

الجممهورية الجزائرية الديمقراطية الشعبي People's Democratic republic of Algeria وزارة التعليم العالي و البحث العلمي Ministry of Higher Education and Scientific Research جامعة عبد الحميد بن باديس – مستغان Abdelhamid Ibn Badis University – Mostaganem كليسة العلوم و التكنول وجيا Faculty of Sciences and Technology قسم هندسة الطرائق Department of Process Engineering

Department of Process Engineering The Date Ref:...../U.M/F.S.T/2023 قسم هندسة الطرائق التاريخ : رقم :...... / ج .م/ ك.ع.ت//2023

MEMOIRE DE FIN D'ETUDES

DE MASTER ACADEMIQUE

Filière : Génie des procédés

Option : Génie Chimique

Thème

Etude et analyse de l'effet de changement des paramètres de

marche de la boucle propane (GL1/Z)

Présenté par AMMOUR Zineb Nermine Rahil AMEUR Hayet

Soutenu le 19/06/2023 devant le jury composé de :

Président :	M ^{me} KHELLADI Malika	MCB	Université de Mostaganem
Examinateur :	Mme MEZOUAGH Amina	MCB	Université de Mostaganem
Rapporteur :	M ^{me} MOHAMED SEGHIR Zahira	MCB	Université de Mostaganem

Année Universitaire 2022/2023

Remerciements

Mes remerciements vont tout premièrement à Dieu tout puissant pour la volonté, la santé et la patience qu'il m'a donné durant toutes ces années.

Je tiens à exprimer ma profonde reconnaissance et mes sincères remerciements à ma promotrice M^{me} MOHAMED SEGHIR Zahira qui a été d'un grand apport pour la réalisation de ce travail. Ses conseils, ses orientations ainsi que son soutien moral et scientifique m'ont permis de mener à bien ce projet.

Mes remerciements à tous les membres du jury : M^{me} KHELLADI Malika et M^{me} MEZOUAGH Amina pour avoir bien voulu examiner et juger ce travail.

J'adresse aussi mes remerciements à tous les enseignants de la faculté spécialement le personnel du département de génie des procédés pour avoir enrichi nos connaissances scientifiques et techniques et en particulier notre spécialité génie chimique

Je tiens également à exprimer mes chaleureux remerciements à mes parents, mes sœurs, qui m'ont tous encouragé à mener à bien ce travail.

Je dédie ce modeste travail accompagné d'un profond amour

A mes chers parents quoi que je dise ou que je fasse, je n'arrivai jamais à vous remercier comme il se doit. C'est grâce à vos encouragements, vos bienveillances et votre présence à mes côtés, que j'ai réussi ce respectueux parcours.

Je souhaite que vous soyez fière de moi, et que j'ai pu répondre aux espoirs que vous avez fondé en moi.

A toute ma famille et mes amis.

Dédicace

Je dédie ce modeste travail

A mon très cher papa, qui est la source de ma force et de mon inspiration.

A mon très cher mama, quoi je fasse ou que je dise je ne saurai point te remercier comme il se doit, ta présence à mes côtés a toujours été ma source de force pour affronter les différents obstacles.

A ma meilleure amie CHAHINEZ et ma sœur AÏCHA.

Sans oublier mon binôme **RAHIL** pour son soutien morale sa patience et sa compréhension tout au long de ce projet.

A tous mes copines SOUMIA, MAMA, SIHEM et SOUMIA.

Hayet

ملخص

تهدف هذه الدراسة بشكل أساسي إلى دراسة الخلل في حلقة تبريد البروبان في صناعة الغاز الطبيعي المسال. لقد درسنا جميع المشاكل التي تمنع عمل الحلقة بشكل صحيح على مستوى معقد .Z / GL1 ووجدنا أنه خلال الفترات الحارة ترتفع درجة حرارة مياه البحر. يفضل هذا التغيير تكثيفًا جزئيًا لسائل التبريد من أجزاء أخرى، وقد أدى ذلك إلى تلوث تكوين الحلقة بمكونات غير مرغوب فيها. ثم أجرينا محاكاة باستخدام محاكي Aspen Hysys V11 لمعرفة تأثير الأسباب المحتملة لخلل حلقة البروبان وعواقبها السلبية المحتملة على قسم التجزئة. أظهرت التائج تأثيراً سلبياً على أداء دورة البروبان. تتمثل دراستنا في تحديد حجم جهاز إزالة حرارة جديد أكثر كفاءة من المبادل الحالي 2.5 E-5 من أجل تقليل فقد مادة التبريد (البروبان)، وبالتالي تثبيت تباين الخصائص الديناميكية الحرارية للحلقة. وجدنا توافقاً كليًا للقيم المحسوبة بواسطة طرق برنامج KERN وكراسة في معظم الكميات. في الختام، يمكن القول أن الغرض المقصود من هذه الدراسة قد تم تحقيقه.

Résumé

Cette étude vise principalement à étudier le disfonctionnement dans la boucle réfrigérante au propane dans l'industrie du GNL. Nous avons étudié tous les problèmes qui empêche le bon fonctionnement de la boucle au niveau de complexe GL1/Z nous avons constaté que pendant les périodes chaudes la température de l'eau de mer augmente. Ce changement favorise une condensation partielle de réfrigérant d'autres parts, ceci a favorisé la contamination de l'appoint de la boucle par des composants indésirables. Ensuite nous avons réalisé une simulation à l'aide de simulateur Aspen Hysys V11 afin de voir l'influence des causes probables du mauvais fonctionnement de la boucle propane et leurs éventuelles conséquences néfastes sur la section fractionnement. Les résultats relèvent un impact négatif sur la performance du cycle de propane. Notre étude consiste à dimensionner un nouveau désurchauffeur plus performant que l'échangeur actuel E-513 afin de minimiser les pertes de réfrigérant (propane), ainsi stabiliser la variation des propriétés thermodynamiques de la boucle. On a trouvé une concordance totale des valeurs calculées par les méthodes de KERN et Logiciel EDR HYSYS, dans la plupart des grandeurs. En conclusion, on peut dire que le but prévu de cette étude est atteint.

Abstract

The main aim of this study is to investigate the malfunctioning of the propane refrigerant loop in the LNG industry. We studied all the problems preventing the loop from operating properly at the GL1/Z complex, and found that during hot periods the seawater temperature rises. This change favors partial condensation of refrigerant on the other hand, which in turn favors contamination of the loop make-up by undesirable components. We then carried out a simulation using the Aspen Hysys V11 simulator to see the influence of the probable causes of the propane loop malfunction and their possible adverse consequences on the fractionation section. The results show a negative impact on the performance of the propane cycle. Our study consisted in sizing a new desuperheater with better performance than the current E-513 exchanger, in order to minimize losses of refrigerant (propane) and stabilize variations in the loop's thermodynamic properties. The values calculated by the KERN method and the EDR HYSYS software were found to be in complete agreement for most variables. In conclusion, we can say that the intended aim of this study has been achieved.

SOMMAIRE

SOMMAIRE

Liste des figures	
Liste des tableaux	
Liste des abréviations	
Introduction générale	1
<u>CHAPITRE I</u> : Description du complexe GL1/Z	2
	2
1.1. Mission du complexe GL1/Z	3
I.2. Description générale du complexe GL1/Z	3
I.3. Situation géographique du complexe	3
I.4.Les zones du complexe GL1/Z	4
I.4.1 Zone utilité	4
I.4.2 Zone de process	4
I.4.3 Zone terminal	5
I.5. Description générale du procédé de liquéfaction du gaz naturel	6
I.5.1 Décarbonatation	7
I.5.2 Déshydratation	7
I.5.3 Démercurisation	8
I.5.4 Section de séparation (tour de lavage)	8
I.5.5 Section de fractionnement	9
I.5.6. Système de réfrigération mixte MCR	10
I.5.7. Section de liquéfaction	11
I.6. Description de la boucle propane	13
I.6.1. Rôle de la section	13
I.6.2. Les équipements principaux dans le système	13
I.6.3. Principe de fonctionnement de la boucle propane	14
I.6.4. Paramètres de fonctionnement	15

SOMMAIRE

<u>CHAPITRE II</u>: Diagnostic de problème

II.1. Analyse des sources probables de la contamination de la boucle	19
II.1.1 Pollution du propane dû aux fuites internes	19
II.1.2 Pollution du propane due à l'appoint de dépropaniseur	21
II.2 Analyse de l'augmentation de débit de réfrigérant	22
II.3 Le traitement de l'eau de mer	24

<u>CHAPITRE III</u>: Simulation de la boucle propane

Introduction	25
III.1. Méthodologie de travail	26
III.2.Données de la simulation	27
III.3 Etablissement du schéma du procédé (PFD)	27
III.4. Résultats de la simulation	29
III.4.1. L'effet de la contamination de la boucle propane	30
III.4.2. L'effet de la température de l'EDM	34

<u>CHAPITRE IV</u> : Partie calculs

Introduction	36
IV.1. Caractéristiques de l'échangeur IV.2. La méthode de Kern	36 36
IV.2.1. Calcul thermique IV.2.1.1 Calcul de la quantité de chaleur	38 38
IV.2.1.1 Calcul de la DTLM	39
IV.2.1.3. Calcul de nombre de passe coté calandre <i>nc</i>	39
IV.2.1.4. Estimation de la surface d'échange IV.2.1.5. Choix des matériaux à utiliser	39 39
IV.2.1.6. Estimation du nombre de tube par calandre	39
IV.2.1.7. Estimation le diamètre du calandre	40
IV.2.1.8. Calcul des températures caloriques	40
IV.2.1.9. Calcul de coefficient de transfert U	40
IV.2.1.10. Calcul du coefficient de transfert global	42
IV.2.1.11. Vérification de la résistance d'encrassement Rs	42

SOMMAIRE

IV.2.2. Calcul les pertes de charge	43
IV.3. Aspen Exchanger Design & Rating (EDR)	44
IV.3.1. Calcul de l'échangeur de chaleur par le simulateur Aspen EDR	44
IV.3.2. Résultats de la simulation sous forme de data sheet	45
Conclusion générale	46
Références bibliographiques	
Liste des annexes	

$\underline{\textbf{CHAPITRE I}}: Description du complexe GL1/Z$

Figure.I.1. Plan général du complexe GL1/Z	5
Figure.I.2. Le procédé simplifié de liquéfaction du gaz naturel	12
Figure.I.3. Schéma simplifie de la boucle propane	17

<u>CHAPITRE II</u>: Diagnostic de problème

Figure.II.1. Comparaison entre la tête de dépropaniseur et de refoulement général du propan	e
durant le mois d'avril	20
Figure.II.2. L'échangeur E513	. 22
Figure.II.3. Les moules entrainées par l'eau de mer, piégées dans l'échangeur E-514	. 23

<u>CHAPITRE III</u>: Simulation de la boucle propane

Figure.III.1. Schéma de simulation de procédé	26
Figure.III.2. Schéma de la boucle propane établi au moyen du logiciel Hysys	28
Figure.III.3. Évolution de la pression de refoulement général en fonction de la teneur de	
pollution	30
Figure.III.4. Évolution de la température de refoulement général en fonction de la teneur de	
pollution	30
Figure.III.5. Évolution des pertes de propane en fonction de la teneur de pollution	31
Figure.III.6. Débit de l'éthane évaporé en fonction de la teneur de pollution	31
Figure.III.7. Évolution de la température de gaz de procédé en fonction de la teneur de	
pollution (C2, C4)	32
Figure.III.8. Évolution de la température de MCR en fonction de la teneur de pollution (C2,	
C4)	32
Figure.III.9. Évolution de la pureté dans le ballon de reflux du deéthaniseur en fonction de	
la température de B.P	33
Figure.III.10. Évolution de la pureté dans le ballon de reflux du dépropaniseur en fonction	
de la température de l'EDM	34
Figure.III.11. Débit du propane évaporé en fonction de la température de l'eau de mer	35

<u>CHAPITRE IV</u> : Partie calculs

Figure.IV.1. Algorithme de calcul	37
Figure. IV.2. Data sheet de l'échangeur	44

$\underline{\textbf{CHAPITRE I}}: Description du complexe GL1/Z$

Tableau I.1. Composition chimique du GN.	6
Tableau I.2. La composition du MCR	10
Tableau I.3. Composition chimique du GNL	12
Tableau I.4. Paramètres de marche du principal équipement de la boucle propane	16
Tableau I.5. Haute pression	16
Tableau. I.6. Moyenne pression	16
Tableau. I.7. Basse pression	17

