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Introduction

Many real-life phenomena, regardless of their nature (chemical, physical, biological, elec-

tromechanical, or economic), can be described by mathematical models. A dynamical

system describes the evolution over time of the investigated mathematical model. This

can be compared to a set of finite equations that produce different mathematical repre-

sentations, which are given by ordinary differential equations, partial differential equa-

tions, or difference equations.

The interaction between a system and its environment is a key concept in systems the-

ory. It is common practice to process mathematical models of input dynamic systems to

produce outputs. The aim is to bring the system from a given initial state to a certain final

state with respect to certain criteria. Various classes of dynamic systems can be identified.

Systems with discrete dynamics are represented by a difference equation, where the state

variables only change at a discrete set of points in time. For instance, population models

(such as populations of rabbits or microorganisms) are examples of systems with discrete

dynamics. Systems with continuous dynamics have state variables that change continu-

ously across time, such as the amount of water that flows through a dam. These systems

are represented by a differential equation. Finally, systems with continuous and discrete

dynamics (hybrid) involve interactions between continuous and discrete processes. This

dynamic involves switching behaviors frequently seen in electronic systems or robotic

manipulation systems that can impact the dynamics of the system in several industrial

applications.

Fractional systems have generated a great deal of interest in many areas of applied sci-

ence, engineering, and control theory [55, 56, 81, 91]. The objective of fractional calculus

is to generalize classical, integer-order derivatives to a non-integer order. Fractional order

derivatives are used to model various phenomena across numerous domains [91], such

as:

• Fractional derivatives are frequently used in the mathematical representation of

material viscoelasticity.

• A fractional-order dynamic can be observed in several financial systems in eco-
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Introduction

nomics.

• It has been established in biology that the membranes of biological cells exhibit

electrical conductivity of fractional order, which is then categorized into a group of

non-integer order models.

In control theory, for instance, the state of fractional continuous-time systems was

discussed in [52, 55, 56]. Various methods, including integral transformations like Laplace

transform, Mellin transform, and Sumudu transform [3, 4, 5, 41, 48, 67, 73, 72, 96, 97, 99],

have been proposed for resolving these systems [20, 56, 62, 63]. Therefore, the first part of

this thesis focuses on the solution of a fractional one-dimensional (1D) state-space sys-

tem. We propose to solve singular and standard linear continuous-time systems with a

new fractional derivative using the Sumudu transform, which has many interesting and

attractive advantages over other integral transforms, specifically the unity it provides by

ensuring convergence when solving differential equations and the resolvability of prob-

lems without resorting to a new frequency domain [1, 99]. We obtained the expression of

the state of our system thanks to some properties and formulas of the fractional Sumudu

transform that we have established and proved. On the other hand, we will be interested

in the analysis of this new fractional singular system, such as controllability and observ-

ability, positivity, stability, and super-stability.

In the same frame of our study, we also focus on two-dimensional (2D) digital filters

which have attracted considerable interest in numerous applications, including image

processing, edge extraction, pattern identification via matched filtering, and restoration

of linearly deteriorated images [45]. Recursive filters are a crucial component of these

systems because they have the potential to reduce computation time and memory costs

[44, 45, 66]. Different state-space models for 2D systems have been proposed by a number

of authors like Attasi [6], Fornasini-Marchesini [36], and Roesser [88]. These models can

be used to simulate recursive filters [77]. We are particularly interested in this second part

in the computation of the H∞ norm of two-dimensional digital filters modeled by (2D)

Roesser system since in control theory the H∞ approach is used to synthesize controllers

to achieve stabilization with guaranteed performance. These tools have the advantage

over classical control techniques in that H∞ methods are readily applicable to problems

involving multivariate systems. To use H∞ methods, a control designer expresses the con-

trol problem as a mathematical optimization problem and then finds the controller that

solves this optimization. Thus, the design of 2D control systems is an interesting and chal-

lenging problem, and it has received considerable attention [32, 33, 74].

This manuscript, which focuses on a theoretical study followed by digital applications, is

made up of 5 chapters.

• In the first chapter, the most important mathematical background used in this work

2



Introduction

is presented. We will start by recalling some definitions and properties of the frac-

tional derivative operator. Then, we will present the definitions of some integral

transforms and some particular matrices are also drawn. Finally, the notion of

Schur complement are given.

• In the second chapter, we introduce and establish the resolution of singular continuous-

time linear systems of order α with conformable and Caputo derivative by using

the Sumudu transform method. Furthermore, we discuss the solution of regular

continuous-time linear systems with two derivatives. We also focus on numerical

examples to demonstrate the advantages and effectiveness of our approach using

a Matlab code. Finally, in the last section, we draw some conclusions and compar-

isons between the two systems.

• In the third chapter, we continue our investigation into the controllability and ob-

servability of the new system. We present new findings supported by academic ex-

amples.

• In the fourth chapter, our focus is on the analysis of the new fractional singular

system. We begin by introducing the definitions and properties of positive singular

systems with this new derivative. Then, we establish different concepts of stability

and super-stability as an extension of the analysis tools of singular systems.

• The final chapter focuses on the evaluation of the H∞ norm of a particular class of

two-dimensional systems. We also provide a numerical illustration to demonstrate

the benefits and effectiveness of our approach.

3



Chapter 1

Definitions and basic concepts

1 Introduction

The aim of this chapter is to provide the necessary foundational knowledge to understand

the technical progress presented in subsequent chapters. The first section covers the es-

sential tools of fractional calculus relevant to this thesis. In the second section, we discuss

two important integral transforms used in continuous functions (Laplace and Sumudu)

and discrete functions (Z -transform). The fourth section presents specific matrices that

will be used later in the thesis. Finally, the last section introduces the definitions and

characteristics of the Schur complement.

2 Fractional calculus

For more than 300 years, several mathematicians such as Riemann, Liouville, and Caputo

have shown interest in fractional calculus [27, 84, 90]. Fractional-order systems have gen-

erated considerable interest in many fields of applied sciences, engineering, and control

theory [55, 56, 81, 91]. However, a new derivative operator called the conformable deriva-

tive operator has been proposed by Khalil et al. Khalil et al. [71] and has been used in sev-

eral areas including engineering, finance, biology, medicine, physics, and applied math-

ematics [7, 8, 9, 34, 46, 102]. In fact, various problems have been solved, methods and

resolutions have been developed and improved, and other definitions of the conformable

derivative operator have been exploited in [71]. For example, fractional partial differential

equations [102], time-fractional one-dimensional cable differential equations [101, 104],

fractional Cauchy problems [103], linear/nonlinear differential equations [105], and other

applications.

4



2. FRACTIONAL CALCULUS

2.1 Some basic concepts of special functions

In this subsection, we define some special functions which are plays an important role in

solution of the fractional differential equations.

Definition 2.1 [56] Let Γ be a given function described by the following formula

Γ(z) =
∫ ∞

0
t z−1e−t d t , z ∈C,Re(z) > 0, (1.1)

where, Γ is called the Euler’s Gamma function.

Proposition 2.2 [56] The Euler’s Gamma function Γ verifies the following properties

1.

Γ(n) = (n −1)!, n ∈N∗; (1.2)

2.

Γ

(
1

2

)
=π; (1.3)

3.

Γ(z +1) = zΓ(z), z ∈C, Re(z) > 0. (1.4)

In the following definition, we introduce the Mittag-Leffler Function, which is a gen-

eralization of the exponential function e si t .

Definition 2.3 [56] A function of the complex variable z defined by

Eα(z) =
∞∑

k=0

zk

Γ(kα+1)
, (1.5)

is called the one parameter Mittag-Leffler Function.

Example 2.4 [56] For α = 1 we obtain the classical exponential function described by

E1(z) =
∞∑

k=0

zk

Γ(k +1)
=

∞∑
k=0

zk

k !
= ez . (1.6)

2.2 Fractional derivatives

Conformabel derivative

Definition 2.5 [71] Given a function x : [0,+∞) → R. Then, the conformable derivative of

the function x of order α, with α ∈ (0,1] is defined by

Tα(x)(t ) = lim
ε→0

x
(
t +εt 1−α)−x(t )

ε
, ∀ t > 0.

5



2. FRACTIONAL CALCULUS

If the conformable derivative of the function x of order α for all t > 0 exists, then, we

simply say x is α-differentiable.

Theorem 2.6 [71] Let α ∈ (0,1] and x1, x2 : R+ → R be α-differentiable functions. Then,

∀t > 0

(a) Tα(ax1(t )+bx2(t )) = aTα(x1)(t )+bTα(x2)(t ), for all a,b ∈R;

(b) Tα(t p ) = pt p−α, for all p ∈R;

(c) Tα(λ) = 0, for all constant function x1(t ) = λ;

(d) Tα (x1(t )x2(t )) = x1(t )Tα (x2) (t )+x2(t )Tα (x1) (t );

(e) Tα
(

x1(t )

x2(t )

)
=

x2(t )Tα (x1) (t )+x1(t )Tα (x2) (t )

x2
2(t )

;

( f ) If x1 is differentiable, then, Tα(x1)(t ) = t 1−αdx1(t )

dt
.

Riemann-Liouville derivative

Definition 2.7 [79, 92] Let’s define the fractional derivative of the continuous function x as

following

Dα
RLx(t ) =

1

Γ (N−α)

d N

d t N

∫ t

0

x(τ)

(t −τ)α+1−N
dτ, (1.7)

where Dα
RL is called the Riemann-Liouville fractional derivative of ordor α with N−1 <

α≤ N, N ∈N∗.

Theorem 2.8 [79, 92] The Riemann-Liouville operator is linear such that

Dα
RL

[
λx1(t )+µx2(t )

]
= λDα

RLx1(t )+µDα
RLx2(t ). (1.8)

Caputo derivative

Definition 2.9 [79, 85] The function defined by

Dα
c x(t ) =

1

Γ (N−α)

∫ t

0

x(N)(τ)

(t −τ)α+1−N
dτ, x(N)(τ) =

d Nx(τ)

dτN
, (1.9)

is called the Caputo derivative-integral, where N−1 < α≤ N, N ∈N∗.

Remark 2.10 [56, 79] From definition (2.9) it follows that the Caputo derivative of constant

is equal to zero.

6



2. FRACTIONAL CALCULUS

Theorem 2.11 [85] The Caputo derivative-integral operator is linear and satisfying the re-

lation

Dα
c

[
λx1(t )+µx2(t )

]
= λDα

c x1(t )+µDα
c x2(t ). (1.10)

2.3 Interesting conclusions and contrasts

The relationship between fractional derivatives in the Riemann Liouville sense and in the

Caputo sense is given by the following theorem

Theorem 2.12 [79] Let N−1 < α≤ N, N ∈N∗ and x ∈ Cn([a,b]). Then

Dα
c x(t ) = Dα

RL

[
x(t )−

n−1∑
i =0

(t −a)i

i !
x(i )(a)

]
. (1.11)

The main advantage of Caputo’s definition of a fractional derivative over Riemann Li-

ouville’s definition is that Caputo’s definition allows for the consideration of initial condi-

tions that are commonly used in the resolution of fractional differential linear equations.

Additionally, the fractional derivative Riemann-Liouville of a constant is not bounded in

t = 0.

In the following and based on [95], we will give some advantages of the conformable

derivative over the other fractional derivatives

• Conformable derivative performs well in product rule and chain rule while compli-

cated formulas appear in the case of the usual fractional calculation.

• Contrary to Riemann fractional derivatives, the conformable derivative of a con-

stant function is zero.

• As a generalization of exponential functions, Mittag-Leffler functions are funda-

mental in fractional calculus, and in the case of conformable calculus, the fractional

exponential function x(t ) = e
tα

α arises.

• Some functions in traditional calculus need Taylor power series representations at

specific points, but in the theory of conformable, they do.

• The conformable derivative preserves the properties of the usual exact derivatives

such as: quotient, product, chain rules, Rolle’s theorem, and mean-value theorem.

• Conformable derivative does not contain any integral terms, that make it much

more easier to apply on the fractional differential equations.

7



3. INTEGRAL TRANSFORMS

3 Integral transforms

In literature, different integral transforms have been proposed to solve differential equa-

tions and control engineering problems, for instance the Laplace transform, the Sumudu

transform, the Naturelle transform, and the Mellin transform, the most important char-

acterization of them is the possibility to manipulate numerous problems by changing the

domain of the equation [3, 4, 5, 25, 73, 72, 96, 97, 99, 106].

More recently, the fractional integral transforms has received much attention of many

researches, due to its importance and efficiency to solve the fractional differential equa-

tions, which has many applications in physics, electric circuit, engineering ....ect [41, 48,

67]. In this section, we will present a list of interesting rules and properties of Laplace and

Sumudu transform of a continuous function, then these integrals transforms in the frac-

tional case will be presented (conformable and Caputo derivative). Furthermore we will

give the relationship between this transforms. Moreover, we are interested in the study of

the one and two dimensional discrete integral Z -transform [31, 93] which will be useful

in the fifth chapter.

3.1 Laplace transform

In this section, the Laplace transform will be introduced, this transform is the most classic

method and is widely used in several domains. We will begin by recalling some needed

definitions and theorems on this transform. Then the fractional Laplace transform will be

given.

Direct Laplace transform

Definition 3.1 [29] A function of variable t is said to be causal if it is zero for t < 0.

Definition 3.2 [83] A function x has exponential order a if there exist a constant M > 0.

Then

|x(t )| ≤ Meat , ∀t > T. (1.12)

Example 3.3 [83] Consider the function x such as

x(t ) = t 2,

we have ∣∣t 2
∣∣ = t 2 < e3t , ∀t > 0, (1.13)

then x(t ) has exponential order 3.

8



3. INTEGRAL TRANSFORMS

Definition 3.4 [31, 83] Let x : [0,+∞) → R be a causal function. Then the Laplace trans-

form of x is

L [x(t )](s) = X(s),

=
∫ ∞

0
e−st x(t )dt .

(1.14)

The Laplace transform of a function x(t ) does exist only if the above integral converges.

The following theorem gives the conditions of the existence of Laplace transform.

Theorem 3.5 [31, 83] If x is piecewise continuous function on [0,∞[ and of exponential

order, then, the Laplace transform L [x] exists for Re(s) > a and converges absolutely.

Example 3.6 Consider the unit step function defined in [56] by the following formula

x(t ) =

{
0 if t < 0,

1 if t ≥ 0.
(1.15)

Now we will compute the Laplace transform of unit function (1.15), thus

L
[
x(t )

]
(s) =

∫ +∞

0
e−st d t ,

= −1

s
e−st

∣∣∣∣+∞
0

,

we have s = x + i y, then

−1

s
e−st

∣∣∣∣+∞
0

= −1

s
ext e−i t y

∣∣∣∣+∞
0

,

=
1

s
.

The Laplace transform of the function x exists since
∣∣e−i y t

∣∣ = 1, thus, the convergence of the

integral depends only on Re(s) which is strictly positive. Therefore the Laplace transform of

unit function (1.15) is

X(v) =
1

v
. (1.16)

Certain major Laplace transforms properties

Theorem 3.7 [31, 83] For λ ∈ R, β ∈ R, a ∈ R∗ and for x, x1 and x2 are causal functions, we

describe the important and useful properties of the Laplace transform.

• Linearity

9



3. INTEGRAL TRANSFORMS

L
[
αx1 +βx2

]
(s) = λX1(s)+βX2(s), s > 0; (1.17)

• Integration

L

[∫ t

0
x(τ)dτ

]
=

1

s
X(s); (1.18)

• Convolution

L
[
(x1 ?x2)

]
(s) = L

[
x1

]
(s)L

[
x2

]
(s) = X1(s)X2(s), s > 0, (1.19)

with

(x1 ?x2)(t ) =
∫ t

0
x1(τ)x2(t −τ)dτ;

• Dirac impulse

L
[
δ(t )

]
(s) = 1; (1.20)

• Multiplication by a scalar

L
[
x(at )

]
(s) =

1

a
X

( s

a

)
. (1.21)

The boundary properties are given in the following theorem.

Theorem 3.8 [29] Let x be a function admitting a Laplace transform X. Then,

1.

lim
t→+∞x(t ) = lim

s→0
sX(s); (1.22)

2.

lim
t→0+

x(t ) = lim
s→+∞ sX(s). (1.23)

the envisaged limits exist.

10



3. INTEGRAL TRANSFORMS

Inverse of Laplace transform

Definition 3.9 [31] The function x is the inverse Laplace transform of X, denoted by L −1,

is provided by

L −1[X(s)
]

= x(t ),

=
1

2 jπ

∫ c− j∞

c+ j∞
X(s)e st d s,c > 0.

