Schauder the-
orem and Banach BCP. The result of Krasnoselskii combines these two theorems. So, we

have:
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Théoreme 2.9 Let F' be a closed and convex set of a Banach space X, and let T and T5

be two applications of F in X, with:
1. T\(x) + Th(y) € F\Vx,y € F,
2. T\ is a contraction.
3. Ty is compact and continuous.

So, T1 + T admits a fized point in F.
Remark 2.3.1

In the proof, we use the inequality:
1T (z) = i)l < Kllz —yll, 2,y € F. k€ (0,1).
Also, we are invited to use:
(I =T) () = (I =T)y) || = [lz =yl = [Ta(x) = Ta(w) | = (1 = K)[lz -y
and
(I =T) (z) = (I =T)y) | < [l =yl + [Ta(z) = Ta()I| < (L +F)[lz =yl

These two inequalities are very used in our main results.
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Chapter 3

A Class of Time Singular Fractional

BVP of Sequential Caputo Derivatives

3.1 Introduction

Research on the existence of unique solutions for fractional differential equations is of big
importance since it help physician to better know on the behaviour of real phenomena. For
more details, see the papers [2, 17, 21, 23, 24, 26, 36]. Moreover, the singular differential
equations are also very important in applied sciences, see [5, 12, 13, 49]. Among these
equations, we cite the standard Lane-Emden equation which is part of the present work
but in a general case. This equation has a considerable importance in astrophysics, for more
details, [38, 52, 57] and the reference therein. Before we begin recalling some other equations
and problems that have motivated the present work, we invite the reader to know on the

standard form of Lane Emden equation, it is written as follows:

"

y (t)+%y' &)+ f(ty @) =g(), t€]0,1], (3.1)

by taking

/

y(O) =ay, y (0) = ay,
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where f and ¢ are continuous functions (see [62]).

In [47], the authors have worked on the following interesting problem:

DRy () + f(ty () =g (). te (0,1],

D%y (t) + proms;

k>0, 1<a<2 0<p<1,

with

y(0) =10, y (0) =y,
where 1y and y; are real constants, f and g are some continuous functions and the derivatives
are in the sense of Riemann-Liouville. They have used a numerical method to establish some
solutions for the problem.

In [37, 38], Rabha W. Ibrahim has studied two equations. The equations are given by:

(3.3)
0<a,<1,0<t<1, a>0.

{D5@W+%ﬁdﬂ+f@w@»=9@%

For the first equation, Rabha W. Ibrahim has taken the conditions u(0) = u(1l) = u(r) =
0,0 < r < 1; the existence of solutions by Krasnoselskii theorem has been studied in [37].
The second problem has the conditions u (0) = u, u (1) = v; for this second problem, the
Ulam stability of solutions has been discussed in [21].

Also in [16], A. Bekkouche et al. have studied the existence of solutions and the A—Ulam

stabilities for the following two dimension system:

(DL (D +bugy (1) w1 (8) + fo (8,21 (2), 22 (2))
=w S (t,xy (), 22(t), 0 <t <1,
DP2 (D2 + baga (1)) wa (t) + fo (t, 21 (1), 22 (1)) (3.4)
= Wy So (t,[El (t , Lo (t)), 0<t<l,
L ZC’k(O) = O, Da.%k(l) -+ bkgk(l)l'k(l) = O,

)

under the conditions: 0 < G < 1,0 < ai < 1,bp > 0,0 < w < 00,k = 1,2 and the
derivatives D and D are in the sense of Caputo. The functions fy : [0,1] x R? — R and
Sy, : [0,1] x R? — R are continuous, gy : |0, 1] — [0, +00) is continuous and singular at ¢ = 0.

In the paper [17], A. Benzidane and Z. Dahmani have considered the following class of
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nonlinear equations:

D (D go(6) )1 (1) + fu(t 2 (1), @2(8), D (1), D¥5(1))
= ha(t, 21(t), 22(1)),
! pe < Do 1 g2(t)>x2(t) + folt, 1 (1), 2o(t), DOy (t), D2x4(t)) (3.5)
= ha(t, z1(t), 22(1)),
2 (0) = ak, xx(1) = by, t € J,

\

where J = [0,1], 0 < ag, B < 1,0 < 6 < ap < 1, k = 1,2; the functions f, : [0,1] x R?,
k = 1,2 are continuous, g : (0,1] — [0, +00) are continuous functions, singular at ¢t = 0,
and lim,_,o+ gx(t) = oo; the operators D, D’ and D% k = 1,2 are the derivatives in the
sense of Caputo and the constants ag, b, are reals. The authors have studied the existence
and uniqueness of solutions and the Ulam stability for the considered class.

Y. Bahous ans Z. Dahmani [11] have considered a problem involving both Caputo derivative

and Riemann-Liouville integral. Thier problem is given by:

.

D2 (D + & )y(t) + (8, y(0), Dy(0) + gt y(0), 17(1))
= h(t),t €]0,1],
90 = () = [ ats)y(s)ds, 0 < <1

0<pB,a<l, k>0, A>0,

(3.6)

\

where D is of Caputo, I” is of Riemann-Liouville integral of p, the functions f, g : [0, 1|R* —
R are continuous, and h and ¢ are continuous on [0, 1]. The authors have investigated the
existence and uniqueness of solutions. Then, they have studied the Ulam-Hyers stability.

Also, Y. Gouari et al. [31] have presented the study of the following nonlinear singular
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integro-differential equation:

(

D (D% + & y(t) + As f (6, y(0), Dy(8)) + Dag(t,y(1), 1Py (1))

U (3.7)

E>0,0<A<1,1<p8<20<aqa,d<1,

\

where Ay > 0, Ay > 0 are positive real numbers, I” is the Riemann-Liouville integral of order
p, and f, g are two given functions defined on [0, 1] x R? and & and [ are two given functions
defined over [0,1]. The authors have proved the existence and uniqueness of solutions by
application of Banach contraction principle, then, by means of Schaefer fixed point theorem,
they have studied the existence of at least one solution for the problem.

In this chapter, we are concerned with the following time-singular fractional problem[32]:

/

Do (D...(D* (D + k)) Jult) + f(t,u(t), DOu(t)) + g(t, u(t), IPu(t))
+h(t,u(t)) =1(t), te€]0,1],

u(0) =0,

u(l)=0,0 € R,

Do (DPu(0)) = 0, (3.8)
Den=1(D(D%u(0))) = 0,

D% (D (D (Du(0)))...) = 0,

De2(D% . (D (DPu(1) + ¢pA(1)u(1)))...) = 0,

k> 0.

\

For (3.8), we need to consider J := [0,1], 0 < 8 < 1,0 < oy < 1554 = 1,2,...,n,0 <
min(B, a;), dra(t) = ~ the derivatives are in the sense of Caputo, I denotes the Riemann-
Liouville fractional integral of order p, and f,g : J x R? — R are two given functions, also

h:J xR — R is a given function and [ is a function which is defined on J.

