الجمهورية الجزائرية الديمقراطية الشعبية People's Democratic republic of Algeria

وزارة التعليم العالي و البحث العلمي Ministry of Higher Education and Scientific Research جامعة عبد الحميد بن باديس – مستغانـم AbdelhamidIbnBadis University – Mostaganem كلية العلـوم و التكنولـوجـيا Faculty of Sciences and Technology قسم هندسة الطرائق Department of ProcessEngineering

Department of Process Engineering The Date Ref:...../U.M/F.S.T/2023 قسم هندسة الطرائق التاريخ: رقم: / ج .م/ك.ع.ت//2023

MEMOIRE DE FIN D'ETUDES

DE MASTER ACADEMIQUE

Filière : Génie des procédés

Option : Génie Chimique

ETUDE DU PROBLÈME DE MOUSSAGE POUR

L'AMELIORATION DE L'UNITE DE DECARBONATATION

AU NIVEAU DU COMPLEXE FERTILISANT - SORFERT-

Présenté par

1- SAID AINES

2-BOUKHORISSA MERIEM

Soutenu le 19/06 / 2023 devant le jury composé de:

Président :	MEKIBES ZOHRA	MCB	Université de Mostaganem
Examinateur :	DOUARA NADIA	MCB	Université de Mostaganem
Rapporteur :	MAHREZ NOURIA	MCA	Université de Mostaganem
Co-encadreur :	TOUMI IMEN	MCA	Université de Mostaganem

Année Universitaire 2022/2023

Remerciements

Tout d'abord, noustenons à remercier Allah qui nous a donné une belle vie, pleine de bonheur.

Nous avons l'honneur et le plaisir de présenter notre profonde gratitude et nos sincères remerciements à notre rapporteur Mme. MAHREZ

Nouria et MmeTOUMI Imen pour leur aide, les orientations et le temps qu'ils nous ont consacré.

Nous remercions les membres dujury d'avoir accepté d'examiner et dejuger not retravail: Mme. MEKIBES Zohra (présidente dujury) et Mme.

DOUARA Nadia(examinatrice).

Par ailleurs, nous remercions M. BENMEKI FADILA pour son aide.

Nousremercions aussi l'ensemble du personnel du Département Technique ainsi que tous les opérateurs au niveau de

sorfert, qui nous ont permis de réaliser ce stage dans les meilleures conditions.

En particulier : M. BENBERGHOUT Mokhtar, M. ADDLIet M.KERROUMIKarim.

Enfin, nous remercions toutes les personnes qui ont participé de près ou deloin àla concrétisation de ce mémoire de fin d'études.

Dédicaces

Je dédie ce mémoire

À mes parents S. AHMED, B. NORIA pour leur amour Inestimable, leur confiance, leur soutien, leurs sacrifices et toutes les valeurs qu'ils ont su m'inculquer.

À Mon père, mon ami, le frère que je n'ai pas eu je lui dis merci Babaya pour le sacrifice pour l'éducation et pour le bien être que j'ai connu grâce à toi

À celle qui m'a donné la vie ma chère mère,

merci maman pour tout ce que tu fais à moi et pour ton précieux encouragement. J'espère que la vie te réserve le meilleur.

À mon grand-père S. MUSTAPHA et ma grande mère

S. AISHA qui m'ont toujours soutenus avec leur Douaa que dieu les protège.

À Mon frère : S.ABDELKADER et mes sœurs : S. AYA, et S.IBTIHEL qu'ils m'ont donné et pour leurs précieux encouragements.

À mes chers Ami(e)s Ahmed, Mohamed, Radia, Ahlem qui m'ont aidé à dépasser les obstacles par leur conseils et encouragement.

À tous ma famille paternelle « SAID » et ma famille maternelle «BOUZIANE », A tous mes amis.

À mon encadreur, pour sa disponibilité toujours près de moi pour me soutenir et m'encourager

À Tous ceux qui ont contribués de loin ou de près à

l'aboutissement de mon travail, je vous dis merci.

AINES

Dédicaces

Je dédie ce mémoire

À mes parents B .Bencherif, L.Nadia pour leur amour Inestimable, leur confiance, leur soutien, leurs sacrifices et toutes les valeurs qu'ils ont su m'inculquer.

À Mon père, mon ami, le frère que je n'ai pas eu je lui dis merci Papa pour le sacrificepour l'éducation et pour le bien être que j'ai connu grâce à toi

À celle qui m'a donné la vie ma chère mère,

merci maman pour tout ce que tu fais à moi et pour ton précieux encouragement. J'espèreque la vie te réserve le meilleur.

À mon fiancé et mon bras droit, Hicham Mammeri qui m'a aidé à arriver à ce niveau de connaissance.

À Mon frère : B.HOUCINE et mes sœurs : B. SIHEM, et B.HALIMA et B.ROUMAISSAqu'ils m'ont donné et pour leurs précieux encouragements.

À mes chers Ami(e)s ABIR, AHLEM, BOUCHRA, RAHMA, WAFA, ASMA qui m'a aidé à dépasser les obstacles par leur conseils et encouragement.

À mes chers neveux : RIADH, ISHAK, ISLAM, et ma nièces AMIRA NOURHAN

À tous ma famille paternelle « BOUKHORISSA » et ma famille maternelle «LATERCHE», A tous mes amis.

À mon encadreur, pour sa disponibilité toujours près de moi pour me soutenir et m'encourager

À Tous ceux qui ont contribués de loin ou de près à

L'aboutissement de mon travail, je vous dis merci.

MERYAM

Résumé

Cette étude a pour objectif d la recherche des causes les plus importantes liées au problème de la surconsommation de solution de MDEA dans la section décarbonatation au niveau du complexe SORFERTet leurs remèdes, Après les analyses effectuées et les résultats obtenus nous avons trouvé que le phénomène de moussage et l'étude de simulation par le logiciel ASPEN HYSYS à nous confirmer l'importance des équipements hors fonctionnement pour minimiser ces pertes. **Mots clés :** moussage ,solution de MDEA, logiciel ASPEN HYSYS

Abstract

Our work took place in the decarbonation section at the level of the SORFERT complex and their remedies. This study aims to find the most important causes related to the problem of overconsumption of MDEA solution in the decarbonation and improvement section of this unit. According to the results found that the foaming phenomenon and the simulation study by the ASPEN HYSYS software confirm the importance of operating the anti- foam pump for well controlled levels, (for minimizing max foaming) and the importance of non- operating equipment to minimize these losses.

Keywords: foaming, MDEA, ASPEN HYSYS software

الملخص

تم عملنا في قسم إزالة الكربون على مستوى مجمع SORFERT وعلاجاتها. تهدف هذه الدراسة إلى إيجاد أهم الأسباب المتعلقة بمشكلة الاستهلاك المفرط لمحلول MDEA في قسم إزالة الكربون وتحسين هذه الوحدة. وفقًا للنتائج التي تم العثور عليها، فإن ظاهرة الرغوة ودراسة المحاكاة بواسطة برنامج ASPEN HYSYS تؤكد أهمية تشغيل المضخة المضادة للرغوة لمستويات مضبوطة جيدًا (لتقليل الحد الأقصى للرغوة) وأهمية المعدات غير العاملة لتقليل هذه خسائر.

الكلمات المفتاحية الرغوة, محلول ASPEN HYSYS, MDEA برنامج

SOMMAIRE

Liste des figures Liste
des tableaux Liste des
Abréviations
Introduction générale1
I.1 Presentation du complexe sorfert
I.1.1. Generalites .4 I.1.2. Historique du complexe sorfert .4 I.1.3. Situation geographique du complexe .5
I.2 . Organisation de l'usine
I.3. Matieres premieres et produits finis6
I.3.1. Matieres premieres
I.3.2. Les produits finis7
I.4. Les principales zones du complexe
I.4.1. zone utilities8I.4.2. zone process8I.4.3. zone de stockage9I.4.4. laboratoire9
I.5. Description du procede uhde (unite de l'ammoniac)10
I.5.1. Procede de fabrication de l'ammoniac10I.5.2. Principe du procede10I.5.3. Description des unites de proces11I.6. Production et fourniture de vapeur15I.6.1. Vapeur HP15I.6.2. Vapeur MP15I.6.3. Vapeur LP15
I.7. Description detaille de procede d'absorption de l'unite 20516
I.7.1. Cycle du solvant a base de MDEA16I.7.2. Vapeurs de dioxyde carbone17I.7.3. Condensat de procédé17I.7.4. Condensat de vapeur de co217I.7.5. Eau polishee18I.7.6. Eau d'alimentation chaudiere18
I.8. Equipements auxiliaires

I.8.1. Ballon d'appoint et a rejets 105D001......18

I.8.2. Filtre de mdea 105f005	
I.8.3. Reservoir de stockage de solvant 105T001	
i.8.4. Filtre 105F006A/B ET 105F007A/B	
I.8.5. Poste de dosage d'antimousse 105u300	
I.8.6. Le packing	
I.9. La charge a traiter	20
II.1. Introduction	
II.2. Itineraire du gaz	
II.2.1. Le procede d'activation de mdea	
II.2.2. Etude des causes et de consequence du moussage	
II.3. Problematique	
II.4. Analyse des problemes	
II.4.1. Analyses de la solution mdea	
II.4.2. Analyse % H ₂ O et % mdea dans la solution de MDEA	
II.4.3. Analyse % co2 et % mdea dans la solution de MDEA	
II.4.4. Analyse de moussage dans la solution de MDEA	
II.4.5. Influence de la temperature de la solution de MDEA sur le moussage	
II.4.6. Influence de l'exces d'anti mousse sur le moussage	
II.5. Simulation de l'unite 205 CO ₂ removal	
II.5.1. Methodologie adopite	
II.5.2. Choix du modele thermodynamique	
II.5.3. La colonne d'absorption 205c001	
II.6. Simulation du cas design	
II.6.1. Les parametres de fonctionnement de l'absorbeur	
II.6.2. Compression des resultats obtenus par simulation avec celles du designe	
II.7. Conclusion	40
II.8. Verification du cas actuel	
II.8.1. Les resultats de la simulation	40
Conclusion générale	