Example 3.10 We consider the function X defined by

X(s) =
1

s
,

we obtain the inverse Laplace transform which is the unit function (1.15) by using defini-

tion (3.9).

3.2 Fractional Laplace transform

In this subsection, we shall mention some interesting Laplace of conformable and Caputo

derivative properties of a continuous function.

Conformable Laplace transform

Definition 3.11 [1] Let x : [0,+∞) → R be a causal function and 0 < α ≤ 1. Then the con-

formable fractional Laplace transform (CFLT) of x is

Lα [x(t )] (s) = Xα(s),

=
∫ ∞

0
e s −tα

α x(t )dtα.
(1.24)

The conformable Laplace transform of a function x(t ) does exist only if the above inte-

gral converges.

Theorem 3.12 [1] Let x : [0,+∞) → R be a causal function and 0 < α ≤ 1. Then the con-

formable fractional Laplace transform of conformable derivative of x is given by

Lα

[
Tαx(t )

]
(s) = sXα(s)−x(0), s > 0. (1.25)

In the following theorem, we give the relationship between the conformable Laplace

transform and Laplace transform.

Theorem 3.13 [1] Let x : [0,+∞) →R be a causal function and 0 < α≤ 1. Thus

Xα(s) = L

[
x(αt )

1
α

]
(s). (1.26)

11



3. INTEGRAL TRANSFORMS

The following theorem describes the Laplace transform of the some usual functions.

Theorem 3.14 [1] Consider c, a, p ∈R and for 0 < α≤ 1. Thus

1.

Lα[c](s) =
c

s
, s > 0; (1.27)

2.

Lα

[
t p]

(s) = α
p
α
Γ

(
1+ p

α

)
s1+ p

α

, s > 0; (1.28)

3.

Lα

[
ea tα

α
]
(s) =

1

s −a
, s > a. (1.29)

Caputo Laplace transform

Definition 3.15 [56] The Laplace transform of the fractional Caputo derivative of the func-

tion x is defined by

L
[
Dα

c x(t )
]
(s) = sαX(s)−

n−1∑
k=0

sα−k−1 x(k)(t )
∣∣∣

t=0
, (1.30)

where N−1 < α≤ N, N ∈N∗, X is the Laplace transform of x and x(k)(t )
∣∣

t=0 is the derivative

of order k of the function x at the point t = 0.

Some interesting properties of the Caputo Laplace transform are described in the fol-

lowing proposition.

Proposition 3.16 [56] For any a ∈R∗+ and N−1 < α≤ N, N ∈N∗, we have

1. L

[
t a

Γ(a +1)

]
(s) = s−a+1.

2. L
[

Dαδ(t )
]

(s) = sα, where δ is the Dirac delta function.

3.3 Sumudu transform

Sumudu transform has many interesting and attractive advantages over other integral

transforms specifically the unity by providing the convergence when solving differential

equations and also the resolvability of problems without resorting to a new frequency do-

main [3, 4, 5, 99]. In this subsection, several terms and theorems related to the Sumudu

transform will be presented. Following that, the fractional Sumudu transform will be in-

troduced.

12



3. INTEGRAL TRANSFORMS

Direct Sumudu transform

Definition 3.17 [99] We take into account functions with exponential order in the set A ,

defined by

A =
{

x(t )|∃M, τ1, τ2 > 0, |x(t )| < Me
− |t |
τ j , if t ∈ (−1) j × [0,∞)

}
,

the Sumudu transform X of a continuous function x, is represent by

S
[
x(t )

]
(v) = X(v) =

∫ ∞

0
x(v t )e−t d t , v ∈ (−τ1,τ2), (1.31)

or a similar alternative

S
[
x(t )

]
(v) = X(v) =

1

v

∫ ∞

0
x(t )e− t

v d t , v > 0. (1.32)

The duality of Sumudu transforms with Laplace transform is provided by the succeed-

ing theorem

Theorem 3.18 [47] Consider x ∈ A a continuous function and X1, X2 their integral trans-

forms Laplace and Sumudu respectively, Then

X2(v) =
X1

( 1
v

)
v

, ∀v > 0, (1.33)

or

X1(s) =
X2

(1
s

)
s

, s > 0. (1.34)

Example 3.19 [99] The Sumudu transfom of the unit function (1.15) is given by

X(v) = 1. (1.35)

Certain major Sumudu transforms properties

Theorem 3.20 [47] For λ ∈R, β ∈R, a ∈R and for x, x1 and x2 a given functions, we repre-

sent the fundamental properties of the Sumudu transform.

• Linearity property

S
[
αx1 +βx2

]
(v) = λX1(v)+βX2(v), v ∈ (−τ1,τ2); (1.36)

• Integral function

13



3. INTEGRAL TRANSFORMS

S

[∫ t

0
x(τ)dτ

]
= vX(v); (1.37)

• Convolution product

S
[
(x1 ?x2)

]
(v) = vS

[
x1

]
(v)S

[
x2

]
(v), v ∈ (−τ1,τ2), (1.38)

where

(x1 ?x2)(t ) =
∫ t

0
x1(τ)x2(t −τ)dτ;

• Dirac impulsion

S
[
δ(t )

]
(v) = v−1;

• Multiplication by a scalar

S
[
x(at )

]
(v) = X(av). (1.39)

In the following theorem, the boundary properties are presented.

Theorem 3.21 [47, 99] Let X The Sumudu transform of function x which admit limits in

the neighborhood of 0 and ∞. Then,

1.

lim
t→0

x(t ) = lim
v→0

X(v); (1.40)

2.

lim
t→∞x(t ) = lim

v→∞X(v). (1.41)

Inverse of Sumudu transforms

Theorem 3.22 [15, 47] Let X(v) be the Sumudu transform of x(t ) and we consider the fol-

lowing statements

1. vX(v) is a meromorphic function, having singularities Re
( 1

v

)< γ.

2. There exists a circular region Γ of radius r such that

‖vX(v)‖ < Mr−k , (1.42)

where r and k are positive constants.

14



3. INTEGRAL TRANSFORMS

Therefore, the function x is represented by

S−1[X(v)
]
(t ) = x(t ) =

1

2πi

∫ γ+i∞

γ−i∞
−1

v
e

t
v X(v)d v. (1.43)

Example 3.23 [15, 47] Let be X(v) the Sumudu transform, such that

X(v) =

{
0 if v < 0,

1 if v ≥ 0,

then

x(t ) = S−1[X(v)
]
(t ),

= − 1

2πi

∫ γ+i∞

γ−i∞
1

v
e

t
v X(v)d v,

therefore, the inverse of Sumudu transform is given by

x(t ) =

{
0 if t < 0,

1 if t ≥ 0.

3.4 Fractional Sumudu transform

Conformable Sumudu transform

Definition 3.24 [1] Over the following set of function

Aα =

{
x(t ) : ∃M,τ1,τ2 > 0, |x(t )| < Me

∣∣∣∣ tα

ατ j

∣∣∣∣, if tα ∈ (−1) j × [0,∞), j = 1,2

}
,

then, the conformable fractional Sumudu transform (CFST) of the function x is defined by

Sα[x(t )](v) = Xα(v),

=
1

v

∫ ∞

0
e

−tα

αv x(t )dtα, v > 0,
(1.44)

where dtα = tα−1dt and α ∈]0,1].

Theorem 3.25 [1] Let x : [0,+∞) → R be a given functions, 0 < α ≤ 1. Then, we have the

following property

Sα
[
Tαx(t )

]
(v) =

1

v

[
Sα[x(t )](v)−x(0)

]
, ∀t > 0, (1.45)

Theorem 3.26 [1] Let x : [0,+∞) → R be an n-differentiable function and α such that, 0 <

15



3. INTEGRAL TRANSFORMS

α≤ 1. Then,

Sα
[
Tnαx(t )

]
(v) =

Sα
[
x(t )

]
(v)−x(0)

vn
, ∀n ∈N and ∀v > 0, (1.46)

and as in [95],Tnα is known as the conformable derivative operator of order n.

The following theorem describes the Sumudu transform of the some usual functions.

Theorem 3.27 [1] Let c and a ∈R and 0 < α≤ 1. Then

1.

Sα
[
e−a tα

α x(t )
]

=
Sα[x(t )]

( 1
v +a

)
v

v > 0; (1.47)

2.

Sα[c](v) = c; (1.48)

3.

Sα

[
t nα

αn

]
(v) =

Γ (1+n)

v

n

, v > 0; (1.49)

4.

Sα
[

e
atα

α

]
(v) =

1

1−av
, v > 1

a
. (1.50)

Caputo Sumudu transform

Definition 3.28 The Sumudu transform of the fractional Caputo derivative (1.9) for N−1 <
α≤ N, N ∈N∗, has the following form [68]

S
[
Dα

c x(t )
]
(v) = v−α

(
X(v)−

n∑
k=1

vk−1 x(k−1)(t )
∣∣∣

t=0

)
. (1.51)

Some interesting properties of the Sumudu transform are described in the following

proposition.

Proposition 3.29 [14, 68, 99] We consider a ∈R∗+ and N−1 < α≤ N, N ∈N∗, then

1. S

[
t a

Γ(a +1)

]
(v) = v a .

2. S
[

Dα
c δ(t )

]
(v) = v−α−1, where δ is the Dirac delta function.

Remark 3.30 The fractional Laplace and Sumudu transform preserves all the properties of

linearity, integral and convolution product of Laplace and Sumudu transforms.
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3.5 Comparison and discussion

In this subsection we will compare between the two transforms presented previously by

specifying their advantages.

• From the theorem (3.5) and the definition (3.17), we notice that the Sumudu have

fewer conditions of existence when compared to the Laplace transform.

• From the properties (1.21) and (1.39), we deduce that the Laplace transform change

definitely when multiplying by a scalar however the Sumudu transformation re-

mains unchanged.

• From the boundary properties in the theorem (3.8) and (3.21) of Laplace and Sumudu

transform respectively, we can notice that the neighborhoods in Sumudu transform

do not change when passing to the limit, unlike the Laplace transform.

• The unit function does not change its expression under the effect of the Sumudu

transform (1.35) contrary to Laplace transform (1.16).

Finally, we conclude that the most advantageous integral transforms is that of Sumudu.

For this reason, in the following chapter, we have opted to use the Sumudu transform.

3.6 Z -transforms

The Z -transform is the discrete transform equivalent of the Laplace transform which is a

tool for automatic and signal processing.

Definition 3.31 [31, 93] The unilateral Z -transform of a discrete time function x(n) is de-

fined by the following formula

X(z) = Z
{

x(n)
}

=
+∞∑
n=0

x(n)z−n . (1.52)

where x(n) = 0 for n < 0.

Remark 3.32 [31] Any Z -transform must be accompanied by the region for which it con-

verges. To determine the convergence region, the Cauchy criterion is used on the following

series +∞∑
n=0

un = u0 +u1 +u2 + . . . , (1.53)

which converges if

lim
n→∞ |un |

1
n < 1. (1.54)

Some important properties will be given in the following [31] and [93].
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• Linearity: Consider that (Un)n∈N, (Wn)n∈N admitting z-transforms , α, β ∈R, then

Z [αUn +βWn](z) = αZ [Un](z)+βZ [Wn](z); (1.55)

• Derivation: we have

X(z) =
+∞∑

n=−∞
x(n)z−n ,

and

dX(z)

d z
=

+∞∑
n=−∞

(−n)x(n)z−n−1,

therefore

−z
dX(z)

d z
=

+∞∑
n=−∞

nx(n)z−n ;

• Convolution : If y(n) is obtained by convolution of x(n) et g (n) , we only have

y(n) =
+∞∑

m=−∞
x(m)g (n −m), (1.56)

thus

Y(z) =
+∞∑

n=−∞
y(n)z−n =

+∞∑
n=−∞

+∞∑
m=−∞

x(m)g (n −m)z−n ,

=
[ +∞∑

m=−∞
x(m)z−m

][ +∞∑
n=−∞

g (n −m)z−(n−m)
]

,

= X(z)G(z).

Inverse of Z -transforms

In [31], we obtain inverse of Z -transforms by using the definition of the Z -transform

provided by (1.52), multiplying the two members by zk−1 and integrating along a contour

surrounding the origin and belonging to the convergence domain, we find

∮
Γ

X(z)zk−1d z =
∮
Γ

+∞∑
n=−∞

x(n)z−n+k−1d z,

= x(n)
∮
Γ

+∞∑
n=−∞

z−n+k−1d z.

Finally, by applying Cauchy’s theorem, we have

x(n) =
1

2πi

∮
Γ

+∞∑
n=−∞

z−n+k−1d z.
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3.7 Z -transforms bidimentional

Theorem 3.33 [56] Consider the bidimentional Z -transform X(z1, z2) of the discrete func-

tion xi j represented by

Z
[
xi j

]
=

∞∑
i =0

∞∑
j =0

xi j z−i
1 z− j

2 , (1.57)

then, we have the following property

1. Z
[
xi+1, j+1

]
= z1z2 [X(z1, z2)−X(z1,0)−X(0, z2)+x00];

2. Z
[
xi−k, j+1

]
= z−k

1 z2 [X(z1, z2)−X(z1,0)];

3. Z
[
xi+1, j−l

]
= z1z−l

2 [X(z1, z2)−X(z1,0)−X(0, z2)];

4. Z
[
xi−k, j−l

]
= z−k

1 z−l
2 [X(z1, z2)];

5. Z
[
xi+1, j

]
= z1 [X(z1, z2)−X(0, z2)];

6. Z
[
xi , j+1

]
= z2 [X(z1, z2)−X(z1,0)];

with

X(z1,0) =
∞∑

i =0
xi 0z−i

1 , X(0, z2) =
∞∑
j =0

x0 j z− j
2 . (1.58)

4 Particular matrices

In this section, we recall some needed definitions and characterizations of non-negative,

positive, monomial and Metzler matrices, these matrices are used for analyzing the posi-

tivity problem in the four chapter . There are a large number of references on this notions,

we focus principally on the following references [13, 18, 51, 76, 82].

Definition 4.1 [13, 51] Let A ∈ Rn×m be a non-negative matrix if ∀i ∈ n,∀ j ∈ m : ai j ≥ 0

i.e. if all its coefficients are non-negative, we denote this matrix by A ≥ 0, or A ∈Rn×m+ .

Example 4.2

A =


0 7 2

9 8 1

3 11 0

 , (1.59)

A is a non-negative matrix.

Definition 4.3 [51] A is a positive matrix if A is non-negative and ∃k ∈ n̄, ∃l ∈ m̄ : akl > 0

i.e. all these non-negative coefficients with at least one strictly positive coefficient, we will

note such a matrix A > 0.
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Example 4.4

A =


1 1 2 3

5 0 1 2

0 3 6 8

 , (1.60)

A is a positive matrix.

Definition 4.5 [51] A is a strictly positive matrix if ∀i ∈ n, ∀ j ∈ m with ai j > 0 i.e. all these

coefficients are strictly positive, we will note such a matrix by A À 0.

Definition 4.6 [51] The matrix A ∈ Rn×n+ is called monomial if in each row and column

only one entry is positive and the remaining entries are zero.

Theorem 4.7 [51] Let A ∈Rn×n+ is monomial matrix if and only if A−1 ∈Rn×n+ .

Example 4.8 Let A be a monomial matrix.

A =


0 0 3

5 0 0

0 2 0

 ∈R3×3
+ ,

then, the inverse of this matrix is

A−1 =



0
1

5
0

0 0
1

2

0 0
1

3


∈R3×3

+ .

Definition 4.9 [51] A real square matrix A = [ai j ]i , j =1···n is called Metzler matrix if its off

diagonal entries are non-negative, i.e. ai j ≥ 0 for i 6= j .

Lemma 4.10 [60] Let A ∈Mn if and only if eA tα

α ∈Rn×n+ for t ≥ 0 and 0 < α≤ 1.

Example 4.11

A =


−1 1 4 3

5 −2 1 2

6 3 5 1

2 1 3 −1

 , (1.61)

A is a Metzler matrix.

20



5. SCHUR COMPLEMENT

5 Schur complement

In this section, we provide some details and definitions of Schur complement [42] which

will be useful throughout the last chapter.

Let M be a matrix block of dimension (p +q)× (p +q) such that

M =

[
A B

C D

]
, (1.62)

where A ∈Rp×p , B ∈Rp×q , C ∈Rq×p and D ∈Rq×q .