32



We need also to shed light on the following remarks:

1. We introduce the Caputo derivatives and the Riemann Liouville-integral in the problem.
3. The problem includes n parameters of Caputo derivations which allow us to introduce a
problem with absence of commutativity and semi group properties between the introduced
derivatives. So, we have to obtain some arguments to solve this problem.

4. Another important remark in this chapter is the time singularity at the origin for the
above problem.

So based on the above conditions, we are concerned with a more general sequential prob-
lem of Lane Emden type; it is more general in the sense that it can be used to describe
many problems that arise in mathematical physics, since it includes several particular types
of equations with some applications. For example, our problem includes the standard La-
neEmden equation as a special case. Also, it includes the EmdenFowler equation that was
used to model several phenomena in mathematical physics and astrophysics, such as the
theory of stellar structure and thermionic currents. Also, the fractional LaneEmden model
proposed by Mechee and Senu [47] can be derived from the above problem under some spe-
cial values on the parameters and the functions.

To the best of our knowledge this is the first time in the literature where such problem is

investigated.
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3.2 Solutions: existence, existence and uniqueness

3.2.1 Representation of the integral solution

Lemma 3.1 Let G € C([0,1]). Then, we can state that the problem
(DD (D (D + B = G, e
u(0) =0,

u(l)=0,0 e R
D (DPu(0)) = 0
Do I(Da"(Dﬁu( ) = (3.9)
Da3(Da4...(D0‘n(D5u(O)))...) —0,
D2 (D ..(D* (DPu(1) + droa(L)u(1)))...) = 0,
E>00<a;<1,0<8<1;i=1,2,....n

\

admits the following representation as solution:

1 t 1 s
u(t) =Tg (t — )1 — (s —7)i= G(r)dr — S—/\u(s) ds

i /01< — 5) 7L G(s)ds Zozﬂrﬁ /01(1—5)0‘1_1G(3)d3

ti=2 -+

F(Z a;+ B +1 F(@l)r(z a;+B+1)

- —/01(1 — )7 = /Os(s —7)i=1 G(r)dr — us) | ds+6| 1.

(3.10)

Proof.
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We use the property established in Lemma 1.2 to (3.8). So we have

Z%‘ I c Z&H‘ﬁ o ZOCH‘B

+ . ti=2 + - ti=3
P> ai+B+1) IO) ai+B+1)
=2 =3

(&) Z o+ Cn—2

X Cpn—1
+ ti=4 o _gentB i T
n Do, + 6+ 1) L(B+1)
) i+ B8+1)
=4

t? + c,.

(3.11)

Some of our conditions allow us to get

uw(0)=0=1¢,=0
Do2(Ds ... (D (DPu(1) + ¢pa(D)u(1)))...) = 0= ¢y = =11 G(1)
Do (DPu(0)) = 0 = cps = 0
Der=1(D(DPu(0))) =0 = ¢,_3 =0

)
R
w

)
2

. -

)
?
3

)
%

I

o

Replacing ¢y, ¢1, ca, ..., ¢, in (4.3), we end the proof of the result.

Let us now transforming the above problem to a fixed point one.

We begin by considering the Banach space:

35



X :={z € C(JR), D’z € C(J,R)} (3.13)

and its norm:
lzllx = Maz{||z|ls . | D°%|[x}, (3.14)

where by definition, we put:
[#]lo = sup [2(8)] , [|D°%]|oc = sup [D°x(t)]. (3.15)
ted teJ
Then, we pass to consider the nonlinear operator H : X — X defined by:

n

Hu(t) = ﬁ/{)t(t—s)ﬁ_l[n;/os(s—T)ﬁ

OZZ'—]_
1

() = b, u(r)) = f(r,u(r), Du(r))

Zai‘i‘ﬁ
i=2 B 1
~g(rutr). 1rur) )dr = s s - — e [ i)
D)X+ f+1) "

—h(s,u(s)) — f(s,u(s), D’u(s)) — g(s,u(s),[pu(s))>ds - [ﬁ /01(1 - s)ﬁ_1<—

Ozi)

=3
|-

1

.
Il

n

s Z a; — 1
x /0 (s — )it () = b, u(r)) = f(r,u(r), Du(r)) = g(r,u(r), I’u(r)) ) d

—gu(s)> ds + 9} th,
(3.16)

such that A < 1.
To prove the main results, we need to work with the following considerations:

(A1) : The functions f and g defined on J x R? are continuous and h defined on J x R

is also continuous.
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(A2) : There exist nonnegative constants Ly, L2, Lg1, Lge such that, for any t € J |
z;, x; € R,

2
|f(t, 21, 0) — f(t, 217, 227)| < ZLﬁ!xi — 27, (3.17)
=1
2
9(t, x1, 02) — g(t, 21", 22")] < Z Lgilz; — 27|, (3.18)
=1

and there is a positive number rq such that, for any t € J |, x,y € R,
At x) = h(t,y)| < rolz —yl. (3.19)
We take, also, the quantities:
Ly := Max(Lg, Lys), Ly := Max(Lg, Lgs). (3.20)

(A3) : There exist non negative constants M, M,, My, such that, for any ¢t € J, x € R* y €

R, we have
[f(t,2)] < My, [g(t, x)] < Mg, [h(t,y)| < Mp. (3.21)

(A4) : We take: |||l = M;.

Also we consider the quantities:

D1 = 2[(r +2L + L, + L )( ! - ! )
- 0 ! g n n
Flp+1) F(E a; + [+ 1) F(§ a;+ 0+ 1) + 1)
i=1 =2

KD(1 - \) }

T(B—A+1) 5o

37



D2 (+2L’+L’+ Ly )( L
— To f g F(p—l—l) n
P ai+8-6+1)
=1

. 1 ; T'(8+1)
PO i+ B-0+D0ar+1) IO ai+B+1DI(B—-0+ 1) (o +1)
g+ - | 1
! )+ 0N (s i)

F(Zn:ozi+ﬁ+1)1‘(ﬁ—5+1)
- (3.23)

3.2.2 One solution

The first main result deals with the existence of a unique solution for (4.1). It is based on

the application of BCP theorem. We prove:

Théoréeme 3.1 If the conditions (A i);—234 are satisfied and D < 1, D := max {D1, D2},
then, the problem (3.8) has a unique solution on J.

Proof.

It is sufficient for us to prove that H is a contraction mapping.
Let (z,y) € X% Then, we can write

|Hy — Hz|o < 2{(r0+2L}+L'g+F(Li 1))( i 1 T 1
’ PO i+ B8+1) T ai+ B+ (o +1)
KD(1— \) - -
+m] ly — z||x.