LISTE DES FIGURES

Figure I.1 : Plan générale du complexe d'ammoniac Sorfert	3
Figure I.2 : Molécule de NH ₃	5
Figure I.3 : Molécule de l'urée	5
Figure I.4 : Schéma de l'unité de l'ammoniac	8
Figure I.5 : Étape principale de procède	9
Figure I.6 : Reformeur primaire et secondaire	11
Figure I.7 : Boucle de synthèse de l'ammoniac	12
Figure I.8 : Circuit de regénération de MDEA	15
Figure I.9 : Filtre de MDEA 105F005	17
Figure I.10 : Réservoir de stockage de solvant 105T001	18
Figure I.11 : Dimester du filtre 105F006	18
Figure I.12 : Packing	19
Figure II.1 : Mécanisme réactionnel de l'aMDEA	22
Figure II.2 : Concentration de MDEA %	25
Figure II.3 : La variation du pourcentage de MDEA et H2O	26
Figure II.4 : Appareille de mesure de moussage	28
Figure II.5 : variation du moussage en fonction de la température de la solution MDEA	31
Figure II.6 : la variation du moussage en fonction de la concentration d'anti mousse	31
Figure II.7 : Caractéristiques d'absorbeur sur ASPEN HYSYS V8.8	33
Figure II.8 : Diagramme de simulation de l'unité de décarbonatation de l'absorbeur sur ASPEN. 3	4
Figure II.9 : Profil de température obtenu par Hysys du cas design de C001	36
Figure II.10 : Profil de pression obtenu par Hysys du cas design de C001	36
Figure II.11 : Profil des débits obtenu par Hysys du cas design de C001	37
Figure II.12 : Profil de fraction molaire du CO2 obtenu par Hysys du cas design de CO01	37
Figure II.13: Profil de température obtenu par ASPEN HYSYS V8.8 du cas actuel de C001	37
Figure II.14 : Profil de pression obtenu par ASPEN HYSYS du cas actuel de C001	40
Figure II.15 : Profil de débit obtenu par Hysys du cas actuel de C001	40
Figure II.16 : Profil de fraction molaire du CO ₂ obtenu par Hysys du cas actuel de COO1	41

LISTE DES TABLEAUX

Tableau I.1 : Fiche technique du complexe	2
Tableau I.2 : Composition du gaz naturel	4
Tableau I.3 : Composition moyenne du gaz de synthèse entrant à l'unité de décarbonatation	20
Tableau II.1 : Propriétés physiquo-chimique du MDEA activée (pure) et MDEA activée	23
Tableau II.2 : concentration de MDEA	25
Tableau II.3 : Analyses de la solution % MDEA et % H2O	26
Tableau II.4: Analyses de la solution MDEA mesurée comparable avec la norme	27
Tableau II.5: Analyses de %CO2 et % MDEA	27
Tableau II.6 : Analyses de %CO2 et % H2	28
Tableau II.7 : Le suivi du taux de moussage avant l'arrêt du train 205	29
Tableau II.8 : Le suivi du taux de moussage après l'arrêt du train 205	29
Tableau II.9 : Influence de la température da la MDEA sur le moussage	30
Tableau II.10 : Caractéristiques de l'absorbeur 205C001	33
Tableau II.11 : Paramètres de fonctionnement de l'absorbeur 205C001	34
Tableau II.12 : Paramètres de sortie du cas design et de la simulation de C001	37
Tableau II.13 : Paramètres de fonctionnement de l'absorbeur 205C001 du cas actuel	41
Tableau II.14 : Paramètres de sortie du cas actuel et de la simulation de C001	41

Liste des abréviations

Liste des abréviations

- SORFERT : Sonatrach Orascom Fertiliser
- RTO : Région de transport ouest
- **PFD** : Process flow Diagram
- MDEA : Méthyle di-Ethanol Amine
- MDEA : Méthyle di-ethanolamine activé
- PZ: Pipérazine
- BFW : Boiler feed water (L'eau d'alimentation de chaudière)
- HP: Haute Pression
- **MP** : Moyenne Pression
- **BP** : Basse Pression
- HT : Haute Température
- MT : Moyenne Température
- BT : Basse Température
- E: Echangeur
- **B**: Four
- \mathbf{C} : Colonne
- K: Compresseur
- F: Séparateur
- CO2: Dioxyde de carbone
- CO : Monoxyde de carbone
- H2: Hydrogène
- NH3: Ammoniac
- H₂O:L'eau
- **Ppm :** Partie par million
- MW: Méga Watt
- $\boldsymbol{R}: Rendement$
- **P** : Masse volumique (kg/m^3)
- **CP** : Chaleur massique à pression constante (J/kg)
- **T** : Température (°C)
- **U** : Coefficient de transfert de chaleur (W/m². K)

V: Vitesse (m/s)

S : Surface (m^2)

L : Longueur(m)

di : Diamètre intérieur des tubes (m)

bar : unité de pression

BASF : Baden aniline and soda factory (société de production chimique)

Introduction Générale

Introduction générale

Depuis 1970, la stratégie économique d'Algérie est basée sur le développement des industries pétrochimiques. L'Algérie a ouvert plusieurs complexes d'unité telle que Skikda CP1 (pour la production du polyéthylène, VCM et PVC) et Arzew CP1/Z (pour la production du méthanol, formaldéhyde et différentes résines). La raison de l'ouverture de ces unités découle de l'instabilité et de la durabilité des revenus par la vente du gaz naturel et du pétrole Brut. L'Algérie élargit ses plans d'action pour une stabilité et une durabilité économique.

Le gaz naturel et le pétrole brut sont les matières premières essentielles compte tenu de son vaste champ d'application. A propos de l'ammoniac s'est un produit fortement demandé dans le marché mondial. Elle est utilisée comme matière première dans la plupart des engrais azotés. Elle sert également à fabriquer l'acide nitrique qui est lui-même utilisé dans la fabrication d'explosifs.

SONATRACH investit périodiquement dans des unités de production d'ammoniac. Tel est le cas de l'unité Fertial (ex-Asmidal) construite à la fin des années 1960, avec une production de 1000 t/jour, puis en 1980 la réalisation d'une seconde unité de 1000t/jour au sein du même complexe.

Parmi ces complexes, le SORFERT qui produit 2x2200 t/jour. L'entrée en production de cette unité permettra à l'Algérie d'être le premier producteur d'ammoniac en Afrique avec plus de 11 000 t/ jour de NH₃ et 10 500 t/jour d'urée, est un des premiers au monde.

Notre travail a été réalisé au niveau du complexe fertilisant - SORFERT- et avait pour objectif de faire le suivi de fonctionnement de l'unité décarbonatation, où en basant surtout d'étudier le problème de moussage afin d'assurer une bonne amélioration dans cette unité.

Ce travail est divisé en deux parties :

-La première est consacrée à la présentation du complexe et la description du procédé utilisé.

-La seconde comporte une série d'analyses effectuées au niveau de laboratoire du complexe pour étudier l'influence de quelques paramètres sur le problème de moussage, afin de localiser et identifier les causes qui peuvent provoquer et augmenter ce problème.

-A la fin on termine par une conclusion générale récapitule les principaux résultats obtenus au cours de ce travail.

Chapitre I Partie Théorique

I.1 Présentation du complexe SORFERT

I.1.1. Généralités

SORFERT a été créé le 19 mars 2007. Pour rappel, la conception, le développement et la construction clés en main du complexe ont été confiés à la compagnie allemande UHDE, qui est leader dans son domaine en matière de technologie servant à la production de fertilisants. Ce rapport comprend une présentation générale de l'usine, de sa hiérarchie, son organisation et une description des différentes implantations qui s'y trouvent, et même une description générale des différents procédés. L'usine est alimentée par 2 milliards de mètres cubes/an de gaz naturel [1].

Elle comporte des installations modernes, fiables et intégrées pour la production d'ammoniac (capacité nominale 2 x 2200 t/jours et d'urée granulée (capacité nominale de 3450 t/jours accompagnées des services et installations hors site nécessaires aux fins de l'installation. L'installation doit être conçue avec un taux de fonctionnement de 350 jours par an.

I.1.2. Historique du complexe SORFERT

Parameters	Valeurs
Superficie	27 hectares
Construction	Orascom construction industries OCI
Date de construction	Février 2007
Alimentation en gaz	Décembre 2011
Alimentation en gaz naturel	RTO
Procéde	Thyssen Krupp UHDE
Nombre de train	02 trains identiques d'ammoniac liquide Capacité de stockage : 75000 m ³
Un hangar de stockage d'urée	100000 tonnes
Température de chargement de l'ammoniac	-33 °C

Tableau I.1 : Fiche technique du complexe [1].

I.1.3. Situation géographique du complexe

Le complexe SORFERT est situé dans la zone industrielle d'Arzew à l'Ouest de Bethioua, à 6

Km de la ville d'Arzew, 40 km à l'Est d'Oran, il couvre une superficie de 37 hectares et se compose notamment de plusieurs zones.

I.2. Organisation de l'usine

Les installations suivantes se trouvent sur le site :

- Deux unités de production d'ammoniac de capacité de 2200 tonnes/jour chacune.
- Une unité de production de 3450 tonnes/jour d'urée en granulés.
- Une usine de dessalement d'eau de mer.
- Des installations électriques.
- Un réservoir d'eau.
- Un stockage d'urée.
- Deux réservoirs de stockages d'ammoniac d'une capacité de 30000 t à proximité du port.
- Un corridor technique comprenant :
- Une conduite d'amenée d'eau de mer.
- Un pipeline de transfert de l'ammoniac.
- Une conduite de retour d'eau de mer.
- Une ligne de fibre optique de transfert de l'information.

Figure I.1 : Plan générale du complexe d'ammoniac Sorfert

I.3. Matières premières et produits finis [1]

I.3.1. Matières premières [1]

Le Gaz Naturel

Le gaz naturel est un combustible fossile composé d'un mélange d'hydrocarbures présent naturellement dans des roches poreuses sous forme gaz. Le gaz naturel utilisé provient de la zone R.T.O.

Tableau I.2 : Composition du gaz naturel [1].