Definition 5.1 [42] Consider the matrix A is invertible, then the Schur complement of the

matrix A in M is

Sch(A, M) = D−CA−1B. (1.63)

Theorem 5.2 [42] Let M be a square matrix given by the formula (1.62), then

det (M/A) = detM/det A, (1.64)

where A is nonsingular matrix.

Theorem 5.3 [42] Consider M, A, and E are square nonsingular matrices. Then

M =

[
A B

C D

]
and A =

[
E1 F1

G1 H1

]
. (1.65)

Where A/E1 is a nonsingular principal submatrix of M/E1 such that

M/A = (M/E1) (A/E1) . (1.66)

6 Conclusion

In this chapter, we recalled some fundamental notions and definitions of special func-

tions and some basic concepts of matrix theory. The different definitions of the fractional

derivatives and two most important integral transforms (Lapace and Sumudu) with their

properties are also presented. After examining their characteristics, the differences be-

tween them are identified, as a result, we have determined the most useful fractional

derivative applied in the following three chapters and the powerful method that play a

very important role in resolving fractional linear dynamic systems in subsequent chap-

ters. We also discuss the Z -transform, which is necessary in order to calculate the trans-

fer function of a certain class of one-dimensional and two-dimensional systems. The final
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section discusses certain Schur complement properties that will be very important in the

fifth chapter.
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Chapter 2

Fractional continuous-time linear

systems

1 Introduction

Recently, the concept of fractional calculus has been successfully used in control systems,

with many applications in various areas of science such as chemistry, engineering, and

electrical circuits [19, 20, 56]. In this chapter, we introduce a new class of fractional linear

systems based on the conformable derivative. The regular linear continuous-time system

with conformable derivative in unidimensional (1D) and two dimensional (2D) models

has received much attention in the last two years [16, 86, 89]. Our objective is to solve this

system using a recent and efficient method called the Sumudu transform, which is use-

ful for resolving fractional linear dynamical systems. Furthermore, we provide a solution

to a fractional linear system with Caputo derivative, and compare it to the conformable

derivative solution. Our focus is primarily on the following references [35, 62, 63].

2 State equations of fractional continuous-time linear sys-

tems

In recent years, the behavior of actual systems in numerous fields of science and biology,

engineering, electrochemistry and much more, have been modeled through fractional

differential equations [52, 55, 56, 60]. Linear time-invariant dynamic systems (LTI) of frac-

tional order can be described using the following fractional equations.

k∑
j =0

b j Dα j y(t ) =
l∑

i =0
ai Dβi u(t ), (2.1)
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with α j and βi for j = 0, · · · ,k and i = 0, · · · , l represent the fractional order derivatives

of the output y ∈ Rp1 and input u ∈ Rm1 and b j and ai for j = 0, · · · ,k and i = 0, · · · , l are

real coefficients.

Under some assumptions, the state representation for the system (2.1) can be expressed

as the following fractional continuous-times linear systems

EDαx(t ) = Ax(t )+Bu(t ), (2.2)

y(t ) = Cx(t )+Du(t ), (2.3)

where Dα presents the fractional derivative operator of order α with 0 < α ≤ 1 , x ∈ Rn1 ,

u ∈ Rm1 and y ∈ Rp1 are, respectively, the state, the control, and the output of the system.

E, A ∈ Rn1×n1 , B ∈ Rn1×m1 , C ∈ Rp1×n1 and D ∈ Rp1×m1 . The boundary condition of the

system is given by x(0) = x0 and u(0) = 0.

Definition 2.1 [51, 19] If the matrix E of the system equations (2.2) and (2.3) is non-invertible

i.e detE = 0, then, the systems is called singular or descriptor system, Otherwise, If the ma-

trix E is invertible i.e detE 6= 0, the systems of equations (2.2) and (2.3) is called standard,

in addition if E = In the system of equations is called standard or explicit.

2.1 Illustrative example

Let us consider the electrical circuit presented in [56] by figure 2.1, with 0 < α≤ 1

Figure 2.1: Fractional electrical circuit [56].

Using Kirchhoff’s laws we can write the equations

L1
dαi1

dtα
+R1i1 = L2

dαi2

dtα
+R2i2, (2.4)

iz = i1 + i2. (2.5)

R1, R2 are the resistances, L1, L2 are the inductances and iz , which represents the con-

trol u(t ), is the source current, then, using the conformable derivative, the system be-

comes

TαEx(t ) = Ax(t )+Bu(t ), (2.6)
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with

x(t ) =

(
i1

i2

)
, E =

(
L1 −L2

0 0

)
, A =

(
−R1 R2

−1 −1

)
, B =

(
0

1

)
,

and the initial condition

x0 =

(
x0,1

x0,2

)
.

3 Solvability of fractional dynamic linear systems with Ca-

puto derivative

The purpose of this section is to present the solvability of singular and standard fractional

dynamic linear systems with Caputo derivative using the Sumudu transform which is dis-

cussed in [62, 63].

Consider the following fractional continuous-times linear systems

EDα
c x(t ) = Ax(t )+Bu(t ), (2.7)

y(t ) = Cx(t )+Du(t ), (2.8)

where Dα presents the Caputo derivative of order α with 0 < α ≤ 1 , x ∈ Rn1 , u ∈ Rm1 and

y ∈Rp1 are, respectively, the state, the control, and the output of the system. E, A ∈Rn1×n1 ,

B ∈ Rn1×m1 , C ∈ Rp1×n1 and D ∈ Rp1×m1 . The boundary condition of the system is given by

x(0) = x0.

3.1 Solvability of singular fractional dynamic linear systems with Ca-

puto derivative

Consider the system of equations (2.7) and (2.8), we have the following statement in [63]

1. det (E) = 0;

2. v−iαEx(0) exists for i = 1 · · ·µ, 0 < α≤ 1 and v ∈ (−τ1,τ2);

3. u(0) = 0 and u(t ) is provided;

4. The pencil of the pair (E, A) is regular i.e

det (E− vαA)−1 6= 0, v ∈C. (2.9)
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Theorem 3.1 [63] The state response of the singular implicit fractional dynamical system

with Caputo derivative (2.7) is given by

x(t ) =
∞∑

i =0
φi

(
B

1

Γ((i +1)α)

∫ t

0
(t −τ)(i+1)α−1u(τ)dτ+E

t iα

Γ(iα+1)
x(0)

)
+

µ∑
i =1
φ−i

(
D(i−1)α

c Bu(t )+E Diα−1
c δ(t )x(0)

)
,

(2.10)

where α is the fractional order of Caputo derivative, φi , i ∈N is the fundamental matrices,

δ is the Dirac delta function and µ represent the index of nilpotency of (v−αE−A).

Proof. Using the Sumudu transform in formulas (1.31) and (1.51) the system of equations

(2.7) become

S
[
EDα

c x(t )
]
(v) = S

[
Ax(t )+Bu(t )

]
(v).

Using the definition (3.28) and the linearity property , we obtain

X(v) = (E− vαA)−1 (
vαBU(v)+Ex(0)

)
.

As detE = 0 (non invertible matrix) and det(E − vαA) 6= 0, thus, there exists a Laurent

series expansion [78] and [80] about zero, which is given

(E− vαA)−1 =
∞∑

i =−µ
φi v i α, (2.11)

with µ = rg(E)−deg
(

det(v−αE−A)
)+1 is the index of nilpotency of (v−αE−A) and φi are

the fundamental matrices. By applying the Laurent series expansion to the equation, thus

X(v) =

( ∞∑
i =−µ

φi v i α

)(
vαBU(v)

)
+

( ∞∑
i =−µ

φi v i α

)
Ex(0),

= v
∞∑

i =0
φi v (i+1)α−1BU(v)+

µ∑
i =1
φ−i v (1−i )αBU(v)

+
∞∑

i =0
Eφi v i α x(0)+

µ∑
i =1
φ−i E v−i α x(0).

Finally, by using the inverse Sumudu transform and the convolution product, we ob-

tain the appropriate result.

For the case α = 1, we find the same result in [19, 51].
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Corollary 3.2 For α = 1, the state of the singular implicit fractional dynamical system of

equations (2.7) with Caputo derivative is given by the following formula

x(t ) =
∞∑

i =0
φi

(
B

1

Γ(i +1)

∫ t

0
(t −τ)i u(τ)dτ+E

t i

Γ(i +1)
x(0)

)
+

µ∑
i =1
φ−i

(
Bu(i−1)(t )+Eδ(i−1)(t ) x(0)

)
.

(2.12)

3.2 Solvability of standard fractional dynamic linear systems with Ca-

puto derivative

Now, we consider the system of equations (2.7) and (2.8) and we suggest the following

statement given in [62]

1. det (E) 6= 0;

2. v iαAi x(0) exists ∀i ∈N, 0 < α≤ 1 and v ∈ (−τ1,τ2);

3. u(t ) is given;

4. The pencil of the pair (In , A) is regular i.e

det (In − vαA)−1 6= 0, v ∈C. (2.13)

Proposition 3.3 [56] Let A ∈ Rn1×n1 be a matrix, for 0 < α ≤ 1. Thus, the Laurent series is

given by (
In − vαA

)−1 =
∞∑

i =0
Ai v iα. (2.14)

Theorem 3.4 [62] The state response of implicit standard fractional dynamical system with

Caputo derivative (2.7) is given by

x(t ) =
∞∑

i =0

Ai B

Γ((i +1)α)

∫ t

0
(t −τ)(i+1)α−1u(τ)dτ+

∞∑
i =0

Ai t iα

Γ(iα+1)
x(0), (2.15)

where α and Γ is respectively, the fractional order, the standard Gamma function.

Proof. Using formulas (1.31) and (1.51), the system of equations (2.7) become

S
[
Dα

c x(t )
]
(v) = S

[
Ax(t )+Bu(t )

]
(v).

Using the definition (3.28) and the linearity property of fractional Sumudu , we obtain

X(v) = (In − vαA)−1 (
vαBU(v)+x(0)

)
.
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By applying the Laurent series expansion of proposition (2.11) to the equation, thus

X(v) =
∞∑

i =0
Ai B v (i+1)α−1U(v)+

∞∑
i =0

Ai v i αx(0),

Finally, by using the inverse Sumudu transform and the convolution product, we ob-

tain the solution.

For α = 1, we get the following result that is the same one as in [19, 56].

Corollary 3.5 For α = 1, the solution of the standard implicit fractional dynamical system

of equations (2.7) with Caputo derivative is given by the following formula

x(t ) =
∞∑

i =0

Ai B

Γ(i +1)

∫ t

0
(t −τ)i u(τ)dτ+

∞∑
i =0

Ai t i

Γ(i +1)
x(0), (2.16)

where Γ is the standard Gamma function.

4 Solvability of fractional dynamic linear systems with con-

formable derivative

The objective of this section is the application of the Sumudu transform for solving sin-

gular and standard continuous-time linear systems based on the conformable derivative

operator.

We will consider the following fractional continuous-times linear systems

ETαx(t ) = Ax(t )+Bu(t ), (2.17)

y(t ) = Cx(t )+Du(t ), (2.18)

where Tα presents the fractional conformable derivative operator of order αwith 0 < α≤ 1

, x ∈Rn1 , u ∈Rm1 and y ∈Rp1 are, respectively, the state, the control, and the output of the

system. E, A ∈ Rn1×n1 , B ∈ Rn1×m1 , C ∈ Rp1×n1 and D ∈ Rp1×m1 . The boundary condition of

the system is given by x(0) = x0.

Lemma 4.1 Let x1, x2 : [0,+∞) → R be a given functions. Then, the conformable Sumudu

transform of the convolution product of x1 and x2 is defined by

Sα [(x1 ?x2) (t )] (v) = vSα[x1(tα)](v)Sα[x2(t )](v), v > 0,

where

(x1 ?x2)(t ) =
∫ t

0
x1

(
tα−τα)x2(τ)dτα.
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Proof. Using the relationship between conformable Sumudu transform and conformable

Laplace transform [1], we get

Sα [(x1 ?x2) (t )] (v) =
Lα[(x1 ?x2)(t )](s)

v
, s → 1

v
,

=
(Lα[x1(tα)]Lα[x2(t )]) (s)

v
, s → 1

v
,

= vSα[x1(tα)](v)Sα[x2(t )](v),

(2.19)

where, Lα is the conformable Laplace transform [46].

4.1 Solvability of singular fractional dynamic linear systems with con-

formable derivative

This subsection is devoted to present our main results. For this purpose, we will consider

the system of equations (2.17) and (2.18).

We take into account the following hypotheses which implies that the solution is im-

pulse free:

(i) Ex(0) and v−i Ex(0) exist for i = 1,µ and v ∈ (−τ1,τ2);

(ii) u(t ) is specified for t ≥ 0;

(iii) The pencil
( 1

v E−A
)

is regular for all v ∈C.

Proposition 4.2 Let α ∈]0,1] and for all v > 0, the conformable Sumudu transform of the

conformable derivative of order (n −1) of the function t 1−αδ(t ) is given by

Sα
[
T(n−1)αt 1−αδ(t )

]
(v) =

1

vn−1
Sα

[
t 1−αδ(t )

]
(v) =

1

vn
, ∀n ∈N∗. (2.20)

Proof. To proof formula (2.20), we will proceed by induction and we will use the proper-

ties of the function δ given in [43].

1. First step: for n = 1, we get

Sα
[
t 1−αδ(t )

]
(v) =

1

v

∫ ∞

0
t 1−αδ(t )e− tα

vα tα−1dt

=
1

v

∫ ∞

0
δ(t )e− tα

vα dt ,

using the property of δ function, yields

Sα
[
t 1−αδ(t )

]
(v) =

1

v
e0,
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finally,

Sα
[
t 1−αδ(t )

]
(v) =

1

v
.

2. Second step: we assume that the expression (2.20) is true up to the order n −2 and

we proof that it stays true at the order n −1.

For α ∈ (0,1] and all v > 0, we have

Sα
[
T(n−1)αt 1−αδ(t )

]
(v) =

1

v

∫ ∞

0
T(n−1)α [

t 1−αδ(t )
]

e− tα

vα tα−1dt ,

applying the definition of Tnα, we get

Sα
[
T(n−1)αt 1−αδ(t )

]
(v) =

1

v

∫ ∞

0
T(n−2)α [

Tα(t 1−αδ(t ))
]

e− tα

vα tα−1dt ,

as the formula (2.20) is true for n −2, we obtain

Sα
[
T(n−1)αt 1−αδ(t )

]
(v) =

1

vn−1

∫ ∞

0
Tα

[
t 1−αδ(t )

]
e− tα

vα tα−1dt ,

by the use of the definition of Tα, we find

Sα
[
T(n−1)αt 1−αδ(t )

]
(v) =

1

vn−1

∫ ∞

0
t 1−α d

dt

[
t 1−αδ(t )

]
e− tα

vα tα−1dt

=
1

vn−1

[∫ ∞

0
(1−α)t−αδ(t )e− tα

vα dt

+
∫ ∞

0
t 1−α d

dt
[δ(t )]e− tα

vα dt

]
,

using the property of the function δ, it follows

Sα
[
T(n−1)αt 1−αδ(t )

]
(v) =

1

vn−1

[∫ ∞

0
(1−α)t−αδ(t )e− tα

vα dt

+ 1

v

∫ ∞

0
δ(t )e− tα

vα dt −
∫ ∞

0
(1−α)t−αδ(t )e− tα

vα dt

]
,

finally, we obtain

Sα
[
T(n−1)αt 1−αδ(t )

]
(v) =

1

vn−1
Sα

[
t 1−αδ(t )

]
(v) =

1

vn
, ∀n ∈N∗.

By the extension of the series of Laurent [78] we find the following proposition.

Proposition 4.3 Let A,E ∈Rn1×n1 be a real matrices with detE = 0, then, we have

(
1

v
E−A

)−1

=
∞∑

i =−µ
φi v i+1, v > 0, (2.21)
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with µ = r g (E)−deg
(
det

( 1
v E−A

))+1 represents the index of nilpotency of
( 1

v E−A
)

andφi

are the fundamental matrices, which depend on the regularity of E and satisfy

φi = (φ0 A)i φ0, ∀i ∈N, (2.22)

and

φi E−φi−1A = δi 0I = Eφi −Aφi−1, (2.23)

where δi 0 is the Kronecker delta.

In the following, we denote Xα and Uα the conformable Sumudu transform of x and u

respectively.

Theorem 4.4 The solution of the singular dynamical system of order α described by the

equation (2.17) is given by

x(t ) =
∞∑

i =0
φi

(
tαi

αi i !
Ex(0)+

∫ t

0

(tα−τα)i

αi i !
Bu(τ)dτα

)

+
µ∑

i =1
φ−i

(
BTα(i−1)u(t )+ETα(i−1)t 1−αδ(t )x(0)

)
, (2.24)

where µ = r g (E)−deg
(
det

( 1
v E−A

))+1 represents the index of nilpotency of
( 1

v E−A
)
, φi

are the fundamental matrices defined in proposition 4.3, and δ is the Dirac delta function.