(3.24)
On the other hand, since
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D° Hul(t)

x /0 (1 — s)or! (1(3) — h(s,u(s)) — f(s,u(s), DPu(s)) — g(s, u(s), qu(s)))ds

+ T+ /01(1 — 5y (1(s) = h(s, u(s))

T(e)I(> i+ B+ 1DI(B-6+1)

s a; — 1
x /0 (s — 7)1 () = h(ru(r)) = (7. u(r), Du(r)) = g(r,u(r), Pu(r)) ) dr
—Sﬁ/\u(s)>ds + 9] T L5 +1) #h=o

(B—60+1)
(3.25)

then, with the same arguments as before, we have

39



|D°Hy — D°H < "+ L Ly L
Yy Tloo < |ro+2Lp+ L, + -
9 T(p+1)
F(E ai—i—ﬁ—é—l—l)
=1

N 1 N I'(s+1)
PO ai+B-0+1D)0(ar+1) T ai+B+1DI(B—6+ 1 (ag +1)
v HE+1) Yyl

P> ai+ B+ 1DI(B—6+1)

1 1
e A)(rw— SA+1) TE-A+ 1))”‘””””

(3.26)
Thanks to (3.24) and (3.26), we obtain

IHy — Hzllx < Dz —yllx.

The proof is thus achieved.

3.2.3 At least one solution

The following main result deals with the existence of at least one solution of the studied

problem.

Théoreme 3.2 Under the hypotheses (Al), (A3) and (A4), the problem (3.8) has at least

one solution u(t),t € J.

Proof.

Let us prove the result by considering the following main steps:

Continuous of H

The proof is evident then it is omitted.

Boundedness of H
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Let us take r > 0 and consider the (bounded) ball B, := {z € X} ||z||x < r}. Fory € B,,

in virtue of (A3) and (A4), we can write

|Hyl < QKMZJrMthMerMg)( ! T ! )
PO i+ B8+1) T ai+f+ 1) (o +1)
=1 =2
KT(1— \)
—F(ﬁ—)\—i—l)] + 10| < 40
(3.27)
and
D Hy|l < <Ml My M+ Mg) !
IO) ai+B—6+1)
=1
N 1 I I'g+1)
PO ai+B-0+1D)0(r+1) T ai+B+DI(B -6+ (ar+1)
i=2 1=2
I'(s+1) 1 1
T )+kr(1_)\)<l“(6—6—)\+1)+F(5—/\+1)>
T i+ B+ 1I(B—6+1)
=1
+0| < 4o0.
(3.28)

The above two inequalities show that ||Hy|x < +o0.
Consequently H is uniformly bounded.

Ascolli Arzella for H
We prove that for any bounded set B, for instance, we obtain that H(B,) is an equicon-

tinuous set of X.

Taking t1,to € [0,1],¢; < to and consider the above (bounded) ball B, of X. So by

considering y € B,, we can state that
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M, + My, + My + M, D ot p ti;“l”
2=

|Hy(t;) — Hy(ts)| < 9 |¢yi=1 _

() ai+B+1)
=1

T A T B

Oéi+ Oéi+
Vs, 3P e
5 1=

<]t1 i=2 —

o |+ [t.” —7525|>
IO i+ B+ D1+ )
1=2

I(1-)\)
L'(1—X+5)

+<Ml+Mh+Mf+Mg

— + kr
PO i+ 8+1)
=1

+ 0) t,? — 1,7

(3.29)

and
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My + My, + My + M, Zai—(S—l—ﬂ tz;ai_5+ﬂ
27

9 |t1 i=1 _

PO i+ B8-6+1)

i=1

|D°Hy(t1) — D°Hy(ts)| <

M AT =)

o; + ) o, + -0
M+ My + My + M, ‘t; p t; B
1" — 27

PO i+ B+ DI(1+ ai)

(Mﬁ%@+AQ+MOFw+D

+ 11770 — 1,777

F(i o+ B+1I(B =0+ +1)

M1+Mh—|—Mf+M F(l—)\) F(ﬁ—i-l)
+< Z g*”fa—x+m+ﬁ>mﬁ—5+n
) i+ B8+1)
=1

X |751’8_(S — tgﬁ_6|.

(3.30)
For (3.29) and (3.30), their right hand sides tend to zero for t; — t,.

As a consequence the Ascoli-Arzela theorem, we conclude that H is completely continuous.
Boundedness of A,

The set A, :={z € X : x =~ Hz,~v €]0,1[} is bounded.
Let y € A,. Then we have y = yHy for some 0 < v < 1. Hence we can write
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1 1
Iyl < 7(2[<Ml+Mh+Mf+Mg)( +

F(i a;+B+1) F(i a;+ 8+ 1D (o +1)
ET(1—X) - -
+—)} + |9|>.

L(B—A+1
(3.31)
We have also
[1D%|oe < ’Y((Ml+Mh+Mf+Mg) — L
PO ai+B—6+1)
=1
N 1 N r'(g+1)
PO i+ B-0+D0(ar+1) IO ai+B+1DI(B—0+1)(on+1)
=2 1=2
T(8+ 1) ) ( 1 1 )
+ + k(1 —)) +
n T(B—6—X+1) D(@B-X+1
PO i+ B+ 1I(B—6+1) < 1 TE=A+ )
i=1
+10| ].
(3.32)

Using (3.27) and (3.28), we state that |y||x < co. The set is thus bounded.
Consequently, thanks to Schaefer fixed point theorem, we deduce that H has at least one

fixed point. Thus, the problem (4.1) has a solution.

3.3 Illustrative examples

let us give the following examples.

Example 3.3.1
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We concider the following example with 11 sequential derivatives:

( D0.5(DO.Z(DO.G(DO.S(DO.Q(DO.S(DO.S(D0.4(D0.8(D0.5(D0.1 + 10215; ))))))))))y(t)

1 < ly(t)] cos DulJoy(t)) | cos y(t) + cos Izy(t) N siny(t)
2(

=e' +1t, t€)0,1
80et+2 14 |y(t)] et*+1 95(m2 4 t) 300e0 C 0 €0, 11,

(T35 01 T 00
(3.33)

We have:

1 |z1 ()] cos T (t)
.o = g (g + o)
cos z1(t) 4 cos xa(t)

05(m2+1)

g(t,x1,29) =

sin x(t)
hit,z) = =555

[(t) =e' +1t.
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We remark also that

1 / 1 1

L= — L = — rj=_——
17 R0e2" 9575’7”0 300"
+2L, + L + —2— =0.009
T T T T4 )
= =0.007,
IO) ai+B+1)
=1
1
= = 0.0144,
1=2
kT(1—))
— = 7 —.238.
T(B—A+1)
Based on the above data, we have
1
— = 0.0071,
) ai+B8-6+1)
=1
1
= = 0.0146,
() ai+B8—=6+D(a; +1)
1=2
r 1 r 1
= (B+1) +— (B+1) = 0.0213,
IO ai+B+DIB =6+ D0 +1) TO ai+ B+ DI(B—6+1)
=2 i=1

1 1
kF(l—/\)<p(5_5—>\+1)+F(6—A+1)

Hence, it yields that

) = 0.2344.