Composants du GN	Unites	Quantité
Eau	Eau	0
Hélium	% mol	0,18
Azote	% mol	5,57
Dioxyde de carbone	%mol	0,22
Méthane	% mol	83,38
Ethane	%mol	7,68
Propane	% mol	1,99
I-butane	% mol	0,30
n-butane	% mol	0,45
i-pentane	% mol	0,09
n-pentane	% mol	0,10
n-hexane	% mol	0,04
Mercure	µg/Nm ³	50
Soufre	Ppm	<10

L'Oxygène :

L'oxygène est un élément nécessaire dans l'usine, il provient de l'air.

L'Azote (Nitrogène) :

L'azote est un élément clé dans le procédé, et on l'obtient à partir de l'air atmosphérique.

Le Dioxyde de Carbone (CO₂) :

Le dioxyde de carbone, est à la fois un produit et aussi une matière première, on l'obtient du procédé d'ammoniac et on l'utilise pour produire de l'urée.

Chapitre I

La Vapeur d'Eau :

La vapeur d'eau est primordiale afin que le procédé se déroule, on l'utilise un peu partout dans le procédé et même dans les utilités, tel que la production d'électricité.

I.3.2. Les produits finis [1]

L'Ammoniac (NH₃)

L'ammoniac est un composé chimique, de formule NH_3 (groupe générique des nitrures d'hydrogène). Dans les conditions de température et de pression ordinaire, c'est un gaz. Celuici est produit industriellement en quantité gigantesque par le procédé Haber-Bosch à partirde di azote et de dihydrogène (c'est un des composés les plus synthétisés au monde).

Figure I.2 : Molécule de NH₃

L'Urée (CO(NH₂)₂)

L'urée ou carbamide est un composé organique de formule chimique CO(NH₂)₂. C'est aussi lenom de la famille des dérivés de l'urée de formule générale (R1, R2) N-CO-N (R3, R4). La plus importante utilisation actuelle se fait sous la forme d'engrais azotés. L'urée est hydrolysée en ammoniac et en dioxyde de carbone dans le sol.

Figure I.3 : Molécule de l'urée

I.4. Les principales zones du complexe [1]

Le complexe SORFERT est composée de trois (03) zones :

I.4.1. Zone utilities

Les utilités sont des services de support au procédé. Elles sont créées pour produire et manipuler les produits finis du complexe, comme elles sont nécessaires pour supporter l'outil de production.

- Les utilités se composent des sections suivantes :
- Section de production de vapeur (083).
- Section de production d'air service et d'instrumentation (084).
- Section de production d'électricité (085).
- Section de production et stockage d'azote (086).
- Section de refroidissement à l'eau de mer (087).
- Section de refroidissement en boucle fermée (088).
- Section de production d'eaux dessalées (089).
- Section de production d'eaux déminées (090).
- Réseau d'eau anti-incendie (091).
- Section de prise d'eau de mer (097).
- Réseaux des douches de sécurité (056).

I.4.2. Zone process

La zone de production se compose en deux unités :

- Deux unités de production d'ammoniac de capacité de 2200 Tonnes/jour chacune.
- Une unité de production de 3450 Tonnes/jour d'urée en granulés.

I.4.2.1. Unité de production d'ammoniac

Les étapes de production d'ammoniac sont :

- > Extraction de l'Hélium et du Mercure du Gaz Naturel.
- > Désulfurisation et Compression du Gaz Naturel.
- > Compression d'Air du Procédé.

- > Reformage à la vapeur et Craquage (Vapo-Reformage).
- > Conversion du CO.
- > Extraction du CO₂.
- > Méthanation.
- > Compression du Gaz de Synthèse.
- > Synthèse de l'Ammoniac (NH₃).
- > Réfrigération de l'Ammoniac.

I.4.2.2. Unité de production d'Urée

- > Les étapes de production d'urée :
- > Compression du CO₂.
- Pompière d'Ammoniac.
- Synthèse d'urée.
- Recirculation.
- Evaporation.
- > Granulation.
- > Section de traitement des condensats.

I.4.3. Zone de stockage

La zone de stockage et chargement se compose de deux unités :

Stockage sur site

Le stockage sur site est constitué d'un réservoir d'ammoniac liquide d'une capacité de $15000m^3$ et d'un hangar d'engrais d'une capacité de $100000 m^3$.

Stockage au port

Le stockage au port est constitué de deux réservoir d'ammoniac liquide d'une capacité de 3000 m³ pour chacun et une station de pompage d'ammoniac liquide d'une capacité de 1000 m³/h et un quai d'expédition avec deux bras de chargement [1].

I.4.4. Laboratoire

Le laboratoire joue un rôle important dans l'industrie chimique et pétrochimique. Il permet le suivie et le contrôle continu de la qualité des produits finis et intermédiaires.

I.5. Description du procède UHDE (unité de l'ammoniac)

I.5.1. Procédé de fabrication de l'ammoniac [1]

La synthèse de l'ammoniac à partir de ses éléments est parmi les plus importantes découvertes dans l'histoire de la science de la catalyse, non seulement en raison d'application dans laquelle les engrais synthétiques ont contribué énormément. La survie de l'humanité, mais aussi du point de vue de la science fondamental.

Figure I.4 : Schéma de l'unité de l'ammoniac

I.5.2. Principe du procédé

Il consiste à faire réagir, en présence d'un catalyseur, l'hydrogène provenant d'hydrocarbures et d'eau avec l'azote de l'air. La production d'hydrogène s'effectue principalement par reformage des hydrocarbures par la vapeur d'eau puis conversion par la vapeur d'eau du monoxyde de carbone produit. L'hydrogène est purifié de tous les composés oxygénés qui l'accompagnent, avant d'être introduit dans le réacteur catalytique de synthèse d'ammoniac.

Les équations générales :

0.4422 CH4 (g) + 0.6155H2O (L) + 0.6407 air ₹ NH3 (L) + 0.4424 CO2 (G) + 0.006 Ar

Figure I.5 : Étape principale de procède

I.5.3. Description des unités de procès [1]

I.5.3.1. Unité 000 (extraction d'hélium et de mercure)

Afin d'empêcher l'accumulation d'hélium dans les boucles de synthèse des unités d'ammoniac I et II, il est nécessaire d'extraire l'hélium du gaz naturel avant l'entrée de ce dernier dans la section de traitement du gaz naturel et aussi pour éviter les effets corrosifs sur le matériaude construction de l'unité d'ammoniac il est impératif de réduire la teneur en mercure du gaz naturel.

Les deux étapes de traitement :

- Unité d'extraction d'hélium à base de séparateurs à membrane.
- Unité d'extraction de mercure à base d'un réacteur.

I.5.3.2. Unité 201 (compression et désulfuration de gaz naturel)

Le gaz naturel utilisé comme charge d'alimentation pour le reformage à la vapeur provient du flux aval du système d'extraction d'hélium et de mercure et contient au maximum 10 ppm de soufre total. Les composés soufrés agissent comme des poisons catalytiques dans le reformeur primaire et dans la conversion basse température.

Unité 201 où il subit une hydrogénisation des composés soufrés organiques en hydrocarbures et sulfure d'hydrogène, en présence d'un catalyseur à base de molybdène-cobalt. Le sulfure d'hydrogène est ensuite adsorbé dans l'oxyde de zinc.

I.5.3.3. Unité 202 (compression de l'air industriel)

Le compresseur d'air industriel 202K001 fournit principalement de l'air au reformeur secondaire 203R001, Il fournit également de l'air comprimé sous forme d'air de passivation à l'unité d'urée et sert d'installation de secours pour le système d'air instruments et de service (unité 084).

L'air industriel sera comprimé jusqu'aux conditions de procédé par un compresseur centrifuge à quatre étages entraînés par une turbine vapeur. Ce type de machine se caractérise par une fiabilité et une efficacité importante.

I.5.3.4. Unité 203 (reformage à la vapeur et récupération de chaleur)

Dans le procédé de reformage, les hydrocarbures sont reformés en CO, CO_2 , H_2 par l'intermédiaire de catalyseurs à base de nickel en présence de vapeur. Une partie de la vapeur est utilisée pour la réaction. L'excès de vapeur empêche le carbone de se déposer sur le catalyseur et sert à ajuster l'équilibre chimique.

Figure I.6 : Reformeur primaire et secondaire

I.5.3.5. Unité 204 (conversion de CO) [5]

Dans la conversion catalytique du CO, la majeure partie du CO contenu dans le gaz est convertie en CO₂ sur un catalyseur selon la formule suivante :

 $CO + H_2O \rightarrow CO_2 + H_2$

Cette réaction est exothermique; Pour des raisons d'équilibre chimique.

La réaction est subdivisée en deux étapes :

- La conversion catalytique du CO à haute température par l'intermédiaire de catalyseur à base d'oxyde de fer.
- La conversion catalytique du CO à basse température par l'intermédiaire de catalyseur à base d'oxyde de cuivre.

I.5.3.6. Unité 205 (extraction du dioxyde de carbone)

La décarbonatation est principalement faite par un phénomène d'absorption qui représente une des opérations unitaires du génie des procèdes caractérisé par un transfert phasique de matière et il est parfois accompagné d'un transfert de matière. Elle met en jeu un échange entre deux matières liquide et gazeuse de nature chimique différentes, (un ou plusieurs constituants de la phase gazeuse passent en phase liquide). Cela est principalement utilisé pour purifier un flux gazeux ou pour récupérer un constituant présent dans un mélange gazeux.

I.5.3.7. Unité 206 méthanation

Le gaz de procédé quitte le système d'extraction du dioxyde de carbone à une température d'environ 50 °C. Étant donné que des températures plus importantes sont requises pour réaliser l'hydrogénation du monoxyde de carbone et du dioxyde de carbone résiduels en méthane dans le réacteur de méthanisation 106R001, la température du gaz est augmentée jusqu'à une température d'admission du réacteur de méthanation d'environ 300 °C au moyen de gaz chaud déjà méthanisé dans l'échangeur de chaleur gaz/gaz 106E001.La température d'admission du réacteur de méthanation d'environ 300 °C au moyen de gaz chaud déjà méthanisé dans l'échangeur de chaleur gaz/gaz 106E001.La température d'admission du réacteur de méthanation peut être modifiée en ajoutant du gaz de procédé froid.