CHAPITRE II : Diagnostic de problème

Tableau II.1. Comparaison des paramètres de fonctionnement de la boucle j	propane
(design et actuel)	
Tableau II.2. Qualité de la tête de depropaniseur et de refoulement général	du propane durant
le mois d'octobre	21

<u>CHAPITRE III</u>: Simulation de la boucle propane

Tableau III.1. Principaux résultats obtenus par simulation comparés aux valeurs design.29

<u>CHAPITRE IV</u> : Partie calculs

Tableau IV.1. Caractéristiques de l'échangeur	
Tableau IV.2. La viscosité de propane en fonction de température	
Tableau IV.3. Nominal Pipe Size	
Tableau IV.3. Résumé des résultats	43

Liste des abréviations

Paramètre		Unité
T1	Température d'entrée du fluide chaud	°C
T2	Température de sortie du fluide chaud	°C
t1	Température d'entrée du fluide froid	°C
t2	Température de sortie du fluide froid	°C
М	Débit massique du fluide chaud	Kg/h
m	Débit massique du fluide froid	Kg/h
DTLM	Différence des températures moyennes logarithmiques	°C
λ	Conductivité thermique	W/ m °C
μ	viscosité	Kg/m h
ρ	Masse volumique	Kg/m3
Ср	Chaleur spécifique	kJ/kg °C
L	Longueur des tubes	mm
d0	Diamètre extérieur des tubes	mm
di	Diamètre intérieur des tubes	mm
р	Pas entre chicanes	mm
nc	Nombre de passes côté calandre /	
nt	Nombre de passes côté tube /	
De	Diamètre équivalent	mm
Dc	Diamètre de la calandre	mm
Nt	Nombre total des tubes (calculé) /	
В	Espacement entre chicanes	mm
Nc	Nombre de chicanes /	
Us	Coefficient de transfert sale	W/m2°C

А	Surface d'échange m2	
Тс	Température calorique côté calandre	°C
Тс	Température calorique côté tube	°C
Tt	Température du tube	°C
At	Section de passage côté tube	m2
Gt	Vitesse massique côté tube	Kg/m2 S
Ret	Nombre de Reynolds côté tube /	
hi	Coefficient de transfert de chaleur coté tube	W/m2°C
act	Section de passage coté calandre	m2
Gct	Vitesse massique coté calandre	Kg/m2 S
Rect	Nombre de Reynolds coté calandre	
ho	Coefficient de transfert de chaleur coté calandre	W/m2°C
Up	Coefficient de transfert global propre	W/m2°C
Rs	Résistance d'encrassement	m2°C/W
ft	Facteur de friction /	
Δpt	Pertes de charges cote tube	bar
Δрс	Pertes de charges cote calandre	bar
Q	quantité de chaleur	KW
F	facteur de correction	
V	vitesse	m/s
Nu	nombre de Nusselt	
Pr	Prandtl number	

Introduction générale

Dans un monde en quête de diversification énergétique, le gaz naturel apparaît comme une source d'énergie particulièrement attrayante. Parallèlement au pétrole, l'énergie gazière occupe une place très importante dans le marché mondial grâce à ces propriétés énergétiques et écologiques. Le gaz naturel qui est la première source gazière mondiale, l'importance de ses réserves et les avantages qu'il présente sur le plan environnemental favorise son utilisation par son abondance, sa facilité de substitution aux produits pétroliers dans une gamme très large d'usages, il pourrait assurément jouer un rôle beaucoup plus important dans la couverture des besoins énergétiques mondiaux [1].

Pour faciliter son transport dans des méthaniers vers les pays consommateurs d'énergie, le Gaz Naturel est liquéfié. En effet, la liquéfaction de 600 Nm^3 de Gaz Naturel conduit à la production de 1 m³ de GNL, soit une réduction en volume de 600 fois.

La liquéfaction du gaz naturel est un impératif lié au transport du gaz naturel. La liquéfaction ne peut s'effectuer qu'à la suite d'un certain nombre de traitements préliminaires destinés à purifier le gaz naturel de composants qui peuvent être source de graves problèmes dans le train de liquéfaction, tels que le dioxyde de carbone, l'eau, et le mercure [2].

Les systèmes frigorifiques jouent un rôle primordial et incontournable dans toute technologie de liquéfaction du gaz naturel.

La technologie de liquéfaction du gaz naturel APCI (AIR PRODUCT AND CHEMI-CALS) utilisée au niveau du complexe GL1Z comprend deux boucles de réfrigération propane et MCR.

La boucle de réfrigération au propane est utilisée dans les procédés comme une partie du cycle de réfrigération en cascade. Celle-ci est chargée d'extraire la chaleur portée par le réfrigérant multi composants, qui est le MCR (Multi Composant Réfrigérant), et à pré refroidir le Gaz Naturel, pour pouvoir séparer aisément ses constituants lourds et légers et prévenir tout bouchage possible à la suite du procédé de liquéfaction.

Le changement des paramètres de marche de cette boucle empêche le circuit propane d'assurer le refroidissement nécessaire de la boucle MCR à même que celle-ci ne pourra pas pré-refroidir le GN afin de le liquéfier à travers l'échangeur principal. De ce fait, Notre étude consiste à dimensionner un nouveau désurchauffeur plus performant que l'échangeur actuel E-513 afin de minimiser les pertes de réfrigérant (propane), ainsi stabiliser la variation des propriétés thermodynamiques de la boucle.

Pour effectuer ce travail nous avons articulé notre projet sous forme de quatre chapitres :

- Le premier chapitre traite des généralités sur le gaz naturel et une description du procédé de liquéfaction au niveau du complexe GL1/Z, particulièrement la boucle de propane qui fait l'objet de notre étude.
- Le deuxième chapitre est consacré à la problématique, nous étudions les causes possibles qui peuvent mener le disfonctionnement de la boucle propane.
- Ensuite, on étudie l'influence des causes probables du mauvais fonctionnement de la boucle propane et leurs éventuelles conséquences néfastes sur la section fractionnement, par voix numérique à l'aide du logiciel de simulation Aspen HYSYS.
- Une partie de calcul analytique, application de la méthode classique (méthode de KERN) pour faire le dimensionnement du nouveau désurchauffeur, proposée comme solution du problème, comparé avec la deuxième méthode de dimensionnement à l'aide du logiciel de simulation Aspen EDR.
- Nous terminerons notre étude par des recommandations et une conclusion.

CHAPITRE I : Description du complexe GL1/Z

Introduction

SONATRACH figure aujourd'hui, parmi les leaders mondiaux dans l'industrie du GNL.

Dans le cadre de valorisation des ressources en gaz naturel, principalement, le gisement de HASSI R'MEL, des usines de GNL ont été construites dans le Nord du pays dont le but principal est l'exportation du GNL vers l'Europe et les USA par méthaniers.[3]

L'objectif de ce chapitre est de donné une idée générale sur les différentes unités du complexe de liquéfaction du gaz GL1/Z d'ARZEW.

I.1. Mission du complexe GL1/Z

Le complexe GL1/Z a pour mission de traiter le gaz naturel transporté par gazoduc en provenance des champs gaziers de HASSI R'MEL en gaz naturel liquéfié (GNL) avec possibilité d'extraction du propane, du butane et de la gazoline, ce gaz est ensuite transporté dans les méthaniers à destination de l'étranger [4].

I.2. Description générale du complexe GL1/Z

L'usine de liquéfaction du gaz naturel GL1/Z a été conçue pour assurer le transport du gaz naturel provenant de Hassi R'mel sous forme liquide.

L'usine comprend six trains de process indépendant, fonctionnant en parallèle, dans chaque train, le GN d'alimentation est traité pour éliminer le gaz carbonique (CO₂), la vapeur d'eau (H₂O) et des traces de mercure (H_g), il est ensuite réfrigéré pour extraire les hydrocarbures lourds et il est finalement liquéfié, une fois liquéfié le gaz est envoyé par pompage dans trois réservoirs de stockage.

I.3. Situation géographique du complexe

Le complexe GL1/Z est situé au Nord-ouest du pays à 40 km de la ville d'Oran, à proximité d'un village au bord de la mer méditerranée nommé "Bethioua". Son implantation exacte se trouve entre le complexe voisin GL2/Z à l'Est et le complexe CEA/Z à l'Ouest au bord de l'autoroute de la zone industrielle d'Arzew.

I.4.Les zones du complexe GL1/Z

Le complexe GL1/Z comprend trois (03) zones essentielles :

I.4.1. Zone Utilités

La zone utilité de GL1/Z est la zone motrice de l'usine, elle a pour rôle de fournir les utilités nécessaires au démarrage et au bon fonctionnement des trains de liquéfaction telle que l'électricité, l'air instrument, l'azote, les vapeurs, eau distillée, l'eau de mer de refroidissement. Au niveau de cette zone on rencontre essentiellement :

- Les turbos générateurs : production d'électricité.
- Les turbos compresseurs : compression de gaz KT (110/120/121/130).
- Les réchauffeurs : pour l'échange de chaleur.
- Les turbos pompes : pour le fonctionnement des pompes.
- 17 chaudières capables de produire 115 tonnes de vapeur/heure à 62 bars avec une température de l'ordre de 442 degrés.
- 06 chaudières de 400 tonnes/heure chacune à 62 bars avec une température de l'ordre de 442 degrés.
- 03 chaudières de 91 tonnes/heure chacune à 62 bars avec une température de l'ordre de 442 degrés.
- 01 chaudière basse pression capable de produire 51 tonnes de vapeur/heure à 27 bars.

I.4.2. Zone Process

Constituée de six unités de liquéfaction identiques appelées trains, tant dans leur design que dans leurs fonctionnements. En effet, vu de près, les caractéristiques et les configurations, issus d'un même engineering industriel, explique leur autonomie de fonctionnement pour la liquéfaction du gaz naturel, et chaque train de liquéfaction est composé de huit sections et d'un circuit de refroidissement à savoir :

- Section de décarbonatation (élimination du CO2).
- Section de déshydratation (élimination de H2O).
- Section de démercurisation (élimination d'Hg).
- Section de refroidissement au propane.
- Section séparation et tour de lavage.

- Section de fractionnement.
- Circuit de refroidissement mixte.
- Section de liquéfaction.

I.4.3. Zone Terminal

C'est la zone de stockage et de chargement elle est constituée de :

- Trois (03) réservoirs de GNL d'une capacité de 300 000 m³ et une sphère de gazoline d'une capacité de 3281 m³.
 - Une station de pompage de GNL d'une capacité de 10 000 m³/h.
 - Deux (02) quais d'expédition avec dix 10 bras de chargement.

Le stockage d'un produit tel que le GNL ayant des conditions cryogéniques sévères (température de stockage de -162°C, et la pression de stockage de 1.03 bar effective) doit faire appel à des caractéristiques d'isolement particulières afin d'éviter les pertes des frigories.

Fig.I.1. Plan général du complexe GL1/Z.

I.5. Description générale du procédé de liquéfaction du gaz naturel

Le gaz naturel est un mélange d'hydrocarbures saturés tel que le méthane en grande proportion, l'éthane, le propane, le butane, le pentane en proportions décroissantes et des traces d'hexane. Son analyse révèle la présence d'hélium, d'azote, de dioxyde de carbone, d'eau et des traces de mercure.

Le principe de la liquéfaction de gaz naturel consiste à abaisser son enthalpie par réfrigération jusqu'à une température de stockage de -162 °C.

La charge d'une unité de liquéfaction de gaz naturel doit être conditionnée avant la liquéfaction à des températures cryogéniques.

Le conditionnement du gaz de charge implique l'enlèvement des agents contaminants tels que le mercure, l'oxyde de carbone, l'humidité ...etc.

Si ces contaminants (CO₂ et H₂O) restent dans le gaz ils boucheront les vannes, les échangeurs, les conduites...etc.

Le mercure en présence d'eau peut attaquer les équipements en aluminium lors du réchauffement c'est pourquoi les composants condensables sont d'abord éliminés dans une série d'unités de traitement avant que le gaz naturel ne puisse être liquéfié.

Compositions de gaz	% molaire moyen	Variation estimée	
CH ₄ (méthane)	83,0	0,30	
C ₂ H ₆ (éthane)	7,10	0,15	
C ₃ H ₈ (propane)	2,25	0,10	
I.C ₄ H ₁₀ (iso-butane)	0,40	0,07	
$N.C_4H_{10}$ (normo-butane)	0,60	0,08	
I.C ₅ H ₁₂ (iso-pentane)	0,12	0,03	
N.C ₅ H ₁₂ (normo-pentane)	0,15	0,04	
N ₂ (azote)	5,80	0,2	
He (hélium)	0,19	0,02	
CO ₂ (dioxide de carbone)	0,21	0,03	
C_6 +	0.18	0.05	
TOTAL	100 ,00		

Tableau I.1. Composition chimique du GN [4].

