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Introduction

Many real-life phenomena, regardless of their nature (chemical, physical, biological, elec-
tromechanical, or economic), can be described by mathematical models. A dynamical
system describes the evolution over time of the investigated mathematical model. This
can be compared to a set of finite equations that produce different mathematical repre-
sentations, which are given by ordinary differential equations, partial differential equa-
tions, or difference equations.

The interaction between a system and its environment is a key concept in systems the-
ory. It is common practice to process mathematical models of input dynamic systems to
produce outputs. The aim is to bring the system from a given initial state to a certain final
state with respect to certain criteria. Various classes of dynamic systems can be identified.
Systems with discrete dynamics are represented by a difference equation, where the state
variables only change at a discrete set of points in time. For instance, population models
(such as populations of rabbits or microorganisms) are examples of systems with discrete
dynamics. Systems with continuous dynamics have state variables that change continu-
ously across time, such as the amount of water that flows through a dam. These systems
are represented by a differential equation. Finally, systems with continuous and discrete
dynamics (hybrid) involve interactions between continuous and discrete processes. This
dynamic involves switching behaviors frequently seen in electronic systems or robotic
manipulation systems that can impact the dynamics of the system in several industrial

applications.

Fractional systems have generated a great deal of interest in many areas of applied sci-
ence, engineering, and control theory [55, 56, 81, 91]. The objective of fractional calculus
is to generalize classical, integer-order derivatives to a non-integer order. Fractional order
derivatives are used to model various phenomena across numerous domains [91], such

as:

e Fractional derivatives are frequently used in the mathematical representation of

material viscoelasticity.

* A fractional-order dynamic can be observed in several financial systems in eco-
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nomics.

* It has been established in biology that the membranes of biological cells exhibit
electrical conductivity of fractional order, which is then categorized into a group of

non-integer order models.

In control theory, for instance, the state of fractional continuous-time systems was
discussed in [52, 55, 56]. Various methods, including integral transformations like Laplace
transform, Mellin transform, and Sumudu transform (3, 4, 5, 41, 48, 67, 73, 72, 96, 97, 99],
have been proposed for resolving these systems [20, 56, 62, 63]. Therefore, the first part of
this thesis focuses on the solution of a fractional one-dimensional (1D) state-space sys-
tem. We propose to solve singular and standard linear continuous-time systems with a
new fractional derivative using the Sumudu transform, which has many interesting and
attractive advantages over other integral transforms, specifically the unity it provides by
ensuring convergence when solving differential equations and the resolvability of prob-
lems without resorting to a new frequency domain [1, 99]. We obtained the expression of
the state of our system thanks to some properties and formulas of the fractional Sumudu
transform that we have established and proved. On the other hand, we will be interested
in the analysis of this new fractional singular system, such as controllability and observ-
ability, positivity, stability, and super-stability.

In the same frame of our study, we also focus on two-dimensional (2D) digital filters
which have attracted considerable interest in numerous applications, including image
processing, edge extraction, pattern identification via matched filtering, and restoration
of linearly deteriorated images [45]. Recursive filters are a crucial component of these
systems because they have the potential to reduce computation time and memory costs
[44, 45, 66]. Different state-space models for 2D systems have been proposed by a number
of authors like Attasi [6], Fornasini-Marchesini [36], and Roesser [88]. These models can
be used to simulate recursive filters [77]. We are particularly interested in this second part
in the computation of the H,, norm of two-dimensional digital filters modeled by (2D)
Roesser system since in control theory the H,, approach is used to synthesize controllers
to achieve stabilization with guaranteed performance. These tools have the advantage
over classical control techniques in that H,, methods are readily applicable to problems
involving multivariate systems. To use Hy, methods, a control designer expresses the con-
trol problem as a mathematical optimization problem and then finds the controller that
solves this optimization. Thus, the design of 2D control systems is an interesting and chal-
lenging problem, and it has received considerable attention [32, 33, 74].

This manuscript, which focuses on a theoretical study followed by digital applications, is

made up of 5 chapters.

* In the first chapter, the most important mathematical background used in this work

2



Introduction

is presented. We will start by recalling some definitions and properties of the frac-
tional derivative operator. Then, we will present the definitions of some integral
transforms and some particular matrices are also drawn. Finally, the notion of

Schur complement are given.

* Inthe second chapter, we introduce and establish the resolution of singular continuous-
time linear systems of order a with conformable and Caputo derivative by using
the Sumudu transform method. Furthermore, we discuss the solution of regular
continuous-time linear systems with two derivatives. We also focus on numerical
examples to demonstrate the advantages and effectiveness of our approach using
a Matlab code. Finally, in the last section, we draw some conclusions and compar-

isons between the two systems.

¢ In the third chapter, we continue our investigation into the controllability and ob-
servability of the new system. We present new findings supported by academic ex-

amples.

* In the fourth chapter, our focus is on the analysis of the new fractional singular
system. We begin by introducing the definitions and properties of positive singular
systems with this new derivative. Then, we establish different concepts of stability

and super-stability as an extension of the analysis tools of singular systems.

e The final chapter focuses on the evaluation of the H,, norm of a particular class of
two-dimensional systems. We also provide a numerical illustration to demonstrate

the benefits and effectiveness of our approach.



Chapter 1

Definitions and basic concepts

1 Introduction

The aim of this chapter is to provide the necessary foundational knowledge to understand
the technical progress presented in subsequent chapters. The first section covers the es-
sential tools of fractional calculus relevant to this thesis. In the second section, we discuss
two important integral transforms used in continuous functions (Laplace and Sumudu)
and discrete functions (Z -transform). The fourth section presents specific matrices that
will be used later in the thesis. Finally, the last section introduces the definitions and

characteristics of the Schur complement.

2 Fractional calculus

For more than 300 years, several mathematicians such as Riemann, Liouville, and Caputo
have shown interest in fractional calculus [27, 84, 90]. Fractional-order systems have gen-
erated considerable interest in many fields of applied sciences, engineering, and control
theory [55, 56, 81, 91]. However, a new derivative operator called the conformable deriva-
tive operator has been proposed by Khalil et al. Khalil et al. [71] and has been used in sev-
eral areas including engineering, finance, biology, medicine, physics, and applied math-
ematics [7, 8, 9, 34, 46, 102]. In fact, various problems have been solved, methods and
resolutions have been developed and improved, and other definitions of the conformable
derivative operator have been exploited in [71]. For example, fractional partial differential
equations [102], time-fractional one-dimensional cable differential equations [101, 104],
fractional Cauchy problems [103], linear/nonlinear differential equations [105], and other

applications.



2. FRACTIONAL CALCULUS

2.1 Some basic concepts of special functions

In this subsection, we define some special functions which are plays an important role in

solution of the fractional differential equations.

Definition 2.1 [56] Let I be a given function described by the following formula
F(z):f t*"le7'dt, zeC,Re(2)>0, (1.1
0

where, 1'is called the Euler’s Gamma function.

Proposition 2.2 [56] The Euler’s Gamma function I’ verifies the following properties

1.
In)=(n-1!, neN*; (1.2)
2.
r(l) - 1.3)
> =T )
3.
I(z+1)=2zI(z), zeC, Re(z) > 0. (1.4)

In the following definition, we introduce the Mittag-Leffler Function, which is a gen-

eralization of the exponential function e®’.

Definition 2.3 [56] A function of the complex variable z defined by

Zk

Eo(z) = ,;)F(k T (1.5)

is called the one parameter Mittag-Leffler Function.

Example 2.4 [56] For a =1 we obtain the classical exponential function described by

o) k

Ei(2)=)

o Zk
— =e°. 1.6
= Tk+1) kgk (1.6

2.2 Fractional derivatives
Conformabel derivative

Definition 2.5 [71] Given a function x : [0, +00) — R. Then, the conformable derivative of
the function x of order a, with a € (0,1] is defined by
x(t+ert™%) —x(1)

T*(x) (1) =lim , Vi>0.
e—0 €




2. FRACTIONAL CALCULUS

If the conformable derivative of the function x of order a for all t > 0 exists, then, we

simply say x is a-differentiable.

Theorem 2.6 [71] Let « € (0,1] and x;, x» : Ry — R be o-differentiable functions. Then,
Vi>0

(a) T*(axi(t) + bxo (1)) = aT*(x1)(£) + bT*(x2) (1), forall a,b e R;
(b) T*(tP) = ptP~*, forallp € R;
(¢) T*(A) =0, for all constant function x(t) = A;

(d) T (x1 (D) x2(0) = 1 (DT* (x2) (1) + x2(OT (x1) (2);

o[ X1 (D) x2(OT* (x1) (1) + x1 ()T (x2) (1)
(e) T = > )
x2(1) x5 (1)
(f) If x; is differentiable, then, T*(x;)(t) = tl_o‘%.

Riemann-Liouville derivative

Definition 2.7 [79, 92] Let’s define the fractional derivative of the continuous function x as

following

D& x(f)=— " ft X0 (1.7)
RL T PIN—o) diN Jo (£ —T)aH1-N T '

where DY, is called the Riemann-Liouville fractional derivative of ordor a withN -1 <
a<N,NeN*

Theorem 2.8 [79, 92] The Riemann-Liouville operator is linear such that
DY, [Ax1(8) + pxa(8)] = ADg; x1 (£) + uDgy x2(8). (1.8)
Caputo derivative

Definition 2.9 [79, 85] The function defined by

1 tox™Me aNx(1)
D%x(f) = ,xN (1) = ———
X0 I'N-a) Jo (z:—r)o‘ﬂ—l\ldT O

(1.9)

is called the Caputo derivative-integral, whereN—1<a <N, N e N*,

Remark 2.10 /56, 79] From definition (2.9) it follows that the Caputo derivative of constant

is equal to zero.



2. FRACTIONAL CALCULUS

Theorem 2.11 [85] The Caputo derivative-integral operator is linear and satisfying the re-
lation
DY [Ax1 (1) + pxz ()] = ADZx; () + uD & x2 (). (1.10)

2.3 Interesting conclusions and contrasts

The relationship between fractional derivatives in the Riemann Liouville sense and in the

Caputo sense is given by the following theorem
Theorem 2.12 [79] LetN—1<a <N, NeN* and x € C"([a, b]). Then

a N _n_l(t_a)i @)
Dx(t) =Dy [x(0)— X (@] (1.11)

i=0
The main advantage of Caputo’s definition of a fractional derivative over Riemann Li-
ouville’s definition is that Caputo’s definition allows for the consideration of initial condi-
tions that are commonly used in the resolution of fractional differential linear equations.
Additionally, the fractional derivative Riemann-Liouville of a constant is not bounded in
t=0.

In the following and based on [95], we will give some advantages of the conformable

derivative over the other fractional derivatives

¢ Conformable derivative performs well in product rule and chain rule while compli-

cated formulas appear in the case of the usual fractional calculation.

* Contrary to Riemann fractional derivatives, the conformable derivative of a con-

stant function is zero.

* As a generalization of exponential functions, Mittag-Leffler functions are funda-
mental in fractional calculus, and in the case of conformable calculus, the fractional

. . ©®o
exponential function x(f) = e« arises.

* Some functions in traditional calculus need Taylor power series representations at

specific points, but in the theory of conformable, they do.

e The conformable derivative preserves the properties of the usual exact derivatives

such as: quotient, product, chain rules, Rolle’s theorem, and mean-value theorem.

* Conformable derivative does not contain any integral terms, that make it much

more easier to apply on the fractional differential equations.



3. INTEGRAL TRANSFORMS

3 Integral transforms

In literature, different integral transforms have been proposed to solve differential equa-
tions and control engineering problems, for instance the Laplace transform, the Sumudu
transform, the Naturelle transform, and the Mellin transform, the most important char-
acterization of them is the possibility to manipulate numerous problems by changing the
domain of the equation [3, 4, 5, 25, 73, 72, 96, 97, 99, 106].

More recently, the fractional integral transforms has received much attention of many
researches, due to its importance and efficiency to solve the fractional differential equa-
tions, which has many applications in physics, electric circuit, engineering ....ect [41, 48,
67]. In this section, we will present a list of interesting rules and properties of Laplace and
Sumudu transform of a continuous function, then these integrals transforms in the frac-
tional case will be presented (conformable and Caputo derivative). Furthermore we will
give the relationship between this transforms. Moreover, we are interested in the study of
the one and two dimensional discrete integral -Z-transform [31, 93] which will be useful

in the fifth chapter.

3.1 Laplace transform

In this section, the Laplace transform will be introduced, this transform is the most classic
method and is widely used in several domains. We will begin by recalling some needed
definitions and theorems on this transform. Then the fractional Laplace transform will be
given.

Direct Laplace transform

Definition 3.1 [29] A function of variable t is said to be causal if it is zero for t < 0.

Definition 3.2 [83] A function x has exponential order a if there exist a constant M > 0.
Then
lx()] <Me*, Vi>T. (1.12)

Example 3.3 [83] Consider the function x such as
x(t) =12,

we have
|| =* <€, Vi>0, (1.13)

then x(t) has exponential order 3.