Proof. Applying the conformable Sumudu transform to the equation (2.17), we obtain

Sα
[
ETαx(t )

]
(v) = Sα [Ax(t )+Bu(t )] (v), v > 0.

The use of the linearity property of conformable Sumudu transform together with the

first property of the theorem 3.25, yields

E

(
Xα(v)−x(0)

v

)
= AXα(v)+BUα(v),

which is equivalent to [
1

v
E−A

]
Xα(v) =

1

v
Ex(0)+BUα(v).

As the pencil (E, A) is regular, so

Xα(v) =

[
1

v
E−A

]−1 [
1

v
Ex(0)+BUα(v)

]
. (2.25)

Thanks to the formula (2.21), the relation (2.25) becomes

Xα(v) =
∞∑

i =−µ
φi v i Ex(0)+

∞∑
i =−µ

φi v i+1BUα(v),
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by dividing the sum we get

Xα(v) =
∞∑

i =0
φi v i Ex(0)+

∞∑
i =0
φi v i+1BUα(v)

+
µ∑

i =1
φ−i v−i Ex(0)+

µ∑
i =1
φ−i v−i+1BUα(v).

(2.26)

Finally, by the use of the inverse conformable Sumudu transform and convolution

product, we obtain the theorem which represents the first result of this chapter.

Theorem 4.4 can be expressed using the exponential expression and the formula (2.22)

as follow

Corollary 4.5 The state of the singular dynamical system of order α described by the equa-

tion (2.17) is given by

x(t ) =eφ0A tα

α φ0Ex(0)+
∫ t

0
eφ0A tα−τα

α φ0Bu(τ)dτα

+
µ∑

i =1
φ−i

(
BTα(i−1)u(t )+ETα(i−1)t 1−αδ(t )x(0)

)
,

(2.27)

where µ = r g (E)−deg
(
det

( 1
v E−A

))+1 represents the index of nilpotency of
( 1

v E−A
)
, and

φi are the fundamental matrices defined in proposition 4.3, and δ is the Dirac delta func-

tion.

Remark 4.6 If α = 1, we find the state response of the singular dynamical system defined in

[30]

x(t ) =eφ0Atφ0Ex(0)+
∫ t

0
eφ0A(t−τ)φ0Bu(τ)dτ

+
µ∑

i =1
φ−i

(
Bu(i−1)(t )+Eδ(i−1)(t )x(0)

)
.

(2.28)

where µ = r g (E)−deg
(
det

( 1
v E−A

))+1 represents the index of nilpotency of
( 1

v E−A
)
, and

φi are the fundamental matrices defined in proposition 4.3, and δ is the Dirac delta func-

tion.

4.2 Solvability of standard fractional dynamic linear systems with con-

formable derivative

Let us, now, discuss the case where E is a regular matrix, i.e., detE 6= 0. For this case, we

assume that [E−1A]i v i x(0) exist for all i ∈ N and v ∈ (−τ1,τ2). Hence, if detE 6= 0, the

Laurent series which is the extension of [78] are described by the following proposition
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Proposition 4.7 Let A,E ∈Rn1×n1 be a real matrices with detE 6= 0, then, we have

(
1

v
E−A

)−1

=
∞∑

i =0
φi v i+1, v > 0, (2.29)

with φi are the fundamental matrices, which depend on the regularity of E and satisfy

φi =
(
E−1A

)i
E−1. (2.30)

Theorem 4.8 The solution of the implicit dynamical system of order α given by the equa-

tion (2.17) is

x(t ) =
∞∑

i =0

[
E−1A

]i tαi

αi i !
x(0)+

∫ t

0

∞∑
i =0

[
E−1A

]i
E−1 (tα−τα)i

αi i !
Bu(τ)dτα. (2.31)

Therefore, by using the exponential expression, we obtain

x(t ) = e[E−1A] tα

α x(0)+
∫ t

0
e[E−1A] tα−τα

α E−1Bu(τ)dτα.

Proof. Thanks to the formula (2.29), the relation (2.25) becomes

X(v) =
∞∑

i =0
φi v i Ex(0)+

∞∑
i =0
φi v i+1BUα(v),

it follows that

Xα(v) =
∞∑

i =0

[
E−1A

]i
v i x(0)+

∞∑
i =0

[
E−1A

]i
E−1Bv i+1Uα(v).

Finally by applying the inverse of conformable Sumudu transform and the convolu-

tion product, we obtain the solution.

Remark 4.9 If E = I, we obtain the standard dynamical system of order α and the state is

x(t ) = eA tα

α x(0)+
∫ t

0
eA tα−τα

α Bu(τ)dτα.

Furthermore, if α = 1, the state of the standard dynamical system is

x(t ) = eAt x(0)+
∫ t

0
eA(t−τ)Bu(τ)dτ.

5 Experimental results

In this section, we present some illustrative academic and real examples in order to show

the efficiency and the accuracy of our approach. It must be emphasized that all examples
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were already discussed in [56, 63]. we always consider the fact that u(0) = 0.

Example 5.1 Let us consider, for α ∈]0,1], the following system of electrical circuit given in

[56]

Figure 2.2: Electrical circuit [56].

R1, R2, R3 represent resistances, C1, C2 the capacitances, and e the source voltage (the

control u(t ) = e). Using Kirchhoff ’s laws, we can write the equations

e = R1C1
dαx1

d tα
+x1 +R3

(
C1

dαx1

d tα
+C2

dαx2

d tα

)
, (2.32)

e = R3

(
C1

dαx1

d tα
+C2

dαx2

d tα

)
+R2C2

dαx2

d tα
+x2, (2.33)

which are equivalent to

[
(R1 +R3)C1 R3C2

R3C1 (R2 +R3)C2

]
dα

d tα

[
x1

x2

]
=

[
−1 0

0 −1

][
x1

x2

]
+

[
1

1

]
e. (2.34)

The general expression of the system (2.34) is

ETαx(t ) = Ax(t )+Bu(t ), (2.35)

with boundary condition x0 = 0R2 and

E =

(
(R1 +R3)C1 R3C2

R3C1 (R2 +R3)C2

)
,

A =

(
−1 0

0 −1

)
, B =

(
1

1

)
,

as detE = [R1(R2 +R3)+R2R3]C1C2 6= 0, then,

E−1 =
1

detE

(
(R2 +R3)C2 −R3C2

−R3C1 (R1 +R3)C1

)
,
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E−1A =
1

detE

(
−(R2 +R3)C2 R3C2

R3C1 −(R1 +R3)C1

)
andE−1B =

1

detE

(
R2C2

R1C1

)
.

For e = 1V, the solution of the electrical circuit is

x(t ) =
∫ t

0
eE−1A (tα−τα)

α E−1Bdτα, (2.36)

which is the same one as in [60].

The solution with Caputo derivative is

x̃(t ) =
∞∑

k=0

(
Ak

∫ t

0

(t −τ)(k+1)α−1

Γ[(k +1)α]
dτ

)
B. (2.37)

To show the efficiency of our method we will plot, in the following figures, both solutions

together with the exact solution for different values of α. We assume that R1 = R2 = 10Ω,

R3 = 20Ω, C1 = C2 = 100mF ant the input u(t ) = e = 1V.

Figure 2.3: Comparison of the solutions x1 and x̃1 for α = 0.4.

Figure 2.4: Comparison of the solutions x1 and x̃1 for α = 0.5.
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Figure 2.5: Comparison of the solutions x1 and x̃1 for α = 0.7.

Figure 2.6: Comparison of the solutions x1 and x̃1 for α = 0.9.

Example 5.2 Let 0 < α≤ 1 and the following singular system

TαEx(t ) = Ax(t )+Bu(t ), (2.38)

with

E =

(
1 0

0 0

)
, A =

(
−1 0

0 −2

)
, B =

(
1

2

)
,

and the initial condition

x0 =

(
x0,1

x0,2

)
.

Since

det

(
1

v
E−A

)
=

2+2v

v
6= 0, ∀v > 0,

and µ = 1, it follows

φ−1 =

(
0 0

0 1
2

)
,φ2m =

(
1 0

0 0

)
,φ2m+1 =

(
−1 0

0 0

)
, ∀m ∈N.

The state of the system (2.38) is given by

x(t ) =

e
−tα

α x0,1 +
∫ t

0 e− tα−τα
α u(τ)dτα

u(t )

 . (2.39)

36



6. CONCLUDING REMARKS

However, with the Caputo derivative, we find

x̃(t ) =


∞∑

i =0
(−1)i

[
t iα

Γ(iα+1)
x0,1 + 1

Γ((i +1)α)

∫ t

0
(t −τ)(i+1)α−1u(τ)dτ

]
u(t )

 . (2.40)

For different values of α, u(t ) = 1, x0,1 = 3, and x0,2 = 0, the comparison of the states be-

tween conformable derivative x(t ) = [x1(t ), x2(t )]T, Caputo derivative |̃x̃(t ) = [x̃1(t ), x̃2(t )]T

is plotted in figures 2.7, 2.8, and 2.9.

Figure 2.7: Comparison of the solutions x1 and x̃1 for α = 0.5.

Figure 2.8: Comparison of the solutions x1 and x̃1 for α = 0.6.

Figure 2.9: Comparison of the solutions x1 and x̃1 for α = 0.8.

6 Concluding Remarks

In this section, the continuous-time linear systems based on the conformable derivatives

operator are introduced where another approach to compute there solutions are pre-
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sented. The main idea behind this approach consists on using the conformable Sumudu

transform which is recognized by its important properties. The singular and regular cases

are discussed and the method can be used for several practical applications as for instance

the electrical circuit. Through the numerical examples presented the final section, it easy

to see that the solution of dynamical systems with conformable derivative is consistent to

the classical derivative. More then that, it has been shown in [60] that for the conformable

derivative, the electrical circuit could be reach its steady state in a shorter time.
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Chapter 3

Controllability and observability

1 Introduction

In this chapter, we focus on the concepts of controllability and observability, which are

common terms in control theory. To make the analysis of controllability and observability

more straightforward, we will use the Weierstrass decomposition method. This chapter

is organized as follows: First, we apply the Weierstrass-Kronecker decomposition method

to the singular dynamical conformable linear time-invariant system. Then, we focus on

establishing the solution, controllability, and observability properties of this system. Fi-

nally, we conclude this chapter.

2 Weierstrass-kronecker decomposition method

Several authors have attempted to define the Weierstrass-Kronecker Decomposition Method

[30, 51, 56, 61]. In this section, we will show the Weierstrass decomposition of a singular

dynamical conformable linear time-invariant system in order to simplify the study of vari-

ous concepts such as positivity, stability, super-stability, controllability, and observability.

Assume that the system is regular, thus there exists a pair of nonsingular matrices P,

Q ∈Rn1×n1 as follows

PEQ = di ag (In̄1 ,N), PAQ = di ag (A1, In̄2 ), PB =

[
B1

B2

]
, CQ =

[
C1

C2

]
, Q−1x = x̄ =

[
x̄1

x̄2

]
. (3.1)

Where x̄1 ∈ Rn̄1 and x̄2 ∈ Rn̄2 with n1 = n̄1 + n̄2, u ∈ Rm
1 , A1 ∈ Rn̄1×n̄1 , B1 ∈ Rn̄1×m1 , B2 ∈

Rn̄2×m1 and N ∈ Rn̄2×n̄2 is a nilpotent matrix of the nilpotency index µ, i.e. Nµ−1 6= 0 and

Nµ = 0. Premultiplying the equation (2.17) of the singular dynamical conformable linear

time-invariant system by the matrix P and using the transformations (3.1), the system can

be divided into two following subsystems
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2. WEIERSTRASS-KRONECKER DECOMPOSITION METHOD

1. The conformable slow subsystem

{
Tαx̄1(t ) = A1x̄1(t )+B1u(t ),

x̄1(0) = x̄10,
(3.2)

2. The conformable fast subsystem

{
NTαx̄2(t ) = x̄2(t )+B2u(t ),

x̄2(0) = x̄20,
(3.3)

and the output of the system become

y(t ) = C1x̄1(t )+C2x̄2(t )+Du(t ). (3.4)

The solution conformable slow subsystem (3.2) is given in the following theorem which

is the same one given in the previous section and in [60] of standard conformable slow

subsystem.

Theorem 2.1 The solution of the conformable slow subsystem (3.2), for initial condition

x̄10 ∈Rn̄1 and admissible input u(t ) ∈Rm1 is given by

x̄1(t ) = eA1
tα

α x̄10 +
∫ t

0
eA1

tα−τα
α B1u(τ)dτα. (3.5)

Theorem 2.2 The state of the conformable fast subsystem (3.3) for consistent initial condi-

tion x̄20 ∈Rn̄2 and admissible input u(t ) ∈ U is given by

x̄2(t ) = −
µ−1∑
i =0

Ni
(
B2Tiαu(t )+NTiαt 1−αδ(t )x̄2(0)

)
, (3.6)

where µ represents the index of nilpotency of N, and δ is the Dirac delta function.

Proof. Applying the conformable Sumudu transform, we obtain

N

(
X̄2α(v)− x̄2(0)

v

)
= X̄2α+B2Uα(v),

which is equivalent to [
1

v
N− In2

]
X̄2α(v) =

1

v
Nx̄2(0)+B2Uα(v),

and

X2α(v) =

[
1

v
N− In2

]−1 [
1

v
Nx̄2(0)+B2Uα(v)

]
, (3.7)
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2. WEIERSTRASS-KRONECKER DECOMPOSITION METHOD

Note that (
1

v
N− In2

)−1

= −
µ−1∑
i =0

Ni v−i , (3.8)

according to the formula (3.8), the relation (3.7) becomes

X2α(v) = −
µ−1∑
i =0

Ni+1v−(i+1)Nx̄2(0)−
µ−1∑
i =0

Ni v i B2Uα(v).

Finally, by the use of the inverse conformable Sumudu transform and convolution

product, we find the state response of the fast subsystem (3.3).

Theorem 2.3 The non-impluse solution of the fast system (3.3) with admissible input u(t ) ∈
U and consistent initial condition x̄20 = −∑µ−1

i =0 Ni B2Tiαu(0). has the form

x̄2(t ) = −
µ−1∑
i =0

Ni B2Tiαu(t ). (3.9)

Example 2.4 Consider the singular dynamical conformable linear time-invariant system

E =


−0.4 0 −0.5 0

−0.2 0 0 0

0.4 1 0.5 0

0.2 0 0 0

 , A =


−0.2 1.8 0.5 0

0.4 0.4 0 0

0.2 −1.8 −0.5 0.5

−0.4 0.6 0 0

 , B =


−1 −3.6

0 −0.8

−1 2.6

0 −0.2

 , (3.10)

and the input is given by

u(t ) =

[
u1(t )

u2(t )

]
=


t 2α

2α

si n

(
tα

α

)
+2

t 2α

2α

 , (3.11)

we have the pencil

det

[
E

1

v
−A

]
= −0.05

(
1

v
+1

)(
1

v
+2

)
6= 0,

is regular. then there exists a pair of nonsingular matrices P, Q ∈Rn1×n1 described by

P =


−1 3 0 1

0 −3 0 2

1 0 1 0

0 1 0 1

 and Q =


0 1 0 0

0 0 0 1

2 0 0 0

0 0 2 0

 , (3.12)
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2. WEIERSTRASS-KRONECKER DECOMPOSITION METHOD

such that

PEQ =

[
I2 0

0 N

]
=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

 , (3.13)

PAQ =

[
A1 0

0 I2

]
=


−1 1 0 0

0 −2 0 0

0 0 1 0

0 0 0 1

 , (3.14)

and

PB =

[
B1

B2

]
=


1 1

0 2

−2 −1

0− 1

 . (3.15)

Therefore the slow and fast subsystem is represented by the following systems

{
Tαx̄1(t ) = A1x̄1(t )+B1u(t ),

x̄1(0) = x̄10,
(3.16)

with

A1 =

[
−1 1

0 −2

]
, B1 =

[
1 1

0 2

]
, (3.17)

and {
NTαx̄2(t ) = x̄2(t )+B2u(t ),

x̄2(0) = x̄20,
(3.18)

with

N =

[
0 1

0 0

]
, B2 =

[
−2 −1

0 −1

]
. (3.19)

The state of slow subsystem (3.16) for initial condition x̄1(0) = x̄10 = [x̄101 x̄102]T is given

by

x̄1(t ) =

[
x̄11(t )

x̄12(t )

]
, t ≥ 0, (3.20)

where

x̄11(t ) = e− tα

α x̄101+e− tα

α x̄102 −e−2 tα

α x̄102 +5
t 2α

2α
− (6α+2)

tα

α
+

(
−7α− 3

2

)
e− tα

α +
(

1

10
+ α

2

)
e−2 tα

α

+ 7

10
sin

(
tα

α

)
− 11

10
cos

(
tα

α

)
+

(
13

2
α+ 5

2

)
,

(3.21)
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and

x̄12(t ) = e−2 tα

α x̄102 + t 2α

α
− (α+1)

tα

α
−

(
1

10
+ α

2

)
e−2 tα

α + 4

5
sin

(
tα

α

)
− 2

5
cos

(
tα

α

)
+

(
1

2
α+ α

2

)
.