Le Complexe GL1/Z utilise le procédé APCI qui est basé sur un fluide frigorigène mixte (MCR) avec une boucle de refroidissement au propane pour la liquéfaction du gaz naturel, le gaz naturel traité est refroidi dans un système de réfrigération au propane, il est ensuite liquéfié au niveau de l'échangeur cryogénique principal de l'intermédiaire d'un réfrigérant mixte composé d'hydrocarbure léger et d'azote [5].

Le gaz naturel de Hassi R'mel est transporté par canalisations souterraines jusqu'au terminal de Bethioua, par des stations de compressions, exploité par la région de transport Ouest Sonatrach RTO, de là, il est acheminé au Complexe. A son entrée dans le train, il est régulé à 43 bars de pression au moyen d'une vanne de contrôle de pression, après élimination des hydrocarbures liquide en suspensions qui contient dans un séparateur, il est préchauffé à 38°C avec de la vapeur sous une pression de 3.45 bars, il passe ensuite dans une colonne d'absorption pour l'élimination du gaz carbonique. A partir de là on peut résumer les étapes du traitement et liquéfaction de gaz comme suit :

I.5.1. Décarbonatation

Le gaz d'alimentation à son entrée dans le train passe par un ballon séparateur ou tous les hydrocarbures lourds en suspension sont récupérés et éliminés, et sous une pression de 40 bars et une température de 38 °C le GN circule dans une colonne à 27 plateaux vers le haut en contre-courant avec la solution du mono-éthanol-amine (MEA) solution aqueuse à 15%, pour être débarrasser du CO₂ à une teneur inférieur à 90 ppm en tête de colonne, il sera acheminé ensuite vers la section de déshydratation. (l'annexe A)

Cette section comporte deux étapes importantes à savoir

- ✓ L'absorption.
- ✓ La régénération.

I.5.2. Déshydratation

A sa sortie de l'absorbeur, le gaz naturel est saturé en eau, il y'a donc nécessité de le déshydraté. Pour réduire sa teneur en humidité, il passe dans l'échangeur à propane E-521 jusqu'à 21 °C permet de condenser 70% de l'eau contenue dans le gaz. Cette eau est retenue dans le ballon séparateur G-787.

Le gaz chargé d'humidité passe ensuite à travers deux sécheurs à tamis moléculaires (R-310 et R-311) qui travaillent en alternance pendant un cycle de 12 heures. Alors que l'un

est en service l'autre est en régénération. Le GN sort avec une concentration en eau inférieure à 1 ppm.

L'élimination est basée sur la fixation des molécules d'eau contenues dans le GN par le phénomène d'adsorption.

Le gaz déshydraté est ensuite filtré dans deux filtres P-312 A et B pour éliminer les particules solides entraînées.

Régénération des sécheurs

Après 12 heures de service, le sécheur est soumis à une opération de régénération par un gaz réchauffé à une température de 295 °C. Il pénètre par le fond du sécheur en entraînant avec lui toute l'eau contenue dans les tamis à la sortie du sécheur. Le gaz de régénération pénètre dans un refroidisseur, alors que l'eau est condensée, séparée puis dirigée vers la décantation, tandis que le gaz est renvoyé vers le réseau fuel gaz, la torche ou vers l'absorbeur. Le sécheur est refroidi par un gaz à une température de 21 °C pour être prêt au service. (l'annexe B)

I.5.3. Démercurisation

La dernière étape de traitement est l'élimination du mercure. Elle consiste à piéger le mercure contenu dans le gaz pour éviter la corrosion des équipements en aluminium comme le cas de l'échangeur principal de la section de liquéfaction.

Le GNT passe à travers un démercuriseur en charbon à base de soufre, et passe ensuite à travers deux filtres. Il sort de cette section avec une teneur de mercure inférieure à 7 nano gramme par Nm3 est envoyé vers la section de refroidissement.

Le gaz carbonique CO2 et l'eau sont éliminé du gaz naturel afin d'éviter leur congélation à basse température, le mercure est lui, éliminé du gaz, afin d'éviter la corrosion des tubes en aluminium de l'échangeur principal.

I.5.4. Section de séparation (tour de lavage)

La section de séparation a pour objectif de séparer le GNT en composants lourds et composants légers.

Le GNT arrive à la section de séparation à une température de 21 °C et une pression effective de 40 bars où il doit subir un refroidissement par deux échangeurs au propane, le premier pour ramener la température du gaz à -1 °C, le second à -26 °C, qui est la température de fonctionnement de la tour de lavage.

Le gaz refroidi subit une séparation (flash) dans la tour de lavage F-711 au niveau du 9^{eme} plateau. La phase vapeur riche en méthane et éthane s'élève à travers huit plateaux supérieurs de la colonne ; les vapeurs de tête subissent une condensation dans l'échangeur à propane jusqu'à une température de -40 °C où les vapeurs sont partiellement condensées pour être séparées dans le ballon de flash. Le liquide est refoulé vers la tour de lavage comme un reflux et les vapeurs de tête s'écoulent vers la section de liquéfaction ; le liquide de fond de la tour de lavage passe par un rebouilleur partiel au butane E-713 (70 °C), le butane est chauffé dans un échangeur à vapeur d'eau E-717 (117 °C), puis s'écoule vers la section de fractionnement.

I.5.5. Section de fractionnement

L'usine de fractionnement est alimentée par les produits de fond de la tour de lavage. Cette section a pour but de fractionner le produit de fond de la tour de lavage afin d'alimenter le circuit de réfrigération et d'appoint dans les différentes sections du process. Cette section est constituée de quatre colonnes de distillation, et chaque colonne à un rebouilleur, un condenseur et un ballon de reflux.

I.5.5.1. Colonne de Déméthanisation

Les composés légers (C1 et des traces de C2) sont séparés des hydrocarbures lourds et passent vers le haut de la colonne à contre-courant par rapport à un débit de reflux continu qui s'écoule vers le fond.

Les vapeurs de tête sont partiellement condensées dans un condenseur sous l'effet d'un réfrigérant puis séparées dans un ballon de reflux. Les vapeurs non condensées constituent un appoint dans le circuit MCR (Multi Composants Réfrigérants).

I.5.5.2. Colonne de Déethanisation

Le débit d'hydrocarbure lourd venant de la colonne de déméthanisation est à son tour fractionné dans le dééthaniseur afin de produire essentiellement de l'éthane comme produit de tête.

L'éthane obtenu sert d'appoint réfrigérant (MCR). Le produit de fond du déméthaniseur est fractionné à son tour dans le dééthaniseur, afin de produire de l'éthane comme produit de tête. L'éthane obtenu sert comme appoint au réfrigérant mixte (MCR), à la tour de lavage et pour le contrôle de qualité de GNL, en particulier, l'amélioration de son pouvoir calorifique. Le produit de fond sert à alimenter la colonne de dépropanisation.

I.5.5.3. Colonne de Dépropanisation

La colonne de dépropanisation est alimentée par un courant continu d'hydrocarbure venant de la colonne d'éthanisation. Cette section à pour but de produire du propane pour les appoints PCS et un appoint pour le circuit de réfrigération de propane.

I.5.5.4 .Colonne de Débutanisation

Les fractions lourdes de la colonne de dépropanisation constituent une alimentation pour la dernière colonne de distillation de la section de fractionnement. Le produit débutanisé du fond est refroidit puis envoyer vers le stockage dans la sphère de gazoline, elle est par la suite transférée vers le complexe GL2/Z pour sa commercialisation.

I.5.6. Système de réfrigération mixte MCR

Le MCR est un mélange d'azote, méthane, d'éthane et de propane. Ce mélange frigorigène circule dans une boucle fermée à deux compresseurs où il sert à liquéfier le GNT dans l'échangeur principal et sert à le réfrigérèrent tête de la tour de lavage.

La boucle MCR comprend deux étages de compression, un refroidissement à l'eau de mer après chaque refoulement et une séparation avant chaque aspiration. Les vapeurs MCR sont aspirées par un compresseur de basse pression et refroidies jusqu'à 38 °C dans l'échangeur à eau de mer pour être séparées dans le ballon séparateur de basse pression.

Le compresseur de haute pression aspire les vapeurs du ballon de haute pression et les refoule vers un échangeur à eau de mer où sa température de sortie est de 32 °C. Après ce refroidissement, le MCR est amené à sa température de rosée -37 °C à la sortie de deux batteries d'échangeurs propane. Le MCR partiellement liquéfié, est séparé dans un ballon de haute pression pour alimenter les condenseurs de tête du déméthaniseur, de la tour de lavage et l'échangeur principal.

Composants		% Molaire
N ₂	Azote	3
CH4	Méthane	40
C ₂ H ₆	Ethane	54
C_3H_8	Propane	3

Tableau I.2. La composition du MCR [4].

I.5.7. Section de liquéfaction

La liquéfaction du GNT est réalisée dans l'échangeur principal au moyen d'un réfrigérant mixte MCR.

Le gaz est divisé en deux flux dont le plus important (90%) pénètre par le fond de l'échangeur à l'intérieur d'un faisceau de tubes, où il circule en flux parallèle avec le MCR (vapeur et liquide).

Le flux MCR liquide est détendu dans la partie médiane par une vanne de détente Joule-Thomson et redescend sous forme de douche dans la calandre pour refroidir les faisceaux MCR (liquide et vapeur) et le faisceau GNT.

Le flux MCR vapeur traverse lui aussi l'échangeur principal de bas en haut pour être détendu en tête et redescendre côté calandre. Les deux flux se mélangent en bas de l'échangeur afin d'être aspirés et ainsi le cycle est reproduit.

Le GNT traverse l'échangeur principal en passant par des zones de plus en plus froides. Le GNL produit sort à l'état liquide à une température de -150 °C et une pression effective de 25 bars, il pénètre alors dans le déazoteur en passant par une vanne de détente qui permet de réduire sa pression effective à 0,3 bar et sa température à -162 °C.

Le deuxième flux de gaz d'alimentation (10%) quitte la colonne de séparation pour passer dans un échangeur de gaz et de rejet où il est totalement condensé par la vapeur issue du ballon de flash d'azote. Il quitte alors l'échangeur à -159 °C afin de rejoindre le flux de GNL produit par l'échangeur principal.

Le gaz de réfrigération issu de l'échangeur de gaz et de rejet est envoyé vers le réseau de gaz combustible ou vers le réseau de torche. Le GNL produit s'écoule du ballon de flash d'azote et il est refoulé vers trois réservoirs de stockage de GNL par des pompes spécialement adaptées.

Composants	Limites de pourcentages molaires			
	Minimum	Maximum		
N ₂	00,60	01,40		
C ₁	84,00	92,50		
C ₂	06,00	08,50		
C ₃	02,20	03,00		
iC4	00,30	00,50		
nC ₄	00,30	00,70		
C ₅	00,00	00,02		

Tableau I.3. Composition Chimique Du Gaz Naturel Liquéfié GNL [4].

Remarque : Le tableau N°3 met en évidence les pourcentages molaires minimaux et maximaux de la composition de GNL, se situant entre les deux valeurs suscitées.

Gaz naturel liquéfié

Fig.I.2. Le procède simplifié de liquéfaction du gaz naturel [6].

I.6. Description de la boucle propane

Introduction

La boucle de réfrigération au propane est utilisée dans les procédés de liquéfaction du gaz naturel comme une partie d'un cycle de réfrigération en cascade visant à éliminer la chaleur d'un cycle de Réfrigérant multi composant le MCR, et à pré-refroidir le gaz naturel avant l'étape de la Liquéfaction.

I.6.1. Rôle de la section

Le système propane est une boucle de réfrigération à trois niveaux de pressions et de températures qui permet une approche précise de la température du gaz d'alimentation et du MCR, d'où son efficacité dans les procédés de liquéfaction.

La puissance frigorifique de cette boucle est utilisée à 75% dans les échangeurs MCR, à 15% dans les échangeurs GN et à 10% pour les diverses utilisations.

I.6.2. Les équipements principaux dans le système

Le système de réfrigération de propane est un système à circuit fermé et comporte les équipements principaux suivants :

- Désurchauffeur de propane E-05.13 refroidissement par l'eau de mer.
- Deux condensateurs de propane en parallèle **E-05.14 A/B** refroidissement par l'eau de mer.
- Accumulateur de propane G-07.86
- Condensateur **E-05.15** de passage de propane refroidissement par l'eau de mer.
- Ballon G-07.85 d'aspiration du 1er étage du compresseur de propane.
- Ballon G-07.91 d'aspiration du 3éme étage du compresseur de propane.
- Ballon G-07.90 d'aspiration du 2ème étage du compresseur de propane.