D1 =0.4765, D2 = 04728,

D = max{D1, D2} = 0.4765.

The conditions of Theorem 3.1 hold. Therefore, the above example has a unique solution
y(t) on [0, 1].

Example 3.3.2
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Now, we consider another example involving five sequential derivatives:

( 0.1/ 0.4/ 0.3/ 1H0.2( 1H0.9 3 |y(t)| |D5y(t)|
DEDPD DD+ amt DO + v a s mon T 2o+ 0 + 1050
cos(y(t) + I"y(t)) ly(t) = 3t, t €]0,1]
4002 +1) ()L fy))) T T
y(0) =0,
y(1) =1,

DO(D"?y(0)) =0,
D0.3(D0.2(D0.9y(0))) — 07
DM (D(D**(D™y(1) + ¢ 5 o1 (1)y(1)))) =0,

3
kCbl—:“o,o.l(t) = 10#0-1°
(3.34)
we remrk that
4] 2]

t g, ) = + ’
f(t, 1, 0) (447 + 6)(1+ |z1]) | (200 + £)(1 + |22])

(b1, 1p) = 051 22)
g\t,r1,%2) = 400<t2+1> ’

||

h(t,z) =

(t,x) (72et+2)(1 + |$|)’
I(t) = 3t.
Also,
§ = 0]., p = 057

D1 =0.9613, D2 = 0.9924,

D = maz {D1, D2} = 0.9924.

The conditions of Theorem 3.1 hold. Therefore, the above example has a unique solution
y(t) on [0, 1].

Example 3.3.3
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The fllowing example is given to show the validity of the second main result. So we consider:

;

DOHDOA(DOA(DOX DD} + ) yte) + VDD

53 (V0 + T Tyt T = 90

y(0) =0,

y(1) =1,

DO'Z(D%y(O)) —0, (3.35)
DO3(DO(Dly(0))) =0,

DY(DO2(DP(Dhy(0)))) = 0,

DOA(DOA(DO(DO2(Dhy(1) + 62 05(Dy(1))) = O,

63.0a(0) = 13

_ sinay +sina, 1 |22
Ft oy a) = — oy 9(hanm) = oo (Cosxl T m])
||
(t,2) (144e”)(1 + |z])’ (®)
Also, we have
1 1

Hence, we remark that

1
|g(t,:c1,x2)| < YR |h(t,£€)

l|oo = 4.
» o

1
’f(t7$1,962)| < ==

) | S PR
50 144

Since the functions f, g, h are continuous, then by Theorem 3.2, the problem presented in

this example has at least one solution on u(t),t € [0, 1].
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Chapter 4

An Analytic and a Numerical Study
for a Class of Singular BVPs With

Series

4.1 Introduction

The differential equations, with time or space singularities, are of great interest since sev-
eral physical situations are modelled by problems of this kind, (for example, problems in
gas and fluid dynamics), see [17, 18, 46]. For this singular field theory, many authors have
paid a great attention to the questions of the existence and uniqueness of solutions to this
type of equations. For more details, we refer the reader to [30, 33, 38]. The reader can
also point out that stability of solutions of such equations is useful in solving many problems

in economics, mechanics, and also in control theory, see [38, 51, 52] and the reference therein.

4.2 The posed problem

Before introducing our problem, we need to cite some other results that have motivated our

aim. We begin by [1], where the authors have studied, for the first time, the existence and
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uniqueness of solutions for the following non singular system involving series:

Do) = uttu(to0) + Y- [ ots. o o). € 0.1

Xt g\l
DPv (t) = folt,u(t),v(t)) + Z/o %gﬁi(s)hi(s,u(s),v(s))ds,t € [0, 1],

\

Then, based on the above paper, the authors in [58] have studied the following second non

singular fractional differential problem:

Dodu Zfl t u D’Yl ( )’D'ylv(t))
o0 t (t . 8)5].

FX | iy e 0)i(s ), v(s), Du(s), Do(s))ds € 0.1]
j=1"0 J

Do (t) = D7 kit ult). o(t), D u(t). Do(t))
+Z/0 %¢i<s>m<s,u<s>,v<s>,D%u(s»m(s»dm e [0,1],

() (O)ZO,j:LZ,...,n—Q,
(O) Pu(t),p > 0,7 €]0, 1],
U(" D(0) = J(p),q > 0,p €]0,1].
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For the singular case without series, we can also cite the papers [31, 33|, where the authors

have studied the questions of existence of solutions as well as the stability for the problem:

"

DP(D* + 3)y(t) + Acf(t,y(t), DOy(t)) + Aag(t y(t), IPy(t)) + h(t, y(t))

Iy(u) = y(1), 0 <u <1,
k>00<A<1,1<8<2 0<a, 6<1,

\

where, A; > 0, Ay > 0, J := [0, 1], the two fractional derivative of the problem are in the
sense of Caputo, I is the Riemann-Liouville integral and f, g, h,l are some given functions.
Motivated by both the above two series-works and by the applications of singular differential

equations in fluid dynamics, in this paper, we study the following problem:

.

Du(t) + Mf(u(t),u” (t)) = dg(t,u(t), DVu(t)) + Z v ®; (1) I*h(t,u(t)),t € (0,1],
¢ =1
u’(0) + u(s)ds, 0<¢& <1,
!’ \/0\0
u (0) +

u(0) +

u(s)ds, 0<6 <1,

u(s)ds, 0<n<l,

o
1o

2<a<3, O<7<$, K1, K2, K3, \, 0,7 € R,

(4.1)
where we note that J := [0, 1], the functions f, h; and ®; will be specified later, ¢ is singular
at t = 0, the operators D® and D" are the derivatives in the sense of Caputo.

To the best of our knowledge, this is the first time in the literature where singular differential
equations, involving fractional calculus and convergent series on Riemann-Liouville integrals
and other terms, are investigated. So, in general, our aim is to present a first contribution
in this direction and try to fill this gap. Especially, we study the question of existence and
uniqueness of solutions by using both fixed point theory and integral inequalities, then we

pass to the investigate the question of stability of solutions in the sense of Ulam-Hyers where
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the integral inequalities and estimates will allow us to prove the results. Our results will
be concretized by some illustrated examples. Then, thanks to some numerical techniques
that allow us to approximate the Caputo derivatives, ( see the two papers [22, 44]), and by
using Rung Kutta method, we present a numerical study with some simulations in order to

present to the reader more comprehension on the proposed examples.

4.3 Uniqueness

4.3.1 Integral equation

We present to the reader the proof of the integral solution of the introduced problem.