3. INTEGRAL TRANSFORMS

Definition 3.4 /31, 83] Let x : [0, +00) — R be a causal function. Then the Laplace trans-

formof x is

ZL[x(1)](s) =X(s),
0o (1.14)
:f e Slx(ndt.
0

The Laplace transform of a function x(t) does exist only if the above integral converges.

The following theorem gives the conditions of the existence of Laplace transform.

Theorem 3.5 [31, 83] If x is piecewise continuous function on [0,00[ and of exponential

order, then, the Laplace transform £ x| exists for Re(s) > a and converges absolutely.

Example 3.6 Consider the unit step function defined in [56] by the following formula

{ 0 if t<0,
x(t) = (1.15)
1 if t=0.

Now we will compute the Laplace transform of unit function (1.15), thus

+00
L[x®)](s) :f e Sldt,
0
1 +0o
et ,
S 0
we haves=x+1y, then
1 +00 . +00
_ e St — __exte—lty ,
S 0 S 0

The Laplace transform of the function x exists since |e_iy t| =1, thus, the convergence of the
integral depends only on Re(s) which is strictly positive. Therefore the Laplace transform of
unit function (1.15) is

X(v):%. (1.16)

Certain major Laplace transforms properties

Theorem 3.7 [31,83] For A€ R, eR, a € R* and for x, x; and x, are causal functions, we

describe the important and useful properties of the Laplace transform.

e Linearity



3. INTEGRAL TRANSFORMS

Llaxy +Px2](s) = AXi(s)+pXa(s),

e Integration

1
A =-X(8);
s

t
f x(t)dT
0

e Convolution

L xx2)](s) = L[x1](8) L [x2] (5) =X1 (8)X2(s),

with

t
(x1 % x2) (1) :fo x1(Dx2(t —T1)dT;

e Diracimpulse

L8] (s)=1;

e Multiplication by a scalar

L[x(at)](s) = %X(%)

The boundary properties are given in the following theorem.

§>0; (1.17)

(1.18)

$>0, (1.19)

(1.20)

(1.21)

Theorem 3.8 [29] Let x be a function admitting a Laplace transform X. Then,

1.

lim x(t) =lim sX(s);
t—+00 s—0

lim x(f) = lim sX(s).
t—0t S—+00

the envisaged limits exist.

(1.22)

(1.23)

10



3. INTEGRAL TRANSFORMS

Inverse of Laplace transform
Definition 3.9 [31] The function x is the inverse Laplace transform of X, denoted by £,

is provided by

L7X(9)] = x(0),

1 c—joo
= X(s)estds,c> 0.
2] Je+t joo

Example 3.10 We consider the function X defined by
1
X(s)=-,
s

we obtain the inverse Laplace transform which is the unit function (1.15) by using defini-

tion (3.9).

3.2 Fractional Laplace transform

In this subsection, we shall mention some interesting Laplace of conformable and Caputo

derivative properties of a continuous function.

Conformable Laplace transform

Definition 3.11 /1] Let x : [0, +00) — R be a causal function and 0 < « < 1. Then the con-

formable fractional Laplace transform (CFLT) of x is

Lo [x(1)](8) =X ($),

o _a (1.24)
:f e’ x(ndr°.
0

The conformable Laplace transform of a function x(t) does exist only if the above inte-

gral converges.

Theorem 3.12 [I] Let x : [0,+00) — R be a causal function and 0 < a < 1. Then the con-

formable fractional Laplace transform of conformable derivative of x is given by
Lo [T*x(D)] (8) = sXa(s) — x(0), s>0. (1.25)

In the following theorem, we give the relationship between the conformable Laplace

transform and Laplace transform.

Theorem 3.13 [I] Let x : [0, +00) — R be a causal function and 0 < a < 1. Thus

X (s) = 2| x(at)a | (s). (1.26)

11



3. INTEGRAL TRANSFORMS

The following theorem describes the Laplace transform of the some usual functions.

Theorem 3.14 [1] Considerc, a, p € R and for0 < a < 1. Thus

1.
Lalcl(s) ==, $>0; (1.27)
S
2. ,
i+
ffa[z"’](s):(xg(—,f‘), §>0; (1.28)
Sl+&
3,
ot 1
ZaletT|(s)=——, s>a. (1.29)
S—a

Caputo Laplace transform

Definition 3.15 [56] The Laplace transform of the fractional Caputo derivative of the func-
tion x is defined by

n-1
2[Dex(n)](9)=5"X(s) - ¥ 2P| (1.30)
k=0 -

whereN—1<a <N, N e N*, X is the Laplace transform of x and x®(t)| _, is the derivative

of order k of the function x at the point t = 0.

Some interesting properties of the Caputo Laplace transform are described in the fol-

lowing proposition.

Proposition 3.16 [56] Foranya€ R} andN—-1<a <N, NeN*, we have

(S) — S—(l+1.

a
1.
Z [F(a+ 1)

2. & [D“S(t)] (s) = s%, where § is the Dirac delta function.

3.3 Sumudu transform

Sumudu transform has many interesting and attractive advantages over other integral
transforms specifically the unity by providing the convergence when solving differential
equations and also the resolvability of problems without resorting to a new frequency do-
main [3, 4, 5, 99]. In this subsection, several terms and theorems related to the Sumudu
transform will be presented. Following that, the fractional Sumudu transform will be in-

troduced.
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3. INTEGRAL TRANSFORMS

Direct Sumudu transform

Definition 3.17 [99] We take into account functions with exponential order in the set </,
defined by

1]

o = {x(t)IEIM, 11, T2 >0, |x(0)] <Me Y, if te(=1) x [o,oo)},
the Sumudu transform X of a continuous function x, is represent by
(o)
S[x(t)](v):X(v):f x(vt) e_tdt, VE(—T1,T2), (1.31)
0
or a similar alternative
1 [ ot
S[x(t)](v) =X(v) = —f x(He vdt, v>0. (1.32)
VJo

The duality of Sumudu transforms with Laplace transform is provided by the succeed-

ing theorem

Theorem 3.18 [47] Consider x € &/ a continuous function and Xy, X, their integral trans-

forms Laplace and Sumudu respectively, Then

(3

1
Xo(v) = o Yv >0, (1.33)

or

Xa(5)

2
X1(8) = T s>0. (1.34)

© =

Example 3.19 [99] The Sumudu transfom of the unit function (1.15) is given by
X(v)=1. (1.35)

Certain major Sumudu transforms properties

Theorem 3.20 [47] For \ e R, B € R, a € R and for x, x; and x, a given functions, we repre-

sent the fundamental properties of the Sumudu transform.

¢ Linearity property

Slaxi +Px2](v) = AXi(v) +PX2(v), VE(-T1,T2); (1.36)

o Integral function

13



3. INTEGRAL TRANSFORMS

S = vX(v); (1.37)

t
f x(D)dt
0

e Convolution product

S[(x1 % x2) | () = vS[x1] (IS [x2] (v), V€ (~T1,7T2), (1.38)

where

t
(x1 % x2) (1) :fo x1(Dx2(t —T1)dT;

e Diracimpulsion

Q&nhm:v*;

* Multiplication by a scalar

S[x(an](v) =X(av). (1.39)

In the following theorem, the boundary properties are presented.

Theorem 3.21 [47, 99] Let X The Sumudu transform of function x which admit limits in
the neighborhood of 0 and co. Then,

1.
limx(¢) =lim X(v); (1.40)
t—0 v—0

2.
lim x(¢) = lim X(v). (1.41)
t—o0o V—00

Inverse of Sumudu transforms

Theorem 3.22 [15, 47] Let X(v) be the Sumudu transform of x(t) and we consider the fol-

lowing statements
1. vX(v) is a meromorphic function, having singularities Re (%) <y.

2. There exists a circular region ' of radius r such that
lvX @) <Mr~¥, (1.42)

where r and k are positive constants.

14



3. INTEGRAL TRANSFORMS

Therefore, the function x is represented by

1 Y+ioco 1
s—l[X(v)](t):x(t):Z—f ——evX(v)dv. (1.43)
Y

i Jy—ico UV

Example 3.23 [15, 47] Let be X(v) the Sumudu transform, such that

0 if v<O,
X(v) =
{1 if v=0,

then

x(0)=8"'[X()] ),

1 Y+iool t
=—— —evX(v)dv,
210 Jy-ico V

therefore, the inverse of Sumudu transform is given by

{0 if t<0,
x(8) =
1 if t=0.

3.4 Fractional Sumudu transform
Conformable Sumudu transform

Definition 3.24 [1] Over the following set of function

tC(

w5

&fa:{x(t) M, Ty, T2 >0,]x(2)| <Me , ift"‘e (—l)j X [0,oo),j:1,2},

then, the conformable fractional Sumudu transform (CEST) of the function x is defined by
Salx(D](v) =Xa(v),

1 [>° - (1.44)
:—f ew x(1)dt*, v>0,
vJo

wheredt® = t*"'dt and a €]0,1].

Theorem 3.25 [I] Let x : [0,+00) — R be a given functions, 0 < a < 1. Then, we have the

following property

1
Sa[T*x(0)] (v) = " [Salx(D](v) - x(0)], V>0, (1.45)

Theorem 3.26 [I] Let x : [0,+00) — R be an n-differentiable function and o such that, 0 <

15



3. INTEGRAL TRANSFORMS

a<1. Then,

Sa[x(0)] () = x(0)

Sa[T™x()](v) = o , VYneNand Vv >0, (1.46)

and as in [95],T"® is known as the conformable derivative operator of order n.

The following theorem describes the Sumudu transform of the some usual functions.

Theorem 3.27 [1] LetcandacR and0<a<1. Then

1.
ta Solx(O] (X +a
Sale¥T x(1)] = — v(” ) v>0; (1.47)
2.
Salcl() =¢; (1.48)
3. no F n
PO i L G L (1.49)
a’? v
4.
ar® 1 1
Sy | e ](v): Cous-. (1.50)
1-av a

Caputo Sumudu transform

Definition 3.28 The Sumudu transform of the fractional Caputo derivative (1.9) forN-1 <
a <N, N e N*, has the following form [68]

S[DIx(D)](w)=v~*

X(w) -y v*! x(k_l)(t)‘t_o). (1.51)
k=1 -

Some interesting properties of the Sumudu transform are described in the following

proposition.

Proposition 3.29 [14, 68, 99] We consider ac R} andN—-1<a <N, NeN*, then

(v) = v

L S[F(a+1)

2. S [Dg‘ﬁ(t)] (v) = v}, where 8 is the Dirac delta function.

Remark 3.30 The fractional Laplace and Sumudu transform preserves all the properties of

linearity, integral and convolution product of Laplace and Sumudu transforms.
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3. INTEGRAL TRANSFORMS

3.5 Comparison and discussion

In this subsection we will compare between the two transforms presented previously by

specifying their advantages.

¢ From the theorem (3.5) and the definition (3.17), we notice that the Sumudu have

fewer conditions of existence when compared to the Laplace transform.

* From the properties (1.21) and (1.39), we deduce that the Laplace transform change
definitely when multiplying by a scalar however the Sumudu transformation re-

mains unchanged.

e From the boundary properties in the theorem (3.8) and (3.21) of Laplace and Sumudu
transform respectively, we can notice that the neighborhoods in Sumudu transform

do not change when passing to the limit, unlike the Laplace transform.

e The unit function does not change its expression under the effect of the Sumudu

transform (1.35) contrary to Laplace transform (1.16).

Finally, we conclude that the most advantageous integral transforms is that of Sumudu.

For this reason, in the following chapter, we have opted to use the Sumudu transform.

3.6 _Z-transforms

The Z-transform is the discrete transform equivalent of the Laplace transform which is a

tool for automatic and signal processing.

Definition 3.31 /31, 93] The unilateral Z -transform of a discrete time function x(n) is de-

fined by the following formula

+00
X(2)=Z{x(m} =) x(n)z™". (1.52)
n=0
where x(n) =0 for n < 0.

Remark 3.32 [31] Any Z -transform must be accompanied by the region for which it con-
verges. To determine the convergence region, the Cauchy criterion is used on the following
series

+00

Y up=up+ur+up+..., (1.53)
n=0

which converges if

Hm [u,]7 < 1. (1.54)
n—oo

Some important properties will be given in the following [31] and [93].
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3. INTEGRAL TRANSFORMS

¢ Linearity: Consider that (U},) ;en, (W) nen @admitting z-transforms , o, p € R, then

ZaUp +BWyl(2) =aZ [Upl(2) +PZ[Wnl(2); (1.55)

¢ Derivation: we have
+00

X(2)= ) x(n)z™",
n=—o00
and
X +00
dd(zz) _ n;oo(_n)x(n)z—n—l’
therefore p oo
X(2)
z 2z _n;mnx(n)z ;

e Convolution : If y(n) is obtained by convolution of x(n) et g(n) , we only have

+00
ym= > x(mgn-m)), (1.56)
m=—oo
thus
+00 +00 +00
Yz = ) ymz =) Y x(mgnh-mz",
n=—o00 N=—00 M=—00
+00 +00
= | Y xmz || Y gn-mz "™,
m=—00 n=—o00
= X(2)G(2).