I.5.3.8. Unité 207 compression de gaz synthèse

Le gaz méthanisé est comprimé dans trois étages et subit un nouveau refroidissement après chaque étage. Le refroidissement à 41 °C entre chaque étage est réalisé par les refroidisseurs intermédiaires 107E001 / 107E002 à l'aide d'eau de refroidissement; l'eau condensée est séparée. Le gaz méthanisé est comprimé à environ 200 bars, finalement refroidi à 41 °C dans 107E003 et envoyé vers le système de synthèse.

I.5.3.9. Unité 208 boucle de synthèse de l'ammoniac

La synthèse d'ammoniac à partir d'un mélange hydrogène/azote est réalisée dans la plage de température 390 °C à 510 °C avec l'aide d'un catalyseur à base de fer qui contient des additifs constitués d'oxydes de métaux alcalins et de métaux alcalino-terreux.

Figure I.7 : Boucle de synthèse de l'ammoniac

I.5.3.10. Unité 209 réfrigération

La réfrigération fait partie de l'unité de synthèse de l'ammoniac et présente un triple but :

- Fourniture de la réfrigération nécessaire pour assurer le refroidissement de l'unité d'ammoniac et d'urée.
- Refroidissement de l'ammoniac liquide produit aux conditions de stockage de l'ammoniac, soit -33 °C.
- Séparation du gaz inerte dissous et de l'ammoniac liquide produit

I.5.3.11. Unité 210 récupération de l'ammoniac

Deux types de gaz résiduaire contenant une quantité relativement importante de NH₃,sont obtenus dans le système de synthèse de l'ammoniac.

• Gaz de détente - gaz inerte

Les gaz dissous, libérés lorsque l'ammoniac liquide sous pression provenant du séparateur 108F002 et de l'échangeur froid 208E005 se détend dans le ballon de détente 208F001, sont refroidis à 4 °C dans le refroidisseur de reflux 208E008.

• Gaz de purge

Afin d'empêcher tout enrichissement en méthane et argon des constituants dits inertes présents dans la boucle de synthèse de l'ammoniac, une partie du gaz recyclé est purgée et envoyée vers le bas de l'absorbeur 110C002 pour récupérer l'ammoniac.

I.5.3.12. Unité 211 récupération de l'hydrogène

L'ammoniac est extrait du gaz de purge dans le système de récupération d'ammoniac avec une concentration de sortie attendue d'environ 50 ppm. La température du gaz de purge lavé est ensuite ajustée pour obtenir des performances optimales des séparateurs Prisma qui récupèrent un flux riche en hydrogène pour le recycler vers le côté aspiration du compresseur de gaz de synthèse 207K001.

La récupération d'hydrogène est un ensemble autonome fourni par un fabricant expérimenté. Le procédé sélectionné est basé sur la technologie des membranes semiperméables.

I.6. Production et fourniture de vapeur [4]

I.6.1. Vapeur HP

Dans l'unité ammoniac, la vapeur HP est produite à partir de la chaleur de récupération du procédé à une pression de 125 bars absolus. Il y a deux générateurs de vapeur :

- Refroidisseur de gaz de procédé 203E001 dans l'unité 203-reformage de vapeur et récupération de chaleur.
- Echangeur de récupération de chaleur 1 208E001 et échangeur de récupération de chaleur II
 208E002 dans l'unité 208 synthèse d'ammoniac.

I.6.2. Vapeur MP

La vapeur MP à environ 50 bars absolus et environ 415 °C est obtenue par extraction de la turbine du compresseur de gaz de synthèse 207MT01 et de la turbine du compresseur d'air industriel 202MT01.

I.6.3. Vapeur LP

La vapeur basse pression à environ 4,5 bars absolus produite dans le générateur de vapeur LP 205E001 est destinée à la désaération de l'eau d'alimentation chaudière. La vapeur basse pression à environ 5,5 bars absolus extraits de la turbine 282 MT 01 de la pompe BFW est utilisée à d'autres fins, telles que le préchauffage du carburant et les éjecteurs des circuits de vide.

I.7. Description détaillé de procédé d'absorption de l'unité 205 [1]

I.7.1. Cycle du solvant à base de MDEA

La régénération du solvant riche à base de MDEA est effectuée en deux étapes :

Le solvant enrichi en CO_2 a une température d'environ 85 °C, est achemine à partir de la partie inférieure de l'absorbeur 205C001 via la turbine hydraulique 205MT01 vers la cuve de détente HP 105C002, où il est dilaté à environ 6,6 bars absolus. Pendant ce processus, les gaz inertes dissous (H₂, N₂, CH₄ et CO) sont principalement libérés [1].

Ces gaz inertes sont ensuite acheminés dans le circuit de gaz combustible du reformeur primaire 203B001, les plateaux de lavage de condensat placés dans la tête de la cuve de détente HP limitent les pertes de solvant, les gaz inertes sont achemines via le séparateur 205F004 vers le reformeur primaire, si nécessaire, ce gaz de détente peut aussi être brulé dans la torche 206V801 [1].

Le solvant à base de MDEA détendu est dilaté environ 1,6 bars absolus dans la cuve de détente BP 205C003, dans cette cuve de détente BP, le solvant à base de MDEA est réchauffé à contre-courant du gaz, de la vapeur de tète produites par le décomposeur 205C004, environ la moitié du CO_2 est expulsée pendant ce processus. Le solvant va quitter la partie inférieure de la cuve de détente BP, le solvant semi- régénéré, qui a par conséquent déjà subi une régénération, est partager en deux flux. Le flux partiel principal, soit environ 82 %, est achemine vers la partie centrale de l'absorbeur 205C001 a une température d'environ 75 °C au moyen de la pompe de solvant semi-régénéré 205P001A/B. La pompe 205P001A est couplée à la turbine hydraulique 205MT01 et à un moteur électrique et la pompe 205P001B est simplement entrainée par un moteur électrique. Le flux partiel restant, soit environ 18 %, est achemine au moyen des pompes d'alimentation de décomposeur 205P002A/B via l'échangeur de chaleur du solvant régénéré / semi-régénéré 205E005 et, après préchauffage à environ 94 °C, vers la tête du décomposeur 205C004. Dans le décomposeur, le solvant semi-régénéré est décomposer à contrecourant par de la vapeur qui est générée dans le rebouilleur 205E002, la majorité du CO_2 est extrait de cette manière du solvant [1].

Figure I.8 : Circuit de régénération de MDEA

I.7.2. Vapeurs de dioxyde carbone

Les vapeurs de CO_2 produites par la tête du décomposeur 105C004 sont conduits vers la partie inférieure de la cuve de détente BP 105C003 où elles sont utilisées comme réchauffeur de solvant à base de MDEA, améliorant les performances de la détente à basse pression [1].

I.7.3. Condensat de procédé

Le condensat obtenu lors du refroidissement du gaz de procédé dans le générateur de vapeur BP 105E001, le rebouilleur 105E002 et le préchauffeur d'eau déminéralisée 105E004 est séparé du gaz dans le séparateur 105F001.

Le condensat obtenu dans le séparateur 105F001 et contenant des impuretés (méthanol, ammoniac et CO₂ dissous) est refoulé par la pompe d'alimentation 180P001A/B vers le décomposeur de condensats 180C001 via le préchauffeur de condensats 180E001 [1].

I.7.4. Condensat de vapeur de CO₂

Le condensat obtenu est séparé du CO_2 gazeux dans le séparateur 105F003.À partir du séparateur, le condensat est évacué vers plusieurs utilisateurs à une température de 40 °C par la pompe de reflux 105P006A/B. La majeure partie du condensat, soit environ 9 m³/h, est acheminée vers les plateaux de transfert (2 cloches de barbotage) dans la partie supérieure de la cuve de détente BP 105C003.

I.7.5. Eau polishée

L'excès de chaleur du système d'extraction de CO_2 est utilisé pour préchauffer l'eau polishée alimentant le désaérateur, de 40 °C à 90 °C, dans le préchauffeur d'eau déminéralisée 105E004. Ce préchauffeur 105E004 est sur l'itinéraire du gaz entre le rebouilleur 105E002 et le séparateur 105F001.

I.7.6. Eau d'alimentation chaudière

Un petit flux, soit environ 1,0 m³/h d'eau d'alimentation chaudière MP est utilisé sur les deux plateaux de lavage dans la partie supérieure de l'absorbeur 105C001 afin de limiter l'entraînement du solvant dans le gaz de procédé et maintenir l'équilibre hydrique du système d'extraction du CO_2 .

I.8. Équipements auxiliaires [4]

I.8.1. Ballon d'appoint et à rejets 105D001

Toute fuite de solvant est collectée dans le ballon à rejets 105D001 enterré en dessous du niveau des installations.

I.8.2. Filtre de MDEA 105F005

Un flux partiel d'environ 50 m³/h de solvant à base de MDEA est recerclé en continu via le filtre de MDEA 105F005 de manière à prévenir une accumulation d'impuretés dans le solvant. Le flux partiel est éliminé du côté refoulement de la pompe d'alimentation du décomposeur 105P002A/B, acheminé via le filtre et renvoyé vers le côté aspiration de la pompe.

Figure I.9 : Filtre de MDEA 105F005

I.8.3. Réservoir de stockage de solvant 105T001

Le réservoir de stockage de solvant 105T001, d'une capacité de 833 m³, est dimensionné pour recevoir le volume entier de solvant qui est présent dans le système. Par conséquent, celui-ci peut être vidangé pour les travaux de maintenance. Le système est rempli de solvant au moyen de la pompe de rejets 105P004 via le ballon à rejets 105D001. Le réservoir de stockage est placé sous atmosphère d'azote.

Figure I.10 : Réservoir de stockage de solvant 105T001

I.8.4. Filtre 105F006A/B et 105F007A/B

Un solvant régénéré à base de MDEA d'environ 2,3 m³/h circule en continu via le filtre 105F006A/B et 105F007A/B et est utilisé pour rincer les garnitures d'étanchéité mécaniques, sur les pompes 105P001A/B, 105P002A/B, 105P003A/B et la turbine hydraulique 105MT01.