(3.22)

The state of fast subsystem (3.18) for initial condition x̄2(0) = x̄20 = [1 0]T is given by

x̄2(t ) =

[
x̄21(t )

x̄22(t )

]
, t ≥ 0, (3.23)

where

x̄2(t ) =

2 t 2α

α +2tα+cos
(

tα

α

)
+ sin

(
tα

α

)
t 2α

α + sin
(

tα

α

)  , t ≥ 0. (3.24)

Figure 3.1: The solutions of slow subsystem x̄11 and x̄12 for α = 0.5.

Figure 3.2: The solutions of fast subsystem x̄21 and x̄22 for α = 0.5.
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3 Controllability of singular dynamical conformable linear

time-invariant system

In 1960, Kalman introduced the concept of controllability which is of great importance

in the analysis and design of control systems [64, 65]. In recent years, the controllability

of fractional differential systems has received a great deal of attention [11, 12, 24, 100,

107]. The controllability of conformable differential standard systems is discussed in [2,

98]. Throughout this section, various concepts of controllability for singular dynamical

conformable linear time-invariant system will be established.

The following definition is an extension of definition of singular system given in [51,

61].

Definition 3.1 A singular dynamical conformable linear time-invariant system is called

controllable on [0,T] if for any state x0, xt1 ∈ Rn
1 there exists a control input u(t ) : [0,T] →

Rm
1 , then, we have the solution of the system satisfies x(0) = x0 and x(t1) = xt1 , such that

t1 ∈ [0,T].

Based on [2] and [98] we obtain the following theorem.

Theorem 3.2 The conformable slow subsystem (3.2) is controllable on [0, t1] if and only if

the following controllability Gramian matrix

Wc (0, t1) :=
∫ t1

0
eA1

t1
α−τα
α B1BT

1 eAT
1

tα1 −τα
α dατ, (3.25)

is nonsingular.

Proof. Sufficiency. As Wc [0, t1] is nonsingular, therefore its inverse exists. For any initial

condition x1(0) = x10 6= 0, we define the control as

u(t ) = BT
1 eAT

1
tα−τα
α W−1

c (0, t )
[

xt1 −eA1
tα

α x̄10

]
. (3.26)

From the solution (3.5) we obtain

x(t1) =eA1
t1
α

α x̄10 +
∫ t1

0
eA1

t1
α−τα
α B1u(τ)dτα,

=eA1
t1
α

α x̄10 +
∫ t1

0
eA1

t1
α−τα
α B1BT

1 eAT
1

tα1 −τα
α W−1

c (0, t1)

[
xt1 −eA1

t1
α

α x̄10

]
dτα,

=eA1
t1
α

α x̄10 +
∫ t1

0
eA1

t1
α−τα
α B1BT

1 eAT
1

tα1 −τα
α dταW−1

c (0, t1)

[
xt1 −eA1

t1
α

α x̄10

]
,

=eA1
t1
α

α x̄10 +Wc (0, t1)W−1
c (0, t1)

[
xt1 −eA1

t1
α

α x̄10

]
,

=xt1 .

(3.27)
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Thus, the system (3.5) is controllable on [0, t1].

Necessity. We assume that the system (3.2) is controllable on [0, t1] and the matrix Wc (0, t1)

is singular. then there exists an vector v ∈Rn̄∗
1 such that

0 =vTWc (0, t1)v =
∫ t1

0
vTeA1

t1
α−τα
α B1BT

1 eAT
1

tα1 −τα
α vdατ,

=
∫ t1

0
‖vTeA1

t1
α−τα
α B1‖2dατ,

(3.28)

this yields

vTeA1
t1
α−τα
α B1 = 0, ∀τ ∈ [0, t1]. (3.29)

As the systems is controllable, then, there exist an input such that the initial state

x1(0) = x10 can be transformed to x1(t1) = 0, we choose

x10 = −e−A1
t1
α

α v, (3.30)

then

x1(t1) = −v +
∫ t1

0
eA1

t1
α−τα
α B1u(τ)dατ = 0, (3.31)

which implies

v =
∫ t1

0
eA1

t1
α−τα
α B1u(τ)dατ, (3.32)

pre-multiplying the equation (3.32) by vT, we get

vTv =
∫ t1

0
vTeA1

t1
α−τα
α B1u(τ)dατ = 0, (3.33)

which contradicts the fact that v 6= 0, therefore the matrix Wc (0, t1) is non-singular.

On the other hand, we rewrite the solution of the fast subsystem given by

x̄2(t ) = −
µ−1∑
i =0

Ni
(
B2Tiαu(t )+NTiαt 1−αδ(t )x̄2(0)

)
, (3.34)

in the following form

x̄2(t ) =ψ(t )x20 −WUα(t ), (3.35)

where

ψ(t ) = −
µ−1∑
i =0

Ni+1Tiαt 1−αδ(t ), (3.36)

W =
[

B2 NB2 · · · Nµ−1B2

]
, (3.37)

and

Uα(t ) =
[

u(t ) Tαu(t ) · · · T(µ−1)α
]

. (3.38)
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Theorem 3.3 The conformable fast subsystem (3.3) is controllable on [0, t1] if the matrix W

is row full rank.

Proof. We consider W+ is the pseudo inverse of the matrix W, we suppose that Uα(t ) =

W+ (
ψ(t )x20 +x2t1

)
, then

x2(t1) =ψ(t )x20 −WW+ (
ψ(t )x20 +x2t1

)
= x2t1 , (3.39)

by choosing Uα(t ) the system is able to transfer x20 to x2t1 , moreover, form Uα(t ) we can

deduce the control u(t ). This is implies that the conformable fast subsystem is control-

lable on [0, t1].

The following theorem gives us conditions on controllability of conformable singular

linear system that are the same in [30].

Theorem 3.4 1. The conformable slow subsystem (3.2) is controllable if and only if

r ank[sE−AB] = n1, ∀s ∈C.

2. The following statements are equivalent

(a) The conformable fast subsystem (3.3) is controllable on [0, t1];

(b)

r ank
[

B2 NB2 · · · Nµ−1B2

]
= n̄2; (3.40)

(c)

r ank
[

N B2

]
= n̄2; (3.41)

(d)

r ank
[

E B
]

= n1. (3.42)

3. The statements listed below are equivalent

(a) The singular dynamical conformable linear time-invariant system is control-

lable on [0, t1];

(b) the slow (3.2) and fast (3.3) conformable subsystem are both controllable on

[0, t1];

(c)

r ank
[

B1 AB1 · · · An̄1−1
1 B1

]
= n̄1, (3.43)

and

r ank
[

B2 NB2 · · · Nµ−1B2

]
= n̄2; (3.44)
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(d)

r ank
[

sE−A B
]

= n1 ∀s ∈C, (3.45)

and

r ank
[

E B
]

= n1; (3.46)

(e) The following matrix D ∈Rn2
1×(n1+m1−1)n1 such that

D =



−A · · · · · · · · · B · · · · · · · · · · · ·
E −A · · · · · · · · · B · · · · · · · · ·
· · · E

. . . · · · · · · · · · B · · · · · ·
· · · · · · . . . −A · · · · · · · · · . . . · · ·
· · · · · · · · · E · · · · · · · · · · · · B


, (3.47)

has full row rank.

Example 3.5 Consider the singular dynamical conformable linear time-invariant system

described by the equations (2.17) and (2.18) and

E =


0.5 −0.375 0

0 0.25 0

−0.5 −0.125 0

 , A =


−1 2 0

0 −1 0

1 0 −2

 , B =


1 0

0 1

−2 −2

 , (3.48)

the pencil (E, A) is regular since det
( 1

v E−A
)

= 0.25
( 1

v +2
)( 1

v +4
) 6= 0, then there exist two

matrices P and Q described by

P =


2 0 0

0 4 0

1 2 1

 , Q =


1 0.75 0

0 1 0

0 0 −0.5

 , (3.49)

if we choose the transformation (3.49) we obtain

PEQ =

[
I2 0

0 N

]
=


1 0 0

0 1 0

0 0 0

 , (3.50)

PAQ =

[
A1 0

0 I2

]
=


−2 2.5 0

0 −4 0

0 0 1

 (3.51)
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and

PB =

[
B1

B2

]
=


2 0

0 4

−1 0

 . (3.52)

We obtain the following systems


Tαx̄1 =

[
−2 2.5

0 −4

]
x̄1(t )+

[
2 0

0 4

]
u(t ),

0 = x̄2(t )+
[
−1 0

]
u(t ).

(3.53)

We define the Gramian matrix theorem of controllability on t ∈ [0,1] and we find that

Wc (0,1) : =
∫ 1

0
eA1

1−τα
α B1BT

1 eAT
1

1−τα
α dατ,

=
∫ 1

0

e
−2

(
1−τα
α

)
1.25

(
e
−2

(
1−τα
α

)
−e

−4
(

1−τα
α

))
0 4e

−4
(

1−τα
α

)
[

2 0

0 4

][
2 0

0 4

]
 e

−2
(

1−τα
α

)
0

1.25

(
e
−2

(
1−τα
α

)
−e

−4
(

1−τα
α

))
4e

−4
(

1−τα
α

)
dατ,

=
∫ 1

0

29e
−4

(
1−τα
α

)
−50e

−6
(

1−τα
α

)
+25e

−8
(

1−τα
α

)
20e

−6
(

1−τα
α

)
−20e

−8
(

1−τα
α

)
20e

−6
(

1−τα
α

)
−20e

−8
(

1−τα
α

)
16e

−8
(

1−τα
α

)
dατ,

=

[
392
192 − 29

4 e−4
( 1
α

)
+ 50

6 e−6
( 1
α

)
− 25

8 e−8
( 1
α

)
40
48 − 20

6 e−6
( 1
α

)
+ 20

8 e−8
( 1
α

)
40
48 − 20

6 e−6
( 1
α

)
+ 20

8 e−8
( 1
α

)
2−2e−8

( 1
α

)
]

,

(3.54)

for α = 0.5 we have

det(Wc (0,1)) = 3.3841 6= 0. (3.55)

Therefor the slow subsystem is controllable since the Gramian matrix is nonsingular.

On the other hand, in the following the controllability of fast subsystem , will be examined.

We have µ = 1, then

r ank(W) = r ank(B2) = r ank
([
−1 0

])
= 1. (3.56)

For consequent the singular dynamical conformable linear time-invariant system is con-

trollable on [0,1];
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4 Observability of singular dynamical conformable linear

time-invariant system

In this section, we focus on the notion of observability, which consists in finding and re-

building the initial state of a given system from its output data. The observability of non

homogeneous systems and standard conformable linear time-invariant control systems

was addressed in [2] and [10] respectively. In this section we will introduce the observ-

ability of singular dynamical conformable linear time-invariant system.

Consider the following singular dynamical conformable linear time-invariant system

ETαx(t ) = Ax(t )+Bu(t ), (3.57)

ỹ(t ) = Cx(t ). (3.58)

The solution of this system is composed of two part, as follow

x(t ,u, x0) = xi (t , x0)+xu(t ,u,Tkαu),

where xi (t , x0,Tkαu) depends on the initial condition x0 and xu(t ,u,Tkαu) is determined

by the input u(t ) and its conformable derivatives,t ∈ [0,∞), then, the output can be ex-

pressed by the following form

ỹ(t ) = Cxi (t , x0)+Cxu(t ,u,Tkαu).

For convenience, we introduce the output as

y(t ) = ỹ(t )−Cxu(t ,u,Tkαu) = Cxi (t , x0),

therefore, the output y(t) is designed by the system input and output data of system of

equations (3.57) and (3.58). In addition, we introduce the the following system without

control, when xi (t , x0) and y(t ) are the state response and the output, respectively

ETαx(t ) = Ax(t ), (3.59)

y(t ) = Cx(t ). (3.60)

In this section, we present the observability of the system of equations (3.59) and (3.60)

, the problem is to reconstruction of the state xi (t , x0) according to the output data y(t )

which is equivalent to the problem of reconstructing the state x(t ,u, x0,Tkαu) of the sys-

tem of equations (3.57) and (3.58) from its input and output data.

As in the previous section, we use the Weierstrass decomposition, and the system of equa-
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tions (3.59) and (3.60) will become

1. The conformable slow subsystem with initial condition x̄1(0) = x̄10{
Tαx̄1(t ) = A1x̄1(t ),

ȳ1(t ) = C1x̄1(t ),
(3.61)

2. The conformable fast subsystem with initial condition x̄2(0) = x̄20{
NTαx̄2(t ) = x̄2(t ),

ȳ2(t ) = C2x̄2(t ),
(3.62)

Definition 4.1 The system described by the equations (3.59) and (3.60) is observable if the

initial condition x0 may be uniquely determined by the output data y(t ), t ∈ [0,∞).

The above theorem is an extension of the theorem of linear independence in [40].

Theorem 4.2 Let µ be a positive integer, and let x(t ) be a continuous function that does

not equal to zero. As a result, the functions x(t ),δ(t ),Tiα
(
t 1−αδ(t )

)
, with i = 1 · · ·µ−1 are

linearly independent.

Based on [2] and [10], we obtain the following theorems.

Theorem 4.3 The conformable slow subsystem (3.61) is observable on [0; t1] if and only if

the observability matrix for the matrix pair (A,C) by

r ank


C1

C1A1
...

C1An̄1−1
1

 = n̄1. (3.63)

Theorem 4.4 The conformable slow subsystem (3.61) is observable on [0, t1] if and only if

the observability Gramian matrix

Wo(0, t1) :=
∫ t1

0
eA1

T t1
α−τα
α CT

1 C1eA1
tα1 −τα
α dατ, (3.64)

is nonsingular.

According to [40] we will obtain the following results.
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Theorem 4.5 Let the conformable fast subsystem (3.62), then, y2(t ) ≡ 0, t ≥ 0 if and only if

x̄20 ∈ Ker


C2

C2N
...

C2Nµ−1

 . (3.65)

Proof. The solution of the conformable fast subsystem (3.62) is given by

x̄2(t ) = −
µ−1∑
i =0

Ni+1Tiα[t 1−αδ(t )]x̄2(0), (3.66)

for instance, y2(t ) = C2x̄2(t ), thus, the output has the following form

y2(t ) = C2x̄2(t ) = −C2

µ−1∑
i =0

Ni+1Tiα[t 1−αδ(t )]x̄2(0) = 0. (3.67)

Applying the theorem (4.2), we obtain y2(t ) = 0 if and only if

C2Ni = 0, i = 0,1,2, · · · ,µ−1.

this is equivalent to 
C2

C2N
...

C2Nµ−1

 x̄20 = 0, (3.68)

therefore

x̄20 ∈ Ker


C2

C2N
...

C2Nµ−1

 .

based on [40] we have the following lemma.

Lemma 4.6 The conformable fast subsystem (3.62) is observable if and only if

r ank


C2

C2N
...

C2Nµ−1

 = n̄2. (3.69)

The following theorem represent the different conditions of the observability of con-
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formable singular linear system which are the same theorem in [30].

Theorem 4.7 1. The conformable slow subsystem (3.61) is observable if and only if

r ank

[
sE−A

C

]
= n1, s ∈C and s finite; (3.70)

2. The following properties are equivalent

(a) The conformable fast subsystem (3.62) is observable;

(b)

r ank


C2

C2N
...