Inverse of Z -transforms

In [31], we obtain inverse of Z-transforms by using the definition of the Z-transform
provided by (1.52), multiplying the two members by z*~! and integrating along a contour

surrounding the origin and belonging to the convergence domain, we find

+00
X(2)z" dz f x(m)z " gz
i )

n=—0oo

+o0
x(n) Y 7 k=lgz,

n=—0oo

Finally, by applying Cauchy’s theorem, we have

1 +00
x(n)=— z7klgz.
2 I o
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4. PARTICULAR MATRICES

3.7 Z-transforms bidimentional

Theorem 3.33 [56] Consider the bidimentional Z -transform X(zy, z,) of the discrete func-

tion x;j represented by
oo OO

Z [xij) =) Y xijai's,, (1.57)
i=0 j=0
then, we have the following property
1. Z [Xis1,j+1] = 2122 [X(21, 22) — X(21,0) = X(0, 22) + Xoo);
2. Z [xi—kj+1] = 2, ¥ 22 [X(21, 22) = X(21,0)];
3. Z [xis1,j-1] = 2125 [X(21, 22) = X(21,0) = X(0, 22)];
4. Z[Xi—kj-1] = zl_kzz_l (X(z1,z2)];
5. Z [xin1,j] = 21 [X(21, 22) = X(0, 22)];
6. Z [xi,j+1] = 22 [X(z1,22) —X(21,0)];
with

00 . 00 .
X(z1,0) =Y xioz; ", X(0,22) = Y x0j2,” . (1.58)
i=0 j=0

4 Particular matrices

In this section, we recall some needed definitions and characterizations of non-negative,
positive, monomial and Metzler matrices, these matrices are used for analyzing the posi-
tivity problem in the four chapter . There are a large number of references on this notions,

we focus principally on the following references [13, 18, 51, 76, 82].

Definition 4.1 [13, 51] Let A € R"*™ be a non-negative matrix ifVie n,Vjem:a;j =0

i.e. if all its coefficients are non-negative, we denote this matrix by A= 0, or A€ R,

Example 4.2

[co RN

(1.59)

—
—
(= e\

A is a non-negative matrix.

Definition 4.3 [51] A is a positive matrix if A is non-negative and dk e n, Al e m: ay; >0
i.e. all these non-negative coefficients with at least one strictly positive coefficient, we will

note such a matrix A > 0.
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4. PARTICULAR MATRICES

Example 4.4

w o =
S =N

3
21, (1.60)
8

A is a positive matrix.

Definition 4.5 [51] A is a strictly positive matrix if Vi€ n,V j € m with a;; > 0 i.e. all these

coefficients are strictly positive, we will note such a matrix by A > 0.

Definition 4.6 [51] The matrix A € R"*" is called monomial if in each row and column

only one entry is positive and the remaining entries are zero.
Theorem 4.7 [51] Let A€ R"*" is monomial matrix if and only if A™1 € R"*",

Example 4.8 Let A be a monomial matrix.

0 0 3
A=|5 0 0]|eRr3S,
0 20
then, the inverse of this matrix is
1
0 - 0
5

3
Definition 4.9 [51] A real square matrix A = [a;l; j=1..n is called Metzler matrix if its off

diagonal entries are non-negative, i.e. a;; =0 fori # j.

Lemma 4.10 [60] Let A€ #y, if and only ifeA% eRY*" fort=0and0<a<1.

Example 4.11
-1 1 4 3
5 -2 1 2
A= , (1.61)
6 3 5 1
2 1 3 -1

A is a Metzler matrix.
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5. SCHUR COMPLEMENT

5 Schur complement

In this section, we provide some details and definitions of Schur complement [42] which
will be useful throughout the last chapter.
Let M be a matrix block of dimension (p + g) x (p + q) such that

A B
C D

M= , (1.62)

where A€ RP*P,Be RP*9, Ce R7*P and D € R9*4,

Definition 5.1 [42] Consider the matrix A is invertible, then the Schur complement of the
matrix A inM is
Sch(A,M)=D-CA™!B. (1.63)

Theorem 5.2 [42] Let M be a square matrix given by the formula (1.62), then
det(M/A)=detM/detA, (1.64)

where A is nonsingular matrix.

Theorem 5.3 [42] Consider M, A, and E are square nonsingular matrices. Then

A E, F
= and A= . (1.65)
C D Gy H;
Where A/E; is a nonsingular principal submatrix of M/E; such that
M/A=MI/E;) (A/E}). (1.66)

6 Conclusion

In this chapter, we recalled some fundamental notions and definitions of special func-
tions and some basic concepts of matrix theory. The different definitions of the fractional
derivatives and two most important integral transforms (Lapace and Sumudu) with their
properties are also presented. After examining their characteristics, the differences be-
tween them are identified, as a result, we have determined the most useful fractional
derivative applied in the following three chapters and the powerful method that play a
very important role in resolving fractional linear dynamic systems in subsequent chap-
ters. We also discuss the Z-transform, which is necessary in order to calculate the trans-

fer function of a certain class of one-dimensional and two-dimensional systems. The final
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6. CONCLUSION

section discusses certain Schur complement properties that will be very important in the
fifth chapter.
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Chapter 2

Fractional continuous-time linear

systems

1 Introduction

Recently, the concept of fractional calculus has been successfully used in control systems,
with many applications in various areas of science such as chemistry, engineering, and
electrical circuits [19, 20, 56]. In this chapter, we introduce a new class of fractional linear
systems based on the conformable derivative. The regular linear continuous-time system
with conformable derivative in unidimensional (1D) and two dimensional (2D) models
has received much attention in the last two years [16, 86, 89]. Our objective is to solve this
system using a recent and efficient method called the Sumudu transform, which is use-
ful for resolving fractional linear dynamical systems. Furthermore, we provide a solution
to a fractional linear system with Caputo derivative, and compare it to the conformable

derivative solution. Our focus is primarily on the following references [35, 62, 63].

2 State equations of fractional continuous-time linear sys-

tems

In recent years, the behavior of actual systems in numerous fields of science and biology,
engineering, electrochemistry and much more, have been modeled through fractional
differential equations [52, 55, 56, 60]. Linear time-invariant dynamic systems (LTI) of frac-

tional order can be described using the following fractional equations.

k l
> biD%y(8) =Y a;DPru(), 2.1
j=0 i=0
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2. STATE EQUATIONS OF FRACTIONAL CONTINUOUS-TIME LINEAR SYSTEMS

with a; and f3; for j=0,---,kand i =0,---, [ represent the fractional order derivatives
of the output y € R”! and input v € R™ and b; and q; for j =0,---,kand i =0,---,[ are
real coefficients.
Under some assumptions, the state representation for the system (2.1) can be expressed

as the following fractional continuous-times linear systems

ED“x (1) = Ax() + Bu(r), (2.2)
y(8) =Cx(t) + Du(n), (2.3)

where D% presents the fractional derivative operator of order a with0 <a <1, x € R™,
u e R™ and y € RP! are, respectively, the state, the control, and the output of the system.
E,A e R™M*™M B e R™M*™M C e RPP*™ and D € RP1*"™_ The boundary condition of the

system is given by x(0) = xp and ©(0) = 0.

Definition 2.1 /51, 19] Ifthe matrix E of the system equations (2.2) and (2.3) is non-invertible
i.edetE =0, then, the systems is called singular or descriptor system, Otherwise, If the ma-
trix E is invertible i.e detE # 0, the systems of equations (2.2) and (2.3) is called standard,

in addition if E = I, the system of equations is called standard or explicit.

2.1 Illustrative example

Let us consider the electrical circuit presented in [56] by figure 2.1, with0 <a <1

1

Figure 2.1: Fractional electrical circuit [56].

Using Kirchhoff’s laws we can write the equations

g Y g oo, Y g (2.4)
13 T 212, .
i, = I1+1i. (2.5)

Ry, Ry are the resistances, L1, L, are the inductances and i, which represents the con-
trol u(t), is the source current, then, using the conformable derivative, the system be-
comes

TEx(t) = Ax(t) + Bu(1), (2.6)
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3. SOLVABILITY OF FRACTIONAL DYNAMIC LINEAR SYSTEMS WITH CAPUTO

DERIVATIVE
i Ly -L2 -R; R 0
X(t) = ! ’ E= ! ’ A= ! 2 ’ B= ’
i» 0 0 -1 -1 1

and the initial condition

with

3 Solvability of fractional dynamic linear systems with Ca-

puto derivative

The purpose of this section is to present the solvability of singular and standard fractional
dynamic linear systems with Caputo derivative using the Sumudu transform which is dis-
cussed in [62, 63].

Consider the following fractional continuous-times linear systems

ED%x(1) = Ax(r) + Bu(1), 2.7
y(8) =Cx () + Du(1), (2.8)

where D* presents the Caputo derivative of order a with0 <a <1, x € R™, u € R"™ and
y € RP! are, respectively, the state, the control, and the output of the system. E, A € R"1*"1,
BeR™*™M CeRP*™ and D € RP1*"™ | The boundary condition of the system is given by

x(0) = xp.

3.1 Solvability of singular fractional dynamic linear systems with Ca-

puto derivative

Consider the system of equations (2.7) and (2.8), we have the following statement in [63]

1. det(E) =0;

N

v~ I%Ex(0) exists fori=1--- M O0<a<landve (—T,T12);

»

u(0) =0 and u() is provided;

I

. The pencil of the pair (E, A) is regular i.e

det(B—-v*A)"1#0, veC. (2.9)
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Theorem 3.1 [63] The state response of the singular implicit fractional dynamical system

with Caputo derivative (2.7) is given by

i

_ (i+Da-1 J
x(t) = Zq)l( F((z+1)(x)f( -1) u(T)dT+E—F(ia+l)x(0)

+Z¢ (DY Bu(s) + EDI'5(1)x(0),

(2.10)

where o is the fractional order of Caputo derivative, §;, i € N is the fundamental matrices,

d is the Dirac delta function and | represent the index of nilpotency of (v “E — A).

Proof. Using the Sumudu transform in formulas (1.31) and (1.51) the system of equations
(2.7) become
S[ED%x(1)](v) =S[Ax(£) + Bu(t)] (v).

Using the definition (3.28) and the linearity property , we obtain
X() = (E-v*A) ! (v*BU(v) + Ex(0).

As detE = 0 (non invertible matrix) and det(E — v®A) # 0, thus, there exists a Laurent

series expansion [78] and [80] about zero, which is given

(E—v*A) 1= Z(pl , (2.11)

i=—q

with p =rg(E) — deg(det(v™®E — A)) + 1 is the index of nilpotency of (v"*E —A) and ¢; are

the fundamental matrices. By applying the Laurent series expansion to the equation, thus

X(v)

( i ¢, v“") (u“BU(v)) + ( f b; v"“)Ex(O),
i=—p i

=—H
o) ) j .
— Uzq)l U(l+1)0(—1BU(U) + Zq)—l v(l—l)O(BU(V)

i=0 i=1
00 . u )

+Y Ed; v'*x(0) + ) db_; Ev™* x(0).
iZO l:l

Finally, by using the inverse Sumudu transform and the convolution product, we ob-
tain the appropriate result. m

For the case a =1, we find the same resultin [19, 51].
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Corollary 3.2 For a = 1, the state of the singular implicit fractional dynamical system of

equations (2.7) with Caputo derivative is given by the following formula

x(1) = Z ( f(t ' u(t)dt+E x(O))
o I +1) Ii+1)
O (2.12)
L0

(Bu“ V() +E8U~ ”(t)x(O))

3.2 Solvability of standard fractional dynamic linear systems with Ca-

puto derivative

Now, we consider the system of equations (2.7) and (2.8) and we suggest the following

statement given in [62]

1. det(E) #0;

N

vI%Alx(0) exists Vi e N, 0 <a<1and v € (—11,T2);

w

. u(r) is given;

>

The pencil of the pair (I, A) is regular i.e

det(l,— v*A) ' #0, veC. (2.13)

Proposition 3.3 [56] Let A € R™ ™™ be a matrix, for 0 < a < 1. Thus, the Laurent series is
given by
_1 (S5 . .
(I,— v*A) " =) A"V (2.14)

Theorem 3.4 [62] The state response of implicit standard fractional dynamical system with

Caputo derivative (2.7) is given by

00 iB i

_ - (i+1)a-1 lt—
x(1) = ,-;)F((iﬂ)a) (t ) u(T)dT+ZAF( +1)x(0), (2.15)

where a and I'is respectively, the fractional order, the standard Gamma function.

Proof. Using formulas (1.31) and (1.51), the system of equations (2.7) become
S[D%x()](v) =S[Ax(8) + Bu(n)](v).
Using the definition (3.28) and the linearity property of fractional Sumudu , we obtain

X(v) = (I, — v*A) ! (v*BU(v) + x(0)).
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By applying the Laurent series expansion of proposition (2.11) to the equation, thus

oo . . o . .
X() = Y AB"U@) + Y AT x(0),
i=0 i=0
Finally, by using the inverse Sumudu transform and the convolution product, we ob-
tain the solution. =

For a =1, we get the following result that is the same one as in [19, 56].