A. Les équipements suivants font partie de la section de réfrigération de propane :

- Pré-réfrigérateur **E-05.21** haute pression.
- Réfrigérateur de propane de l'alimentation **E-05.22** pression moyenne.
- E-05.23 Réfrigérateur de propane haute pression (pendant le démarrage seulement).

B. Les équipements suivants qui font partie de la section de réfrigération de propane également font partie du système de réfrigération de MCR :

- Réfrigérateur de propane de **E-05.25** A/B MCR pression moyenne.
- Réfrigérateur de propane de E-05.26 A/B MCR basse pression.

C. Les équipements suivants qui font partie de la section de réfrigération de propane et font partie également du système de fractionnement :

- Refroidissement du L'éthane par E-07.39.
- Condensateur aérien de E-07.32 De-ethaniseur.
- Séparateur de propane de G-07.36 De-ethaniseur.

D. Turbocompresseur de propane

D.1. Compresseur de propane K-01.10

Le compresseur de propane K-01.10 est prévu pour faire circuler le propane réfrigérant destiné au refroidissement de l'alimentation du gaz naturel, préalable à la liquéfaction de celui-ci dans l'échangeur principal E-05.20. C'est une machine à trois étages munis de conduites d'aspiration séparées pour chaque étage.

Le premier étage est constitué par une unité à quatre roues et à deux sections de circulation. Chaque section comprend deux roues, les roues d'aspiration étant logées aux deux extrémités du carter du premier étage. Le gaz est comprimé par les deux roues et les deux sections refoulent dans une conduite commune raccordée au milieu du carter du premier étage.

Le deuxième et le troisième étage sont deux étages à une roue et à circulation unique. Le compresseur est entraîné par une turbine à vapeur à accouplement direct. La vitesse de la turbine est réglée par un régulateur automatique Woodward.

D.2. Turbine du compresseur de propane K-01.10

La turbine à vapeur K-01.10T est une turbine à condensation fonctionnant à la vapeur. La vapeur s'échappe vers un condenseur à surface E-313. Le condenseur E-313 est refroidi à l'eau de mer. Le vide y est maintenu par un système classique d'éjecteurs de vapeur à injection. Un régulateur Woodward sert à maintenir la vitesse de la turbine à la valeur désirée.

Normalement, la vitesse de la turbine est réglée par un régulateur de la pression d'aspiration par l'intermédiaire du régulateur Woodward. On peut modifier la vitesse manuellement.

I.6.3. Principe de fonctionnement de la boucle propane

La vapeur de propane produite dans les différents réfrigérants du process retourne au compresseur de propane par les ballons d'aspiration. Le premier étage de compression aspire du ballon d'aspiration du premier étage.

Le propane est refoulé à l'aspiration du premier étage où il est mélangé aux vapeurs de propane provenant du ballon d'aspiration du deuxième étage. Le refoulement du deuxième étage est mélangé à la vapeur de propane venant du ballon d'aspiration de la charge latérale, le mélange constitue la vapeur d'aspiration du troisième étage.

Le refoulement du compresseur de propane est refroidi à l'eau de mer, au voisinage de son point de rosée, Le propane pur est condensé par l'eau de mer dans les condenseurs de propane et s'écoule par gravité des condenseurs dans l'accumulateur de propane.

La réfrigération des trains de process est fournie à trois niveaux de pression : haute pression (environ 6.7 bars effectifs), moyenne pression (environ 3,4 bars effectifs) et basse pression (environ 0,12 bar effectif).

I.6.3.1. Propane de basse pression

Ballon d'aspiration du ler étage G-07.85 alimente :

- ✓ E-05.23 Réfrigérateur de propane haute pression (en cas de démarrage seulement).
- ✓ Réfrigérateur à propane du gaz traité **E-05.24** (basse pression).
- ✓ Réfrigérateurs à propane de MCR **E-05.26A/B** (basse pression).
- ✓ Pré-refroidisseur du GNL **E-07.38.**

I.6.3.2. Propane moyen de pression

- ✓ Ballon d'aspiration du 2éme étage G- 07.90 alimente :
- ✓ Réfrigérateur à propane du gaz traité **E-05.22** (pression moyenne).
- ✓ Réfrigérateurs à propane de MCR E-05.25 A/B (pression moyenne).

I.6.3.3. Propane à haute pression

- ✓ Ballon d'aspiration Charge latéral G-07.91 alimente :
- ✓ Pré-réfrigérateur du gaz naturel **E-05.21**.

I.6.4. Paramètres de fonctionnement

Le propane gazeux venant du ballon d'aspiration du premier étage est passé par le premier étage du compresseur de propane à 1,25 bar effectif (pression réglée), -37,2°C.

Le propane venant du premier étage est refoulé à 3,09 bars effectifs et 23°C il est mélangé à la vapeur venant du ballon d'aspiration du deuxième étage à 4,33 bars effectifs, - 2,9°C. Le courant qui en résulte l'aspiration du compresseur du deuxième étage à 3,06 bars effectifs, 11°C.

Le propane venant du ballon d'aspiration de la charge latéral entre dans le compresseur à 7,9' bars effectifs, 18,1°C. et se mélange avec la vapeur du deuxième étage de compression Le propane est refoulé du troisième étage du compresseur à 13,97 bars effectifs 68°C. Ce propane est refroidi à 43°C et subit une chute de pression de 0,53 bar en traversant le désurchauffeur de propane.

Le propane est condensé dans le condenseur de propane à 37°C. Le propane liquide s'écoule dans l'accumulateur de propane à 13 bars effectifs.

Désignation	Etat de fluide	Température en °C	Pression en bar
Accumulateur de propane	Mélange L. V	37.8	13.03
Ballon d'asp. 3 ^{éme} étage G.791	Mélange L. V	18.1	7.94
Ballon d'asp. 2 ^{éme} étage G.790	Mélange L. V	-2.9	4.33
Ballon d'asp. 1 ^{er} étage G.785	Mélange L. V	-37.2	1.25

Tableau I.4. Paramètres de marche du principal équipement de la boucle propane.

Les tableaux ci-dessous présentent les paramètres liés respectivement à la haute, moyenne et basse pression du propane.

Tableau I.5. Haute pression.

Equipement	fluide	T°. Entrée	T°. Sortie	Debit circulant lb/hr	Chaleur x 10 ⁶
					btu /hr
E-521	GN	38	21.1	64680	8.81

Tableau	I.6.	Movenne	pression.
		1.10,0	pression.

Equipement	fluide	T°. Entrée	T°. Sortie	Debit circulant lb/hr	Chaleur x 10 ⁶ btu/hr
E-525	MCR	32.2	-1.1	959742	56.7
E-522	GNT	22.8	-1.1	478555	12.05

Equipement	fluide	T°. Entrée	T°. Sortie	Debit circulant	Chaleur x 10 ⁶
				lb/hr	btu/hr
E-526	MCR	-1.1	-32.8	959742	84.81
E-524	GNT	-1.1	-26.1	478555	15.52
E-523	GNT	-28	-33.7	484707	8.69
E-732	C2	-9	-32.8	2227	0.162
E-739	C2	50	-32.8	4075	3.99
E-738	C3	50	-32.8	15.079	2.222
E-738	C4	43.6	-32.8	/	/

Tableau I.7. Basse pression.

Fig.I.3. Schéma simplifie de la boucle propane.

CHAPITRE II : Diagnostic de problème

Problématique

La boucle de réfrigération au propane est utilisée pour extraire la chaleur véhiculée par le réfrigérant multi-composants (MCR), et à pré-refroidir le gaz naturel avant d'entamer l'étape de sa Liquéfaction.

Les conditions requises pour un bon fonctionnement de la boucle, qui doivent être satisfaites sont :

- Le fluide réfrigérant (propane) doit être pur, ce qui signifie qu'il ne soit pascontaminé par les hydrocarbures légers et lourds.
- > Le débit de circulation est constant.
- > La température de l'EDM ne dépasse pas les 24 °C.
- ➢ L'EDM est traitée.

Les conditions de fonctionnement	Design		Actuelle	
Le debit decirculation	366904 Nm ³ /h		380000- 410000 Nm ³ /h	
La température de l'EDM	23.9 °C		Dépasse les 24 °C en été	
La pureté de	C2	0.00%	C2	2-3%
réfrigérant	C3	100%	C3	93-94%
(molaire)	C4	0.00%	C4	3-4%
Qualité de l'EDM	traité		contient des moules	

Tableau II.1. Comparaison des paramètres de fonctionnement de la boucle propane(design et actuel).

Le problème opératoire enregistré au niveau du complexe GL1Z est caractérisée par un changement palpable des paramètres de fonctionnement de la boucle propane.

Par conséquent, la condensation de réfrigérant est devenue partielle, ce qui favorise des pertes importantes de fluide de circulation par vois d'évaporation. Cela veut dire que des besoins supplémentaires, à l'aide de l'appoint de la boucle, sont à fournir pour compenser ces pertes régulières.

Des répercussions négatives sont constatées ailleurs dans la section de fractionnement, suite à ce changement. A savoir, sortie des produits de fractionnement hors spécifications. En outre, un

effet de contamination de la boucle par les hydrocarbures légers (C2) et lourds (C4) provenant du dépropaniseur.

D'autre part, les températures requises du gaz naturel et d'MCR sont plus assurés à la sortie de la boucle propane suite au fonctionnement non optimal de celle-ci. Ainsi, une perte de capacités de liquéfaction du gaz naturel sera engendrée.

Le disfonctionnement de la boucle propane a un impact sur la production de GNL.

II.1. Analyse des sources probables de la contamination de la boucle

Les causes susceptibles de provoquer la pollution dans la boucle de propane sont :

a) Les échangeurs :

- Pré-refroidisseur du gaz d'alimentation (E-522, E-524).
- ➤ Refroidisseurs MCR (E-525A/B, E-526A /B).
- Pré-refroidisseur des sécheurs (E-521).
- Sous refroidisseurs (l'éthane) E-739.
- Condenseur de tête de DC2 E-732.
- Percement des tubes de l'échangeur E-738 (propane-butane).

b)La qualité de l'appoint de propane issu de la section fractionnement :

La colonne de dépropanisation F-741, source de propane qui est envoyé comme appoint vers la boucle.

II.1.1. Pollution du propane dû aux fuites internes

- a) Perforation des tubes des échangeurs due à la corrosion par présence des traces de mercure dans le fluide, ou érosion due à la vitesse de circulation élevée du fluide causée par la présence des corps étrangers.
- b) Le craquage du métal qui provoque des fissurations est dû au changement brusque de la température.

La première approche : les échangeurs (E-525A/B, E-526A/B, E-521, E-522 et E-524) sont des refroidisseurs des gaz qui contiennent une certaine composition de méthane, donc s'il y a une perforation au niveau des tubes de ces échangeurs automatiquement la boucle propane est contaminé par le méthane.

L'analyse de la composition de refoulement générale montre que le pourcentage de méthane est très faible et ne dépasse pas les 0.5% et presque stable (voir tableau N°2) donc on peut exclure cette cause au niveau de ces échangeurs.

Percement des tubes de l'échangeur E-738 (propane-butane).

Fig.II.1. Comparaison entre la tête de dépropaniseur et de refoulement général du propane durant le mois d'avril.

Interprétation

Si on fait la comparaison entre les deux compositions de la tête de dépropaniseur et de refoulement général de la boucle en fonction de la teneur en butane, on remarque que la pureté de refoulement est d'autant plus qu'elle est faible que la tête de DC3 est polluée en C4. Par contre, il y a une stabilité de la teneur en C4 dans le refoulement général quand la teneur de C4 de la tête de DC3 est nulle.

Analyse du graphe :

Le lieu de contact entre C3 et C4 est l'E-738. S'il y a un percement des tubes de cet échangeur, ceci provoque une continuité de pollution de la boucle en C4, cela veut dire il y a une instabilité de la pureté de refoulement général.

D'après ce graphe, on peut constater que l'hypothèse la plus forte sur la raison de contamination de la boucle du propane en C4, est la pollution de l'appoint.

La possibilité de la contamination en C2 due au percement des tubes, est probable soit au niveau des échangeurs (E-732, E-739) soit à l'appoint de la boucle. La détection de la source de cette anomalie par analyse du tableau N°2 est difficile vue l'indisponibilité desdonnées.