C2Nµ−1

 = n̄2; (3.71)

(c)

Ker

[
N

C2

]
= 0; (3.72)

(d)

r ank

[
N

C2

]
= n̄2; (3.73)

(e)

r ank

[
E

C

]
= n1; (3.74)

3. The following statements are equivalents

(a) The conformable singular system of equations (3.59) and (3.60) is observable;

(b) Both its conformable slow and fast subsystems (3.61), (3.62) are observable;

(c) r ank

[
sE−A

C

]
= n1, ∀s ∈C, s finite and r ank

[
E

C

]
= n1;
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(d) The following matrix 

−A E · · · · · · · · ·
· · · −A E · · · · · ·
· · · · · · . . . . . . · · ·
· · · · · · · · · −A E

C · · · · · · · · · · · ·
· · · C · · · · · · · · ·
· · · · · · . . . · · · · · ·
· · · · · · · · · . . . · · ·
· · · · · · · · · · · · C



(3.75)

is of full column rank n2
1.

Example 4.8 Consider the singular dynamical conformable linear time-invariant system

represented by the equations (3.59) and (3.60)

E =


1 0 0

0 1 0

0 0 0

 , A =


0 1 0

1 0 −1

0 0 1

 , C =
[

0 1 1
]

, (3.76)

since the pencil (E, A) is regular, then there exist two matrices P and Q described by

P =


1 0 0

0 1 1

0 0 1

 , Q =


1 0 0

0 1 0

0 0 1

 , (3.77)

and the system of equations (3.59) and (3.60) becomes


Tαx̄1 = A1x̄1(t ),

NTαx̄2(t ) = x̄2(t ),

y(t ) = C1x̄1(t )+C2x̄2(t ),

(3.78)

with

A1 =

[
0 1

1 0

]
, N = 0, C1 =

[
0 1

]
, C2 = 1. (3.79)
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We compute the Gramian observability matrix on [0,1], this yields

W0(0,1) : =
∫ 1

0
eA1

T t1
α−τα
α CT

1 C1eA1
tα1 −τα
α dατ,

=
∫ 1

0

1
2 e

(
1−τα
α

)
+ 1

2 e
−

(
1−τα
α

)
1
2 e

(
1−τα
α

)
− 1

2 e
−

(
1−τα
α

)
1
2 e

(
1−τα
α

)
− 1

2 e
−

(
1−τα
α

)
1
2 e

(
1−τα
α

)
+ 1

2 e
−

(
1−τα
α

)
[

0

1

][
0 1

]
1

2 e

(
1−τα
α

)
+ 1

2 e
−

(
1−τα
α

)
1
2 e

(
1−τα
α

)
− 1

2 e
−

(
1−τα
α

)
1
2 e

(
1−τα
α

)
− 1

2 e
−

(
1−τα
α

)
1
2 e

(
1−τα
α

)
+ 1

2 e
−

(
1−τα
α

)
dατ

=
∫ 1

0

1
4 e

2
(

1−τα
α

)
− 1

2 + 1
4 e

−2
(

1−τα
α

)
1
4 e

2
(

1−τα
α

)
− 1

4 e
−2

(
1−τα
α

)
1
4 e

2
(

1−τα
α

)
− 1

4 e
−2

(
1−τα
α

)
1
4 e

2
(

1−τα
α

)
+ 1

2 + 1
4 e

−2
(

1−τα
α

)
dατ,

=

[
− 1

2α + 1
8 e

2
α − 1

8 e− 2
α −1

4 + 1
8 e

2
α + 1

8 e− 2
α

−1
4 + 1

8 e
2
α + 1

8 e− 2
α

1
2α + 1

8 e
2
α − 1

8 e− 2
α

]
,

(3.80)

and

det(W0(0,1)) =

[
1

8
e

2
α − 1

8
e− 2

α

]2

− 1

4α2
−

[
1

8
e

2
α + 1

8
e− 2

α − 1

4

]2

= − 1

4α2
+ 1

16
e

2
α + 1

16
e− 2

α

(3.81)

for α = 0.5 we have

det(W0(0,1)) = −1+ 1

16
e4 ++ 1

16
e−4 = 2.4135 6= 0. (3.82)

Since the Gramian matrix is nonsingular, then the conformable slow subsystem is ob-

servable. However, the observability of the conformable fast subsystem will be examined in

the following

Since µ = 1, then

r ank (W) = r ank (C2) = 1. (3.83)

For consequent the singular dynamical conformable linear time-invariant system is ob-

servable on [0,1].

5 Conclusion

In this chapter, we have applied the Weierstrass-Kronecker theorem on singular con-

formable continuous-time linear invariant system as an extension of the decomposition

of the regular pencil. For computing the solution, we propose using the Sumudu trans-
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form. New conditions for controllability and observability were established. The discus-

sion was illustrated by some academics examples.
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Chapter 4

Positivity, stability and super-stability

1 Introduction

For many years, positive systems have seen a dynamic evolution. The essential charac-

teristic of these systems is that the state trajectory is entirely in the non-negative orthant

if the initial state is positive (or at least non-negative). Moreover, one of the most crucial

components of dynamical systems is stability, which specifies the reaction behavior of the

system at infinity with regard to disturbances in the initial conditions. Kaczorek examined

positive standard and singular systems, and also their stability in [49, 50, 51]. The stability

of fractional positive standard and singular systems is addressed in [53, 54, 55, 56, 57, 58].

In the literature, the notion of superstability is also an important components in control

theory [59, 61, 87]. Superstable systems, in which the state vector’s norm monotonically

decreases to zero, are a specific kind of stable systems with more constrained dynamics

requirements. This chapter focuses on the study of the positivity of conformable singular

continuous-time linear systems, after that, we are interested in the notions of the stability

and superstability of this systems.

2 Positivity of conformable linear time-invariant system

Positive linear systems are commonly referred to be the active research area of mathemat-

ics due to its application in various field of engineering, management science, economics,

social sciences, biology, and medicine. In this section, the positivity of conformable lin-

ear time-invariant system will be dealt with in more detail as an extension of the positive

linear continuous-time system that can be found in [19, 51, 56, 60, 61].
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2.1 External positivity

Firstly, we start with the definitions of external positivity of conformable linear time-

invariant system.

Definition 2.1 The standard implicit conformable linear time-invariant system of equa-

tions (2.17) and (2.18) is called externally positive if and only if the output corresponding

to the null initial state is non-negative for each non-negative input, i.e. for x0 = 0 and

u(t ) ∈Rm1+ for t ∈ [0,∞), the output y(t ) ∈Rp1
+ , t ∈ [0,∞).

Theorem 2.2 The standard implicit conformable linear time-invariant system of equa-

tions (2.17) and (2.18) is externally positive if and only if its matrix of impulse response

is non-negative, i.e. gα(t ) ∈Rp1×m1
+ for t ≥ 0 with gα is defined in the following.

The output of the implicit dynamical conformable linear time-invariant system de-

scribed by the equation (2.18) is given by

y(t ) = Cx(t )+Du(t ), (4.1)

substituting the solution (4.9) in (4.1) we obtain

y(t ) = CeE−1A tα

α x(0)+
∫ t

0
CeE−1A tα−τα

α E−1Bu(τ)dτα+Du(t ). (4.2)

We replace x0 = 0 and u(t ) = δ(t ) in the output expression (4.2), we obtain the impulse

response g (t ) of the system of equations (2.17) and (2.18) as following

gα(t ) =

 CeE−1A tα

α E−1B for t > 0,

Dδ(t ) for t = 0.
(4.3)

Definition 2.3 The singular conformable linear time-invariant system of equations (2.17)

and (2.18) is called externally positive if for x0 = 0 and any non-negative admissible control

u(t ) ≥ 0 with Tα(k−1)u(t ) ∈ Rm1+ , k = 1, · · · ,µ, t ∈ [0,∞), the output is also non-negative i.e.

y(t ) ≥ 0 for t > 0.

Theorem 2.4 The singular conformable linear time-invariant system of equations (2.17)

and (2.18) with D = 0 is said to be externally positive, if and only if, its matrix of impulse

response gα(t ), is non-negative for t ≥ 0, i.e., gα(t ) ∈Rp1×m1
+ which is defined by
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Substituting the solution (2.27) in (2.18) we obtain

y(t ) =Ceφ0A tα

α φ0Ex(0)+
∫ t

0
Ceφ0A tα−τα

α φ0Bu(τ)dτα

+
µ∑

i =1
Cφ−i

(
BTα(i−1)u(t )+ETα(i−1)t 1−αδ(t )x(0)

)
+Du(t ),

(4.4)

We replace x0 = 0 and u(t ) = δ(t ) in the output expression (4.4), we obtain the impulse

response g (t ) of the system of equations (2.17) and (2.18) as follows

g (t ) =

 Ceφ0A tα

α φ0B for t > 0,

Ceφ0A tα

α φ0B+∑µ

i =1 Cφ−i
(
BTα(i−1)δ(t )

)+Dδ(t ) for t = 0.
(4.5)

2.2 Internal positivity

Secondly and in this part, we’ll discuss the internal positivity of the conformable linear

time-invariant system.

Definition 2.5 [60] The standard implicit dynamical conformable linear time-invariant

system of equations (2.17) and (2.18) is called internally positive if and only if for any initial

condition x0 ∈ Rn1+ and all admissible inputs u(t ) ∈ Rm1+ , t ∈ [0,∞) we have x(t ) ∈ Rn1+ and

y(t ) ∈Rp1
+ , t ∈ [0,∞).

Theorem 2.6 [60] The standard implicit dynamical conformable linear time-invariant sys-

tem of equations (2.17) and (2.18) is internally positive if and only if

A ∈Mn1 , B ∈Rn1×m1+ , C ∈Rp1×n1
+ , D ∈Rp1×m1

+ .

Definition 2.7 The singular conformable linear time-invariant system of equations (2.17)

and (2.18) is called (internally) positive if for any consistent initial condition x0 ∈ X0 ⊂Rn1+
and all admissible inputs u(t ) ∈ U ⊂Rm1+ , t ∈ [0,∞) such that Tα(k−1)u(t ) ∈Rm1+ , k = 1, ...,µ,

t ∈ [0,∞) we have x(t ) ∈Rn1+ and y(t ) ∈Rp1
+ , t ∈ [0,∞).

Definition 2.8 The singular conformable linear time-invariant system of equations (2.17)

and (2.18) is weakly positive if and only if

A ∈Mn1 , E ∈Rn1×n1+ , B ∈Rn1×m1+ , C ∈Rp1×n1
+ , D ∈Rp1×m1

+ .

Remark 2.9 Internal positivity implies external positivity but the reverse implication does

not hold.

Now, we consider the non-impulse solution of the singular conformable linear time-invariant

system of equations (2.17) and (2.18), since in several application of physically systems
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the Dirac impulse and its derivatives does not appear because it does not impact on the

trajectory just in t = 0 [61], for this reason we can neglect this part of solution when t > 0

and assume the consistant initial condition x0 ∈ X0. Accordingly, we will present the fol-

lowing theorem.

Theorem 2.10 The non-impulse solution of the singular dynamical conformable linear

time-invariant system of equations (2.17) and (2.18) for initial condition x0 ∈ X0 and ad-

missible input u(t ) ∈ U has the following form

x(t ) =eφ0A tα

α φ0Ex0 +
∫ t

0
e
φ0A

(
tα−τα
α

)
φ0Bu(τ)dτα

+
µ∑

i =1
φ−i BTα(i−1)u(t ),

(4.6)

and the consistant initial conditions are provided by

x0 =φ0Ec +
µ∑

i =1
φ−i BTα(i−1)u(0), (4.7)

where, c ∈Rn1 is an arbitrary vector and φk , k = −µ, · · · ,−1 are the fundamental matrices.

Proof. Let’s derive the solution (4.6) and pre-multiplying by E and using the exponential

expression, we obtain

ETαx(t ) =
∞∑

i =1

(
Eφi

tα(i−1)

α(i−1)(i −1)!
Ex0 +

∫ t

0
Eφi

(tα−τα)i−1

α(i−1)(i −1)!
Bu(τ)dτα

)

+Eφ0Bu(t )+
µ∑

i =1
Eφ−i BTα(i )u(t ), (4.8)

Alternatively, we have

Ax(t ) =
∞∑

i =0
Aφi

(
tαi

αi i !
Ex0 +

∫ t

0

(tα−τα)i

αi i !
Bu(τ)dτα

)

+
µ∑

i =1
Aφ−i BTα(i−1)u(t ). (4.9)

According to the (4.3) we have

φi E−φi−1A = 0 = Eφi −Aφi−1, (4.10)

where i 6= 0, then

ETαx(t )−Ax(t ) = Eφ0Bu(t )+
µ∑

i =1
Eφ−i BTα(i )u(t )−

µ∑
i =1

Aφ−i BTα(i−1)u(t ) = Bu(t ), (4.11)
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as Eφ−µ = 0 and Eφ0−Aφ−1 = In , then, the non impulse solution (4.6) verifies the equation

(2.18).

Theorem 2.11 The singular dynamical conformable linear time-invariant system of equa-

tions (2.17) and (2.18) is (internally) positive if

φ0A ∈ Mn1 ,φ0E ∈Rn1×n1+ ,φi B ∈Rn1×m1+ , i = −µ, ...,0,

C ∈Rp1×n1
+ , D ∈Rp1×m1

+ ,
(4.12)

where φi , i = −µ, ...,0 are the fundamental matrices given in proposition (4.3).

Proof. Based on Definition 2.7, we have x0 ∈ X0 ⊂Rn1+ and Tiαu(t ) ∈ U ⊂Rm1+ for i = 0...µ−
1, t ∈ [0,∞) and the lemma (4.10). This implies that, x(t ) ∈Rn1+ if φ0A ∈ Mn1 , φ0E ∈Rn1×n1+ ,

and φi B ∈Rn1×m1+ , i = −µ, ...,0. On the other hand, by substituting (4.6) in (2.18) we obtain

y(t ) = C

(
eφ0A tα

α φ0Ex(0)+
∫ t

0
eφ0A tα−τα

α φ0Bu(τ)dτα+
µ∑

i =1
φ−i BTα(i−1)u(t )

)
+Du(t ). (4.13)

Therefore, y(t ) ∈Rp1
+ for t ∈ [0,∞) if C ∈Rp1×n1

+ and D ∈Rp1×m1
+ .

Example 2.12 Let’s consider the example (5.2) and from (4.12), it follows that

φ0A =

[
−1 0

0 0

]
∈ Mn1 ,φ0E =

[
1 0

0 0

]
∈Rn1×n1+ ,

φ0B =

[
1

0

]
∈Rn1×m1+ ,φ−1B =

[
0

1

]
∈Rn1×m1+ .

(4.14)

Thus the singular dynamical conformable linear time-invariant system of example (5.2) is

positive.

In this part, we will extend the notions of positivity on the subsystems (3.2) and (3.3).

A sufficiently and necessary conditions for positivity of singular dynamical conformable

linear time-invariant system are provided by the following theorem.

Theorem 2.13 Consider the decomposition (3.1) for a monomial matrix Q ∈ Rn1×n1+ , then,

singular dynamical conformable linear time-invariant system of order α is positive if and

only if

A1 ∈Mn̄1 , B1 ∈Rn̄1×m1+ , C1 ∈Rp1×n̄1
+ , C2 ∈Rp1×n̄2

+ ,

D ∈Rp1×m1
+ , −Ni B2 ∈Rn̄2×m1+ , i = 0,1, ...,µ−1.

Proof. Based on lemma (4.10) , if A1 ∈Mn̄1 and B1 ∈Rn̄1×n̄1+ , we have x(t ) ∈Rn1+ if x̄(t ) ∈Rn̄1+
and as from the theorem (4.7) x̄10 = Q−1x10 ∈ Rn̄1+ and the definition (2.5) u(t ) ∈ Rm1+ . On

the other hand for the second equation, if −Ni B2 ∈ Rn̄2×m
+ , i = 0,1, ...,µ− 1, we find that
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x̄2 ∈ Rn̄2+ , since from definition (2.7) Tiαu(t ), i = 0,1, ...,µ−1, therefore x(t ) ∈ Rn1+ . For C ∈
R

p1×n1
+ and D ∈Rp1×n1

+ we obtain y(t ) ∈Rp1
+ since from x(t ) ∈Rn1+ and u(t ) ∈Rm1+ .

Example 2.14 We will consider the example (2.4) of the preceding section

A1 =

[
−1 1

0 −2

]
, B1 =

[
1 1

0 2

]
, N =

[
0 1

0 0

]
, B2 =

[
−2 −1

0 −1

]
, (4.15)

and

−B2 =

[
2 1

0 1

]
, −NB2 =

[
0 1

0 0

]
, (4.16)

given that the matrix Q in (3.12) is monomial, for positive initial condition x̄10 and x20 ∈
R2×1+ and positive input u(t ) ∈R2×1+ , we have

A1 ∈M2, B1 ∈R2×2
+ , −B2 ∈R2×2

+ and −NB2 ∈R2×2
+ .