Corollary 3.5 Fora =1, the solution of the standard implicit fractional dynamical system

of equations (2.7) with Caputo derivative is given by the following formula

00 i i

t . S5 .
(t—D'u@dt+) A x(0), (2.16)

X = éf(z#l) 0 5 T+

where I is the standard Gamma function.

4 Solvability of fractional dynamic linear systems with con-

formable derivative

The objective of this section is the application of the Sumudu transform for solving sin-
gular and standard continuous-time linear systems based on the conformable derivative
operator.

We will consider the following fractional continuous-times linear systems

ET"x(£) = Ax(t) + Bu(1), (2.17)
y(1)=Cx(t) +Du(n), (2.18)

where T presents the fractional conformable derivative operator of order a with0 < a <1
, xeR™, ueR™ and y € RP! are, respectively, the state, the control, and the output of the
system. E,A e R™*™ B e R™*"™ CeRP*™ and D € RP**" | The boundary condition of

the system is given by x(0) = x,.

Lemmad4.1 Let x1,x2:[0,+00) — R be a given functions. Then, the conformable Sumudu

transform of the convolution product of x, and x, is defined by
Sa [(X1 % x2) (D] (V) = VS [x1 (E)](V)SalX2(D](V), v>0,
where

t
(x1 % x2) (£) :fo x1 (1% = 1%) xp(0)dT™
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DERIVATIVE

Proof. Using the relationship between conformable Sumudu transform and conformable

Laplace transform [1], we get

S (Gt % %2) (8)] (1) = ﬁfa[(m*xz)(t)](s)’ s_}%

_ Fan(Zln@h(s) 1 (2.19)
v ’ 1%

= USq[x1 (N (1)S[x2(D)](V),

)

where, %, is the conformable Laplace transform [46]. =

4.1 Solvability of singular fractional dynamic linear systems with con-

formable derivative

This subsection is devoted to present our main results. For this purpose, we will consider
the system of equations (2.17) and (2.18).
We take into account the following hypotheses which implies that the solution is im-

pulse free:
(i) Ex(0) and v~ 'Ex(0) exist for i:mand vE (—T11,To);
(ii) u(t) is specified for ¢ = 0;

(iii) The pencil (1E - A) is regular for all v € C.

Proposition 4.2 Let a €]0,1] and for all v > 0, the conformable Sumudu transform of the

conformable derivative of order (n — 1) of the function t'~*8(t) is given by
(n-Da 1« 1 1-a 1 .
Sa[T t S(I)](U):—lsa[t 8] (w)=—, VneN". (2.20)
v v

Proof. To proof formula (2.20), we will proceed by induction and we will use the proper-

ties of the function & given in [43].

1. First step: for n=1, we get

1 [e° [
Sa[t'78(0)] (v) = ;f 178 (r) e w t* 1 de
0

1 [ T
= —f d(t)e vadt,
vJo
using the property of & function, yields

So[t178(D)] (v) = %eo,

29



4. SOLVABILITY OF FRACTIONAL DYNAMIC LINEAR SYSTEMS WITH CONFORMABLE
DERIVATIVE

finally,
So[t748(0)] (v) = %

2. Second step: we assume that the expression (2.20) is true up to the order n —2 and

we proof that it stays true at the order n—1.

Fora € (0,1] and all v > 0, we have
Sq [T D195 ()] (1) = %fOOOT(n—Ua [17%5(7)] et 1% 1dr,
applying the definition of T"%, we get
Sq [T(n—l)(x tl—aﬁ(t)] (1) = %foooT(n—Z)a [Ta(tl—aﬁ(t))] e—,ﬁ—‘; 214y,
as the formula (2.20) is true for n — 2, we obtain
S [T V=5 (1)] (v) = %fowT“ [£1728(1)] e 1% 1ds,

by the use of the definition of T%, we find

1 [ a
So [T D5(1)] (v) = f gl [£1798()] e v 1% 1 dt

vl Jy dt
1 oo _ _
= UO (1-)t %8(r)e mdr

’

oo d &
7= [8(1)] e vadt
+f0 dt[ (D]e

using the property of the function §, it follows

So [T Ve =5(1)] (v) = U (1- @) O8(f)e tads
0

vn—l

1 oo o oo e
+ —f 6(t)e'%dt—f (1-t 98(He wdt|,
U Jo 0

finally, we obtain

1
Un—l

So [T Ve =%5()] (v) = So[t'78(0)] (v) = % VneN*,

By the extension of the series of Laurent [78] we find the following proposition.

Proposition 4.3 Let A, E € R™*"™ pe a real matrices with detE =0, then, we have
1 1o .
(—E—A) =Y o;iv't, v>o0, (2.21)
v i—u
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with p=rg(E)—deg (det(1E - A)) +1 represents the index of nilpotency of (1E - A) and ¢;

are the fundamental matrices, which depend on the regularity of E and satisfy
bi=(PoA) bo, VieN, (2.22)

and
G;E-pi-1A=0,0] =Ed; —Ad;_1, (2.23)

where ;¢ is the Kronecker delta.

In the following, we denote X, and U, the conformable Sumudu transform of x and u

respectively.

Theorem 4.4 The solution of the singular dynamical system of order « described by the

equation (2.17) is given by

00 ol t40 oo
x(r)=2¢i( L Ex(0)+ f uBu(T)dro‘)
i=0 ! o ol

alf il

W . )
+Y ¢ (BT"‘(’_D u(r) + ET*0-1 tl_o‘6(t)x(0)), (2.24)
i=1

where 1 = rg(E) — deg (det(LE — A)) + 1 represents the index of nilpotency of (LE—A), ¢;

are the fundamental matrices defined in proposition 4.3, and 6 is the Dirac delta function.

Proof. Applying the conformable Sumudu transform to the equation (2.17), we obtain
Sa [ET*x(8)] (v) =S¢ [Ax(£) + Bu(9)] (v), v>0.

The use of the linearity property of conformable Sumudu transform together with the

first property of the theorem 3.25, yields

B (Xa(v) —x(0)

” ):AX(X(V)+BU0((U),

which is equivalent to
1 1
[—E —A] Xa(v) = =Ex(0) + BUqy(v).
v v

As the pencil (E, A) is regular, so

-1
Xa(v) = %E—A] %Ex(O) +BUqy (V) |. (2.25)

Thanks to the formula (2.21), the relation (2.25) becomes

Xa@) = Y v Ex(0) + Y ¢;v" ' BUG(v),
i:—p i:—p
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by dividing the sum we get

Xa(v) = iq;i v'Ex(0) + §¢,~ v 1BUG(v)
" = (2.26)
+Y b v Ex(0) + Y ¢—jv M BUG(0).
i=1 i=1
Finally, by the use of the inverse conformable Sumudu transform and convolution
product, we obtain the theorem which represents the first result of this chapter. =
Theorem 4.4 can be expressed using the exponential expression and the formula (2.22)

as follow

Corollary 4.5 The state of the singular dynamical system of order a described by the equa-
tion (2.17) is given by

t*—1%

[ t
x(1) =e®T poEx(0) + f e A poBu(t)dt®
0

" | | (2.27)
+Y o (BT““—“ u(t) + ETG-D L‘l_O‘S(L‘)x(O)) :
i=1

where p=rg(E) — deg (det(1E — A)) + 1 represents the index of nilpotency of (1E - A), and
b; are the fundamental matrices defined in proposition 4.3, and 0 is the Dirac delta func-

tion.

Remark 4.6 Ifa=1, we find the state response of the singular dynamical system defined in
[30]

t
x(1) =e®A poEx(0) + f e AD pBu(t)dT
. e | (2.28)
+Y & (Bu V(0 + B8V (0)x(0)).
i=1

where p=rg(E) — deg (det (1E — A)) + 1 represents the index of nilpotency of (1E - A), and
b; are the fundamental matrices defined in proposition 4.3, and § is the Dirac delta func-

tion.

4.2 Solvability of standard fractional dynamic linear systems with con-

formable derivative

Let us, now, discuss the case where E is a regular matrix, i.e., detE # 0. For this case, we
assume that [E"1A] v’ x(0) exist for all i € N and v € (=71, T»). Hence, if detE # 0, the

Laurent series which is the extension of [78] are described by the following proposition
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Proposition 4.7 Let A, E € R™*™ be a real matrices with detE #0, then, we have

1 e
(—E—A) =Y o', v>o, (2.29)
v i=0
with &; are the fundamental matrices, which depend on the regularity of E and satisfy
;= (E'A) B (2.30)

Theorem 4.8 The solution of the implicit dynamical system of order a given by the equa-
tion (2.17) is

Z[E A’ E_lgBu(T)dT (2.31)
i=0 a'i

x(t) = Z [E~
i=0

Therefore, by using the exponential expression, we obtain

X t _
x(t) =e[E_1A]7x(0)+f el E™'Bu(t)dt®.

0

Proof. Thanks to the formula (2.29), the relation (2.25) becomes

X(v) =Y ;v Ex(0) + ) b v BUL(v),

i:O l:0

it follows that

Xo) =Y [ET'A] v/ + Y [E'A] BBy U ().
i=0 i=0

Finally by applying the inverse of conformable Sumudu transform and the convolu-

tion product, we obtain the solution. =

Remark 4.9 IfE =1, we obtain the standard dynamical system of order o« and the state is
AL Lot
x(t) = e*a x(0) +f e« Bu(t)dt®.
0
Furthermore, ifa = 1, the state of the standard dynamical system is

t
x(t):eA[x(0)+f A UBy(T)dT.
0

5 Experimental results

In this section, we present some illustrative academic and real examples in order to show

the efficiency and the accuracy of our approach. It must be emphasized that all examples
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were already discussed in [56, 63]. we always consider the fact that #(0) = 0.

Example 5.1 Let us consider, for a €]0, 1], the following system of electrical circuit given in

[56]
X1 X2
P —~
C, C,
R
R, % R, %
[~

Figure 2.2: Electrical circuit [56].

R1, Ry, R3 represent resistances, Cy, Cy the capacitances, and e the source voltage (the

control u(t) = e). Using Kirchhoff’s laws, we can write the equations

O BN PN RS d(xxz) (2.32)
e= x , .
T 1R\ b1y 2
e=R (c W dax2)+Rc 2y (2.33)
=R |bi—g 27 2b2— s 2 .
which are equivalent to
R; +R3)C R3C a* |x -1 0] |x 1
(R1+R3)Cy 3C2 av x| _ i o (2.34)
R3Cy (Ro +R3)Cy dr® 0 —-1|[x 1
The general expression of the system (2.34) is
ET*x(#) = Ax(t) + Bu(t), (2.35)

with boundary condition xy = Og2 and

B ((R1 +R3) Gy R3C; )
R3Cy (R2 +R3)Cs)’

-1 0 1
)B: )
;)

asdetE = [R1(Ry + R3) + RoR3]C1Cy #0, then,

A=

1 1 [R2+R3)C2 —R3C
detE| -R3C, (R, +R3)Cy)’
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1 —(Ro +R3)C R3C2 1 R,C
E-1a - (R2 +R3)Cp 3 andi1p o - [ReC2|

For e =1V, the solution of the electrical circuit is

t E_IA([(X_TO() Y
x(t):f e «  E7BdtY, (2.36)
0

which is the same one as in [60].

The solution with Caputo derivative is

~ 00 E t(t—‘r)(k“)o‘_l
X([):%(A A m T|B. (237)

To show the efficiency of our method we will plot, in the following figures, both solutions
together with the exact solution for different values of «. We assume that Ry = Ry = 10{2,
R3 =202, C; =Cy =100mF ant the input u(t) =e=1V.

0.9

0.8

o s 10 15 20 25 30

Figure 2.3: Comparison of the solutions x; and X; for a=0.4.

0.9

o8|
0.7 | /
06| I

o5l

1 and )
\

03
ozH /

/
0.1 4

o 5 10 15 20 25 30
time (s)

Figure 2.4: Comparison of the solutions x; and %; for a =0.5.
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1

Conformable

0.9

Caputo

0.8 / == y
0.7 / — — |

0.6 | .

ry and &

0.5
0.4 e 4
0.3} / 1
0.2t B

0.1 H -

o

o 5 10 15 20 25 30
ime (s)

Figure 2.5: Comparison of the solutions x; and X; for a =0.7.

ry and 7

o 5 10 15 20 25 30

Figure 2.6: Comparison of the solutions x; and X; for a=0.9.

Example 5.2 Let0 < a <1 and the following singular system

TEx(t) = Ax(t) + Bu(1), (2.38)

with

and the initial condition

Since
2+2v

4

1
det(—E—A): #0, Vv>0,
v

and p =1, it follows

N L O L R [V
-1= » P2m = yP2m+1 = , VmeN.
0o 177" 1o o) " Lo o

The state of the system (2.38) is given by

o _

=t [ e sl «
e« xon+ fpe & u(ndr

u(t)

x(1) = (2.39)
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However, with the Caputo derivative, we find

tiO(

o0 . 1 t .
Y (-1 mxo,l"'mfo (t—-p" y(nde

x(1) =|i=0 (2.40)

u(t)

For different values of o, u(t) =1, xo,1 =3, and xp2 =0, the comparison of the states be-
tween conformable derivative x(t) = [x1 (1), 1017, Caputo derivative [X(t) = [%; (1), ()T
is plotted in figures 2.7, 2.8, and 2.9.