Lemma 4.1 Let G in C(]O, 1]), (Hi)izl .....
Yooy 1@ I H,||s is finite, then, one has

. in C(J), r € N*, such that

e

p

Du(t) = G(t) + i v;®; () I“H,(t),t € (0,1],
u' (0) + o (1)—/<;1/§ (s)ds, 0<¢&<1,
u (0) + /@/u ds, 0<6<1,

?
u(0) +u(l) = /433/ u(s)ds, 0<n<l,

2<a<3, Ky Ko K3V €R
\
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if and only if

u(t) — I°G(t +Zu1a( £)1° H, (¢ )) + [Altu%HAl} [Hg /077 1°G(s)ds

2
+ Z K3V / ( s)I“H;(s ))ds _ ﬁ /01(1 — 5)*3G(s)ds — g F(ayz-_ 5
L Not? + hot + Ay v
/( 5) ( () ())ds]+[ . H@/Oz(;@)ds

+Z“2V / IG (cp VIOH )ds . ﬁ /01(1 — ) 2G(s)ds — ; F(a”i_ 5
></1<1 72 (@y(5) 1 Hi(s) ) ds ] + [A?’t”%”ﬂ & /ngaG(s)ds

o
T Z R1ti / < s)1 H;(s ))ds - F(la) /01(1 — 5)*1G(s)ds — g F(U;)
x /01<1 _ gy (@i(s)laHi(sts}, (4.2)
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where, we need to take into consideration:

o= Fi(By —2)(D3 — 1) + Ey(Fy — 2)(Dy — 2) + (D; — 4)Fy(Ey — 1) — Fy (B3 — 1)(Dy — 2)
—(Fy — 2)(By — 2)(Dy — 4) — By Fy(Ds — 1),

Ay = (Fy —2)(By —2) — Fy(Bs — 1),

Ay = Fy(Bs — 1) — Ey(F3 —2),

As = B\ Fy — Fy(Ey — 2),

U = Fy(Ds = 1) — (F5 = 2)(D, — 2),

y = (F5 = 2)(D1 —4) = Fi(D3 — 1),

s = Fi(Dy = 2) = Fy(Dy — 4),

Ay = (B3 —1)(Dy — 2) — (By — 2)(Ds — 1),
Ay = By (D3 —1) — (B3 — 1)(Dy — 4),

Ay = (B — 2)(Dy — 4) — Ey(Dy — 2),

Kan® Kan?

-Dl :%n?Elngn7F1:’£3na
Ko @? ko @?

D, 22?7E2:277F2=H297
K1E3 K1 E2
¢ # 0.

Proof: We prove the first implication.
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Thanks to Lemma 1.2, we observe that
U(t) = [aG(t) + Z I/iIa <(I)1(t)IaHl<t)> + C2t2 + Clt + Co,
i=1
u (t) = 171G (t) + Z v [*7! ((I)i(t)IO‘HZ-(t)> + 2¢ot + ¢4, (4.3)
i=1

u'(t) = 1972G(t) + i v [*7? ((I)i(t)IaHi(t)> + 2¢9,

By considering the conditions

and thanks to Cramer rule, we achieve the proof.
The second implication is evident and hence it is omitted.
In what follows, we use fixed point theory to study the above problem. First, it is important

to introduce the space:
X :={z e C(J,R),z" € C(J,R),D"z € C(J,R)}.

The norm:

lzllx = llzloo + ll2"lloo + 1 D72l

is also to be introduced.
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Then, we shall consider the nonlinear operator H : X — X defined by by:

Hu(t) = ﬁ/o (t =) dg(s, u(s), D7u(s)) — Af (u(s),u’ (s))]ds

" Zf; Viﬁ /ot(t -9 (q)i(s)ﬁ /OS<S — 1) h(r, U(T))dT> ds

P[RS o [ [ = sgtrate). D) At (s

+ g; K3V; /077 ﬁ /05(3 _ 7-)04—1 (q)i(T)ﬁ /OT(T B X)a_lhi(X7 U(X))dX> drds

o0
v

1 ! a—3 ~y "
g, (7 o), D) - AT D = 3

< [a-sr (@ s [ ) + [

¥
[/42 /06 1 /OS(S — 1) Yog(r, u(r), Du(r)) — Af(u(r),u (7))]drds

+iiﬁ2yi/oeﬁ/os(s_T)a_l<q)z’(7')ﬁ/o-r(7_X)a_lhi(X’U<X>>dX>de3

[e.9]

Vi

1 ! a—2 v ’
) /o (1= 5)*?[6g(s, u(s), D7u(s)) = Af(u(s),u” (s))lds = ) Tla—1)

" T(a—1 3
) /01(1 =9 (q)i(s)l‘ 1 /OS(S — )T H(r, U(T))d7>ds} + [A3t2 + thst + Ag]

¥
‘1 ) a—1 i — w(r),u (7))]drds
o [ s | = ot (). D) = Afute). o ()

+ il R /0 ‘ ﬁ /Os<s —7)! (cbi(f)ﬁ /OT“ =0 il ub0)dx ) drds

L 1 a-l Tu(s)) — u(s),u’ (s 3—00 Vi
iy J, 00w D) = AT () = 3

X /01(1 —5)* ! (@i(s)r(l&) /Os(s — 1) Hy(T, u(7’))d7’> ds} .

At the end of this section, it is important to note that, we will be concerned with singular

differential equations, fixed point theory and integral inequalities to prove our main results.
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4.3.2 Uniqueness of solutions
We consider the following sufficient hypotheses:

(Q1) : The functions f is defined on R?, g is defined on (0, 1] x R? and (h;)i=1..,, r € N*

are defined on J x R; all these functions are supposed continuous.

(Q2) : There exist nonnegative constants twy, ws, such that for any ¢ € J | uy, vy, us, vg €
R,

|U1 - Ul| |U2 - U2|

unup) = f(v1,02)] < m T w2
[, u) = flor, v2) SN e T

There exist positive continuous functions ¢1(¢), t2(t), such that for any t € (0, 1], uy, vy, ug, v2 €
R,

Uy — s

t,ug, ug) — g(t, v, v < u(t)sin(uy —vy) + to(t) ——————.
gt = glt, v, 02 < 1) sinun — )+ () T

And, There exist positive continuous functions g;(t), for any integer i and any t € J, u,v € R,

u =]
(1 +22) (ful + [v])

|hi(t,u) — hi(t,v)| < G(t)

We take the expressions:

N = Max(w, ws),
M = Mazx(sup |¢1(t)],sup |ea(t)]),
teJ teJ
O; = sup |g;(t)],

ted

O = sup O;

1€EN*

(®Q3) : Suppose that (®;);=1,.,, r € N* are defined on J, continuous and E |V D00 <
i=1
+00.