II.1.2. Pollution du propane due à l'appoint de dépropaniseur

- a) Perturbation de la colonne de dépropaniseur lors de l'appoint en propane ou bien, lors de la variation de la charge.
- b) Condensation partielle de propane est due à l'augmentation de la température de l'EDM ou à l'encrassement de l'échangeur.

DC2 Refoulement									
			D	<u>C3</u>		N			
Date	Heure	%C1	%C2	%C3	%C4	%C1	%C2	%C3	%C4
01/04/2023	01.00	3,07	18.34	59,03	19,56	0,19	2,94	79,86	17,01
01/04/2023	13.00	-	0,07	93,41	6,52		0,08	96,6	3,32
02/04/2023	01.00	0,08	5,62	94,29	0,01	0,02	1,16	94,34	4,48
02/04/2023	13.00	0,67	13,56	85,77	0,00		1,6	87,53	10,87
03/04/2023	01.00	0,08	7,72	92,20	0,00	0,14	2,71	90,81	6,34
03/04/2023	13.00	0,09	6,60	93,13	0,18	0,08	0,54	84,9	14,48
04/04/2023	01.00	0,05	4,56	85,99	9,40	0,02	1,34	83,01	15,63
04/04/2023	13.00	0,19	4,14	69,02	26,65		1,1	73,64	25,26
05/04/2023	01.00	0,09	7,12	92,79	0,00	0,04	1,36	75,54	23,06
05/04/2023	13.00	0,32	9,07	90,61	0,00	0,5	5,36	85,73	8,41
06/04/2023	01.00	0,01	3,91	96,07	0,01	0,47	6,57	87,22	5,74
06/04/2023	13.00		2,03	97,97	0,00	0,06	1,85	91,8	6,21
07/04/2023	01.00	0,02	2,34	97,64	0,00	0,09	2,15	91,53	6,23
07/04/2023	13.00	0,02	5,66	94,32	0,00		1,85	91	7,15
08/04/2023	01.00	0,02	6,56	93,14	0,28	0,69	4,66	88,78	5,87
09/04/2023	01.00	0,33	11,63	87,99	0,05	0,11	1,28	80,34	18,27
09/04/2023	13.00	-	-	-	0,00	0,31	3,91	87,48	8,3
10/04/2023	01.00	0,14	9,59	90,09	0,18	0,11	1,36	76,94	21,59
10/04/2023	13.00	0,18	8,42	91,03	0,37	0,5	4,91	86,92	7,67
15/04/2023	13.00	0,75	3,76	95,46	0,03	3,45	6,55	81,76	8,64
16/04/2023	01.00		0,11	92,32	7,57		0,79	94,48	4,73
16/04/2023	13.00	0,06	3,93	88,00	5,36	0,17	4,51	95,32	0
17/04/2023	01.00	0,14	6,94	70,92	14,73	0,21	3,4	84,78	11,61
17/04/2023	13.00	0,15	8,34	91,47	0,02	0,08	4,2	85,39	10,33

Tableau II.2. Qualité de la tête de dépropaniseur et de refoulement général du propane durant le mois d'avril.

II.2. Analyse de l'augmentation de débit de réfrigérant :

La contamination de la boucle propane, l'augmentation de température de l'eau de mer et la mauvaise condensation au niveau des échangeurs à l'EDM (E-513 et E-514A/B) sont des problèmes qui conduisent à une augmentation supplémentaire de la quantité de propane pour rattraper la condensation partielle.

Vérification de l'état de E-513 et E-514A/B

D'après les rapports d'inspection de département d'inspection :

Au niveau de l'échangeur E-513

- Présence d'une quantité de boue au niveau du faisceau tubulaire.
- Le test d'étanchéité réalisé à une pression de gaz de 04 bars n'a révélé aucune fuite au niveau des tubes.
- Travaux de nettoyage finalisés, équipement fermé.

Fig.II.2. L'échangeur E-513.

Au niveau de l'échangeur E-514

Le rapport d'inspection concerne l'échangeur, qui a été ouvert pour inspection 12/12/2022. Lors de l'inspection, il a été constaté une forte présence de moules et de déchets marins, un grillage détérioré du piège à moules, ainsi que l'état de consommation des anodes sacrificielles. Parfois, des tests d'étanchéité ont également été réalisés suite aux anomalies signalées par le département de production.

On peut donc en déduire qu'il y a eu 20 arrêts de l'échangeur durant les dernières cinq années, avec une moyenne de quatre arrêts par an.

Suite aux résultats obtenus, il est recommandé de procéder à la réhabilitation de l'unité de chloration afin d'éliminer le développement et l'agrandissement des moisissures et moules sur les canalisations souterraines menant aux échangeurs qui utilisent l'eau de mer pour le refroidissement.

Fig.II.3. Les moules entrainées par l'eau de mer, piégées dans l'échangeur E-514.

Le colmatage des paniers de piège à moule par des débris d'origine marine telles que le sable, les algues et les moules engendre la restriction du débit de passage d'EDM vers **è** faisceau tubulaire, ce qui mène à une réduction de la vitesse d'écoulement à travers lestubes et par conséquent le rendement thermique de l'appareil diminue.

Le fonctionnement de ces échangeurs avec un débit d'eau de mer insuffisant, favorise une condensation partielle du propane. Donc l'appoint est indispensable.

La fluctuation été/hiver de l'eau de mer

Pendant l'été la température augmente jusqu'à 28°C (design égale 23.9°C). Ce changement favorise une condensation partielle de réfrigérant.

II.3. Le traitement de l'eau de mer

La chloration des eaux de mer a pour but d'empêcher le développement des substances marines vivantes telles que les moules pouvant se proliférer et causant un bouchage ou une obstruction au niveau des condenseurs à eau de mer.

La consultation de l'état des échangeurs d'après les rapports d'inspection montre clairement l'absence du procédé de chloration.

Conclusion

- L'appoint de la boucle propane est le problème majeur de la contamination en C2 et C4.
- L'élévation de la température de l'EDM pendant l'été ainsi que le bouchage des échangeurs à l'EDM par les moules provoquent des besoins complémentaires de débit de circulation de la boucle.

CHAPITRE III : Simulation de la boucle propane

Introduction

On définit la simulation comme l'utilisation d'un modèle mathématique pour générer une description du comportement d'un système ou d'un procédé.

Le simulateur HYSYS est les plus performants simulateurs utilisés dans l'industrie gazière et pétrolière.

Le logiciel HYSYS est l'un des logiciels de simulation de procédés de génie chimique et raffinage, il a été développé par la société canadienne HYPROTECH. [7] Il permet de représenter les différents phénomènes : transfert de matière et de chaleur, se dans les différentes opérations unitaires par modèles thermodynamiques, qui traduisent leur comportement par l'intermédiaire de résolution des équations analytiques. Le modèle thermodynamique est composé par une série des équations développées dans l'objectif de décrire le comportement d'un système en évolution (opération unitaire : séparation de phases, fractionnement de composants, compression, détente, échange de chaleur ...etc.). Dans notre travail on utilise ""Peng robinson "" comme modèle thermodynamique, puisqu'il y a deux phases de la charge, phase liquide et phase vapeur. [8]

L'utilisation du HYSYS se fait de la façon suivante :

- L'utilisateur doit spécifier les constituants du gaz, du liquide ou du mélange.
- Il choisit un modèle thermodynamique.
- Il doit établir le schéma de procédé.
- Il doit aussi spécifier les paramètres nécessaires pour le calcul de chaque opération unitaire.
- HYSYS résout le schéma de procédé.
- HYSYS peut aussi dimensionner quelques équipements. Le calcul thermodynamique des différents flux lors de la simulation nécessite des données de base : composition de la charge et les paramètres opératoires : pression, température, débit...

Dans la figure (1) On définit la méthode générale d'utilisation de simulateur de procédé comme suit :

Fig.III.1. Schéma de simulation de procédé.

III.1. Méthodologie de travail

Pour étudier l'effet de la température de l'EDM et la contamination de la boucle de propane sur les paramètres de fonctionnement de celle-ci, nous avons :

- Dans un premier temps, simulé la boucle de propane en utilisant les données du design. Le but est d'assurer la validité du simulateur HYSYS et de mesurer ses performances en comparant les résultats obtenus par simulation à ceux donnés par le design.
- Ensuite, nous avons étudié l'influence de la température de l'EDM et la contamination de la boucle propane par l'éthane et le butane.
 Les résultats obtenus sont présentés et discutés ci-après.

III.2. Données de la simulation

Pour effectuer nos calculs de simulation, nous avons collecté le maximum de données concernant les principaux équipements de la boucle : le compresseur K110, les divers évaporateurs de la boucle, le ballon accumulateur G786 ainsi que les ballons d'aspiration G785, G790, G791 des compresseurs de propane.

III.3. Etablissement du schéma du procédé (PFD)

Une fois le modèle thermodynamique choisi, le simulateur demande la construction du schéma de la section d'étude concernée par la simulation. La figure est une reproduction du schéma restitué par HYSYS.

La simulation a été faite par le logiciel Hysys V11.

Fig.III.2. Schéma de la boucle propane établi au moyen du logiciel Hysys.

III.4. Résultats de la simulation

L'adaptation du modèle est la condition nécessaire de notre simulation, elle sera validée lorsque les résultats des propriétés thermodynamiques du fluide circulant seront similaires aux paramètres de design la boucle.

Les résultats obtenus par la simulation sont donnés dans le tableau ci-dessous, il regroupe les principaux paramètres d'exploitation que nous avons comparée aux valeurs du design (le propane pur : absence d'éthane et butane).

Equipment	Paramètres	Résultat de simulation	Design
	Température (°c)	37.7	37.8
Accumulateur G-786	Pression (bar)	13.22	13.03
	Débit de vapeur (Kg/s)	0	0
	Temperature (°c)	17.71	18.1
Ballon G-791	Pression (bar)	7.86	7.94
	Débit de vapeur (Kg/s)	157565	142947
	Température (°c)	-3.08	-2.9
Ballon G-790	Pression (bar)	4.24	4.33
	Débit de vapeur (Kg/s)	209206	207645
	Température (°c)	-37.69	-37.2
Ballon G-785	Pression (bar)	1.25	1.09
	Débit de vapeur (Kg/s)	368655	372136
	Température (°c)	69.36	69.6
Refoulement K-110	Pression (bar)	13.4	13.82
	Débit de vapeur (Kg/s)	722649	721842
	Température (°c)	42.67	43.3
Echangeur E-513	Pression (bar)	13.58	13.67
	Débit de vapeur (Kg/s)	735646	721842

Tableau III.1. Principaux résultats obtenus par simulation comparés aux valeurs design.

III.4.1. L'effet de la contamination de la boucle propane <u>Pression</u> :

Fig.III.3. Évolution de la pression de refoulement général en fonction de la teneur depollution.

Fig.III.4. Évolution de la température de refoulement général en fonction de la teneurde pollution.

En constate à travers ces figures une élévation simultanée de la pression et de la température, ceci est due à la présence des composés légers C_2 et lourds C_4 , qui ne sont pas condensés par la batterie d'échange à eau de mer (EDM).

Fig.III.5. Évolution des pertes de propane en fonction de la teneur de pollution.

Fig.III.6. Débit de l'éthane évaporé en fonction de la teneur de pollution.

Le condenseur de tête de déethaniseur est un échangeur éthane-propane. La contamination de la boucle propane par des hydrocarbures légers et des lourds change carrément les paramètres de marche de la boucle propane, ce qui provoque un dysfonctionnement du condenseur de tête traduit par une condensation partielle.

Fig.III.7. Évolution de la température de gaz de procédé en fonction de la teneur de pollution (C2, C4).

Fig.III.8. Évolution de la température de MCR en fonction de la teneur de pollution (C2, C4).

Les figures (III.7 et III.8) montrent que la température de gaz de procédé et de l'MCR augmentent quand la boucle propane est contaminée par les hydrocarbures légers et lourds.

Nous concluons que plus de contamination plus des besoins de réfrigérant.

Fig.III.9. Évolution de la pureté dans le ballon de reflux du deéthaniseur en fonction de la température de B.P.

Cette figure montre la variation de pureté de tête de colonne de deéthanisation en fonction de la température de 4^{ème} ballon de la boucle propane.

On remarque que :

L'augmentation de la température de réfrigérant (propane) provoque une perturbation auniveau de la colonne DC2 et par conséquent la pureté diminue et la teneur de C4 augmente.