2 and &

Conformable

Caputo

1y and &

Conformable
Caputo 1

ay and §

Figure 2.9: Comparison of the solutions x; and X; for a=0.8.

6 Concluding Remarks

In this section, the continuous-time linear systems based on the conformable derivatives

operator are introduced where another approach to compute there solutions are pre-
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sented. The main idea behind this approach consists on using the conformable Sumudu
transform which is recognized by its important properties. The singular and regular cases
are discussed and the method can be used for several practical applications as for instance
the electrical circuit. Through the numerical examples presented the final section, it easy
to see that the solution of dynamical systems with conformable derivative is consistent to
the classical derivative. More then that, it has been shown in [60] that for the conformable

derivative, the electrical circuit could be reach its steady state in a shorter time.
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Chapter 3

Controllability and observability

1 Introduction

In this chapter, we focus on the concepts of controllability and observability, which are
common terms in control theory. To make the analysis of controllability and observability
more straightforward, we will use the Weierstrass decomposition method. This chapter
is organized as follows: First, we apply the Weierstrass-Kronecker decomposition method
to the singular dynamical conformable linear time-invariant system. Then, we focus on
establishing the solution, controllability, and observability properties of this system. Fi-

nally, we conclude this chapter.

2 Weierstrass-kronecker decomposition method

Several authors have attempted to define the Weierstrass-Kronecker Decomposition Method
[30, 51, 56, 61]. In this section, we will show the Weierstrass decomposition of a singular
dynamical conformable linear time-invariant system in order to simplify the study of vari-
ous concepts such as positivity, stability, super-stability, controllability, and observability.
Assume that the system is regular, thus there exists a pair of nonsingular matrices P,

Q e R™*™ ag follows

G
Co

B; X1

PEQ =diag(I;,,N), PAQ = diag(A,,I,), PB = ,CQ= ,Q lx=x= (3.1)

2 X2

Where %; € R™ and X, € R™ with ny = 71y + fip, u € R, A; € R"*™, By € R"*"™, B, €
R%2*™ and N € R™*" is a nilpotent matrix of the nilpotency index y, i.e. N1 #0 and
NH = 0. Premultiplying the equation (2.17) of the singular dynamical conformable linear
time-invariant system by the matrix P and using the transformations (3.1), the system can

be divided into two following subsystems
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2. WEIERSTRASS-KRONECKER DECOMPOSITION METHOD

1. The conformable slow subsystem

Tx, (1) = A1x(t) +Bru(p),

{ o = A0+ B 52)
x10) = X
2. The conformable fast subsystem

NT®X2(8) = X2(8) +Bau(t),

{ () = B0+ Bul 53)
X2(0) = X2,
and the output of the system become

y(t) =C1x1(8) +Coxo(t) + Dul(r). (3.4)

The solution conformable slow subsystem (3.2) is given in the following theorem which
is the same one given in the previous section and in [60] of standard conformable slow

subsystem.

Theorem 2.1 The solution of the conformable slow subsystem (3.2), for initial condition

%10 € R™ and admissible input u(t) € R™ is given by

[

a 14 <«
1 (1) :eAl%fcm+f eM e Bu(t)drt® (3.5)
0
Theorem 2.2 The state of the conformable fast subsystem (3.3) for consistent initial condi-
tion X € R and admissible input u(t) € U is given by
-l . .
Bo() == 3 N (BT u(t) + NT* 1 ~8(1) %,(0)), (3.6)

i=0

where | represents the index of nilpotency of N, and 0 is the Dirac delta function.

Proof. Applying the conformable Sumudu transform, we obtain

Nﬁmw—@@
1%

) :Xga +B2Uo((l/),
which is equivalent to

1 - 1

[;N - Inzl Xoa(V) = ;ng (0) + BoUq(v),

and

1 -
Xoa(V) = ;N—Inz] [;NX2(0)+BzUa(v) , (3.7)
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Note that
1 B e
(—N—Inz) =—Y N'v7, (3.8)
v i=0
according to the formula (3.8), the relation (3.7) becomes
-l . p-lo
Xoa(@) == Y. N1y DNz, (0) — Y. N'v'ByUq(v).

i=0 i=0

Finally, by the use of the inverse conformable Sumudu transform and convolution

product, we find the state response of the fast subsystem (3.3). m

Theorem 2.3 The non-impluse solution of the fast system (3.3) with admissible input u(t) €

U and consistent initial condition X¢ = — Zt.l:_ol NB,T*u(0). has the form

o
X (0)==) N'BoT"u(s). (3.9)
i=0

Example 2.4 Consider the singular dynamical conformable linear time-invariant system

[—04 0 -05 0 (02 18 05 0] (-1 -3.6]
-02 0 0 O 04 04 0 0 0 -0.8
E= JA= ,B= ) (3.10)
04 1 05 O 02 -1.8 -05 0.5 -1 2.6
(02 0 0 0 |-04 06 0 0] [0 -02
and the input is given by
t20(
uy (1) o
u(t) = = & el (3.11)
uz(1) sin(—)+2—
o 2a
we have the pencil
1 1 1
det|[E——-A|= —0.05(— + 1) (— +2) #0,
v v v

is regular. then there exists a pair of nonsingular matrices P, Q € R™*™ described by

-1 3 0 1] (0 1 0 0]
0 -3 0 2 0 1
P= and Q = , (3.12)
1 0 10 00 0
(0 1 0 1] 002 0
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such that i .
1 000
b 01 0O
PEQ = = , (3.13)
0 N 0 0 01
0 0 0 0
(-1 1 0 o0
A 0 -2 00
PAQ = = , (3.14)
L 0 0 10
0 0 0 1]
and .
1 1
1 0 2
PB= = . (3.15)
B, -2 -1
0- 1
Therefore the slow and fast subsystem is represented by the following systems
T% (1) = Arxi(6)+Byu(y),
{ _1() _1 1(8) +Bru( (3.16)
x0) = X
with
-1 1 1 1
A= By = ) 3.17)
0 -2 0 2
and
NT®x, () = X2(t) +Bou(p),
{ () = B0+ Bul 518)
X2(0) = X2,
with
01 -2 -1
N= ,Bo= . (3.19)
00 0 -1

The state of slow subsystem (3.16) for initial condition x; (0) = X10 = [X101 X102]" is given
by

x1(8) = (3.20)

J_Cll(f)] 20

X12(1)
where
_ & & Y. 2a t® 3) & (1 «) &
X)) =e o« Xjp1+e «Xjp2—e O‘X102+52——(60(+2)—+ —70(—5 e «a+|—+—]e

x x

7 (to‘) 11 (to‘ (13 5)
+—sin|—|—-—cos|—|+|—a+ =],
10 o 10 o 2 2
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and
_ r® e (1 o) e 4 (%) 2 ™) (1 «
Xpp()=e “aXjp+—-(a+1) ——|—=+—-|e "« +=sin|—[—=cos|—|+|za+—|.
a a 10 2 5 o 5 [0 2 2
22)
The state of fast subsystem (3.18) for initial condition X,(0) = X0 = [1 0]" is given by
_ X21(2)
Xo ()= , =0 (3.23)
X22(1)
where ,
{04 04
2 4+ 2%+ cos (%) +sin (%)
X (1) = o (g , t=0. (3.24)
. tsin 7)
25 ; 12
— I - == i‘] ) p
20 / 10 ’
/ a ,/
15 ﬁ ,
& o 6 y
10 / /
d 4l 7’
e /
- ~
5 /./ 2 - 7
J/// P - -
0 ke 0
0 2 4 6 8 10 0 2 4 6 8 10
i(s) i(s)
Figure 3.1: The solutions of slow subsystem X;; and X;, for a=0.5.
50 25
a5 21 — — —Xoo
40 20
e
35 E Ve
e
30 15 /
. o
& 25 ' = p
20 / 10 -
-
V4
15 ,// b / -
e ~
10 S 5 - -
= s
o o
0 2 4 6 8 10 0 2 4 6 8 10

t(s) t(s)

Figure 3.2: The solutions of fast subsystem X»; and X»» for a=0.5.
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3 Controllability of singular dynamical conformable linear
time-invariant system

In 1960, Kalman introduced the concept of controllability which is of great importance
in the analysis and design of control systems [64, 65]. In recent years, the controllability
of fractional differential systems has received a great deal of attention [11, 12, 24, 100,
107]. The controllability of conformable differential standard systems is discussed in [2,
98]. Throughout this section, various concepts of controllability for singular dynamical
conformable linear time-invariant system will be established.

The following definition is an extension of definition of singular system given in [51,
61].

Definition 3.1 A singular dynamical conformable linear time-invariant system is called
controllable on [0,T] if for any state xo, x;, € R} there exists a control input u(t) : [0,T] —
R", then, we have the solution of the system satisfies x(0) = xo and x(t) = Xy, , such that
r €[0,T].

Based on [2] and [98] we obtain the following theorem.

Theorem 3.2 The conformable slow subsystem (3.2) is controllable on [0, t;] if and only if

the following controllability Gramian matrix

1—T

151
W, (0, 1) := f eM BiBle Al d°‘ (3.25)
0

is nonsingular.

Proof. Sufficiency. As W,[0, ;] is nonsingular, therefore its inverse exists. For any initial

condition x;(0) = x19 #0, we define the control as

u(t) = Xz, — AT F1o (3.26)

From the solution (3.5) we obtain

o

n- h AT o
x(t) =e Ao X10 + el" T« Biu(t)dtY,
0

&

151 t 0‘71
a1 2
=eMa x10+f et BlBTeAl @ W 10, 1)
0

(X

xtl—eA1 o« X190 | dT,

n* 1¢
AL
Xp—e T« Xy,

5] £ Q& T -
=M R0+ f M BBl M T dTW, (0, 1) (8.27)
0

17

n _ _ n%
—eME T+ We(0, WSO, 1) | xgy — € & 10|,

=Xt -
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Thus, the system (3.5) is controllable on [0, #;].
Necessity. We assume that the system (3.2) is controllable on [0, #;] and the matrix W, (0, ;)

is singular. then there exists an vector v € R™ such that

151 PR —1%

t(x
0=v"W,(0, tl)v:f plet™ s B1B¥eA¥ 5 vd®T,
" tlaqa" (3.28)
_ f JuT e By 2d0,
0

this yields

1 %-1%

vieM ™ By=0, Vtel0,nl. (3.29)

As the systems is controllable, then, there exist an input such that the initial state

x1(0) = x1¢ can be transformed to x;(#;) =0, we choose

tla

x10=—e May, (3.30)
then
5] 10X
x1(f) = —v+f M B, u(t)d*t =0, (3.31)
0
which implies
h a_ a
v= f M T B u(n)d, (3.32)
0

pre-multiplying the equation (3.32) by vT, we get
T h T A po= o
v v:f v el « Biu(t)d®t=0, (3.33)
0

which contradicts the fact that v #0, therefore the matrix W, (0, #;) is non-singular. m

On the other hand, we rewrite the solution of the fast subsystem given by

nl o . .
Bo()=— ¥ N (BT u(t) + NT* 1 ~8(1) %,(0)) (3.34)
i=0
in the following form
X () =W (8) X20 -~ WU(2), (3.35)
where
welooo
w()=—) NHTA %G (p), (3.36)
i=0
W= [Bg NB, --- NP—IBZ] : (3.37)
and
U(n = [u(r) T*u(t) - T(“‘D"‘] : (3.38)
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Theorem 3.3 The conformable fast subsystem (3.3) is controllable on |0, ;] if the matrix W

is row full rank.

Proof. We consider W™ is the pseudo inverse of the matrix W, we suppose that U*(¢) =

W (w(8)x0 + X2, ), then
X2(11) = W(0)x20 — WW™ (W(8)x20 + X214, ) = X211, (3.39)

by choosing U%(t) the system is able to transfer xz to x2;,, moreover, form U%(#) we can
deduce the control u(f). This is implies that the conformable fast subsystem is control-
lableon [0, £;]. m

The following theorem gives us conditions on controllability of conformable singular

linear system that are the same in [30].

Theorem 3.4 1. The conformable slow subsystem (3.2) is controllable if and only if

rank[sE—AB]=n;, VseC.

2. The following statements are equivalent

(a) The conformable fast subsystem (3.3) is controllable on [0, t;];

(b)
mnk[B2 NB, --- N”"lBZ]:ﬁg; (3.40)

(©)
rank[N Bz]:flg; (3.41)

d)
mnk[E B]:nl. (3.42)

3. The statements listed below are equivalent
(a) The singular dynamical conformable linear time-invariant system is control-
lableon [0, 1];

(b) the slow (3.2) and fast (3.3) conformable subsystem are both controllable on
[0, nnl;

(©)
mnk[B1 AB, --- A?l‘lBl]:m, (3.43)

and
rank[Bz NB, --- N“‘le]:ﬁg; (3.44)
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d)
mnk[sE—A B] —n, VseC, (3.45)

and

rank [E B] = ny; (3.46)

(e) The following matrixD € R (MmN gych that

'—A vee eee ... B
E -A -+ ... ... B

D=|..- E . v i cii B eer o], (3.47)

has full row rank.