Figure I.11 : Dimester du filtre 105F006

I.8.5. Poste de dosage d'antimousse 105U300

En cas de moussage du solvant à base de MDEA, un agent anti mousse doit être acheminé vers le côté aspiration de la pompe de solvant semi-régénéré 105P001A ou 105P001B, vers le côté aspiration de la pompe de solvant régénéré 105P003A ou 105P003B et vers le côté refoulement de la turbine hydraulique 105MT01 via une petite boucle de MDEA à partir du côté refoulement de la pompe de solvant régénéré 105P003A/B vers les endroits mentionnés ci-dessus, pour une bonne distribution de l'agent anti mousse avec le solvant à base de MDEA.

I.8.6. Le packing

La garniture est l'un des 3 principaux dispositifs utilisés dans les applications de transfert de masse et de chaleur. (Les 2 autres appareils sont des emballages structurés et des plateaux). Comme les 2 autres appareils, le but principal de l'emballage aléatoire est de créer une surface de contact vapeur/liquide et améliorée le temps de séjour afin qu'ils puissent produire une séparation chimique. La séparation chimique comprend la distillation, l'absorption et l'extraction.

Figure I.12 : Packing

I.9. La charge à traiter

Le gaz de synthèse est constitué d'une quantité de gaz carbonique qu'il faudra éliminer, le tableau suivant résume la composition du gaz à traite.

Composition du gaz	Mol %
Méthane CH ₄	0,53 %
Dioxyde de Carbone CO ₂	17,91 %
Monoxyde de Carbone CO	0,33 %
Hydrogène H ₂	59,87 %
Azote N ₂	21,11 %
Gaz inerte (Ar, He)	0,25 %

Tableau I.3 : Composition moyenne du gaz de synthèse entrant à l'unité de décarbonatation [1].

La composition de gaz de synthèse en CO_2 à l'entrée de la section de décarbonations est de 17,91 %, ce qui nécessite un traitement d'épuration, parce que le CO_2 c'est un fort poison pour le catalyseur de synthèse et aussi réagit avec l'ammoniac présent dans la boucle de synthèse en carbamate d'ammonium.

Chapitre II Partie Expérimentale

II.1. Introduction

Le Complexe des fertilisants Sorfert se compose de plusieurs Systèmes. Chaque système assure un traitement ou une transformation de procédé spécifique ou les deux à la fois qui seront réalisés par un nombre d'équipements dynamiques et Statiques mentionnés sur les Schémas. Cette formation vous permet de connaitre le fonctionnement du Procédé du Système 105 et de vous familiariser avec la localisation physique de ses équipements. Le système 105 est situé en aval du Système 104 (Conversion Shift) et en Amont du Système 106 (Méthanation). IL a pour but de réduire la teneur de CO₂ (un poison pour le catalyseur de synthèse) contenu dans le gaz de synthèse jusqu'à une teneur admissible (500 ppm). Le procédé d'extraction utilisé est l'absorption CO₂ par la MDEA.

II.2. Itinéraire du gaz

Le gaz de conversion produit à la sortie du convertisseur BT 104E002 arrive au système d'extraction du CO₂ à une température d'environ 164 °C et une pression d'environ 37,2 bars absolus. Sa chaleur est utilisée dans les trois échangeurs de chaleur suivants connectés en série, le générateur de vapeur BP 105E001 pour la production de vapeur BP, le rebouilleur 105E002 pour la génération de la vapeur d'extraction requise pour la régénération du solvant à base de MDEA régénéré et le préchauffeur d'eau déminéralisée 105E004 pour le préchauffage de l'eau d'alimentation du désaérateur. Durant cette étape, la température du gaz est réduite jusqu'à environ 70 °C. Avant l'entrée du gaz de conversion dans l'absorbeur 105C001, le condensat obtenu est séparé du gaz dans le séparateur 105F001. Le gaz s'écoule à travers l'absorbeur à deux étages 105C001 de bas en haut à contre-courant du solvant de lavage. La majorité du dioxyde de carbone est absorbée par le solvant à base de MDEA dans la partie inférieure de l'absorbeur, dans la partie supérieure de l'absorbeur 105C001 est chargé de réalisée l'extraction supplémentaire du dioxyde de carbone jusqu'à obtention de la valeur résiduelle spécifiée de 500 ppm en volume de CO₂. Le gaz sort de l'absorbeur à la température d'entrée du solvant régénéré, c'est- à-dire à environ 50 °C. Les gouttelettes de solvant éventuellement entraînées dans le gaz sont retenues par deux plateaux de transfert vers lesquels l'eau d'alimentation chaudière est admise, et par un dévésiculeur installé dans la partie supérieure de l'absorbeur 105C001.Le séparateur 105F002 sépare Les gouttelettes transportées hors de l'absorbeur pendant les perturbations de fonctionnement du gaz de procédé.

II.2.1. Le procède d'activation de MDEA [1]

Le procédé BASF aMDEA est introduit pour éliminer le CO_2 du gaz de synthèse et, ce solvant aMDEA est constitué globalement de trois substances, à savoir la base chimique méthyl-di- éthanol-amine (MDEA), l'eau et un l'activateur, le méthyldiéthanol amine générique (MDEA) réagit avec l'eau et le CO_2 en produisant les espèces protégées correspondantes et du bicarbonate, l'activation de MDEA augmente le taux de conversion dans l'absorption par rapport au taux de conversion de MDEA générique.

Figure II.1 : Mécanisme réactionnel de l'aMDEA.

La différence de vitesse de réaction entre une MDEA activée et une MDEA générique peut être décrite de la manière suivante :

Dans une MDEA, l'absorption de CO_2 est lente, pour la faire la catalysassions en introduit le système activateur, c'est-à-dire qu'il accélère l'absorption de CO_2 par la MDEA, la régénération du système activateur permanente en faisant passer le CO_2 à travers la MDEA, les réactions d'absorption chimique de CO_2 dans un système aqueux d'amines tertiaires tel que la MDEA sont des réactions d'équilibre

METHYLDIETHANOLAMINE ACTIVEE PURE

Celui-ci à l'état pure est constitué de :

- ▶ aMDEA 96,0 % en poids ;
- > Eau 4,0 % en poids ;
- > Substances insolubles dans l'eau maximum 0,03 % en poids.

METHYL DI ETHANOL AMINE ACTIVEE SOLUTION 40%
Le solvant utilisé contient :

- > 40,0 % en poids de méthyl di éthanol amine activée
- > 60,0 % en poids d'eau
- > Le poids moléculaire 19,2 kg/mole ;
- ▹ Point d'ébullition MDEA pure 245 °C;
- Point d'ébullition de la solution aqueuse 110 120 °C;
- > Plus, un système activateur.

La réaction : $MDEA + H_2O + CO_2 - MDEAH^+ + HCO_3^-$ **Tableau II.1 :** Propriétés physiquo-chimique du MDEA activée (pure) et MDEA activée (solution 40%) [4].

Propriétés	MDEA activée	MDEA activée
Physique –chimique	Pure	solution 40%
Etat physique	Liquide	Liquide
Couleur	Incolore -jaune	Incolore -jaune
Odeur	d'amine	d'amine
Valeur du pH à 20 °C	11-12 (100 g/l)	13-14 (100 g/L)
Point d'ébullition	>100 °C	>100 °C
Point de fusion	<-10 °C	5-6 °C
Densité à 20 °C	1,04 à $1,050$ g/cm ³	$1,045 \text{ g/cm}^3$
Point d'éclair	100 °C	96 °C
Température d'inflammation	200 °C	340 °C
Solubilité dans l'eau à 20 °C	Miscible	Miscible
Pression de vapeur à 20 °C		6 mbar
Limite inferieure		27,7 % (V)
d'explosivité		51,2 % (V)
Limite supérieure		
d'explosivité		

II.2.2. Etude des causes et de conséquence du moussage

- Les causes :
 - Dégradation de l'anti mousse.
 - Dégradation de MDEA.
 - La température élevée.

- Les réactions secondaires dans (LTS) qui produise du méthanol.
- Les conséquences
 - Impact sur la production globale d'ammoniac.
 - Risques de corrosion, de perte de production dans l'usine d'urée.
 - Augmentation du pourcentage de CO₂.
 - Dégradation de la MDEA.

II.3. Problématique

Notre étude a été effectuée au complexe Sorfert fertilisant, spécialement au niveau de la section décarbonatation du gaz naturel. Nos efforts ont été concentrés sur le problème de moussage dans la colonne d'absorption du CO_2 car on a remarqué que l'MDEA utilisée pour la décarbonatation à tendance à mousser même si elle est propre, ce qui constitue premièrement un poison pour les catalyseurs dans la suite du procédé, et deuxièmement il influe sur la qualité des produits finis.

Pour cela on va étudier l'influence de quelques paramètres sur le moussage, afin de localiser et identifier les causes qui peuvent provoquer et augmenter ce problème. Après on va faire une comparaison entre les deux cas design et actuel, et observer les anomalies dans l'unité en utilisant les paramètres de fonctionnement actuel et essayer de trouver une solution pour faire fonctionner l'unité dans des paramètres convenables.

II.4. Analyse des problèmes

Nous avons procédé dans la partie suivante à l'étude de l'influence des principaux facteurs qui favorisent l'apparition du phénomène de moussage. Notre étude est basée sur le suivi d'analyse du problème de moussage avant et après l'arrêt du train 205 en suivant :

Influence de la température de la solution MDEA sur le moussage.

Influence de l'excès l'anti mousse sur le moussage.

II.4.1. Analyses de la solution MDEA [13]

On va faire une vérification de la solution MDEA pauvre à l'entrée de l'absorbeur.

Tableau II.2 : concentration de MDEA.

Les jours de prélèvement	Concentration de MDEA [35 – 40] %
19 / 02 / 2023	36,26
20 / 02 / 2023	36,30
21 / 02 / 2023	35,84
22 / 02 / 2023	35,49
23 / 02 / 2023	35,93
24 / 02 / 2023	35,18
25 / 02 / 2023	35,23

Figure II.2 : Concentration de MDEA %

D'après la vérification de la solution MDEA pauvre à l'entrée de l'absorbeur on conclure que la concentration de MDEA dans la norme requis [35-40] %.

II.4.2. Analyse % H2O et % MDEA dans la solution de MDEA

Principe

C'est de contrôler la concentration de la MDEA et de déterminer la teneur en H_2O contenu dans la MDEA pauvre.

Cette méthode est basée sur le titrage alcalimétrique par l'intermédiaire de l'indicateur (phénolphtaléine).