III.4.2. L'effet de la température de l'EDM

Fig.III.10. Évolution de la pureté dans le ballon de reflux du dépropaniseur en fonctionde la température de l'EDM.

La figure montre clairement que l'augmentation de la température de l'EDM au niveau decondenseur de tête de DC3 influe sur la pureté de production du propane.

On remarque que :

- La teneur de C4 augmente rapidement.
- La boucle propane reçoit directement le propane comme un appoint depuis le dépropaniseur et par conséquent la boucle propane sera contaminée par le (C4) troublant ainsi la boucle.

Fig.III.11. Débit du propane évaporé en fonction de la température de l'eau de mer.

A noter que la batterie d'échange de la boucle de propane et le condenseur de tête de dépropaniseur fonctionnent à eau de mer.

Les figures montrent des pertes importantes de propane quand la température de l'eau de meraugmente, cette action est due au fonctionnement des échangeurs hors design.

CHAPITRE IV : Partie calculs

Introduction

Dans tout calcul d'échangeur de chaleur, le but est d'obtenir la récupération d'une certaine quantité de chaleur dans les conditions économiques optimales qui est un compromis entre les frais d'investissement et les frais opératoires.

Le problème du dimensionnement thermique dans une installation industrielle commence tout d'abord, par la sélection du type d'échangeur adapté au problème posé, puis vient la phase de dimensionnement thermique proprement dite elle est destinée à fixer par le calcul de la surface d'échange nécessaire au transfert de puissance sur les fluides considérés.

Pour le calcul des échangeurs tubulaires ou tube-calendre, l'analyse mathématique du transfert devient très complexe. En fait, on a utilisé deux méthodes de calcul, la méthode classique (méthode de KERN), comparé avec la deuxième méthode de dimensionnement à l'aide du logiciel de simulation Aspen EDR V11.

IV.1. Caractéristiques de l'échangeur

Fluide	Unité	EDM	Propane
			· I · · ·
T. Entrée	°C	27	74
	Ũ	_,	, .
T. Sortie	°C	38	43
	C	00	
Débit	(Kg/h)	1205101	808621
Deon	(118/11)	1200101	000021
Masse volumique	(Kg/m3)	1019	59
	(8,)		•••
Capacité calorifique	(KJ/Kg °C)	3.99	2.11
	(110/116 0)	0177	
Conductivité thermique	W/m °C	0.73	0.02
I			
La viscosité	Pa-s	7.99 E-08	/
			,
Perte de charge admissible (annexe E)	Bar	0.7	0.40
Résistance d'encrassement (annexe D)	m2°C/W	0.0003	0.0002

Tableau IV.1. Caractéristiques de l'échangeur.

IV.2. La méthode de Kern

Cette méthode définit un seul débit moyen pour l'ensemble de l'appareil et on a recours au diamètre équivalant.

Fig.IV.1. Algorithme de calcul.

✓ La viscosité de propane en fonction de température à l'aide de simulateur Hysys.

°C	μ propane (kg/s.m)
35	9.07 E-05
40	8.72 E-05
45	9.47 E-06
50	9.596 E-06
55	9.72 E-06
60	9.84 E-06

Tableau IV.2. La viscosité de propane en fonction de température.

Nominal pipe size	Nominal diaméter
Inch	Mm
48	1200
52	1300
56	1400
60	1500
64	1600
68	1700
72	1800
76	1900
80	2000
88	2200
96	2400
104	2600
112	2800

IV.2.1. Calcul thermique

On établit un bilan thermique global de l'échangeur, en supposant que les pertes thermiques sont négligeables, donc la quantité de chaleur Q perdue par le fluide chaud est égale à celle reçue par le fluide froid :

IV.2.1.1 Calcul de la quantité de chaleur

Q est calculée par utilisation de l'équation :

$$Q = M * Cpc3 * (T1 - T2) = m * CpEDM (t2 - t1)$$
 (IV.1)

Q : quantité de chaleur

M/m : débits massiques horaires des fluides. (Kg/h)

Cp : capacité calorifique (KJ/Kg °C)

<u>A.N</u>

$$Q = \frac{808621}{3600} * 2.11* (75 - 45)$$

$$Q = 14691.7 \ KW$$

$$\implies m = \frac{Q}{Cp \ EDM*(t1-t2)} = \frac{14691.7*3600}{3.99*(38-27)}$$

$$m = 334.73 \ kg/s$$

IV.2.1.2. Calcul DTLM

DTLM : différence de température logarithmique moyenne du fluide

$$DTLM = \frac{(T1-t2)-(T2-t1)}{\ln\frac{(T1-t2)}{(T2-t1)}}$$
(IV.2)
$$= \frac{(74-38)-(43-27)}{\ln\left(\frac{36}{16}\right)}$$

$$DTLM = 24.66°C$$

IV.2.1.3. Calcul de nombre de passe coté calandre *nc*

$$\mathbf{R} = \frac{(T1-T2)}{(t2-t1)} = \frac{(74-43)}{(38-27)} = 2.81$$
$$\mathbf{E} = \frac{(t2-t1)}{(T1-t1)} = \frac{(38-27)}{(74-27)} = 0.23$$

<u>Du l'annexe C</u> $F = 0.92 > 0.75 \implies nc = 1$

Sélection d'un échangeur

<u>Du l'annexe D</u> $Us = 635.36 W/m^{2\circ}C$

IV.2.1.4. Estimation de la surface d'échange

$$A = \frac{Q}{U_{S*DTLM}}$$

$$= \frac{14691.7}{635.36*24.66} \implies A = 937.6 m^{2}$$
(IV.3)

IV.2.1.5. Choix des matériaux à utiliser

Ci-Ni (l'eau de mer est corrosive)

Diamètre des tubes $\rightarrow do = 1$ in = 25.4 mm.

Choix de l'épaisseur $\rightarrow e = 1.65$ mm.

Choix de longueur $\rightarrow l = 30 ft = 9.15$ mm.

Choix de pas des tubes $\rightarrow P = 1.25 * \text{do} = 31.75 \text{ mm}.$

IV.2.1.6. Estimation nombre des tubes par calandre

$$\boldsymbol{a} = \boldsymbol{\pi} * \boldsymbol{d}\boldsymbol{o} * \boldsymbol{l} \tag{IV.4}$$

$$= 0, 73 m^{2}$$

$$Nt = \frac{A}{a * nc} = \frac{937.6}{0.73 * 1}$$

$$Nt = 1284 tubes$$
(IV.5)

Choix de disposition \rightarrow triangulaire

Nombre de passe coté tube $\rightarrow Nt = 2$

IV.2.1.7. Estimation le diamètre de la calandre

 $\rightarrow Dc = 1400 \text{mm}$

Choix du pas des chicanes $\Rightarrow B = \frac{3}{5} * Dc = 840mm$

Calcul le nombre de chicanes \Rightarrow Nc $= \frac{l}{B} = 1$

IV.2.1.8. Calculer les températures caloriques

$$Tc = T2 + F * (T1 - T2)$$
(IV.6)
$$tc = t2 + F * (t1 - t2)$$
(IV.7)

Si les écarts de température sont faibles :

 $(DTLM < 30^{\circ}C \text{ ou } T1 - T2 < 60^{\circ}C \text{ ou } t2 - t1 < 60^{\circ}C)$ alors, on prend directement F = 0,5.

DTLM $< 30^{\circ}C$ Alors, on prend directement F = 0.5

$$Tc = T2 + F * (T1 - T2) = 43 + 0.95 * (74 - 43) = 72.45 \circ C$$

 $tc = t2 + F * (t1 - t2) = 38 + 0.95 * (38 - 27) = 48.45 \circ C$

IV.2.1.9. Coefficient de transfert propre Up

Coefficient de transfert

Coté tube

Section de passage par passe

$$at = \frac{Nt}{nt} * \frac{di^2 * \pi}{4}$$
(IV.8)

$$at = 0.14m^2$$

Vitesse massique
$$\Rightarrow$$
 $Gt = \frac{m}{at}$ (IV.9)
 $= \frac{334.73}{0.14} = 2390.92 \text{ kg/m}^2 \text{s}$
La vitesse \Rightarrow $\mathbf{v} = \frac{Gt}{\rho}$ (IV.10)

40

$$=\frac{2390.92}{1016.98} \Rightarrow V=2.25 \text{ m/s}$$

$$h_{i} = \frac{4200*(1.35+0.02*tc)*v^{0.8}}{di^{0.2}}$$
(IV.11)
= 41849.32 W/m^{2.°}C

Coté calandre

Section de passage par calandre

$$\mathbf{ac} = \frac{Dc}{p} * (p - do) * B \tag{IV.12}$$

$$ac = 0.2352 m^2$$

Diamètre équivalent

$$\Rightarrow de = \frac{1.1}{do} * (p^2 - 0.917 * do^2)$$
(IV.13)
= 18.05 mm

Vitesse massique

$$\Rightarrow \mathbf{G}_{\boldsymbol{CT}} = \frac{M}{ac} \qquad (IV.14)$$

$$=$$
 955 kg/m²s

Calcule nombre de Reynolds

$$\Rightarrow RecT = \frac{de*Gct}{\mu}$$
(IV.15)
RecT = 1, 7. 10⁶

Nombre de Prandtl

$$\Rightarrow \mathbf{P}_r = \frac{cp * \mu}{\lambda}$$
(IV.16)
$$\mathbf{P}_r = 0.91$$

$$Nu = \frac{\left(\frac{f}{8}\right) * (Re - 1000) * Pr}{1 + 12.7 * \left(\frac{f}{8}\right)^{0.5} * (Pr^{2}/_{3} - 1)} * \left[1 + \left(\frac{de}{l}\right)^{2/_{3}}\right]$$
(IV.17)

Pour 0, 5 < Pr < 2000 et $3000 < Re < 5 * 10^6$

Avec f coefficient de Darcy donné par :

$$f = (0,79 * ln Re - 1,64)^{-2}$$
(IV.18)

En peut utiliser la Forme simplifiée de la formule de Petoukhovo et Gnielinski

$$\Rightarrow Nu_{o} = \frac{ho*de}{\lambda}$$

$$= 0.0214*(\text{Re}^{0.8} - 100) * \text{Pr}^{0.4} (1 + (\text{de}/\text{l})^{2/3})$$
(IV.19)

 $\Rightarrow Nu_o = 2016.79$

Avec 0.5 < Pr < 1.5

D'après l'équation

$$ho = \frac{Nuo*\lambda}{de}$$
(IV.20)
= 258.8 w/m² °C

Calcul le facteur de correction de la viscosité

 \Rightarrow On prend $\emptyset t = \emptyset c = 1$

IV.2.1.10. Calcul du coefficient de transfert global

$$\Rightarrow Up = (\frac{ho * hi}{ho + hi})$$
(IV.21)
$$Up = 257.20$$

IV.2.1.11. Vérification de la résistance d'encrassement Rs

RS admissible =
$$0.0003 + 0.0002$$
 (IV.22)
RS admissible = $5,00E-04 \text{ m}^{2} \text{°C/W}$

$$\mathbf{Rs} = \frac{(Up - Us)}{(Up * Us)}$$
(IV.23)
$$\mathbf{Rs} = 1.16 \text{ E-03 m}^{2\circ}\text{C/W}$$

(IV.25)

IV.2.2. Calcul les pertes de charge

Coté tube

Calcul coefficient de friction

$$f = 0.0791 * Ret - 0.25$$
 (IV.24)
$$f = 1,38E - 02$$
 Voir l'annexe E

$$\Delta P_t = \left(\frac{nc * nt * Gt^2}{\rho}\right)^* \left(\frac{ft * l}{di * \phi t} + 2\right)$$

$$\Delta P_t = 22565.3 \text{ Pa} = 0.22 \text{ bar} < \Delta P \text{t} \text{ admissible} = 0.45 \text{ bar}$$

Coté calandre

Calcul coefficient de friction

$$f = 0.00128 + 0.1143 * Ret - 0.311$$
 (IV.26)
 $f = 0.0026$ Voir l'annexe E

$$\Delta pc = \frac{nc*fct*Gct^2*(Nc+1)*Dc}{\rho*De*\emptysetc}$$

$$= 362.704 \text{ Pa} = 0.0036 \text{ bar} < \Delta pc \text{ admissible} = 0.15 \text{ bar}$$
(IV.27)

Echangeur tube calandre	Echange	eur actuel	Nouveau échangeur		
g	Coté calandr	e Coté tube	Coté calandr	e Coté tube	
La température d'entrée en °C	69.06	23.4	74	27	
La température de sortie en °C	43.3	37.8	43	38	
Le débit en Kg/s	212.8	199.3	224.61	334.73	
La surface d'échange en m ²	5	60	937	7.6	
La langueur en m	6	5.1	9.1	5	
Les pertes de charge en bar	0.15	0.45	0.0036	0.22	

Tableau	IV.4.	Résumé	des	résultats.
				1000100000

IV.3. Aspen Exchanger Design & Rating (EDR)

Les outils EDR s'intègrent à la simulation de processus Aspen Plus et Aspen HYSYS pour permettre aux ingénieurs process et aux spécialistes des équipements thermiques et mécaniques de collaborer efficacement.