Therefore, the singular dynamical conformable linear time-invariant system is internally

positive since both the slow and fast subsystem (3.16) and (3.18) are positive.

3 Stability of positive singular dynamical conformable lin-

ear time-invariant system

In this section, the stability of positive singular dynamical conformable linear time-invariant

system will be investigated.

Consider the positive singular dynamical conformable linear time-invariant system of

order α without control i.e (u(t ) = 0). Notice that x̄2(t ) = 0 and the stability of the positive

conformable system of equation (2.17) only depends on the stability of the conformable

slow subsystem (3.2) represented by the following equation

Tαx̄1(t ) = A1x̄1(t ), x̄1 ∈Rn̄1+ , A1 ∈Mn̄1 . (4.17)

Definition 3.1 [60] The positive singular dynamical conformable linear time-invariant

system of order α is called asymptotically stable if

lim
t→+∞ x̄1(t ) = 0 for any x̄10 ∈Rn̄1+ andu(t ) = 0. (4.18)

The stability requirement of the positive standard conformable system given in Kaczoreck

(2018) [60] is represented by the following theorems.
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Theorem 3.2 The positive singular dynamical conformable linear time-invariant system

of order α is asymptotically stable if and only if one of the following equivalent conditions

is verified.

1. There exists a vector vT = [v1 · · ·vn̄1 ], vk > 0, k = 1, ..., n̄1 that is strictly positive such

that

A1v < 0. (4.19)

2. The coefficients of the following characteristic polynomial of the matrix A1

det [In̄1 s −A1] = sn̄1 +an̄1−1sn̄1−1 +·· ·+a1s +a0, (4.20)

are positive, i.e., ak > 0 for k = 0,1, · · · , n̄1 −1.

3. The principal minors of the matrix

Ā1 = −A1 =


ā11 · · · ā1n̄1

...
. . .

...

ān11 · · · ān̄1n̄1

 , (4.21)

are positives, i.e.,

ā11 > 0,

[
ā11 ā12

ā21 ā22

]
> 0, · · · ,det[−A1] > 0.

Example 3.3 For the same example above, the positive system (4.17) is asymptotically sta-

ble since the Metzler matrix A1 is stable with eigenvalues s1 = −1 and s2 = −2.

1. There exists a strictly positive vector vT = [2 1] > 0 such that

A1v =

[
−1 1

0 −2

][
2

1

]
=

[
−1

−2

]
< 0. (4.22)

2. The coefficients of the characteristic polynomial of the matrix A

det [In̄1 s −A1] = s2 +3s +2, (4.23)

are positive, i.e., ak > 0 for k = 0,1.

3. The principal minors of the matrix

Ā1 = −A1 =

[
ā11 ā12

ā21 ā22

]
, (4.24)
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are positives, i.e.,

ā11 = 1 > 0, det[−A1] = 2 > 0.

4 Superstability of positive singular dynamical conformable

linear time-invariant system

This section stands for the superstability of positive singular dynamical conformable lin-

ear time-invariant system.

As in last section, the super-stability of positive singular dynamical conformable linear

time-invariant system of orderα depends only on the superstability of the slow subsystem

described by the following equation

Tαx̄1(t ) = A1x̄1(t ), x̄1 ∈Rn̄1+ , A1 ∈Mn̄1 . (4.25)

Based on [61] we will obtain the following results

Definition 4.1 [61] Let x̄1 ∈Rn̄1+ , the ∞-norm of a positive vector x̄1 has the following form

‖x̄1‖∞ = max
1≤i≤n̄1

|x̄1i |. (4.26)

Definition 4.2 [61] The 1-norm of a matrix A1 = [ai j ] is given by

‖A1‖1 = max
1≤i≤n̄1

(
n̄1∑
j =1

|ai j |
)

. (4.27)

Definition 4.3 [61] The matrix A1 ∈ Mn̄1 of the positive singular dynamical conformable

linear time-invariant system of order α is called superstable if

σ(A1) =σ = min
1≤i≤n̄1

(
−ai i −

n̄1∑
j =1, j 6=i

|ai j |
)
> 0, (4.28)

where σ(A1) denotes the degree of superstability of the matrix A1. If the matrix is super-

stable, it must also be stable, but the converse is not true.

Lemma 4.4 If A1 is a superstable matrix, we have

‖eA1
tα

α ‖1 ≤ e−σ tα

α . (4.29)

Theorem 4.5 If the conformable system is superstable, then

‖x1(t )‖∞ ≤ ‖x0‖∞e−σ tα

α , t ≥ 0. (4.30)
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Although the superstability guarantees a monotonic decline in the state vector’s norm, some

state variables may oscillate. The key distinction is that the equation (4.30) for asymptotic

stable systems is replaced by

‖x1(t )‖∞ ≤ b(A1, v1)‖x0‖∞e−v1
tα

α , 0 < v1 < min
1≤i≤n̄1

{−Resi }, t ≥ 0, (4.31)

where the initial state vector of the trajectory allows the constant b(A1, v1) to take on signif-

icant values. Such undesired "peaks" do not exist in superstable systems [61].

Example 4.6 Let us consider the following positive conformable system

Tαx̄1(t ) = A1x̄1(t ), 0 < α≤ 1, (4.32)

where A1 =

[
−6 3

0 −4

]
∈M2 and x̄1 ∈R2+.

The eigenvalues of the Metzler matrix A1 are s1 = −6 and s2 = −4, then the system (4.32)

is asymptotically stable. We have σ = 3 > 0 and the system is also superstable.

The solution x̄11 and x̄12 and the norm of the solution ‖x̄1‖ of the positive stable con-

formable system (4.32) for initial conditions x̄10 =

[
1.5

1.5

]
is represented in the following fig-

ures

Figure 4.1: The solutions and norm of state vector of the positive stable conformable system (4.32)
x̄11 and x̄12 for α = 0.5.

Example 4.7 Now we consider the following positive conformable system

Tαx̄1(t ) = A1x̄1(t ), 0 < α≤ 1, (4.33)

with A1 =

[
−1 1

0 −2

]
, the eigenvalues of the Metzler matrix A1 are s1 = −6 and s2 = −4, then

the system (4.33) is asymptotically stable. We have σ = 0, then the system is not superstable.
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the following figure represents the solution x̄11 and x̄12 and the norm of the solution ‖x̄1‖ of

the positive stable conformable system (4.33) for initial conditions x̄1
10 =

[
1

2

]
.

Figure 4.2: The solutions the and norm of state vector of positive stable conformable system (4.33)
x̄21 and x̄22 for α = 0.5.

The difference between the two examples appeared in figures (4.1) and (4.2).

From figure (4.1) it is clear that the state vector’s norm declines monotonically for t →
+∞, however as can be seen in figure (4.2), the state variable x̄10 increases highly above

the initial condition, and the state vector’s norm does not decrement monotonically for

t →+∞.

5 Conclusion

This chapter was devoted to the presentation of several specific definitions of positivity

which was extended in singular conformable continuous-time-linear invariant system.

We have established a new conditions for the positivity. Firstly, by using a non-impulse

solution of this system that has been given and proven and also by using the Weierstrass-

Kronecker method. Then, sufficient and necessary conditions of asymptotic stability and

super-stability of this positive system have been proposed. A numerical examples are

given for approved the results obtained.

65



Chapter 5

H∞ Norm of 2D digital filters

1 Introduction

Over the past few decades, bidimensional digital signal processing applications have ex-

panded significantly. The signal is exposed to the unwanted parts, as random noise. For

this reason, we need to introduce the concept of filters. Their main objective is to remove

undesirable components from a signal. For instance, it is possible to enhance a wideband

noise-damaged image without introducing edge blur [75]. The analysis and design of a

2D digital filter can often be greatly simplified when the filter is separable in the denom-

inator [45, 70, 77]. In this case, the analysis and design of the 2D filter reduce to those

of 1-D filters; thus, the well-established techniques for 1-D filters (e.g., stability analysis,

realization, H∞ control, etc.) can be applied [94].

The H∞ norm of a stable transfer function is appeared in [23, 37]. There are different

methods for calculating the H∞-norm for the 1D system [21, 23, 26, 38, 39]. In this chap-

ter we propose a practical algorithm to compute the H∞ norm of 2D separable recursive

causality filters modeled by the Roesser Models as an extension of the work in [22].

2 Transfer function

The dynamic system receives actions (assimilated to commands or controls) and sends

back information, thus, it can be defined as a mathematical relationship between its in-

put and output data. In control theory, the transfer function of a system is a widely used

concept, it is a model of input/output behavior which is obtained from the linear differ-

ential equation with constant coefficient [51].
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2. TRANSFER FUNCTION

2.1 Transfer function of unidimensional system (1D)

Consider the dynamical discrete-time linear system represented by the following equa-

tions

xi+1 = Axi +Bui , (5.1)

yi = Cxi +Dui , (5.2)

where xi ∈ Rn1 , ui ∈ Rm1 and yi ∈ Rp1 are, respectively, the state, the control, and the

output of the system. A ∈Rn1×n1 , B ∈Rn1×m1 , C ∈Rp1×n1 and D ∈Rp1×m1 . Furthermore the

system is regular i.e (det(zI −A)) 6= 0. By applying the Z-transform to the discrete system of

equations (5.1) and (5.2) we transform the difference equation to the algebraic equation,

so in order to find y as a function of u, we have to find Y as a function of U.

zX(z) = AX(z)+BU(z), (5.3)

Y(z) = CX(z)+DU(z). (5.4)

We need to eliminate X(z) from the output equation in order to find the relationship

between Y(z) and U(z).

First, we resolve the state equation (5.3) since (det
(
zIn1 −A

)
) 6= 0, we get

X(z) =
(
zIn1 −A

)−1 BU(z),

when the expression for X(z) is substituted into the output equation (5.4), we obtain

Y(z) = C
((

zIn1 −A
)−1 B+D

)
U(z).

Therefore, the transfer function of discrete system of equations (5.1) and (5.2) is given

by

G(z) =
Y(z)

U(z)
,

= C
(
In1 z −A

)−1 B+D.
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2.2 Transfer function of bi-dimensional system (2D)

Consider the 2D Roesser models represented by the following state space equations

[
xh(i +1, j )

xv (i , j +1)

]
= A

[
xh(i , j )

xv (i , j )

]
+Bu(i , j ), (5.5)

y(i , j ) = C

[
xh(i , j )

xv (i , j )

]
+Du(i , j ), (5.6)

where

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
,

where xh(i , j ) ∈Rn1 and xv (i , j ) ∈Rn2 are the horizontal and vertical state vectors at (i , j ) ∈
Z+×Z+, u(i , j ) ∈Rm and y(i , j ) ∈Rp are the input and the output vectors, respectively and

Ai , j ∈Rni×n j i , j = 1,2, Bi ∈Rni×mi = 1,2, Ci ∈Rp×ni , D ∈Rp×m .

We suppose that the system of equations (5.5) and (5.6) is regular and applying the bi-

dimensional Z-transform on this system, we obtain

z1Xh(z1, z2) = A11Xh(z1, z2)+A12Xv (z1, z2)+B1U(z1, z2), (5.7)

z2Xv (z1, z2) = A21Xh(z1, z2)+A22Xv (z1, z2)+B2U(z1, z2), (5.8)

Y(z1, z2) = C1Xh(z1, z2)+C2Xv (z1, z2)+DU(z), (5.9)

which implies that

(
z1In1 −A11

)
Xh(z1, z2)−A12Xv (z1, z2) = B1U(z1, z2), (5.10)(

z2In2 −A22
)

Xv (z1, z2)−A21Xh(z1, z2) = B2U(z1, z2), (5.11)

and

Y(z1, z2) = C1Xh(z1, z2)+C2Xv (z1, z2)+DU(z1, z2),

we obtain [
z1In1 −A11 −A12

−A21 z2In2 −A22

][
Xh(z1, z2)

Xv (z1, z2)

]
= BU(z1, z2), (5.12)

(5.13)

and

Y(z1, z2) = C

[
Xh(z1, z2)

Xv (z1, z2)

]
+DU(z1, z2). (5.14)
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In the beginning, we solve the state equation (5.12) since the system of equations (5.5)

and (5.6) is regular, then

[
Xh(z1, z2)

Xv (z1, z2)

]
=

[
z1In1 −A11 −A12

−A21 z2In2 −A22

]−1

BU(z1, z2), (5.15)

by substituting the expression of the state equation (5.15) in the output expression (5.14),

we get

Y(z1, z2) = C

[
z1In1 −A11 −A12

−A21 z2In2 −A22

]−1

BU(z1, z2)+DU(z1, z2), (5.16)

and

Y(z1, z2) =

C

[
z1In1 −A11 −A12

−A21 z2In2 −A22

]−1

B+D

U(z1, z2). (5.17)

As a result, the transfer function of discrete system of equations (5.5) and (5.6) is pro-

vided by

G(z1, z2) =
Y(z1, z2)

U(z1, z2)
,

= C

[
z1In1 −A11 −A12

−A21 z2In2 −A22

]−1

B+D.

3 2D Roesser causal recursive separable denominator mod-

els (CRSD)

2D filters can be divided into two classes non-recursive filters (finite impulse response

(FIR)) and recursive filters (infinite impulse response (IIR)). For the recursive processing,

the output is a function of all previous outputs and the current and previous inputs [45]

and [75]. This filters can be represented in the state space model, as with digital 1D fil-

ters. To describe the behavior of filters, a combination of internal signals identified as

the variables of state, the main advantage is that digital filters can be described in terms

of matrices, which makes it easy to manipulate. A number of authors have presented

models for 2D digital filtering in state space model, including Attasi [6], Roesser [88] and

Fornasini-Marchesini [36] and others. In this section we consider the 2D Roesser models

described by the following state space model
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[
xh(i +1, j )

xv (i , j +1)

]
= A

[
xh(i , j )

xv (i , j )

]
+Bu(i , j ), (5.18)

y(i , j ) = C

[
xh(i , j )

xv (i , j )

]
+Du(i , j ), (5.19)

where

A =

[
A1 A2

A3 A4

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
,

and xh(i , j ) ∈ Rm , xv (i , j ) ∈ Rm are the horizontal and vertical state vectors, respec-

tively, u(i , j ) ∈Rp is the input vector, y(i , j ) ∈Rq is the output vector and the matrices A1,

A2, A3, A4, B1, B2, C1, C2, and D are real matrices of compatible size.

Definition 3.1 [45] A causal system is a system whose output signal depends only on the

internal values (past or present).

Example 3.2 The system of equations (5.18) and (5.19) is causal since the output in the

equation (5.19) depends only on the present value
(
xh(i , j ) and xv (i , j )

)
.

Theorem 3.3 [94] The 2D filter represented by equations (5.18) and (5.19) is minimally

separable if and only if one of the following two sets of conditions holds

1. A3 = 0 and

r ank

[
−A2 B1

−C2 D

]
= p;

2. A2 = 0 and

r ank

[
−A3 B2

−C1 D

]
= p.

Theorem 3.4 [94] The transfer matrix of the system of equations (5.18) and (5.19) is given

by

G(z1, z2) =
[

C1 C2

][
I1z1 −A1 −A2

−A3 I4z2 −A4

]−1 [
B1

B2

]
+D. (5.20)

If the condition (1) is verified, our system can be written as

G(z1, z2) = G1(z1)G2(z2), (5.21)

such that

G1(z1) = C1(z1I1 −A1)−1B̃1 + D̃1, (5.22)

G2(z2) = C̃2(z2I4 −A4)−1B2 + D̃2, (5.23)
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with the following matrix factorization

[
A2 B1

C2 D

]
=

[
B̃1

D̃1

][
C̃2 D̃2

]
. (5.24)

If the condition (2) is verified, the system of equations (5.18) and (5.19) can be written as

G(z1, z2) = G2(z2)G1(z1), (5.25)

where

G1(z1) = C̃1(z1I1 −A1)−1B1 + D̃1, (5.26)

G2(z2) = C2(z2I4 −A4)−1B̃2 + D̃2, (5.27)

with the following matrix factorization

[
A3 B2

C1 D

]
=

[
B̃2

D̃2

][
C̃1 D̃1

]
. (5.28)

4 H∞ norm

This section focuses on the computation of H∞ norm 2D Roesser CRSD models based on

a simple process of the singular values of a stable rational transfer function matrix and

the parahermitian matrix function of 1-D filters.

The H∞-norm of a rational transfer function G(z), γ∗ = ‖G‖H∞ is bounded if and only if it

is stable [28].