Mode opératoire [9]

On prend 5 mL de l'échantillon (MDEA pauvre) dans un erlenmeyer de 250 mL, on ajuste l'eaudistillée jusqu'à 25 mL. Après, on ajoute 2 gouttes de phénophtaléine.

On remarque que la solution devient rose. Ensuite, on titre avec H_2SO_4 (1N) jusqu'à la décoloration complète de la solution, on note le volume (V_1) d'acide utilisé en millilitre.

Dans la même solution, on ajoute 2 gouttes d'indicateur phénophtaléine. Après on continue le titrage jusqu'à l'apparition de la couleur rose. On note le volume (V_2) d'acide utilisé depuis le début du titrage en mL.

Calcul:

% $H_2O = (V_2 (V_1+0, 75)) \times 0, 7$

% MEA= V₂×1, 25

Tableau I	I.3	: Analyses	de l	la solution	%	MDEA	et %	H ₂ O [5	5].
-----------	------------	------------	------	-------------	---	------	------	---------------------	-----

Les jours de prélèvement	% MDEA	% H20
07 / 02 / 2023	34,40	65,60
08 / 02 / 2023	34,11	65,88
09 / 02 / 2023	33,60	66,40
10 / 02 / 2023	35,95	64,05
11 / 02 / 2023	35,32	64,68
12 / 02 / 2023	34,09	65,91
13 / 02 / 2023	34,53	64,47

Les analyses quotidiennes de la solution MDEA nous indiquent que les valeurs toujours recommandé par la valeur tolérable qui est de [35-40] % pour MDEA et de [60-70] % pour H2O.

Figure II.3 : La variation du pourcentage de MDEA et H2O

Tableau II.4 : Analyses de la solution MDEA mesurée comparable avec la norme [5].

	Norme	Mesurée
% MDEA	Min 35 %, max 40 %	35,18 à 36,30
% H2O	Min 55 %, max 60 %	64,05 à 66,40

II.4.3. Analyse % CO2 et % MDEA dans la solution de MDEA [10]

Cette méthode est basée sur le titrage alcalimétrique par l'intermédiaire de deux indicateurs colorés (phénol phtaléine et indicateur mixte). Prendre 5 mL de l'échantillon, les introduire dans un erlenmeyer, ajouter 100 mL d'eau distillée plus 2 gouttes de phénophtaléine, la solution devient rose. Traiter avec H₂SO₄ normal jusqu'àdécoloration complète de la solution. Noter le volume (V₁) d'acide utilisé en millilitre. Dans la même solution on y ajoute 2 gouttes d'indicateur mixte et on continue le titrage jusqu'à l'apparition de la couleur rose. Noter le volume (V₂) d'acide utilise depuis le début du titrage en mL.

% MEA= V₂ x 1, 25 % CO₂= V₂- (V₁ + 0,75) x 0,7

Les jours de prélèvement	CO ₂ [ppm]	MDEA %
07 / 04 / 2023	300	34,11
08 / 04 / 2023	200	34,40
09 / 04 / 2023	500	33,60
10 / 04 / 2023	75	35,95
11 / 04 / 2023	80	35,32
12 / 04 / 2023	400	34,09
13 / 04 / 2023	317	34,53

Tableau II.5 : Analyses de % CO₂ et % MDEA [5].

D'après les résultats obtenus, on remarque que l'augmentation de la concentration de la MDEA diminue le pourcentage de CO_2 sleep dans la sortie de l'absorbeur, mais n'arrive pas à régler le problème définitivement, car le pourcentage de CO_2 sleep reste toujours inférieur à la valeur tolérée ce qui confirme l'existence d'autre facteur notamment la température élevée.

Tableau II.6 : Analyses de % CO₂ et % H₂.

Les jours de prélèvement	H2 % [0.2-1]	CO2 % [min 99,8]
07 / 04 / 2023	0,84	99,16
08 / 04 / 2023	0,73	99,27
09 / 04 / 2023	0,70	99,30
10 / 04 / 2023	1,18	98,82
11 / 04 / 2023	0,76	99,24
12 / 04 / 2023	0,60	99,40
13 / 04 / 2023	0,57	99,43

D'après les résultats obtenus, nous remarquons que plus le pourcentage d'hydrogène diminue, plus le dioxyde de carbone augmente. Donc on conclut que la présence de la mousse produit des bulles d'hydrogène qui entraine une diminution de CO₂, matière première de la production d'urée.

II.4.4. Analyse de moussage dans la solution de MDEA

Principe

Cette méthode a pour but la détermination du moussage des solutions de MDEA. On fait passer un courant d'azote (ou d'air) par un tube de dispersion de gaz dans une éprouvette graduée de 250 ml contenant 90 mL d'échantillon à analyser. Le volume total qu'occupe la solution plus la mousse est défini comme la hauteur de la mousse.

Mode opératoire

On prend 50ml de l'échantillon MDEA dans une éprouvette graduée. On ouvre la vanne d'air et on règle le débit d'air à 32 cm³. Selon le taux qui donnera la plus grande hauteur de mousse sans dépasser 250 mL. On note le volume maximal de la mousse en (mL).

Figure II.4 : Appareille de mesure de moussage

Calcul :

V (MDEA+5 mL) = $V_1 = 55$ mL.

V (moussage) = (V₂-V₁) = (V₂-55)

Date	% MDEA [35-40]	% CO2 [min 99,8]	Moussage
25/02/2023	34,70	99,16	35
24/02/2023	35,06	99,31	40
23/02/2023	38,55	99,27	55
22/02/2023	34,20	99,30	70
21/02/2023	32,51	98,82	30
20/02/2023	34,08	99,24	50
19/02/2023	35,08	99,40	45

Date	% MDEA [35-40]	% CO2 [min 99,8]	Moussage
25/02/2023	35,40	99,10	15
24/02/2023	36,20	99,15	25
23/02/2023	36,70	99,20	45
22/02/2023	35,80	99,18	15
21/02/2023	33,90	98,05	20
20/02/2023	35,05	99,30	35
19/02/2023	36,45	99,11	30

Tableau II.8 : Le suivi du taux de moussage après l'arrêt du train 205.

Le taux de moussage obtenu avant l'arrêt annuel du train 205, dépasse de loin la norme qui est de 10 mL. La maintenance des équipements stratégique de la section décarbonatation à savoir l'absorbeur et le régénérateur occasionne une diminution du moussage, mais n'arrive pas à réglern neyomoi le problème perdur. Le taux de moussage après l'arrêt annuel du complexe reste toujours supérieur à la valeur tolérée. Ce qui confirme l'existence d'autre facteurs influençant ce phénomène.

II.4.5. Influence de la température de la solution de MDEA sur le moussage

L'expérience est basée sur le chauffage de la solution de MDEA à 35 % sans et avec addition d'anti-mousse AMAREL. A l'aide d'un bain marie, nous faisons chauffer la solution MDEA avec 50 ppm d'AMAREL à différentes températures allant de 25 °C à 60 °C. Ensuite, nous dispersons le gaz dans une éprouvette graduée de 250 mL contenant 50 ml échantillon à analyser. Nous notons la hauteur de la mousse produite en « mL ». Puis nous Effectuons un essai à blanc dans les mêmes conditions (sans anti mousse). Les résultats de la lecture de mousse sont représentésdans le tableau II.9.

Température (°C)	30	35	40	45	50	55	60
Moussage sans AMAREL (mL)	14	16	18	20	21	23	24
Moussage avec AMAREL (mL)	6	7	9	9	12	13	15

Tableau II.9 : Influence de la température da la MDEA sur le moussage.

La hauteur de la mousse varie en croissance avec la température de la solution MDEA selon la représentation graphique du tableau II.9 :

Figure II.5 : variation du moussage en fonction de la température de la solution MDEA On conclut que l'élévation de la temperature de la solution de 20 °C à 50 °Cprovoque l'augmentation du phénomène du moussage.

II.4.6. Influence de l'excès d'anti mousse sur le moussage

Dans cette partie de notre travail, nous avons étudié l'effet de l'augmentation de concentration d'anti mousse (AMAREL) sur le volume des mousses formées (en mL), nous avons fixé la température de la solution à 38 °C, puis on fait varier la concentration d'anti mousse, le volume des mousses formées est noté et les résultats obtenus sont représentés dans le graphe suivant :

Figure II.6 : la variation du moussage en fonction de la concentration d'anti mousse

Nous constatons que l'ajout d'anti mousse réduit le moussage jusqu' à une concentration optimale de 60 ppm, au-delà de cette quantité une nette augmentation est observée jusqu'à trois fois d'augmentation de l'élévation de la mousse par rapport au point initial. La quantité d'anti mousse qui ne réagit pas pendant la réaction a tendance à se comporter comme un agent moussant qu'il faut purger, le phénomène est reconnu l'lorsque la couleur de la MDEA change de blanc clair au blanc foncé. La concentration recommandée est de 40 ppm.

II.5. Simulation d'unité de décarbonatation 205

Afin d'avoir une idée précise du fonctionnement de l'unité de décarbonatation, il était important de simuler tous les équipements de cette l'unité.

II.5.1. Méthodologie adoptée

Premièrement, Il était fondamental de vérifier la configuration de notre simulation sur la base des valeurs design puis celles des valeurs réelles. Une fois les ajustements apportés pour cette configuration de la simulation pour la convergence des résultats, nous somme passer à étudier cette unité avec les paramètres actuels afin de trouver une solution définitive aux anomalies existantes dans cette dernière et ainsi optimiser son fonctionnement.

II.5.2. Choix du modèle thermodynamique

Les logiciels de simulation permettent de calculer des coefficients d'équilibre liquide vapeur, les valeurs d'enthalpies et d'entropie, ainsi que les propriétés thermodynamiques adéquates.

Pour cette étude le logiciel nous a recommandé le modèle thermodynamique ACID GAZ.

II.5.3. La colonne d'absorption 205C001

L'absorbeur utilisé dans cette unité est une colonne à garnissage construite par l'entreprise sud-coréenne DOOSAN MECATEC. L'absorbeur à deux étages 105C001 de bas en haut à contre-courant du solvant de lavage.

Tableau II.10 : Caractéristiques de l'absorbeur 205C001 (annexe B).