Also,, we consider the following three quantities:
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M]S| + NJA|

Fla+1) F'2a+1) —

2] X [<M15I+NIM>

[rig [+ 1 S ||t 1
8 (F(a +2) "Tla- 1)) * (O; lviilles (F(2a +2) TTa- 1))]

le

|Ao| + o] + |As] |;e2|9a+1
+ M|8| + N|X O VPl oo
= ol + N | o + §j|| ||
|Kg |07 1 |As| + [¢s] + | As] |m|§°¥+1 1
+ + M]|S| + N\ +
F(2a+2) ['(2a) || 91 A I(a+2) T(a+1)

|K11’£2a+1 1
o,
* OZ“”Z ”“) T2a+2)  TRat1)

MI5|+ NJA o & ST
Tla—7+1)  T(@a- 7+1 L lwlle |+ TG T =)

[(Mw + N!M) (‘ = ) (02 i, uoo> ( .

2|y |1a| |ko|@T! 1

TG4 Te- >] (M"S”N'A')( T(a+2) +r<a>)
- ol ongl . 1y

Hox ”Viq)iu‘”> (F(2a T2y " r(m))] g [r(?) —) " Te- 7)]

r
[(M\d] +Nw> ( \f-zl|§:+21) X F(al—i— 1)) + <OZ Huﬂ%l@)

|/_€ |§2a+1 1
'2a+2) T'(2a+1))|’

TQI

and
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a+1

M|5| + N|A| O - 2|A | |k3|n

T, = | MIS| + N | [ sl

T | Ta=1 +r(za—m;”” ool 15 P+ NN T2
2|y

1 G g ot 1
*m) ’ (OZ “”"@i”“’> (r’@‘g +2) " T(a- 1>> ]
><[<M|6I+N|AI)(’@W+1 - )+ (OiHu@»ll )(WWQH - )]
Na+2) TI'(a) — CEIANTR2a+2)  T(2a)
2||£|3| <M|5| +N|/\|) (ﬁii;) + F(a1+ 1)> + <0; ||yi<1>,»|loo>
X<|Iﬁ|§2a+1 . 1 >
I'2a+2) TI'(2a+1)

We pass to prove the following result for unique solution.

+

Théoreme 4.1 Assume that both the three hypotheses (Q1),(Q2), (Q3) and the condition
YT < 1;T =7+ Yo+ T3 are satisfied. Then, the problem (4.1) has exactly one solution.

Proof.
We begin this proof by showing that H satisfies the Banach BCP.

For (u,v) € X2, we can write

HHU_HUHOO
M|5| + N|A| 0, > |AL] + 1] + A
[F(a+1) r(2a+1)zi_1”” o o = vl o]

| (ot g (T L) 4 (03
MNa+2) TI'(a—-1) —

2a+1

] (4.4)

’,%2‘9044-1 1 > ’KQ‘HQOHJ 1
D, _
\Trar @) T (O2 el || Ta sy + 1wy ) |10~ vl

[|As] + 3] + A et 1
o] <M|‘5|+N|A|> (r(wz) * F(a—l—l))

N C) Sl T s—
Vi®illoo
— I'2a+2) T'(2a+1)

On the other hand, we know that

ksl
I'2a+2) TI'(2a—1)

[ —vllx +

[ = vl[x.
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DY Hu(t)

1
[(a—7)
1

* é ViF(al— ) /Ot(t — ) ! (q)i(s)f‘(a) /OS(S — 1) hy(T, u(T))dT> ds

/0 (t = )" [0g(s, u(s), DMu(s)) — Af(u(s),u" (s))]ds

1
i
¥

u (1)))drds + g; Kal; /077 ﬁ /05(3 — )t (q)i(T)ﬁ /OT(T — ) hi(x, u(x))dx> d

2A1t277 wltkW 71 ’ a—1 Tu(T)) — u(T
F<3_w+r(2_7)”m3/0 e | 6= m gt ). D) = A (o),

1 ' a—3 y z - Vi
g [ (=9 a9 D7) = Af(us) o (5))ds = > ety

x /01(1 — )7 (@i(s)ﬁ /08(3 - T)a_lHi(TaU(T))dT)ds} + é

INSt2 . ot
@3—7) T2-9)

0 1 3 a—1 Y — "
/ W/()(S—T) [09(7, u(r), D7u(r)) = A (u(r), u’(r))]drds

—i—me/o ﬁ/os(s — T)a_1<q)i(T)F(1a) /OT(T — X)a_lhi(x,u(x))d)()des

1 1 a—2 v ” > V;
—m/o (1= s)*"[0g(s,u(s), D7u(s)) — Af(u(s),u (s))]ds — ; Tla—1)

1 a2 -sL ss—Ta_l (7, u(T))dT )ds l 20177 Ust!
J o (g 6o )| | F@—v)]

.5 1 s a1 ~ B "
/ m/ws—ﬂ 89(r,u(r), Du(r)) — Af(u(r),u" (v))ldrds

+ g K1V /(;5 ﬁ /0‘5(5 — T)O‘*l <(Di(7—)r(1a) /OT(T B X)ailhi(Xa U(X))dX) drds

(e . i ) o,
R /0 (15" 3005 0(5) D) = M (w(s) ()ds =3 iy

« /0 1(1—5)0*1(@(3)“1&) /O s(s—r)a1Hi(r,u(7'))d7'>ds].

Then, based on the bove quantities and using the same arguments as before, the following

inequality
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|DYHu — DYHvl| s

IR N
|yt e ',Y <M|a|+N|A|)<“3'”O‘“ .
(oz |1, Hoo> ( lff;!fj; 1))] [ — vl x
PR [(M'(SHNM')(rﬁiil a>)
(02 i Hoo) < b+ )] Ju vl
A 7 e =8

||U - U||X

|H1’€2a+1
(OZ i H°°) ( [2a+2)  T2a+ 1>)

is valid.

Also, the second derivative, which is needed in this proof, is given the following quantity.
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1 t o3 , p
g [, (=9 (s u(s). D7u(s) = Afls). o (5))ds

+ i:; wﬁ /Ot(t —5)*3 <q>i(s)r(1a) /S(S — ) hy(r, u(T))dT> ds

0

2] [ [ [ 6= 1 ). D7) = Afu(e) o () s

+ Z:: K3V /On %a) /05(3 — 7)ot (@i(ﬂﬁ /T(T 0, U(x))dx> s

0

</ [ () [ 6= ru(ar)as] + 22
[HQ /09 %) /08(3 — 7)Y og(,u(r), DYu(T)) — M (u(T),u’ (7))]drds

X
3w [ [0 (0 s /< 0" i ) ) drds
0 9l (). D)~ AT f:r—

" /01(1 g2 (q)i(S)F(lOé) /5(8 — T)a_lHi(T,U(T))dT>dS] [2_£3]

0

[/{1 /05 1 /05(5 — 1) Yog(r, u(r), DVu(r)) — Af (u(7),u” (7))]drds

" Zl m /og ﬁ /OS<S - (q)i(T)P(la) /T(T — 0" il U(X))dx> drds

0

! 1 ol " — M (u(s),u (s s—oo Vi
iy J, 9 B0t s), D) = ATl 6l = D

X /01(1 —5)* ! (@i(s)r(la) /Os(s - T)a_lHi(T,U(T))dT> ds].