Definition 4.1 [39] Let φ : C −→ Cn×n be a matrix function maps the complex variable s

to a complex matrix φ(z). We define the para-conjugate transpose of this function with

respect to a particular curve in the complex plane by

φ∗(z) :=φ∗
(

1

z

)
, Γ = e jR,

where φ∗(.) is the para conjugate transpose of φ(.), it is called parahermitian matrix func-

tion, if

φ∗(z) =φ(z).

Definition 4.2 [32] The H∞ norm of a stable rational transfer function matrix G(z1, z2) is

equal to the maximum of the largest singular value of the transfer function G(e jω1 ,e jω2 )

evaluated on the unit circle e jω1 ,e jω2

‖G‖H∞ = sup
ω1,ω2∈[−π,π]

σmaxG(e jω1 ,e jω2 ), (5.29)
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where

σmaxG(e jω1 ,e jω2 ) := max
i

√
λi

(
G(e jω1 ,e jω2 )[G(e jω1 ,e jω2 )]∗

)
. (5.30)

Remark 4.3 Note that the optimumω∗
1 andω∗

2 of the H∞ norm of a stable rational transfer

function matrix G1(z1) and G2(z2) are in the neighborhood of the points which verifies the

maximum of the largest singular value of the transfer function G(z1, z2) evaluated on the

unit circle e jω1 , e jω2 and σmaxG(e jω1 ,e jω2 ) ≤σmaxG1
(
e jω1

)
σmaxG2

(
e jω2

)
.

For γ> 0, we define the para-hermitian matrix function of transfer function Gi (e jωi ) as

φGi (γi ,e jωi ) := γ2
i I−Gi

(
e jωi

)[
Gi

(
e jωi

)]∗
, i = 1,2, (5.31)

which is hermitian for every point zi = e jωi since G∗
i (e− jωi ) =

[
Gi

(
e jωi

)]∗
, then, we deduce

that

‖Gi‖H∞ := inf
γi∈R

{
φGi (γi ,e jωi ) Â 0, ∀ωi ∈ [−π,π]

}
. (5.32)

For consequent, if the para-hermitian matrix φGi (γi ,e jωi ) Â 0 for all ωi ∈ [−π,π], then,

γi >σmaxGi (e jωi ) for all ωi ∈ [−π,π]. The resolution of this problem is equivalent to solv-

ing a parahermitian generalized eigenvalue problem [39].

Based on [22], we assume that the given quadruple {A1,B1, C̃1, D̃1} and {A4, B̃2,C2, D̃2}

are realization of a stable transfer matrices functions G1(z1) and G2(z2) respectively, such

that

G1(z1) = C̃1 (I1z1 −A1)−1 B1 + D̃1, G2(z2) = C2 (I4z2 −A4)−1 B̃2 + D̃2, (5.33)

the transfer matrices functions (5.33) are the Schur complement of

SG1 (z1) =

[
A1 − I1z1 B1

C̃1 D̃1

]
, SG2 (z2) =

[
A4 − I4z2 B̃2

C2 D̃2

]
, (5.34)

and the so-called para-conjugate transfer matrices functions of (5.33) are

G∗
1 (z1) = z1BT

1

(
I1 − z1AT

1

)−1
C̃T

1 + D̃T
1 , G∗

2 (z2) = z2B̃T
2

(
I4 − z2AT

4

)−1
CT

2 + D̃T
2 , (5.35)

which are also the Schur complement of the corresponding system matrices (5.35) is

SG∗
1

(z1) =

[
z1AT

1 − I1 C̃T
1

z1BT
1 D̃T

1

]
, SG∗

2
(z2) =

[
z2AT

4 − I4 CT
2

z2B̃T
2 D̃T

2

]
. (5.36)

72



5. NUMERICAL EXAMPLE

φ1(γ1,e jω1 ) is the Schur complement of the following matrix function

Sφ1 (γ1,e jω1 ) =


0 A1 − I1e jω1 B1

e jω1 AT
1 − I1 −C̃T

1 C̃1 −C̃T
1 D̃1

e jω1 BT
1 −D̃T

1 C̃1 γ2
1I− D̃T

1 D̃1

 , (5.37)

we can represent (5.37) as a pencil of the form

A1
h −e jω1 F1

h =


0 A1 B1

−I1 −C̃T
1 C̃1 −C̃T

1 D̃1

0 −D̃T
1 C̃1 γ2

1I− D̃T
1 D̃1

−e jω1


0 I1 0

−AT
1 0 0

−BT
1 −0 0

 . (5.38)

φ2(γ2,e jω2 ) is the Schur complement of the following matrix function

Sφ2 (γ2,e jω2 ) =


0 A4 − I4e jω2 B̃2

e jω2 AT
4 − I4 −CT

2 C2 −CT
2 D̃22

e jω2 B̃T
2 −D̃T

2 C2 γ2
2I− D̃T

2 D̃2

 , (5.39)

which are represented by the following pencil

A2
h −e jω2 F2

h =


0 A4 B̃2

−I4 −CT
2 C2 −CT

2 D̃2

0 −D̃T
2 C2 γ2

2I− D̃T
2 D̃2

−e jω2


0 I4 0

−AT
4 0 0

−B̃T
2 −0 0

 . (5.40)

For every fixed value γi , the pencil (5.38) and (5.40) are Hermitian in the variable ω1 and

ω2, respectively. That follows, its generalized eigenvalues are real analytical function of

the real variable ω1 and ω2 [28] and [69]. The zeros of the corresponding pencils located

on the e jωi are the point at which σmaxGi (e jωi ) = γi , (i = 1,2). The H∞ norm can be com-

puted in several different ways [23, 26, 38, 39]. The corresponding methods can be ob-

tained by using the information of the eigenvalues function. Start from a point γ0
i which

intersects the singular values of Gi (e jω0
i ), and obtain from this the intervals for which

σmaxGi (e jωi ) ≥ γ0
i (these are called the level sets for γ0

i ) and compute the σmaxGi (e jωi ) as

the piecewise analytic function that is maximal at each frequency ωi , this method pro-

duce a quadratically convergence.

5 Numerical example

In this section, we present an illustrative real example in order to the show the efficiency

of our method.
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Example 5.1 Consider the 2D Roesser models described by the state space equations

[
xh(i +1, j )

xv (i , j +1)

]
= A

[
xh(i , j )

xv (i , j )

]
+Bu(i , j ), (5.41)

y(i , j ) = C

[
xh(i , j )

xv (i , j )

]
+Du(i , j ), (5.42)

where

A =


0.1 1 −4

0 0.4 −0.2

0 1 0.1

 , C =

[
−3 2 −8

7 0 1

]
, B =


0.2 0.6

0.7 −2

−0.5 0.1

 , D =

[
0.4 1.2

1 0

]
. (5.43)

The transfer matrix of the system of equations (5.41) and (5.42) is


−32.0146e2 jω2 −415.9881e jω2 −352.1996e jω1 +20.0083e jω1 e2 jω2 +259.9801e jω2 e jω1 +563.5254

−5e2 jω2 +2.5e jω2 +12e jω1 +50e jω1 e2 jω2 −25e jω2 e jω1 −1.2
65.0316e2 jω2 +914.9749e jω2 +57.0001e jω1 +49.9988e jω1 e2 jω2 −49.9988e jω2 e jω1 −1238.4

−5e2 jω2 +2.5e jω2 +12e jω1 +50e jω1 e2 jω2 −25e jω2 e jω1 −1.2

−96.0323e2 jω2 +431.9905e jω2 +848.4066e jω1 +60.0195e jω1 e2 jω2 −269.9910e jω2 e jω1 −1357.5

−5e2 jω2 +2.5e jω2 +12e jω1 +50e jω1 e2 jω2 −25e jω2 e jω1 −1.2
210.0710e2 jω2 −945.4796e jω2 −102.0012e jω1 +4.9981e jω2 e jω1 +2979.6

−5e2 jω2 +2.5e jω2 +12e jω1 +50e jω1 e2 jω2 −25e jω2 e jω1 −1.2

 ,

we have A3 = 0R2 and

rank

[
−A2 B1

−C2 D

]
= rank


−1 4 0.2 0.6

−2 8 0.4 1.2

0 −1 1 0

 = 2. (5.44)

Therefore, the corresponding system is minimally separable, from theorem (3.4) there

exist two 1-D rational matrices G1 and G2 as

G1(e jω1 ) =


−8.3421e jω1 +13.3475

e jω1 −0.1

0.0948e jω1 −0.1517

e jω1 −0.1
0.9232e jω1 −29.29

e jω1 −0.1

1.0713e jω1 +0.2247

e jω1 −0.1

 ,
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5. NUMERICAL EXAMPLE

Figure 5.1: Maximum of singular values of transfer function G1 with points ω1 and levels γ1.

The maximizing frequency is ω∗
1 = 2.9999 and we obtain γ1 = 33.8091, and

G2(e jω2 ) =


42.4089−31.389e jω2 −1.85e2 jω2

50e2 jω2 −25e jω2 +12

−7.125e2 jω2 +32.1035e jω2 −101.787

50e2 jω2 −25e jω2 +12
48.265e2 jω2 −19.6215e jω2 +16.6605

50e2 jω2 −25e jω2 +12

6.14e2 jω2 −23e jω2 −7.4970

50e2 jω2 −25e jω2 +12

 ,

Figure 5.2: Maximum of singular values of transfer function G2 with points ω2 and levels γ2.

The maximizing frequency is ω∗
2 = 1.0467 and we obtain γ2 = 2.8796.

As consequent, from corollary 3.4 the H∞ norm of the system of equations (2.2) and (2.3)

is γ∗ = 95.1394 for the optimum frequency ω1 = 2.8788 and ω2 = 1.0909 in the neighbour-

hood of ω∗
1 and ω∗

2 such that ‖G
(
ω∗

1 ,ω∗
2

)‖H∞ = 94.9813 and γ≤ γ1γ2 = 97.3575.
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6. CONCLUSION

Figure 5.3: Maximum of singular values of transfer function G.

In the first step, we start from a level γ0
i and find the intervals Ii 1......Ii l by computing the

real zeros of (5.38) and (5.40) corresponding of this level (γ0
i ). Secondly, using midpoints

(ωk+1
i ) of the previous intervals, we obtain the next level γk+1

i =σmaxG(e jωk+1
i ), i = 1,2. We

took into account the algorithm in [23] with tolerance 10−5. The method converge in 15

step for G1 and 3 step for G2 as showing in figure (5.1) and (5.2). Finally, the maximum

singular values of the system of equations (2.2) and (2.3) is bounded σmaxG(e jω∗
1 ,e jω∗

2 ) ≤
γ∗1γ

∗
2 .

6 Conclusion

This chapter presents an accurate and economical algorithm for solving a two-dimensional

(2D) digital recursive filters, based on the computation of level sets of the maximum sin-

gular value of the transfer function. The findings of this study can be used for several

practical image processing applications, including image ...etc, due to their minimization

of cost. An illustrative example is introduced to prove the accuracy of the proposed ap-

proach.
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Conclusion

The methodologies developed in this thesis are dedicated to the analysis and synthesis

of control laws for linear systems in the one and two dimension forms where fractional-

order singular models and also models with conformable derivatives are considered. Their

institutions appeal exclusively to the Sumudu transform method, the parahermitian ma-

trix function and to the midpoint approach. This work belongs to one of the axes of the

control theory of linear complex systems, the complexity being in the non-integer order

of the derivation of the differential equations describing a class of singular models. The

results reported in this dissertation can be viewed as extensions of some existing results

in the literature of linear singular systems to their homologous of fractional-order and

exclusively to a new class of two dimensional models. The study we have conducted is

organized in two parts: In the first part, we focus on the solvability of a new class of singu-

lar system with conformable derivative by the use of the Sumudu transform, and also, the

case of standard conformable system has been treated; subsequently, we have conducted

a comparative analysis between the different resolution of fractional linear dynamical sys-

tems, since in the last few years, different phenomena in various domains have been mod-

eled by fractional dynamical systems.

The conformable derivative is useful for modeling many physical problems, note that the

differential equations with conformable fractional derivatives are simpler to solve com-

putationally compared to those using Caputo or Riemann-Liouville fractional derivatives.

Various applications of the conformable fractional derivative have investigated in the lit-

erature in many areas.

The Laplace transform is an extremely efficient mathematical method used in many fields

of research and engineering. The Sumudu transform, although less known than the Laplace

transform, has several interesting properties compared to other integral transforms, in

particular the "unity" aspect, which can be useful for solving differential equations. The

novelty of our contributions is to use this approache to compute the solution of these new

fractional models. We have then established the analysis of these new systems, extending

the main results concerning the class of singular and fractional one-dimensional systems

such as controllability, observability, positivity, stability and superstability. The second

part relates to the computation of the H infinity norm for a class of two-dimensional stan-
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Conclusion

dard Roesser type model. We have extracted important results on the computation of the

H infinity norm based on the work of BOUAGADA et al. Our results can be extracted from

the fractional two-dimensional systems given by special forms of the discrete Roesser.

The main achievements are summarized and future research topics are then discussed.
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Control and observation of fractional models and applications

Abstract : The aim of this thesis is to describe a variety of synthesis techniques concern-

ing the observation and control laws of fractional one dimensional systems when a new

models with conformable derivative and fractional-order (singular/ standard) models are

discussed and also we developed a approach of H∞ control on two-dimension system.

In the first part of this thesis, we propose the application of the Sumudu transform for

solving singular continuous-time linear systems based on the conformable derivative op-

erator. Thanks to the interesting properties of the conformable Sumudu transform that

we have established, a new approach is developed. Through academic and real exam-

ples, our method is compared to the existing ones, where the applicability and the accu-

racy of the developed process are shown. An alternative approach using the Weierstrass-

Kronecker decomposition method is also given when the solution is provided with a dif-

ferent form. The analysis of different concepts of controllability, observability, positivity,



stability and superstability of this new system are established. Additionally, In the second

part of this thesis, an efficient algorithm to calculate the H∞ norm of two-dimensional

digital filters described by Roesser models is derived as an extension of the work of BOUA-

GADA et al. by using a para-hermitian matrix function and level sets methods of maxi-

mum singular value of the transfer function, this method converges quadratically in a few

steps towards the frequency ω1 and ω2. We present an illustrative examples in order to

show the efficiency and the accuracy of our approach.

Key Words. Singular systems, Conformable derivative operator, Caputo derivative, Con-

formable fractional Sumudu transform, Controllability, Observability, Positivity, Stability,

Superstability, 2D digital Filters, Causal recursive separable denominator, H∞ norm.

Contrôle et observation de modèle fractionnaires et applications

Résumé : L’objective de cette thèse est de décrire une variété de techniques de syn-

thèse concernant les lois d’observation et de contrôle des systèmes unidimensionnels

fractionnaires lorsqu’un nouveau modèle avec la dérivés conformes et des modèles (sin-

guliers/standard) fractionnaires sont discutés et nous avons développé aussi une approche

de contrôle H∞ sur un système à deux dimensions. Dans la première partie de cette thèse,

nous proposons l’application de la transformée de Sumudu pour résoudre des systèmes

linéaires singuliers à temps continu basés sur l’opérateur dérivé conforme. Grâce aux pro-

priétés intéressantes de la transformée de Sumudu conformable que nous avons établies,

une nouvelle approche est développée. Par le biais d’exemples théoriques et réels, notre

méthode est comparée aux méthodes existantes, ce qui démontre l’applicabilité et la pré-

cision du processus développé. Une autre approche en utilisant la méthode de décom-

position Weierstrass-Kronecker est également donnée lorsque la solution est fournie avec

une autre forme. L’analyse des différents concepts de contrôlabilité, observabilité, posi-

tivité, stabilité et superstabilité de ces nouveaux systèmes est établie. En outre, dans la

deuxième partie de ce projet, un algorithme efficace pour calculer la norme H∞ de fil-

tres numériques bidimensionnels décrits par des modèles de Roesser est obtenu comme

une extension du travail de BOUAGADA et al. en utilisant une fonction de matrice para-

hermitienne et des méthodes d’ensembles de niveaux de la valeur singulière maximale

de la fonction de transfert, cette méthode converge quadratiquement en quelques étapes

vers la fréquence ω1 et ω2. Nous présentons des exemples illustratifs afin de montrer

l’efficacité et la précision de notre approche.



Mots-Clés. Systèmes singuliers, Dérivé conforme, Dérivé de Caputo, Transformée de

Sumudu fractionnaire conformable, Contrôlabilité, Observabilité, Positivité, Stabilité, Su-

perstabilité, Filtres numériques 2D, Dénominateur séparable récursif causal, Norme H∞.
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