Caractéristiques	Section I	Section II
Nombre de plateaux Th.	10	10
Type de garnissage	IMTP construit par RAUSCHERT	IMTP construit par RAUSCHERT
Diamètre de garnissage	4-25 mm	5-50 mm
Hauteur de garnissage	6500 mm ×2	6500 mm×2
Diamètre de la colonne a garnissage	3330 mm	4980 mm
Matière de garnissage	Acier carbone	Acier carbone
Marge de fonctionnement	50 % - 110 % (100	% =11701,81 kmol/h)

Remarque :

Il y'a une troisième section dans cette colonne composée de deux plateaux à clapet située au sommet de la colonne et sert à déminer l'entrainement des goulettes de l'aMDEA.

Design	Parame	eters	Side Ops	Internals	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics		
Parame	ters	Acid	-Gas Calcul	ations								
Profiles												
Acid Gas							h					
Estimates		Calc	ulation lype	e Effici	ency		<u></u>					
Efficienc	ies											
Solver		C+-	ert Stago			1	Main Towar	2 M	in Towar	12 M-	in Towar	_
2/3 Phas	se	Start Stage			2	Main Tower	12 Main Tower		22 Main Tower		-	
					4_	2_iviain Tower		De aluad	22_1110	Dealard	-	
		Column Type			Clitech			Раскео		Раскец		
		valve Type				Glitsch					_	
		Tray Spacing/Stg Pack Hght [m]				0,5000		1,300		1,300		
		Packing Type						IMTP		IMTP		
		Packing Vendor						GENERIC		GENERIC	_	
		Tu	ning Param	eters		Colu	mn Section 1	Column	Section 2	Column	Section 3	
		Flo	w Model				VPlug		VPlug		VPlug	
		Interfacial Area Method				Scheffe		Onda		Onda		
		Mass Transfer Method				AICHE		Onda		Onda		
		Interfacial Area Factor			1.000		1.000		1,000			
		Heat Transfer Factor				1,000		1,000		1,000		
		Liq	Mass Trans	. Coef. Fact	or	1,000			1,000		1,000	
		Va	o Mass Tran	s. Coef. Fac	tor		1.000		1,000		1,000	

Figure II.7 : Caractéristiques d'absorbeur sur ASPEN HYSYS V8.8

II.6. Simulation du cas design

Après avoir définit les équipements principaux utilisés dans cette unité, on va tout d'abord voir l'exactitude de notre simulation. En simulant le cas design, nous allons comparer les résultats obtenus avec celles du designer afin d'étudier le cas actuel.

II.6.1. Les paramètres de fonctionnement de l'absorbeur

Tableau II.11 : Paramètres de fonctionnement de l'absorbeur 205C001 (annexe A).

Paramètre	Valeur
Température du solvant régénérer	50 ° C
Débit du solvant régénérer	519 m ³ / h
Température du solvant semi-régénérer	75 ° C
Débit du solvant semi- régénérer	2661 m ³ /h
Débit de gaz de synthèse	221150 kg/h
Pression de tête	35,3 bar
Pression de fond	35,8 bar

Figure II.8 : Diagramme de simulation de l'unité de décarbonatation de l'absorbeur sur ASPEN

II.6.2. Compression des résultats obtenus par simulation avec celles du désigne

II.6.2.1. Les résultats de L'absorbeur 205C001

Le tableau (II.9) représente les paramètres de sortie de la colonne de fractionnement calculés par le constructeur et ceux obtenus par HYSYS.

Tableau II.12 : Paramètres de sortie du cas design et de la simulation de C001 (ann	nexe C).
---	----------

Paramètres	Design	Simulation Par	Erreur %
		ACID PK	
Débit de Gaz traité	106428	105500	0,87
kg/h)			
Débit d'aMDEA riche	3228	3350	3,77
m³/h)			
Température de tête	50	50,11	0,22
(°C)			
Température de fond	84	82,82	2,20
(°C)			
CO ₂ tête	0,05	0,05	0,00
P tête (bar)	35,3	35,3	0,00
P fond (bar)	35,8	35,8	0,00

erreur = (|V | désigne -V | désigne simulé | / V | désigne)

D'après les résultats, nous avons obtenu pour tous les paramètres une marge d'erreur inférieure à4 %, ce qui signifie que le modèle thermodynamique se rapproche du cas design.

Le simulateur permet de représenter le profil des différents paramètres le long de la colonne.

Profil de température

L'interprétation

Nous remarquons que la température varie d'une façon régulière et croissante le long de la colonne, cette croissance due à la nature exothermique de la réaction d'absorption du CO₂ dans les amines qui montre le bon fonctionnement et la stabilité de l'absorbeur.

Profil de pression

Figure II.10 : Profil de pression obtenu par Hysys du cas design de C001 D'après le graphe on peut constater une faible perte de charge, ce qui démontre qu'il y'a une circulation parfaite du liquide et de la vapeur à travers le garnissage.

Profil de débit

Figure II.11 : Profil des débits obtenu par Hysys du cas design de C001

En observant le profil de débit le long de la l'absorbeur, nous remarquons que le débit molaire de la vapeur est presque stable le long de la colonne par contre le débit du liquide améliorer soudainement au 13^{eme} plateau à cause de l'introduction de l'alimentation de la solution semi-régénérer dans ce dernier.

Profil de fraction molaire

Figure II.12 : Profil de fraction molaire du CO₂ obtenu par Hysys du cas design de COO1

La fraction molaire de CO_2 diminue d'une façon régulière du haut au bas de la colonne de stripage, cette diminution est due à l'augmentation de la température le long de cette dernière, ce qui favorise la régénération de l'aMDEA et libère la totalité du CO_2 , et nous produit la solution régénérée utilisée comme alimentation au sommet d'absorbeur.

II.7. Conclusion

Par le fait, les résultats de la simulation ainsi que les résultats du design sont équivalents. Nous pouvons compter sur cette simulation pour étudier le cas actuel et proposer des solutions afin de résoudre l'instabilité de l'unité. La simulation nous a donné lieu d'étudier les différents profils : Température, Débit, fraction molaire. Nous pouvons confirmer la stabilité de l'unité dans les paramètres de fonctionnement design.

II.8. Vérification du cas actuel

II.8.1. Les résultats de la simulation

Pour ce cas d'étude on a simulé l'unité avec les données réelles de fonctionnement de l'unité 205.

A noter que pour atteindre une teneur en CO_2 inférieure à 0,05 % après le démarrage de l'unité en 2013, quelques paramètres ont subi des modifications par rapport au design, tels que les débits des deux solutions : régénérer et semi-régénérer.

Paramètre	Design	Actuel
Débit de solution semi- régénéré (m³/h)	2661	3030
Débit de solution régénéré (m ³ /h)	519	630
Température de solution semi-rég. (°C)	75	87,60
Température de solution rég. (°C)	50	60

Tableau II.13 : Paramètres de fonctionnement de l'absorbeur 205C001 du cas actuel.

Les résultats obtenus par simulation sont représentés dans le tableau suivant :

Tableau II.14 : Paramètres de sortie du cas actuel et de la simulation de C001 (annexe D).

Paramètres	Actuel	Simulation par ACID PK	Erreur %
Débit de gaz sorti deC001 kg/h	119840	106000	11,63
Température de tête (°C)	71	70,01	1,4
Température de fond (°C)	90,70	91,89	1,3
Composition de (CO ₂) tête (%)molaire	0,05	0,037	12
Pression tête (bar)	35,3	35,3	0,00
Pression fond (bar)	35,8	35,8	0,00

Nous constatons que les résultats du simulateur se rapprochent du cas actuel pour les débits et les températures et la composition du gaz traité, ce qui nous permet d'étudier les profils de température et les fractions molaires le long de la colonne.

Temperature vs. Tray Position from Top

Profil de température

Figure II.13 : Profil de température obtenu par ASPEN HYSYS V8.8 du cas actuel de C001. A partir de l'allure du graphe, on remarque que la température varie d'une façon irrégulière. La température diminue progressivement du 20^{ième} au 12^{ième} étages puis chute brusquement du 10^{ième} au 2^{ième} étages ce qui a pour conséquence la défavorisation de l'absorption et cause d'un déséquilibre entre les deux phases liquide-vapeur. Cela due à la température élevée de l'alimentation en deux solutions régénéré et semi-régénéré.

Profil de pression

Figure II.14 : Profil de pression obtenu par ASPEN HYSYS du cas actuel de C001

* L'interprétation

La pression diffère d'une façon régulière malgré l'augmentation de débit de l'aMDEA ce qui montre que les débits actuels n'influent pas les pertes de charge le long de la colonne.

Profil de débit

Figure II.15 : Profil de débit obtenu par Hysys du cas actuel de C001

Profil de composition

Figure II.16 : Profil de fraction molaire du CO2 obtenu par Hysys du cas actuel de C001

On peut remarquer que la variation de la fraction molaire de CO₂ dans le gaz de synthèse est irrégulière surtout dans le douzième et le treizième étage, et c'est due à la température élevée de la solution semi-régénérée, cette température favorise une libération de CO₂ dans ces plateaux, ce qui exige de trouver une solution fiable pour le contrôler. Après avoir étudié le cas design et le cas actuel, on constate que les températures et les débits très élevés des solutions (régénérer et semi-régénéré) utilisés dans l'absorbeur altère la performance de captage et cause une variation irrégulière des différents profils le long de la colonne ce qui résulte une instabilité générale dans l'unité, en ajoutant que l'utilisation des débits importants vides les capacité d'aspiration des pompes et risque de manifester un déclenchement d'urgence et interrompe la production, ce qui laisse une faible marge de l'exploitation de l'unité et aussi diminue la durée de vie de l'aMDEA, et avec l'expérience qu'on a vécu dans cette unité on remarque que la température élevée de solution génère la formation de mousse ce qui rend l'exploitation de cette unité un vrai défi, et ça montre l'obligation de trouver une solution définitive à ces augmentations de température.

Conclusion générale

Le but de notre étude est d'analyser et trouver les sources du problème de moussage au niveau du complexe de production des fertilisants SORFERT pour une amélioration et vérification des performances de cette unité.