Aspen EDR Exchanger peut être utilisé pour concevoir tous les principaux types industriels d'échangeur dans toutes les combinaisons de procédés, y compris le chauffage ou le refroidissement monophasé et l'ébullition ou la condensation.

En règle générale, les utilisateurs économisent entre 10 et 30% sur les coûts d'équipement en concevant efficacement leurs échangeurs à l'aide d'Aspen Exchanger Design & Rating.

Compte tenu d'une exigence de processus et de données de propriétés physiques, le programme effectue une recherche approfondie de conception pour trouver l'arrangement de coût optimal capable de satisfaire les contraintes de processus.

Le programme fournit la géométrie détaillée de l'échangeur et les détails de performance, ainsi qu'une feuille de spécifications, un plan de réglage et des schémas de disposition des tubes.[9]

IV.3.1. Calcul de l'échangeur de chaleur par le simulateur Aspen EDR

La simulation est consistée les étapes suivantes :

- Choisir le type de l'échangeur et définir les données du process.
- Définir la composition et les propriétés de fluide chaud et froid.
- Exécution de la simulation.

IV.3.2. Résultats de la simulation sous forme de data sheet

Apres plusieurs essais les résultats de la simulation se présentent sous forme de data sheet et plan mécanique comme suit :

TE	MA Sheet							
8			PERFO	RMANCE C	OF ONE UP	NIT		
9	Fluid allocation				Shell S	Side	Tube Side	
10	Fluid name				ED/	M.	propane	
11	Fluid quantity, Total		kg/s		347,2	503	22	4,6169
12	Vapor (in/Out)		kg/s	0		0	224,6169	224,6169
13	Liquid		kg/s	347,25	503	347,2508	0	D
14	Noncondensable		kg/s	0		0	0	D
15								
16	Temperature (In/Out)		°C	27		35,79	74	43,11
17	Bubble / Dew poin	t	"С	/		1	37,65 / 37,65	36,54 / 36,54
18	Density Vapor	/Liquid	kg/m*	- 73	992,12	/ 983,58	23,44 /	26,7 /
19	Viscosity		mPa-s	/ /	0,8736	/ 0,7286	0,0101 /	0,0095 /
20	Molecular wt, Vap						44,1	44,1
21	Molecular wt, NC							
22	Specific heat		kl/(kg-K)	- /	4,523	/ 4,523	2,054 /	1,997 /
23	Thermal conductivity		W/(m-K)	- 7.0	0,6091	/ 0,6207	0,0237 /	0,02 /
24	Latent heat		k:l/kg					
25	Pressure (abs)		bar	3		2,65947	13	12,66398
26	Velocity (Mean/Max)		m/S		0,96 /	1,28	24,2	5 / 25,93
27	Pressure drop, allow/c	alc.	bar	0,7		0,34053	0,4	0,33602
28	Fouling resistance (min	1)	m ^z -K/W		0		0	0 Ao based
29	Heat exchanged	13789,2	kW			MTD (co	rrected) 24,4	7 °C
30	Transfer rate, Service	1243,9		Dirty	1247,5	a	ean 1247,5	W/(m²-K)
31		CONSTRU	CTION OF ONE S	HELL			<u>د</u> ا	ketch
32			Shell Si	de		Tube Side	-	
33	Design/Vacuum/test p	ressure bar	3,44738 /	/	14,479 /	· · ·		
54	Design temperature / I	MDMI *C	110 /		110	<u>.</u>	÷.	ů
50	Number passes per sh	81	1			1		
35	Corresion allowance	mm	5,18			3,18	- 1 - 1	t the
37	Connections Size Parties	in mm	2 509,8 /		1 6	00.6 /	-	
20	Nominal	Lotormodiate	1 535,6 (1 6	(interest in the second se	-	
40	Tubo # 1169	OD: 1905 Ter Aug	(200.211	mm Loo	oth: BES	7.6 mm Bits	dv 72.91 mm	Tube pattern: 20
40	Tube tang: Plain	Insort	None	Initi Mil	Fint:	2,0 INN PH	Material Carb	an Steel
47	Shell Carbon Steel	ID 889	OD 911	22	1000	Shell cover	internet. Carte	
43	Channel or honnet	Carbon Steel	00 311,			Channel cover	Carbon	Stool
	Service and the service of the servi	Sold best for the second				Tohoshost float	10 -	
44	Tubesheet-stationary	Carbon Steel				THE RECEIPTOR TO CH		
44	Tubesheet-stationary Floating head cover	Carbon Steel				Impingement pr	stection None	
44 45 46	Tubesheet-stationary Floating head cover Battle-cross_Carbon S	Carbon Steel	Single segm	ental (Cutt/%d)	Impingement pr 10.16	otection None H Specing: c/c 1	77.8 mm
44 45 46 47	Tubesheet stationary Floating head cover Battle-cross Carbon S Battle-long	Carbon Steel iteel Type	- Single segm Seal Type	vental 0	Cut(%d)	Impingement pr 10,16	otection None Hi Spacing: c/c 1 Inlet 440	77,8 mm
44 45 46 47 48	Tubesheet stationary Floating head cover Battle-cross Carbon S Battle-long - Supports tube	Carbon Steel Steel Type	Single segm Seal Type D	ental (Out(%d)	Impingement pr 10,16	otection None Hi Spacing: c/c 1 Inlet 440	77,8 mm),53 mm
44 45 46 47 48 49	Tubesheet stationary Floating head cover Battle cross Carbon 3 Battle-long - Supports tube Bypers seal	Carbon Steel	Single segm Seal Type O T	ube-tubesh	Cut(%d) aet.ioint	Tobesheat Hoat Impingement pr 10,16 Type Expanded on	tection None H Spacing: c/c 1 Inlet 440	77,8 mm ,53 mm
44 45 46 47 48 49 50	Tubesheet stationary Roating head cover Battle-cross Carbon S Battle-long - Supports-tube Bypass seal Expansion joint	Carbon Steel Steel Type U-bend	single segm Seal Type D T	ube-tubesh	Out(%d) eet.joint e Nor	Tubeshare Hoard Impingement pr 10,16 Type Expanded on	otection None H Spacing: c/c 1 Inlet 440 ly (2 grooves)(App.)	77,8 mm ,53 mm A.Y)
44 45 46 47 48 49 50 51	Tubesheet stationary Floating head cover Baffle-cross Carbon S Baffle-long = Supports-tube Bypass snal Expansion joint RhoV2-inlet nozzle	Carbon Steel steel Type U bend	Single segm Seal Type D T Bundle entra	ube-tubesh Typ Ince 1532	Out(%d) eet.joint e Nor	Tubesheet Incart Impingement pr 10,16 Type Expanded on te Bundle exit	tection None H Spacing: c/c 1 Inlet 440 ly (2 grooves)(App./	77,8 mm (53 mm A Y) kq/(m-s ²)
44 45 46 47 48 49 50 51 52	Tubesheet stationary Floating head cover Battle-cross Carbon 3 Battle-long - Supports-tube Bypass seal Expansion joint RhoV2-Iniet nozzle Gaskets - Shell side	Carbon Steel Iteel Type U bend 1427	seal Type 0 T Bundle entra	ube-tubesh Typ Ince 1532 Tube side	Cut(%d) eet joint e Nor	Tubeshare incart Impingement pr 10,16 Type Expanded on Bundle exit Flat N	tection None H Spacing: c/c 1 Inlet 440 ly (2 grooves)(App./ c 2580 letal Jacket Fibe	77,8 mm (53 mm A (7) kg/(m·s ²)
44 45 46 47 48 49 50 51 52 53	Tubesheet stationary Floating head cover Battle-cross Carbon 3 Battle-long = Supports-tube Bypess seal Expansion joint RhoV2-inlet nozzle Gaskets - Shell side Floating hea	Carbon Steel iteel Type U-bend 1427 d	o Single segm Seal Type 0 T Bundle entra	ube-tubesh Typ nce 1532 Tube side	Dut(%d) eet joint e Nor	Toposheat Histin Impingement pr 10,16 Type Expanded on te Bundle exit Flat N	Hi Spacing: c/c 1 Inlet 440 hy (2 grooves)(App. 2530 letal Jacket Fibe	77,8 mm ,53 mm A '7) kg/(m·s ²)

Fig. IV.2 Data sheet de l'échangeur.

En regardant les résultats récapitulés ci-dessus, nous pouvons dire qu'il y a concordance totale des valeurs calculées par les méthodes de KERN et Logiciel Edr HYSYS, dans la plupart des grandeurs. En conclusion, on peut dire que le but prévu de ce calcul est atteint.

Conclusion générale

Conclusion générale

Ce travail consiste à étudier l'influence de changement des paramètres de marche de la boucle propane au niveau de complexe GL1Z sur le procédé de liquéfaction de gaz naturel.

Le présent travail, nous a permis de faire une investigation du problème. On a entamé une étude détaillée pour déterminer les causes réelles et ainsi préconiser une solution.

D'après les résultats obtenus, on a constaté que la qualité de l'eau de mer et sa température sont les facteurs essentiels susceptibles de provoquer le disfonctionnement de la boucle de propane. D'autres parts, ceci a favorisé la contamination de l'appoint de la boucle par des composants indésirables et nous avons conclu les résultats suivants :

La présence des hydrocarbures légers et lourds dans le système de la boucle propane perturbent les paramètres de marche, à savoir la pression, la température et le débit.

L'effet de la contamination est d'autant plus qu'il est intense que la pression de refoulement du compresseur augmente.

Le disfonctionnement de la boucle implique une perte de production de GNL. Après une analyse de notre étude, des recommandations peuvent être tirées :

- Drainer les échangeurs à partir du drain du piège à moules en cas d'arrêt ou dedélestage du train.
- ✓ Faire une inspection systématique des faisceaux tubulaires des échangeurs à eau de mer.
- ✓ Procéder au lessivage chimique des faisceaux tubulaires dans les cas oùl'inspection révèle un bouchage partiel des tubes par le tartre.
- ✓ Faire une analyse de la composition de propane sur tous les échangeurs quiexistent dans la boucle pour détecter s'il y a une fuite ou pas.

REFERENCE BIBLIOGRAPHIES

- [1] Oil & Gas Science and Technology Rev. IFP Vol. 38 (1983), No.1, pp. 3-12.
- [2] Département technique du complexe, étude de l'augmentation cyclique de CO2 au niveau de la section de décarbonatation, 2009/2010.
- [3] Mémoire du Mr.H.Diab de fin d'étude en 2012 « Récupération du CO2 rejeté vers l'atmosphère au niveau de la section de décarbonatation du complexe GL1/K.
- [4] Process operating manuel (GL1Z complexe-SONATRACH).
- [5] TABELAIDET Boussad, Senior Ingénieur Process, Récupération de la monoethanolamine et préservation des sécheurs, document réaliser à SONATRACH, Activité AVAL, Division GNL, Complexe GL1/Z, 2003.
- [6] Les enjeux portuaires de l'adoption du GNL comme carburant Contextes, projets et stratégies des acteurs portuaires Rapport d'étude pour la Fondation SEFACIL Responsable scientifique - Scientific Figure on ResearchGate. Available from: connaissancedesenergiesorg_fig7_346997560 [accessed 16 Apr, 2023].
- [7] Mémoire du Mr.I. Othmani de fin d'étude en 2007 « Optimisation des paramètres de fonctionnement du turbo-expandre » université de BOUMERDES, 2007.
- [8] Mémoire du Mr.A. Baci de fin d'étude en 2008 « L'influence d'augmentation de taux de charge de GPL sur les équipements des l'unité de production de propane à HR».
- [9] Mémoire du Mlle.F.Bouden de fin d'étude en 2017 « Etude du Remplacement de L'échangeur de Chaleur a Plaque par un Echangeur Tubes-Calandre.2017 ».

Section de déshydratation

Annexe C

Figure 12.19. Temperature correction factor: one shell pass; two or more even tube passes

Annexe D

COEFFICIENTS DE TRANSFERT SALE U.