Example 3.5 Consider the singular dynamical conformable linear time-invariant system
described by the equations (2.17) and (2.18) and

05 -0375 0 -1 2 0 1 O
E=| 0 025 Of,A={0 -1 O0f,B=j0 1], (3.48)
-0.5 -0.125 0 1 0 -2 -2 -2

the pencil (B, A) is regular since det(1E—A) = 0.25(1 +2) (3 +4) #0, then there exist two
matrices P and Q described by

200 1 075 0
P=10 4 0/,Q=]0 1 0 |, (3.49)
1 21 0 0 =05

if we choose the transformation (3.49) we obtain

1 00
L 0
=({0 1 0}, (3.50)
0 N

A O
=({0 -4 0 (3.51)
0 b
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3. CONTROLLABILITY OF SINGULAR DYNAMICAL CONFORMABLE LINEAR
TIME-INVARIANT SYSTEM

and
B,
PB= =0 4]. (3.52)
B>
We obtain the following systems
-2 2.5
T%% = X (0 + u(t),
0 -4 (3.53)
0 = %H0+[-1 o]u.

We define the Gramian matrix theorem of controllability on t € [0, 1] and we find that

1 1-1% 1-1%
W, (0,1): :f M B BTN %,
0

1 e_z(%J 1.25(e_2(%)—e_4(1_‘5a)) 2 0/[2 0
_fo 0 se (5 0 4110 4
o2 0

% -« -t¢ da »
125(6 2% ) 6_4(17)) 4e_4(1“ ) N

1«

1 _qof1=1* 1-t¢ 1-1%
29¢ (%) “50e (%) 1250 (%) 2007F) 2007
-f, o(152) _ g0l S 7T
20e « 20e « 16e «
392 29 -4(L), 50 -6(L) 25 _-8(1) 40 20 -6(% 0 _-8(%
[E—Te (a)+?e (a)—?e (0() E—F ((x)-}-l? ((x)]
40 20 -6(+) , 20 -8(% -8(= ’
E_Fe (0‘)"‘?6 (0() 2—2e (0‘)
(3.54)
fora=0.5 we have
det(W.(0,1)) =3.3841 #0. (3.55)

Therefor the slow subsystem is controllable since the Gramian matrix is nonsingular.

On the other hand, in the following the controllability of fast subsystem , will be examined.
We have u =1, then
rank(W)=rank(B,) = rank([—l 0]) =1. (3.56)

For consequent the singular dynamical conformable linear time-invariant system is con-
trollable on [0,1];
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4 Observability of singular dynamical conformable linear
time-invariant system

In this section, we focus on the notion of observability, which consists in finding and re-
building the initial state of a given system from its output data. The observability of non
homogeneous systems and standard conformable linear time-invariant control systems
was addressed in [2] and [10] respectively. In this section we will introduce the observ-
ability of singular dynamical conformable linear time-invariant system.

Consider the following singular dynamical conformable linear time-invariant system

ET%x(1) Ax(t) +Bu(nr), (3.57)

y(t) Cx(1). (3.58)
The solution of this system is composed of two part, as follow

X(t, u, xO) = xi(tr xO) + xu(t» u)Tkau))

where x; (¢, xo, T** 1) depends on the initial condition xy and x,(¢, u, T*® 1) is determined
by the input u(f) and its conformable derivatives,t € [0,00), then, the output can be ex-

pressed by the following form
7(1) = Cx; (£, x0) + Cxu (£, u, TFw).
For convenience, we introduce the output as
y(8) = 7(1) = Cxy(t, u, T*u) = Cx; (¢, x0),

therefore, the output y(t) is designed by the system input and output data of system of
equations (3.57) and (3.58). In addition, we introduce the the following system without

control, when x; (¢, x9) and y(#) are the state response and the output, respectively

ET®x(t) = Ax(r), (3.59)

Cx(1). (3.60)

y(1)

In this section, we present the observability of the system of equations (3.59) and (3.60)
, the problem is to reconstruction of the state x;(¢, xy) according to the output data y(t)
which is equivalent to the problem of reconstructing the state x(f, u, xo,TkO‘ u) of the sys-
tem of equations (3.57) and (3.58) from its input and output data.

Asin the previous section, we use the Weierstrass decomposition, and the system of equa-
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tions (3.59) and (3.60) will become

1. The conformable slow subsystem with initial condition X; (0) = X;¢

T%1 (1) = Aixi(0),
{ _1( ) 1_1( ) .61
n@ = Cix(1),
2. The conformable fast subsystem with initial condition X, (0) = X2
NT%x> (1) = Xo(1),
{ (0 20 .62
y2 () = CaXxa(2),

Definition 4.1 The system described by the equations (3.59) and (3.60) is observable if the

initial condition xy may be uniquely determined by the output data y(t), t € [0,00).

The above theorem is an extension of the theorem of linear independence in [40].

Theorem 4.2 Let 1 be a positive integer, and let x(t) be a continuous function that does
not equal to zero. As a result, the functions x(1),8(1), T™ (tl_o‘ﬁ(z‘)), withi=1---p—1are

linearly independent.
Based on [2] and [10], we obtain the following theorems.

Theorem 4.3 The conformable slow subsystem (3.61) is observable on (0; t1] if and only if

the observability matrix for the matrix pair (A, C) by

C

Ci1A;
rank

Il
S

(3.63)

-1
.ClAll )

Theorem 4.4 The conformable slow subsystem (3.61) is observable on [0, t1] if and only if

the observability Gramian matrix

o_
T %% b

I3} @
W, (0, 1) := fo M T C{CeM T d%, (3.64)

is nonsingular.

According to [40] we will obtain the following results.
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Theorem 4.5 Let the conformable fast subsystem (3.62), then, y,(t) =0, t = 0 if and only if

Co

CoN
ToeKer| . (3.65)

| CoNH1 |

Proof. The solution of the conformable fast subsystem (3.62) is given by
uoloo ;
X(t) = — ) N 748(0)]%2(0), (3.66)
i=0
for instance, y,(f) = Co X2 (1), thus, the output has the following form
Wl ,
¥2(1) = CoZp (1) = —Cp Y NI T 7%8(1)] %2(0) = 0. (3.67)

i=0

Applying the theorem (4.2), we obtain y,(#) =0 if and only if
CoN =0, i=0,1,2,---,p—1.

this is equivalent to

Cz
C,N
X20=0, (3.68)
| CoNH 1|
therefore
Cz
C:N
Xo0 € Ker .
| CoNH |

m

based on [40] we have the following lemma.

Lemma 4.6 The conformable fast subsystem (3.62) is observable if and only if

G
C,N

rank (3.69)

1l
>0
D

| CoNH~1
The following theorem represent the different conditions of the observability of con-
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formable singular linear system which are the same theorem in [30].

Theorem 4.7 1. The conformable slow subsystem (3.61) is observable if and only if

SE-A

rank =ny, SeCands finite (3.70)

2. The following properties are equivalent

(a) The conformable fast subsystem (3.62) is observable;

(b)
Co
C,N
rank ) = fly; (3.71)
| CoNH |
(C) r v
N
Ker =0; (3.72)
1G]
(d) ‘
N _
rank = fly; (3.73)
| C2 ]
(e)
E
rank =ni; (3.74)

3. The following statements are equivalents

(a) The conformable singular system of equations (3.59) and (3.60) is observable;

(b) Both its conformable slow and fast subsystems (3.61), (3.62) are observable;

SE—A

(c) rank =n, VseC, s finiteand rank =ni;
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(d) The following matrix

[-A E
-A E
-A E
C oer e e (3.75)
C
C.

is of full column rank n%

Example 4.8 Consider the singular dynamical conformable linear time-invariant system

represented by the equations (3.59) and (3.60)

100 01 0
E=|o 1 o|l,A=|1 0 -1 ,C:[o 1 1], (3.76)
00 0 00 1

since the pencil (E, A) is regular, then there exist two matrices P and Q described by

P= (3.77)

(==
—_ o O

00
1 1],Q=
01

(=R
(= -}

and the system of equations (3.59) and (3.60) becomes

T% = Ax(0),
NTx>(8) = Xo(1), (3.78)
y@) = Cixi(8) + Caxo(1),

with

01
,N:O,CI:[O 1],(:2:1. (3.79)
10

A=
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We compute the Gramian observability matrix on [0, 1], this yields

1 A T th(_T(X T A tgi.ra
WO(O,I)::f e’ T CyCre™ w d%,
0

11 1 1 1 0
:f 2 1-1¢ 2 1-1¢% 2 1-7% 2 1-1% [0 1]
o |1l T 1) 15 1)
1)1 ) 4l g ]
T
Ll ) 1 (5] 15 4 1)
fl 125 1 1.25) 12 1) .
= _LQ L et -
0 %82(1; —ie_z(l‘;) iez[lax)_i_%-i_;lle_z(l;) )
—%+%e§—%e_§ —i+%e'+%e‘§
B —i+%e§+%e‘§ $+%e§—%e‘§ ’
and
det (W-(0.1 2 1 212 1 12 1 2 1]°
=|—-ea —— o —_——— | —p« — oqO — —
et(Wo(0,1)) 5%° ~g¢ 162 [86 +8e 1
1 1 2 1

fora=0.5 we have

1 1
det 0,1)=—-1+—e*++—e*=2.4135#0.
(Wp(0,1)) 6 16 #

(3.80)

(3.81)

(3.82)

Since the Gramian matrix is nonsingular, then the conformable slow subsystem is ob-

servable. However, the observability of the conformable fast subsystem will be examined in

the following

Sinceu=1, then

rank W) =rank (Cy) =1.

(3.83)

For consequent the singular dynamical conformable linear time-invariant system is ob-

servable on [0,1].

5 Conclusion

In this chapter, we have applied the Weierstrass-Kronecker theorem on singular con-

formable continuous-time linear invariant system as an extension of the decomposition

of the regular pencil. For computing the solution, we propose using the Sumudu trans-
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form. New conditions for controllability and observability were established. The discus-

sion was illustrated by some academics examples.
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Chapter 4

Positivity, stability and super-stability

1 Introduction

For many years, positive systems have seen a dynamic evolution. The essential charac-
teristic of these systems is that the state trajectory is entirely in the non-negative orthant
if the initial state is positive (or at least non-negative). Moreover, one of the most crucial
components of dynamical systems is stability, which specifies the reaction behavior of the
system at infinity with regard to disturbances in the initial conditions. Kaczorek examined
positive standard and singular systems, and also their stability in [49, 50, 51]. The stability
of fractional positive standard and singular systems is addressed in [53, 54, 55, 56, 57, 58].
In the literature, the notion of superstability is also an important components in control
theory [59, 61, 87]. Superstable systems, in which the state vector’s norm monotonically
decreases to zero, are a specific kind of stable systems with more constrained dynamics
requirements. This chapter focuses on the study of the positivity of conformable singular
continuous-time linear systems, after that, we are interested in the notions of the stability

and superstability of this systems.

2 Positivity of conformable linear time-invariant system

Positive linear systems are commonly referred to be the active research area of mathemat-
ics due to its application in various field of engineering, management science, economics,
social sciences, biology, and medicine. In this section, the positivity of conformable lin-
ear time-invariant system will be dealt with in more detail as an extension of the positive

linear continuous-time system that can be found in [19, 51, 56, 60, 61].
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2. POSITIVITY OF CONFORMABLE LINEAR TIME-INVARIANT SYSTEM

2.1 External positivity

Firstly, we start with the definitions of external positivity of conformable linear time-

invariant system.

Definition 2.1 The standard implicit conformable linear time-invariant system of equa-
tions (2.17) and (2.18) is called externally positive if and only if the output corresponding
to the null initial state is non-negative for each non-negative input, i.e. for xo = 0 and
u(t) e R"™ for t € [0,00), the output y(t) € RY", t € [0,00).

Theorem 2.2 The standard implicit conformable linear time-invariant system of equa-
tions (2.17) and (2.18) is externally positive if and only if its matrix of impulse response

is non-negative, i.e. go(t) € R”'*"™ for t = 0 with gy is defined in the following.

The output of the implicit dynamical conformable linear time-invariant system de-

scribed by the equation (2.18) is given by
y(t) =Cx (1) + Du(1), 4.1)

substituting the solution (4.9) in (4.1) we obtain

1A ™ r IR .
y() = CeE 1A?x(0)+f Cef AT ET I Bu(t)dt® + Du(r). 4.2)
0

We replace xy =0 and u(t) = 8(t) in the output expression (4.2), we obtain the impulse

response g(t) of the system of equations (2.17) and (2.18) as following

Cef 'ATE-IB for t>0,
gallt) = (4.3)

Do6(t) for t=0.

Definition 2.3 The singular conformable linear time-invariant system of equations (2.17)
and (2.18) is called externally positive if for xo = 0 and any non-negative admissible control
u(t) =2 0 with T*"®* Dy e R™, k=1,---,, t € [0,00), the output is also non-negative i.e.
y(£) =0 fort>0.