Using the H' (t) quantity, we can write
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p " M5+ N|A| O - 2|A |
H'u—H|w < Dilloo | [|u — M|§
1 = B vlloe <5000y e 1) 2 Pl e = vl + 507 { M1

|rig |t 1 R U
+NW> (F(a +2) * (o — > (OZ lvi: HOO) < I'(2a +2)
1 2| As| |r<;2|(9a+1 1
|l€2|92a+1 1
(OZ o ||°°> ( I20+2) r(m))
22| malestt 1 =
7 <M](5] +Nm> ( Mo Tt 1)> + (o; HVZ@ZHOO)
><< R [€2F! 4 1 )
I'2a+2) TI'(2a+1)

From (4.4), (4.5) and (4.6) we conclude that

[ = vllx

+

lu =l x.

(4.6)

HHU—HUHX (T1+T2+T3>HU—UHX

With Banach BCP and the condition on T, we have the contraction of H. So, H admits a

unique fixed point zy. The proof is thus complete.

4.3.3 Examples

In this section, we present two examples to illustrate the validity of the result dealing with

the existence of exactly one solution.

Example 4.3.1
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We consider the following In — problem:

(

" 3
5 1 lu(®)+u (¢)] _ 1 ( sin(u(#)) |D2u(t)|
D2u(t) + 5 107 (L+u®)+u” (B)) ?0< amie T 200(1-+| D u(t)|) + |ln(t)|)

t € (0,1],

* i 1356(:)213 <300i [(22 EL%'JF u(t)|] )
u(0) + u(1) = /0 " 2u(s)ds,
W' (0) + 1/ (1) = /0 " 3u(s)ds,
0 (0) +u (1) = /0 0'5 du(s)ds,

Remrk that

T, =0.0416, Y5 =0.1550, T3 = 0.0397,

T=7;+7Ty+ T3 =0.2363.

So, thanks to Theorem 4.1, we confirm that this example has a unique solution.

Example 4.3.2

1
As a second illustrative example, we consider the problem with the singular function —.

(2. 3 |2u(t)+2u” (8)] _ 3 ( et+sin(u(t) | D!2u(t)| 1
D*lu(t) + 10 74 (t42) (143[u(t)+u” (1)) 5( 30(t2+1) + 20et T (1+[D1-2u(t))) + Z)
+i eiitz 12.1( |u(t)| + et) t E (O 1]
£~ 50:2 2004 [(t + 1) + |u(t)]] ’ T
0.3
X uw(0) +u(l) = u(s)ds,
00.5
u (0) +u'(1) = 2u(s)ds,
0
0.1
u'(0) +u'(1) = / u(s)ds,
\ 0
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We see that

_ _ 3 _
04—2.1, )\——0, 5—

N

, v =12,

—_

T, = 0.1498, Y, =0.4170, Y5 = 0.0911,

Also, by Theorem 4.1, our example has a unique solution.

4.4 Stabilities of solutions

It is to mention that the Ulam-Hyers (UH) stabilities for fractional differential problems are
useful for solving practical problems in biology, economics and mechanics. The examples of
the application of this theory can be found also in [3, 20, 21, 39]. It is important to notice
that there are many applications for UH stability in nonlinear analysis problems including
differential equations and integral equations [7]. Insteade of finding explicit solutions for
our BVPs, if there are UH stable, so all what is needed is to fing approximate solutions
for some integral inequalities. These types of stability is very important with respect to

Lyapounov/Lagrange one.

4.4.1 Basic concepts

We associate to our problem the following definitions with their integral inequalities.

Définition 4.4.1 The equation (4.1) has the UH stability if there exists a real number
© > 0, such that for each € > 0,t €]0,1] and for each uw € X solution of the inequality

| Du(t) + Mf(u(t), u’ () — og(t, ult), DVu(t)) — Z v ®; (6) 1Rt u(t))] < e, (4.7)

there exists v € X a solution of (4.1), such that
lu —v||x < ©Oe.

Définition 4.4.2 The equation (4.1) has the UH stability in the generalized sense if there
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exists 0 € C(RT,RT); Q(0) = 0, such that for each € > 0, and for any u € X solution of
(4.7), there ezists a solution v € X of (4.1), such that

lu = vllx < Q(e).

4.4.2 Ulam-Hyers

Now, we are able to prove the first main result.

Théoréme 4.2 Under the conditions of Theorem 4.1, we state that (4.1) is Ulam Hyers
stable.

Proof.
Let u € X be a solution of (4.7), and let, by Theorem 4.1, v € X be the unique solution

of (4.1).
By integration of (4.7), we obtain
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/0 (t = )71 3g(s, u(s), D7u(s)) = Af (u(s), u’ (s))]ds
= Z I/ir(a/) /0 (t—s)t ((I)i(S)F(la) /Os(s — 1) hy(r, u(7))d¢> ds

_ [/_\1152 + it + Aﬂ [ g(m,u(r), D7u(r)) — Af (u(T), U”(T))]des

. ¥ “3/onﬁ/os<s—7>“‘l[é
+;K3Vi/onﬁ/o (S—T)a—1(<1>( ) @ )/ (7’—X)a—lhi(x,u(x))dx>d7—d8
ﬁ/;“‘ﬂ“[@(s u(s), Du(s)) = Af (u(s), u' (s)))ds - ir(f 2)

) /01(1 =9 (q)i(s)r(oz) /08(5 —7)* T H(r, u(T))dT>d } [AZ# - Ziﬂ + AQ]

[, /0 9 1%) /0 (s = 72 [bg(r,u(r), DYu(r)) — M(u(r),u” (r))]drds
+ Z KoV /09 ﬁ /Os(s — )t (@(T)ﬁ /OT(T — X)“*Ihi(x,u(x))d)()chds

o0
V;

ST / (1= 9)"*[3g(s, u(s), Du(s)) = M (uls),u"()ds = 3 =gy

- /01(1 a S>a72 (Q)i(s)m /os(s N T)ailHi(Ta U(T))dT) ds} — [A?)t? —T— Zﬁiﬂt + As]

[/ﬁ /05 L /S(s — 1) Yog(r, u(r), D'u(r)) — Af (u(7),u” (7))]drds

[(a) Jo
o0 13 s T
+Y / o / (5= (B / (r 0" e u())dy ) drds
:11 ! a—1 ol
5 | (1= 9 s ) D7) = A, () - ZF

x/olu—s)a—l(@i(s)r(la) /Os(s 7 H, (7, u(T ))dT)ds} < r(a+1)'
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By using (4.7) and (4.8), we can write