ÉCHAN	U,			
FLUIDE CHAUD	FLUIDE FROID	kcal/h.m².ºC	BTU/hr. ft ² .ºF	
Eau Solutions aqueuses Hydrocarbures légers ⁶¹ Hydrocarbures moyens ⁶¹ Hydrocarbures lourds ⁶² Hydrocarbures lourds Hydrocarbures lourds	Eau	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
RÉFRIG	ÉRANTS			
Eau, méthanol, ammoniaque et solu- tions aqueuses . Hydrocarbures légers . Hydrocarbures moyens . Hydrocarbures lourds . Gaz Eau . Hydrocarbures légers .	Eau	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
RÉCHAU	IFFEURS			
Vapeur d'eau Vapeur d'eau Vapeur d'eau Vapeur d'eau Vapeur d'eau Dowtherm Dowtherm	Eau, méthanol, ammoniaque Solutions aqueuses : $\mu < 2$ cPo $\mu > 2$ cPo Hydrocarbures légers Hydrocarbures moyens. Hydrocarbures lourds Gaz Gaz Hydrocarbures lourds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Ces valeurs de U, comprennent une résistance globale d'encrassement R_s = 0,0006 h.m². °C/kcal = 0,003 hr. ft². °F/BTU, et correspondent à : 0,35 kg/cm² < ΔP < 0,7 kg/cm².
 Hydrocarbures légers : μ < 0.5 cPo (ainsi que : benzêne, toluêne, acétone, éthanol, MEK). Hydrocarbures moyens : 0.5 < μ < 1 cPo (kérosène, gasoil chaud, huile d'absorption, bruts légers). Hydrocarbures lourds : μ > 1 cPo (gesoil froid, huiles, fuels-oils, brut réduit, asphalte).

Annexe E

TABLE 7.6	Some Important Correlations for	and Nu for Transition and Turbulent Flows in Circular and Noncircular Smooth Tubes
	bonne min bonne bonne hong hong	and the the the the the the the the the

Type of Flow and Geometry	Correlations	Eq. No.	Remarks	Reference
Transition and turbulent flow, circular or non- circular duct	$f = A + B \cdot Re^{-1/m}$ 1. $A = 0.0054$; $B = 2.3 \times 10^{-8}$; $m = -2/3$ 2. $A = 0.00128$; $B = 0.1143$; $m = 3.2154$	(7.70)	Bhatti–Shah correlation 1. $2100 \le \text{Re} \le 4000$ 2. $4000 \le \text{Re} \le 10^7$ Accuracy $\pm 2\%$	Bhatti and Shah (1987)
Turbulent flow in a smooth duct	Blasius: $f = 0.0791 \text{Re}^{-0.25}$ McAdams: $f = 0.046 \text{Re}^{-0.2}$ Bhatti and Shah: $f = 0.00128 + 0.1143 \text{Re}^{-0.311}$	(7.71) (7.72) (7.73)	$\begin{array}{l} 4000 < Re < 10^{5} \\ 30,000 < Re < 10^{6} \\ 4000 < Re < 10^{7} \\ Accuracy \ \pm 2\% \end{array}$	Bhatti and Shah (1987)
Turbulent flow in a smooth duct	Nu = $\frac{(f/2)\text{Re} \cdot \text{Pr}}{C + 12.7(f/2)^{1/2}(\text{Pr}^{2/3} - 1)}$	(7.74)	Petukhov–Popov correlation Accuracy $\pm 5\%$ $4000 \le \text{Re} \le 5 \times 10^6$ $0.5 < Br \le 10^6$	Petukhov and Popov (1963)
	$C = 1.07 + \frac{900}{\text{Re}} - \frac{0.63}{1 + 10\text{Pr}}$	(7.75)	$0.5 \le 11 \le 10$ Obtain f from Eq. (7.70) or (7.73)	
Transition and turbulent flow, circular or non- circular duct	Nu = $\frac{(f/2)(\text{Re} - 1000)\text{Pr}}{1 + 12.7(f/2)^{1/2}(\text{Pr}^{2/3} - 1)}$	(7.76)	$ \begin{array}{l} Gnielinski \ correlation \\ Accuracy \pm 10\% \\ 2300 \leq Re \leq 5 \times 10^6, \ 0.5 \leq Pr \leq 2,000 \\ Not \ a \ good \ correlation \ in \ the \ transition \\ regime \end{array} $	Gnielinski (1976)
Transition and turbulent flow, circular or non- circular duct	$\begin{split} \mathbf{N}\mathbf{u} &= \phi \mathbf{N}\mathbf{u}_{lam} + (1-\phi)\mathbf{N}\mathbf{u}_{turb} \\ \phi &= 1.33 - (\mathbf{R}\mathbf{e}/6000) \end{split}$	(7.77) (7.78)		Taborek (1990)
Turbulent flow in a smooth duct	$Nu=0.023Re^{0.8}\cdot Pr^{0.4}$	(7.79)	So-called Dittus-Boelter correlation Used for approximate calculations	Winterton (1998)

Annexe F

ſ	Sonatrach Approval	EPG. FM	· · · · ·						_		
1 TI	Revision			ION SHE	ET	REQ'N	No 1978	4-E-0	25	5-57 (1998) 	
.	. <u> </u>					PLANI		E02+1	5		
[Customer SoNA	TRACH	a (and total					100 Mile 1	
Δ	Project location GLA-	E RENOVA	TIONS .	ARZEN,	ALGE	RIA	Manufacturer	STRUT	HERS		
- F	Item No × 03-	E-05.13	, ,	/				INDUS	TRIES	-	
- F	Service of Unit PROP	ANG Desu	FERHEAT	ER.				_			
	Size : 1370	× GIOD T	pe: Ax	Posn	- 406	21Z	Connected in:	1	Series 1	Parallel	
	Surt./Unit (Eff) 1330(5)	m ² No. of Shell	s/Unit	Surf,	Shell (Ef	f) 1330	(s) m ²				
- F	PERFORMANCE OF ONE UNIT No OF UNITS REQ'D										
	Fluid Circulated					Lubeside					
	Total Fluid Entering	212.8				4	199.2				
			I I	N	-	DUT	1 al	N		DUT	
H	Liquid	Kg/S	10 2	İ			1 .23	dir de			
-	Vapour	Kg/S/MW	212.8	44.1	212-8	2 144 Cap		7	an a p		
- F	Noncond	Kg/S/MW			95						
H	Steam	Kg/S			<u>.</u>				<u> </u>	-	
-	Water	Kg/S		18			19	9-3	19	9-3	
	Fluid Vap./Cond.	Kg/S						1		and a second second	
🗢 H	Density	V-1-3	LIQ.	VAP.	LIQ.	VAP.	LIQ.	VAP.	LIQ.	VAP.	
F	Viscosity	Kg/m J	<u> </u>	20:05	-	18.73	1.025	1	- 7-	4	
E E	Therm. Cond.	W/m ^o C	-	6.7/	<u>_</u>	0.007	0.5%0		0.13	<u> </u>	
Γ	Specific Heat	KJ/Kg ° C	-	2.090	Ļ	12.050	3-98	1	3.49	1	
1	Temperature	°C	69	.05	4	3.33	2	3.9	37	.8	
	Operating Press.	bar A	13.	• 90 I			. 3	-4	1		
	No. passes / Shell		1	cross	FLor	×			2_		
Ļ	Velocity	m/sec		-			3	1.	75		
- F	Press. Drop, Allow / Caic.	bar	0.	+	0	·15	0.	70	1 0.4	5	
-	Fouling Resistance	<u>m+0C/W</u>			1e-			0-00	201		
	Transfer Rate	W/m 20C	Service Service	(5)	55		MID Classes 4	23.4	- •C	1011 - 1001 - 1001 - 6	
	Shellside Tubeside										
	Design / Test Press.	bar G	20	.7	TOC	ODE	5.2	A F.V.	TO CO	DE	
	Design Temperature (Max /	Min) °C	140	> /	-2	9		26	1		
-	Corr: sion Allowance	mm	<u> </u>	3	.0		į.	N	NE	· ··· , ···	
	Connections Inlet	ins	No.	2	N.B.	307	No.		N.B.	16"	
	Pating (ANSI) / Facing Bafe	ins	No.	1 I.D.	N.B.	36	No.	- 17	N.B.	16"	
	Tubes No: 1150 OD	19 .C			WEL	V ENVS	M Ditch	27-8			
A	Tube Material: 70/3	CINE S	0 700 0		Tubes	Tubesheet Io	int type	a d set	1 whit		
	Shell: 5A-516-70 A	<u> </u>	1D:	1370 m	n Shell (Cover.					
	Channel / Bonnet: SOLI	90/10 CuN	1: 58-17	1-706	Chann	el Cover: SA-	516-70+ 30	10 Conti	CLAD.		
	Tubesheet Stationary: SA-	266 CL4+7	0/30 (UN	12 CLAD	Tubes	heet Floating		•			
-	Floating Head Cover.	-tungs of	•		Imping	gement Plate:	۲	-5 - 504	- NOTE	2	
- F	Baffles - Cross:	4.er.es	Type:			% Cut (DLA	.)	Spacing	៣	m	
ŀ	Barries - Long:	-	Scal:	Pairs:		Tube suppo:	rts: CS-	See No	TE 3		
A	Gaskers: Shellside:		Chan:	mm		Expansion J	oint: -		Tec F.00	- 6	
	Code Bequirements: N-	NONE 0 D		Stamp		TEMA Clas	MARCOSED N	Surger.	SEE V		
h	Weight: Each Shell:	MES, M	Bundle	Ka	NO	Full Of Wat	5. K	Specs.	JEE N	ii ji k	
L L	Remarks: (1) Tubes To	BE LowFit	N TYPE F	ZR WOLN	ERINT	CATALOG	AVE REF	1 70-4	- 50 1	35 .	
	or equ	ac.								14.0	
-	(2) SHELL TO	BE FITTE	satisfat a	CONTINU	ous L	ONGITUP	INAL DI	SIRIBUTO	or see		
- F	SHEET 2	FOR SMAIL	<u>.s.</u>	4					<u> </u>	0	
ŀ	13) YRONIGE TUBE SUPPORTS - SPALING TO BE SOOMM BETWEEN EACH SUPPORT.										
	(4) See 314	ET 2 Fol	SETT	rsy plan	1 1e	4115.		100.17.04	nrp. 0.	- 104	
	2 18/10/0	7 155055			, i •	eiz infle	a prin	JOB NUM	BERC 12	5757	
	1 19/219	5 1550EL	FINAL	OCHASE		KA GED	WH WAIM	DRAWING	T No.	REV	
i	0 16/12	62 155060	Fox	WatAtrad	6	SE IL	CHUS	D5 - X03 -	E - 107	2	
	No DAT	Ĕ	REVISIO	N		BY CH	K APP	SHE	ET A C	F 6	
[(5) ABOVE	Stored La	wres	10% Exe	cess	SURFACE	AREA.	0. E			
Δ	(6) THE MUSS	EL SCREEN	DRAIN VA	LVES A	RE	TO BE S	UPPLIEDTEN	STRUTH	ERS: 6".1	50 [#]	
-	(I (NN) E 160 /	NILERS VO		1.1		and the second s					

Annexe G

TEMA Sheet

(6169) 3,11 / 36,54 / / 4,1 / / / / / / / / / / / / / / / / / / /					
(6169) 3,11 (36,54 (4,1 (4,1 (7 (7 (36398 3602 based					
(6169) 3,11 (36,54 ((4,1 (((() () () () () () () ()					
(,6169) 3,11 (36,54 ((4,1 (((((() () () () () () ()					
3,11 / 36,54 / / / / / / / / / / / / /					
) 3,11 / 36,54 / / 4,1 / / / / / / / / / / / / / / / / / / /					
3,11 (36,54 ((4,1 (((((((((((((((((((
3,11 (36,54 (4,1 (, , , , , , , , , , , , ,					
/ 36,54 / / / / / / / / / / / / / / / / / / /					
/ / / / / / / / / / / / / / / / / / /					
/ 4,1 /					
4,1 / / 66398 3602 based					
/ / 36398 3602					
/ / ;6398 3602					
/ 56398 3602					
66398 3602					
3602 based					
3602 based					
3602 based					
based					
LASTING.					
MTD (corrected) 24,47 °C					
W/(m^-K)					
Sketch					
Ébrind					
			10		
tern: 30					
Carbon Steel					
g .					
tection None					
i Spacing: c/c 177,8 mm					
mm					
2520 ko.ko.d					
atal lacket Elho					