Theorem 2.4 The singular conformable linear time-invariant system of equations (2.17)
and (2.18) with D = 0 is said to be externally positive, if and only if, its matrix of impulse

response gy (1), is non-negative for t = 0, i.e., g(t) € RY"“"™ which is defined by
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Substituting the solution (2.27) in (2.18) we obtain

£ t (X
y(£) =Ce®AT poEx(0) + f Ce®A T poBu(t)dt®
0
" _ . (4.4)
+Y Co_; (BT““—Uu(t) + ET0-D tl‘“a(t)x(O)) + Du(n),

i=1
We replace xo = 0 and u(t) = 8(¢t) in the output expression (4.4), we obtain the impulse

response g(t) of the system of equations (2.17) and (2.18) as follows

CePATpoB for >0,

()= X j
& CePAT poB+ XY Cp_; (BTU-D8(n) +D3(1) for t=0.

(4.5)

2.2 Internal positivity

Secondly and in this part, we’ll discuss the internal positivity of the conformable linear

time-invariant system.

Definition 2.5 [60] The standard implicit dynamical conformable linear time-invariant
system of equations (2.17) and (2.18) is called internally positive if and only if for any initial
condition xo € R}' and all admissible inputs u(r) € R", t € [0,00) we have x(t) € R}' and
y(1) eRP, t € [0,00).

Theorem 2.6 [60] The standard implicit dynamical conformable linear time-invariant sys-

tem of equations (2.17) and (2.18) is internally positive if and only if
A€ My, BERT™ CeRP™ DeRP™,

Definition 2.7 The singular conformable linear time-invariant system of equations (2.17)
and (2.18) is called (internally) positive if for any consistent initial condition xy € Xy < R
and all admissible inputs u(t) € U c R, t € [0,00) such that T** Dy(r) e RT", k=1,.., 1,
t € [0,00) we have x(t) € IR%_’Z1 and y(t) € [szl, te[0,00).

Definition 2.8 The singular conformable linear time-invariant system of equations (2.17)

and (2.18) is weakly positive if and only if
pixn p1xm
A€My, BRI BeR™ CeRY ™™, DeRy ™.

Remark 2.9 Internal positivity implies external positivity but the reverse implication does
not hold.

Now, we consider the non-impulse solution of the singular conformable linear time-invariant

system of equations (2.17) and (2.18), since in several application of physically systems
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the Dirac impulse and its derivatives does not appear because it does not impact on the
trajectory just in £ =0 [61], for this reason we can neglect this part of solution when ¢ >0
and assume the consistant initial condition x( € Xy. Accordingly, we will present the fol-

lowing theorem.

Theorem 2.10 The non-impulse solution of the singular dynamical conformable linear
time-invariant system of equations (2.17) and (2.18) for initial condition xy € Xy and ad-
missible input u(t) € U has the following form

X%

% ! s ol
x(£) =2 poExo + f A5 )q)OBu(T)dTO‘
0

1 , (4.6)
+ BT Vy(),
i=1
and the consistant initial conditions are provided by
H :
X0 =oEc+ ) b BTV u(0), 4.7)
i=1
where, c € R™ is an arbitrary vector and ¢y, k=—W,---,—1 are the fundamental matrices.

Proof. Let’s derive the solution (4.6) and pre-multiplying by E and using the exponential

expression, we obtain

o fo's) t(x(i—l) t (t(x_.r(x)i—l o
BT = (B gy, B o
0 .
+EpoBu(t) + Y Ed_;BT*Pu(1), (4.8)

i=1

Alternatively, we have

t-(xi t t(x_.l.(x i
— Ex0+f #Bu(ﬂd‘r“
alil 0 ali!

Ax(1) =) A,
i=0

1!
M .
+Y Ad_ BT Dy(p). (4.9)
i=1
According to the (4.3) we have
G;E-bi-1A=0=Ed; - Ab,_, (4.10)

where i #0, then

0 ) ! .
ET%x(t) — Ax(£) = EpoBu(t) + Y Eb_;BT*Vu(r) - Y Ab_;BT* Vu(t) =Bu(r), (4.11)
i=1 i=1
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as E¢p_, =0and E¢po—Ad_; = I, then, the non impulse solution (4.6) verifies the equation
(2.18). =

Theorem 2.11 The singular dynamical conformable linear time-invariant system of equa-

tions (2.17) and (2.18) is (internally) positive if

GoA € My, poE € RT™, p;BeRT™ i =—y,...,0,
5 5 (4.12)
CeRP*™M DeRI™,

where ®;, i = —q,...,0 are the fundamental matrices given in proposition (4.3).

Proof. Based on Definition 2.7, we have xo € Xo < R}" and T'*wu(f) e U cR"™ for i =0... —
1, t € [0,00) and the lemma (4.10). This implies that, x(#) € R} if poA € My, GoE € RT ™™,
and ¢;Be RY**™ i =—,...,0. On the other hand, by substituting (4.6) in (2.18) we obtain

(X

o t [ .
y(t):c(e‘POA%cpoEx(oH f e poBu()dt® + Y ;BT V()
0 i=1

+Du(t). (4.13)

Therefore, y(¢) € R?" for ¢ € [0,00) if Ce R””™ and D e R”"*"™' . m

Example 2.12 Let’s consider the example (5.2) and from (4.12), it follows that

[—1

0
0 €My, poE=

nyxny
eR ,

GoA =

E[R 11 (.b |B—
+ ) -

nyxmg
eRy .

_0

Thus the singular dynamical conformable linear time-invariant system of example (5.2) is

positive.

In this part, we will extend the notions of positivity on the subsystems (3.2) and (3.3).
A sufficiently and necessary conditions for positivity of singular dynamical conformable

linear time-invariant system are provided by the following theorem.

Theorem 2.13 Consider the decomposition (3.1) for a monomial matrix Q € R™*™™, then,

singular dynamical conformable linear time-invariant system of order o is positive if and

only if
A1 E./%fll, B1 € RTXVM’ C1 ERflxnl, C2 € Rflxnz,

DeRPV™ _N'B, e R™*™ j=0,1,..,u—1.

Proof. Based on lemma (4.10) , if A; € .4z, and B; € R”*™ we have x(1) € R"" if %(t) € R
and as from the theorem (4.7) %10 =Q 'xjo € IR%?1 and the definition (2.5) u(t) € R}". On

the other hand for the second equation, if —N‘B, € Rigxm, i=0,1,..,nu—1, we find that
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%, € R"2, since from definition (2.7) T*u(t), i =0,1,..., it — 1, therefore x(f) € R}'. For C e

RP™ and D € R?™™ we obtain y(t) € R”" since from x(¢) e R} and u(t) e R . m

Example 2.14 We will consider the example (2.4) of the preceding section

-1 1 11 01 -2 -1
Al— ,B]Z ’ = ;BZZ ’ (415)
0 -2 0 2 00 0 -1
and
2 1 01
—-B2= », —NB2 = ’ (4.16)
0 0 0

given that the matrix Q in (3.12) is monomial, for positive initial condition X9 and xyo €

R2*! and positive input u(t) € R2*!, we have
A| € Mo, By € R¥*%, By € R**? and — NB, € R?*2,
Therefore, the singular dynamical conformable linear time-invariant system is internally

positive since both the slow and fast subsystem (3.16) and (3.18) are positive.

3 Stability of positive singular dynamical conformable lin-

ear time-invariant system

In this section, the stability of positive singular dynamical conformable linear time-invariant

system will be investigated.

Consider the positive singular dynamical conformable linear time-invariant system of
order a without control i.e (u#(#) = 0). Notice that X»(¢) = 0 and the stability of the positive
conformable system of equation (2.17) only depends on the stability of the conformable

slow subsystem (3.2) represented by the following equation

T % (D) =A%, (), %1 €R™, A € My, 4.17)

Definition 3.1 [60] The positive singular dynamical conformable linear time-invariant

system of order o is called asymptotically stable if
lim_%1(1) =0 for any 1o € R™ andu(r) =0. (4.18)
—+00

The stability requirement of the positive standard conformable system given in Kaczoreck

(2018) [60] is represented by the following theorems.
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Theorem 3.2 The positive singular dynamical conformable linear time-invariant system
of order « is asymptotically stable if and only if one of the following equivalent conditions

is verified.

1. There exists a vector v\ = [vy--- Vi), vk >0, k =1,..., that is strictly positive such
that
Ajv<0. (4.19)

2. The coefficients of the following characteristic polynomial of the matrix A,
detll; s— A1) = sy aﬁl_lsﬁl_l +---+a1S+ ap, (4.20)

are positive, i.e., ap >0 fork=0,1,--- ,i; — 1.

3. The principal minors of the matrix

an -0 i
Aj=-A;=| ¢ - I (4.21)
anll dfllfll
are positives, i.e.,
_ ap ap
a; >0, _ _ >0,---,det[—A;] > 0.
ay dpp

Example 3.3 For the same example above, the positive system (4.17) is asymptotically sta-

ble since the Metzler matrix A is stable with eigenvalues s; = —1 and s, = —2.
1. There exists a strictly positive vector v' =[2 1] > 0 such that

-1 11/]2
A1U:
0

1

<0. (4.22)
-2

2. The coefficients of the characteristic polynomial of the matrix A
det[l,s— A1l =s°+3s+2, (4.23)

are positive, i.e., ap >0 for k=0, 1.

3. The principal minors of the matrix

- an  ap

Al=-A = , (4.24)

ar1 ap
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are positives, i.e.,
a11=1>0,det[-A;]=2>0.

4 Superstability of positive singular dynamical conformable

linear time-invariant system

This section stands for the superstability of positive singular dynamical conformable lin-
ear time-invariant system.

Asinlast section, the super-stability of positive singular dynamical conformable linear
time-invariant system of order a« depends only on the superstability of the slow subsystem

described by the following equation
TR () =A% (1), % €R™, A€ My, (4.25)
Based on [61] we will obtain the following results
Definition 4.1 [61] Let X € [RQT , the co-norm of a positive vector X has the following form
X1 lloo = max | %1l (4.26)

Definition 4.2 [61] The 1-norm of a matrix Ay = [a;;] is given by

7y
IA1lh = max (Z |a,-j|). (4.27)

<I=m j:1

Definition 4.3 [61] The matrix A; € My, of the positive singular dynamical conformable

linear time-invariant system of order « is called superstable if

ny
o(A))=0o= min |-a;— )Y laijl|>0, (4.28)
1<ism j=1,j#i

where a (A1) denotes the degree of superstability of the matrix A,. If the matrix is super-

stable, it must also be stable, but the converse is not true.
Lemma 4.4 IfA; is a superstable matrix, we have
AL ot
e« <e " a. (4.29)
Theorem 4.5 Ifthe conformable system is superstable, then

(04

.
Ix1(Dlloo < llxollcce™ «,  £20. (4.30)
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4. SUPERSTABILITY OF POSITIVE SINGULAR DYNAMICAL CONFORMABLE LINEAR
TIME-INVARIANT SYSTEM

Although the superstability guarantees a monotonic decline in the state vector’s norm, some
state variables may oscillate. The key distinction is that the equation (4.30) for asymptotic

stable systems is replaced by

%1 (D llco = b(A1, vl)llxollooe_”l%, 0<1 < 1“?1% {—Res;}, =0, (4.31)
<I=m

where the initial state vector of the trajectory allows the constant b(A1, v1) to take on signif-

icant values. Such undesired "peaks" do not exist in superstable systems [61].
Example 4.6 Let us consider the following positive conformable system

T% (6) =A1 %1 (1), O<a<l, (4.32)
-6 3

—4
The eigenvalues of the Metzler matrix A are s1 = —6 and s, = —4, then the system (4.32)

where A = € My and x; € Ri.

is asymptotically stable. We have o =3 > 0 and the system is also superstable.

The solution X1, and X2 and the norm of the solution | x| of the positive stable con-

1.5

formable system (4.32) for initial conditions X1o = is represented in the following fig-

ures

Z1 | [—[Z4]]
-—-X2 ‘ '

(=]

05}

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t(s) t(s)

Figure 4.1: The solutions and norm of state vector of the positive stable conformable system (4.32)
X171 and Xx;» for a=0.5.

Example 4.7 Now we consider the following positive conformable system

T%% () =A1%1 (1), O<a<l, (4.33)

with Ay = , the eigenvalues of the Metzler matrix A, are s; = —6 and sy = —4, then

the system (4.33) is asymptotically stable. We have o =0, then the system is not superstable.
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5. CONCLUSION

the following figure represents the solution X1, and X, and the norm of the solution | X || of

1
the positive stable conformable system (4.33) for initial conditions )’cio = [2] .

2.5 - v v v - 25¢

T -—|'4’1|j

2 ———.'I'lg {

Figure 4.2: The solutions the and norm of state vector of positive stable conformable system (4.33)
X271 and Xos for a=0.5.

The difference between the two examples appeared in figures (4.1) and (4.2).
From figure (4.1) it is clear that the state vector’s norm declines monotonically for ¢ —
+00, however as can be seen in figure (4.2), the state variable X;( increases highly above
the initial condition, and the state vector’s norm does not decrement monotonically for

t — +o0.