£ M|5| + N|A| O -
- < g i Pilloo | U —
lo=vlle < Fr7y + [ Tla+1) @ TRat1) p UG L

|I€3|7]a+1 1
(M‘(S' + NW) (F(a 72 T T(a-1)
0 . |l{3|n2a+1 1
* OZZI ”VZ(I%””) (r(m 72) TTRa -1

1o [l + 18l [ (o) (el '
|| ( o1+ VA Tla+2) ' T(a) (4.9)

O Il ) (2P Ly
T\ L I Taa+2) T T2a) X

_ <M|‘5'+N|A|> <|rk<ﬂa|€+a %) " F(al—i— 1))

TN EC) S I I L a—
£ 75 I\ TRat2) " TRa+ 1)

[|Ay] + 1] + A
||

lu = vllx

[[As] + [es] + | As
||

||U—U||X-

So
||u—v|| < —5

T - 00
e TRALLI

Therefore, we have
€

U— Vo < <e =z
” oo < T(a+1)(1— 1) !
On the other hand, we have
€ -
1D (= v)[loe < <e=

S Tla+ni-1) "7

Also, we have

v =0l < <e =

Thus,
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HU—’UHX < 5( El+EQ+E3)

Thus, (4.1) has the Ulam Hyers stability.

Remark 4.4.1
In the case Q(e) = e( 21422+ Z3), we obtain the generalised Ulam Hyers stability for (4.1).
Remark And Example 4.4.1

The above two examples are UH stable since they fulfill the conditions of Theorem 4.1.
In particular, in both cases, we have proved that there is a solution v, such that for each
e > 0,t €]0,1] and for each v € X solution of inequality (4.7), we can write, for the first

example:
[t — v]| s < 0.78492, [|D2(u —v)]|oe < 0.8902¢, |Ju" —v"||oe < 0.7834e.

Thus,

|lu—v|lx < 2.4585¢.

However, for the second example, we can write
|u = v]|oo < 1.0675e, || DY (u—v)|lo < 1.5568¢, |Ju" —v"||oe < 0.9986¢.

Thus,

|lu—v|lx < 3.6229¢.

4.5 Numerical simulations

In this paragraph, we apply an effective numerical approach to Riemann-Liouville integral
and Caputo derivative. We need to recall the approximation theorems of the papers [22, 44].
Based on Caputo derivative approximation, we investigate, for some given parameters, the

behavior of the considered problem by studying one of the two proposed examples with a
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parameter a. In order to do this, we should initially obtain a reduced fractional differential
system which can be equivalent to the considered problem. The numerical simulations are

then used a Runge-Kutta method.

Théoréeme 4.3 [59] Let y € C([0,1],R). Then, we have

oi(a) = (n+2— 7O 4 (n—j)et) —2(n — j 1)) j=1.. -1
J (n)(oc-‘rl) _ (n_ a)(n+ 1)04’ j: 07 and 17 ]: i

Théoréme 4.4 [59] Let y € C*([0,1],R) and 0 < a < 1. Then, we get:

hl—a i )
DY(t;) ~ ————— D (tNai (1 — 1 =0,...
y( ) F(l—a—i—Z);y (J)Uj( Oé)a 1 s , N,

where,

(j):{yl_yo _po Y TYir g g YT Y
y h 7] Y 2h 7.] sl Y

Remark 4.5.1 The problem (4.1) can be reduced to the formula below:

D'u(t)
Dlu(t)

(1), w(t)

(1), w(t

v(t) = fi(t,u(t)
w(t) = falt, u(t)

)
))
Dlw(t):DH(—Af(u(t),w(t))wg(t,u ), DVu(t)) +ZV¢ (O Thi(t, ut )))
= f3(t, u(t),v(t), w(?))

, U
, U

and

3

w(0) + /u ds, 0<&<1,
9

v(0) IQQ/U ds, 0<6<1,
0

u(0)

7
Hg/u ds, 0<n<l,
0



where

(), 0),w(0) = S0 = 2) [ = Mult) w(t) + Salty u(ts). D7ulty)

J=0

+ZVZ (O hilty, u(ty)) )|

The complete numerical scheme for the computations is

(

Kl = fl(tiauiaviawi) KZ = fl(ti+%7ui+hflavi>wi>a
K3 - f(t +27uz+hK2 vlaw’i) K4 = fl(ti+%7ui+hK37viawi)
P = fa(ti, wi, vi, wy) Py = folti+ 2% ug v+ 22 wy),
Py = folti+ 2 u,vi+ 22 w;) Pro= folti+ % u,v+h P37wi)7
Ly = fo(ti, us, vi, w;) Ly = folti+ 5w, v, w; + 25),
| Ls = folti + 2w v w +222) Ly = folti + 2w, v, w; + h L),

tiv1 = to +ih, to = 0,

Uit = u; + hiy

Ui—l—l - U; +h77Z)2

Wiy1 = w; + his

Where
gy K12 22 Ky POP AR P Lk 2L 2Lt Ly

1- 6 2 - 6 ) 3 - 6

Through numerical simulations achieved by a combination of Caputo approach and the

fourth-order Runge-Kutta method on the first example, we obtain:
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Figure 4.1: Solution for the first example, on the plan u-w, for four values of a.

053

Figure 4.2: Behavior of the dynamics of the first example, on the plan v-w, for four values

of a.
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Figure 4.3: Behavior of the solution for the first example, on the plan u-v, for different values

of a.
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Figure 4.4: 3D representation for the solution of the first example, for different values of a.

Remark 4.5.2
o Numerical simulation accounts for the effect of fractional order on reduced systems.

e The comparison of the numerical simulations made it possible to establish a significant

correlation between specific parameters. Unfortunately, it differs in other cases.

e Thanks to the continuous evaluation, we observe the influence of the approximations on
the display of the behaviors in the simulations for particular cases (for example when

a < 2.75 the solution loses the shape of the curvature).

e [t seems that we are in perfect harmony between the numerical simulations and the

result of for a — 3.
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Conclusion and Perspectives

In our thesis project, we have studied two classes of differential equations with singulari-
ties. In the first class, we have been concerned with singular differential equations that are
supposed with n sequential Caputo derivatives, this sequentiality does not satisfy the semi
group and commutativity properties. We have first presented and proved the unique integral
representation of the studied class. Then, using the integral inequality theory presented in
the second chapter, we have proved a first existence and uniqueness result. Another main
result has been then proved and some conditions on the data of the studied problem have
been imposed. Several examples have also been discussed in details. In this project, we have
also been concerned with another class of BVPs with time singularity that involves series.
For this class, we have studied the uniquness of solutions which has allowed us to pass to
study the UH stability of solutions. Some examples have been studied for the UH stability
results. At the end, some numerical simulations have been discussed; they have concerned
the approximation of Caputo derivatives for the problem.

As perspective of this thesis, we propose to study the sequential cases with series and sin-
gularities in time and space. We think, it is an important problem to be deal with in the

future.
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