5 Conclusion

This chapter was devoted to the presentation of several specific definitions of positivity
which was extended in singular conformable continuous-time-linear invariant system.
We have established a new conditions for the positivity. Firstly, by using a non-impulse
solution of this system that has been given and proven and also by using the Weierstrass-
Kronecker method. Then, sufficient and necessary conditions of asymptotic stability and
super-stability of this positive system have been proposed. A numerical examples are

given for approved the results obtained.
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Chapter 5

H,, Norm of 2D digital filters

1 Introduction

Over the past few decades, bidimensional digital signal processing applications have ex-
panded significantly. The signal is exposed to the unwanted parts, as random noise. For
this reason, we need to introduce the concept of filters. Their main objective is to remove
undesirable components from a signal. For instance, it is possible to enhance a wideband
noise-damaged image without introducing edge blur [75]. The analysis and design of a
2D digital filter can often be greatly simplified when the filter is separable in the denom-
inator [45, 70, 77]. In this case, the analysis and design of the 2D filter reduce to those
of 1-D filters; thus, the well-established techniques for 1-D filters (e.g., stability analysis,
realization, Hy, control, etc.) can be applied [94].

The Ho, norm of a stable transfer function is appeared in [23, 37]. There are different
methods for calculating the Hoo-norm for the 1D system [21, 23, 26, 38, 39]. In this chap-
ter we propose a practical algorithm to compute the Ho, norm of 2D separable recursive

causality filters modeled by the Roesser Models as an extension of the work in [22].

2 Transfer function

The dynamic system receives actions (assimilated to commands or controls) and sends
back information, thus, it can be defined as a mathematical relationship between its in-
put and output data. In control theory, the transfer function of a system is a widely used
concept, it is a model of input/output behavior which is obtained from the linear differ-

ential equation with constant coefficient [51].
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2. TRANSFER FUNCTION

2.1 Transfer function of unidimensional system (1D)

Consider the dynamical discrete-time linear system represented by the following equa-

tions

Xi+1=Ax; +Bu;, (5.1)
yi=Cx; +Du;, (5.2)

where x; € R™, u; € R"™ and y; € RP! are, respectively, the state, the control, and the
output of the system. A e R™*™ B e R™M*"™ CeRP*™ and D € RP**™ Furthermore the
system isregulari.e (det(zl — A)) # 0. By applying the Z-transform to the discrete system of
equations (5.1) and (5.2) we transform the difference equation to the algebraic equation,

so in order to find y as a function of u, we have to find Y as a function of U.

zX(z) = AX(2) + BU (2), (5.3)
Y(z) =CX(2) + DU (2). (5.4)

We need to eliminate X(z) from the output equation in order to find the relationship
between Y(z) and U(z).

First, we resolve the state equation (5.3) since (det(zl,, —A)) #0, we get
X(2) = (2ln, —A) ' BU(2),
when the expression for X(z) is substituted into the output equation (5.4), we obtain
Y(2)=C|(zly ~A) ' B+D]U(2).

Therefore, the transfer function of discrete system of equations (5.1) and (5.2) is given
by

=C(I,,z—A)"'B+D.
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2. TRANSFER FUNCTION

2.2 Transfer function of bi-dimensional system (2D)

Consider the 2D Roesser models represented by the following state space equations

x"(1+1, x"(i,
O N A I (5.5)
x"(,j+1) B
o [x" (i, )| .
ya,j) = €| 7 | +Duli, ), (5.6)
[ x" (1, )|
where
A Ap B
= y D= ;C:[Cl Cz],
Ap1 A B,

where x"(i, j) € R™ and xV (i, j) € R™ are the horizontal and vertical state vectors at (i, j) €
Zyx7Z.,u(i,j)eR™and y(i, j) € R” are the input and the output vectors, respectively and
A;j e R"™ Mg, j=1,2,B; e R"*™Mj=1,2,C; e RP*™, D e RP*™,

We suppose that the system of equations (5.5) and (5.6) is regular and applying the bi-

dimensional Z-transform on this system, we obtain

21XM(z1,2) = AnX"(21, 22) + A12X" (21, 22) + B1U (21, 22), (5.7)
X" (21, 22) = An X" (21, 22) + A2X" (21, 22) + B U (21, 22), (5.8)
Y(z1,22) = C1X" (21, 20) + C2X" (21, 22) + DU (2), (5.9)
which implies that
(211n, — A1) X" (21, 22) — A12X" (21, 22) = B1 U (21, 22), (5.10)
(226, — A22) X" (21, 22) — A1 X" (21, 22) = BoU (21, 22), (5.11)
and
Y(z1, 22) = C1X (21, 22) + C2X" (21, 22) + DU (21, 22),
we obtain
2L, —A ~A X"(z1, 20)
14in; 11 12 1,42 _ BU(Zl, Zz), (512)
—Ag; 2o, — A2 | | XY (21,22)
(5.13)
and
X"(z1, 22)
Y(Zl, Zg) =C +DU (Zl, Zg). (5.14)
Y(z1,22)
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3. 2D ROESSER CAUSAL RECURSIVE SEPARABLE DENOMINATOR MODELS (CRSD)

In the beginning, we solve the state equation (5.12) since the system of equations (5.5)

and (5.6) is regular, then

-1

X" (z ,Z
(21, 22) BU (21, 22), (5.15)

XY(z1, 22)

211y, — Ay —Ajp

—Ag; 20y, —App

by substituting the expression of the state equation (5.15) in the output expression (5.14),

we get
-1
2L, —A “A
Yz, z)=C| " Y 12 BU(z1,22) + DU (21, 22), (5.16)
-A21 21y, — Ao
and »
2L, —A “A
Y(z1,20)=|c |7V ! 12 B+D|U(z, 20). (5.17)
—Ag; 2p1n, — Ao

As a result, the transfer function of discrete system of equations (5.5) and (5.6) is pro-
vided by

Y(z, z
G(z1,22) = M,
U(z1, 22)
-1
z1l,, — A -A
_c|?m—An 12 B4D.
—-A2 2205, — Ao

3 2D Roesser causal recursive separable denominator mod-

els (CRSD)

2D filters can be divided into two classes non-recursive filters (finite impulse response
(FIR)) and recursive filters (infinite impulse response (IIR)). For the recursive processing,
the output is a function of all previous outputs and the current and previous inputs [45]
and [75]. This filters can be represented in the state space model, as with digital 1D fil-
ters. To describe the behavior of filters, a combination of internal signals identified as
the variables of state, the main advantage is that digital filters can be described in terms
of matrices, which makes it easy to manipulate. A number of authors have presented
models for 2D digital filtering in state space model, including Attasi [6], Roesser [88] and
Fornasini-Marchesini [36] and others. In this section we consider the 2D Roesser models

described by the following state space model
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3. 2D ROESSER CAUSAL RECURSIVE SEPARABLE DENOMINATOR MODELS (CRSD)

x"(I+1, x"(,
( 7 = A (.7 +Bu(i, j), (5.18)
x'(i, j+1) | xV (i, ) |
. X", j)] .
yi,j) = C +Du(i, j), (5.19)
| xV (i, )|
where
Ay A B
A= 1 2 ,B: 1 ,C:[Cl C2:|’
Az Ay B,

and x"(i, j) e R™, xV(i, j) € R™ are the horizontal and vertical state vectors, respec-
tively, u(i, j) € R? is the input vector, y(i, j) € R7 is the output vector and the matrices A,

Ay, A3, A4, By, By, Cq, Cy, and D are real matrices of compatible size.

Definition 3.1 [45] A causal system is a system whose output signal depends only on the

internal values (past or present).

Example 3.2 The system of equations (5.18) and (5.19) is causal since the output in the
equation (5.19) depends only on the present value (xh(i, j) and x" (i, j)).

Theorem 3.3 [94] The 2D filter represented by equations (5.18) and (5.19) is minimally

separable if and only if one of the following two sets of conditions holds

1. A3=0and
-A>, B
rank S p;
-C, D
2. Ap=0and
-As B
rank =p.
-C; D

Theorem 3.4 [94] The transfer matrix of the system of equations (5.18) and (5.19) is given

by
-1
Lizi—A —-A B
Gz =C G| 2 ' +D. (5.20)
—A3 1422 —A4 Bg
If the condition (1) is verified, our system can be written as
G(z1,22) = G1(21)G2(22), (5.21)
such that
Gi(21) =Ci(z1h —Ay) "By + Dy, (5.22)
G2 (22) = Co(22ls —Ag) "' Bp + Dy, (5.23)
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4. Ho, NORM

with the following matrix factorization

Ay B

o b [Cz Dz] . (5.24)

Dy

If the condition (2) is verified, the system of equations (5.18) and (5.19) can be written as

G(z1, 22) = G2(22)G1(21), (5.25)

where
Gi(z1)=Ci(z11 —A)) " 'By + Dy, (5.26)
Ga(22) = Co(221y — Ag) "' By + Dy, (5.27)

with the following matrix factorization

By
D,

A; B,
C, D

[61 f)l] . (5.28)

4 H,, norm

This section focuses on the computation of H,, norm 2D Roesser CRSD models based on
a simple process of the singular values of a stable rational transfer function matrix and
the parahermitian matrix function of 1-D filters.

The Hoo-norm of a rational transfer function G(z), y* = |Gll#,, is bounded if and only if it
is stable [28].

Definition 4.1 [39] Let ¢ : C — C™*"* be a matrix function maps the complex variable s
to a complex matrix $(z). We define the para-conjugate transpose of this function with

respect to a particular curve in the complex plane by

bu(2) =" (%) r=e’®,

where G* (.) is the para conjugate transpose of &(.), it is called parahermitian matrix func-
tion, if

b+ (2) = d(2).

Definition 4.2 [32] The Hyo, norm of a stable rational transfer function matrix G(z,, zp) is
equal to the maximum of the largest singular value of the transfer function G(e/®!, e/®2)

evaluated on the unit circle e/®1, eJ®2

IGllz,= sup  OmaxG(e/®1,e/??), (5.29)
w1,w2€[—m,m]
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4. Ho, NORM

where

O maxG(e/®1, e/?2) = max \/ Ai (G(eJo1, eiw2)[G(elo1, eiw2)]*). (5.30)

Remark 4.3 Note that the optimum w] and w} of theHq, norm of a stable rational transfer
function matrix Gy (z1) and Gz (z,) are in the neighborhood of the points which verifies the
maximum of the largest singular value of the transfer function G (z,, z) evaluated on the

unit circle €71, €72 and 6 1,42 G(e/*1, €/°?) < 0 1axG1 (67°1) 0 1max G2 (€/92) .

For y > 0, we define the para-hermitian matrix function of transfer function G; (e/9i) as
Pa, (vi, e/ = y21-Gi (e) [ Gi [er])| ", =12, (5.31)

which is hermitian for every point z; = e/ since G (e /1) = [G; (e/®7)]", then, we deduce
that
IGill s = inf {q)Gl. (Yi,e/) = 0, Voo, € [—n,n]}. (5.32)
YieR

For consequent, if the para-hermitian matrix ¢g, (y;, e/®i) > 0 for all w; € [-7, 7], then,
Yi > 0 maxGi(e/®) for all w; € [-m, n]. The resolution of this problem is equivalent to solv-
ing a parahermitian generalized eigenvalue problem [39].

Based on [22], we assume that the given quadruple {A;,B;,C;, D1} and {A4, By, Cy, Dy}
are realization of a stable transfer matrices functions G (z;) and Gz (z,) respectively, such
that

Gi(2)=Ci(hz1 —AD'B1+D1, Go(22)=Colizz—A) ™' Bo+Dy,  (5.33)

the transfer matrices functions (5.33) are the Schur complement of

A1 —Ilzl B1 A4—I4Z2 Bz
SG1 (Zl) = ~ ‘ ~ ’ SGZ (ZZ) = ~ ’ (534)
C ‘ Dy Co Dy
and the so-called para-conjugate transfer matrices functions of (5.33) are
* “1AT = . < -1 -
Gi(z1)=21B] (h—z1A]) C{ +Dj, Gj(z)=2:B; (IL—2A}) C, +D;, (5.35)

which are also the Schur complement of the corresponding system matrices (5.35) is

ZgAT—I4 CT
Sg: (z1) = , Sg(z2) = |[— | 2] (5.36)

2B} | D}
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5. NUMERICAL EXAMPLE

¢1(y1,€/°) is the Schur complement of the following matrix function

0 Al—Ilejwl B]
Sp (Y1, e/ =| e/AT -, -CIC, -cId, |, (5.37)
B -DIC; |yiI-DID,

we can represent (5.37) as a pencil of the form

0 A B,
A, -e/F,=| -, -CIC;| -CID, (5.38)
0 -DIC, |y3-DID,
P2(y2, e/92) is the Schur complement of the following matrix function
0 A4 - 14 ej‘”z Bz
Sep(y2, €/ = | efo2AT—1,  —clc, | -CID,2 |, (5.39)
e/B]  -DIC, |y3I-DiD,
which are represented by the following pencil
0 Ay B,
A —elF=| -1, -CIC, CID, (5.40)

0 -D}C, | y3I-DiD,

For every fixed value y;, the pencil 