Le fait que les températures et les débits utilisés dans l'unité sont très élevés aux valeurs design, nous avons remarqué une instabilité générale, cette instabilité nous oblige à trouver une solution définitive et fiable pour contrôler cette situation critique.

Après l'analyse et les expériences au laboratoire et la vérification de la conformité de notre simulation en utilisant le modèle thermodynamique ACID-GAZ, en étudiant le cas actuel et les différents profils le long des colonnes, on a obtenu les résultats suivants :

Le volume de moussage est considéré comme volume mort qui entrainera la diminution du rendement du procédé de décarbonatation.

L'augmentation de la température diminue la tension superficielle de la solution MDEA et favorise la tendance de moussage de la solution d'amine à partir d'une température de 45 °C.

L'excès d'anti mousse provoque la mousse de solution MEA au-delà d'une concentration optimale de 60 ppm.

Les pertes de charge sont acceptables dans l'absorbeur malgré l'augmentation des débits de solution.

En fonction des résultats obtenus, on a fait les recommandations suivantes :

Faire fonctionner la pompe anti mousse pour bien contrôler les niveaux, (pour minimiser le moussage au maximum).

La réparation (maintenance préventif de l'échangeur 206E003 est obligatoire afin de reprendre le contrôle de la température de la solution régénérer).

L'installation d'un nouvel échangeur 205E007 pour contrôler la température de la solution semi régénérer à 75 °C est favorisera l'absorption du CO₂.

Références

[1] Manuel DE Formation de complexe fertilisants de sorfert

[2] SAHRAOUI Nora et BOUZAKRI Hadjer « Etude dynamique d'une colonne d'absorption » mémoire de fin d'étude de l'université de MOHAMED KHIDER BISKRA soutenu en juin 2011 sorfert

[3] Fiche Technique de l'aMDEA (BASF)

[4] Manuel opératoire du complexe fertilisent volume 2 (9) ; décembre 2006

[5] Les analyses référence HG9803 effectué par The Dow Chemical Compagnie le 09/02/2016

[6] Hooke, R. J. (1997). An Investigation of Some Sterically Hindered Amines as Potential Carbone Dioxyde Scrubbing Compounds. Industrial & Engineering Chemistry Research, 36(5), 1779–1790.

[7] Kohl, A. L. and R. B. Nielsen (1997). Gas Purification (5th edition), Gulf Professional Publishing, ISBN 978-0-8841-5220-0, Texas.

[8] Austgen, D. M., Rochelle, G. T., Peng, X., & Chen, C. C. (1989). Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Industrial & Engineering Chemistry Research, 28(7), 1060–1073.

[9] Manuel opératoire du procédé de décarbonatation de complexe sorfert; 14 décembre 2014[10] Manuel opératoire et document de laboratoire du complexe sorfert; 2014

[11] Metz, B.; Davidson, O.; de Coninck, H. C.; Loos, M.; Meyer, L. A. IPCC Mathonat, C.; Majer, V.; Mather, A. E.; Grolier, J.-P. E. Use of Flow 1997, 140, 171.

ANNEXES

ANNEXE A

ANNEXE B

26.11.07

10:30:03

11-31(

	1			-r	1			
Krupp Uhde	Plant	Customer	Code	LIAN	14 0400	Page		
	NH3 / Urea		Sorrert		11-3100	Z		
Lechnical Specification	.			Itom	105001-210			
	Support arid:	s for Absorber		Roy	01			
Absorber: Intern	Absorber. Internals & Trays							
Design: acc Ma Des Min Cor Ves Sup Inst Eac	to Koch 101 or equiverial : killed carbon s sign temperature : 12 Thickness without or rosion allowance for sel tolerance see UI oport ring : Flat ring 8 callation and removal ch grid is to clamped	ivalent. steel, 25°C grid and support bear V 2000 - 02 30 x 14 mm (to be cor through a manhole of to the support ring.	mm ns : total 2 mm firmed by vendor v 580 mm inside di	vith faster ameter.	ning drawing)			
2								
Number	Vessel-	Type of Packing	Height	Max, loa	ad Weight			
	inside	5	per bed	per grid	d per grid			
	Dia. mm		m	kg	Kg (*1)			
2	3330 IMT	P 25-4 or equivalent	6.5	35000				
2	4980 IMTI	P 50-45 or equivalent	6.5	47000				
	*	,						
Scope of supply :	Complete suppor Each segment each end of the As a rule of the Done half of the Excluding suppor Support beam of Manufacturer dr Assembly instru Extra drawing, f dimensions and Certificates of c Bolts min M10 v Spare parts : ad Additional Hole Hold Down Gri reinforced type	ort grids with clamps. of the support grid to a segment. Support g umb the slots in the s rings' diameter, (if ri ort rings. lesign (if required). awings with part list. ctions. or transmit to the vess location of supports w ompliance with order 2 with nuts and spring wa ditional 10 % of bolts, d to be added in Sco	o be fixed with cla grids to be fixed a support grids sho ing size 1" means velded to vessel wa 2.1, Acc. to EN 102 ashers (material 30 nuts and spring wa	amps at I t the sup uld not b width ma howing nu all. 04 4) ashers. d Down (east 2 times at port beam. e greater in width aximum 10 or 12 m umber, Grid to be designed	than im). d in		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
1) to be given by ve	endor with foundatior	loads.						
						<u> </u>		
© 2008 KRUPP UHDE	SmbH				Support grids c1	c.doc		

ANNEXE C

1			Case	Case Name: Design Simulation (3) (2).hsc					
2	Company N Bedford, M USA	able Unit S	et:	SI					
4 5			Date/	Time:	Mon Jun 12 20:4	7:03 2023			
6 7 8		Absorber: T-100 @Main							
9			CONN	ECTIONS					
11			Inle	t Stream					
12	STREAM NAME		Stage			FROM	UNIT (OPERATION	
13	water	1_Main	Tower		Separator				205E001
15	line	3 Main	Tower		Ceparator				2031 001
16	semi	13 Mair	n Tower						
17			Outl	et Stream	1				
18	STREAM NAME		Stage			TO	UNIT O	PERATION	
19 20	uqq aas outlet	22_Main	Tower						
21	guo outiot	i Wall			I				
22			MC	NITOR					
23			Specificat	tions Summary	0			144. F	
24		Spe	cified Value		Current Value			Wt. Error	
25 26	gas outlet Rate	W	/t. Tol.	-	1.172e+004 kgmole/h Abs. Tol. Active			Estimate	 Used
27	gas outlet Rate		1.000e-002		1.000 kgmd	ole/h	Off	On	Off
28			S	PECS					
29 30			Column Speci	fication Parame	eters				
31									
32			gas o	utlet Rate					
33	Fix/Rang: Fixed F	Prim/Alter:	Primary	Lower Bn	d		Upp	er Bnd:	
34	Stream: gas outlet	Flow Basis:	Molar	r					
36			SUBC	COOLING					
37									
38	Degrees of Subcooling								
40									
41			User	Variables					
42 43			PRO	OFILES					
44			Genera	I Parameters					
45	Sub-Flow Sheet:		T-100 (COL1)	Number o	of Stages:				22 *
40			Profile	Estimates	N	at 1 in int	- 1	Not Vo	
48			(C)	le l	N (k	gmole/h)		ivet Va (kgmo	ipoui ole/h)
49		1 Main Tower		50.11			54.33		1.172e+004
50		2 Main Tower		49.63		1.005	51.01		1.172e+004
51 52		4 Main Tower		50.05	 	1.935e 1.936e	+004		1.171e+004
53	4 Main Tower			50.57		1.936e	+004		1.173e+004
54		6 Main Tower		51.77		1.938e	+004		1.173e+004
55 56		7 Main Tower 8 Main Tower		54.47 58.50		1.944e	+004 +004		1.175e+004
57		9 Main Tower		62.87		1.966e	+004		1.192e+004
58		10 Main Tower		66.69		1.977e-	+004		1.203e+004
59		11 Main Tower		69.58		1.985e	+004		1.214e+004
60		12 Main Tower		71.58		1.991e	+004		1.222e+004
61		13 Main Tower		72.92		1.173e	+005		1.228e+004
63		15 Main Tower		73.62		1.174e 1.176e	+005		1.242e+004
64		16 Main Tower		75.84		1.179e	+005		1.275e+004

65		17 Main Tov	ver		77.30		1.181e+005		1.299e+004
66	() acnontech	18 Main Tov	ver		78.83		1.184e+005		1.326e+004
67	Caspenteen		Nor		80.30		1 187e+005		1.356e+004
<u>,</u>					00.00		1.1070-000		1.0000.001
68	<u> </u>	2 <u>0</u> Main i ov	ver	:	81.60		1.190e+005		1.385e+004
69	Aspen Lechnology Inc	С.	Aspe	nHYSY	'S Version	10			Page 1 of 23
1				Case N	-me.	Dosign Simulatio	n (3) (2) her		
2		Company Name Not A	vailahle	Case in	aliie.	Design Simulaus	(I) (2).113C		
3		Redford MA	Valiable	Linit Se	+-	QI			
4				01111 000		01			
		UGA							
5				Date/Ti	me:	Mon Jun 12 20:4	7:03 2023		
6									
7			Absort	her:	T-100	@Main (continued)		
8			/ 100011			emain (oonninaoa,		
0				Profile F	stimates				
9			<u> </u>		Stimates				
			Te	mperature		N	et Liquid	1	Net Vapour
11				(C)		(k	gmole/h)		(kgmole/h)
12		21 Main Tov	ver		82.64		1.192e+005		1.410e+004
13		22 Main Tov	ver		82.82		1.193e+005		1.432e+004
14				EEEICI					
15				EFFICI	ENCIES				
16				Stage Ef	ficiencies				
17	Stages	Overall	Methane		CO2		CO		Argon
18	1 Main Tower	1 000		1 000		2 245e-002		1 000	1 000
10	2 Main Tower	1.000		1.000		2.2456-002		1.000	1.000
19	2 Main Tower	1.000		1.000		2.9456-002		1.000	1.000
20		1.000		1.000		0.0004		1.000	1.000
21	4 Main Tower	1.000		1.000		0.9280		1.000	1.000
22	5 Main Tower	1.000		1.000		0.9294		1.000	1.000
23	6 Main Tower	1.000		1.000		0.9103		1.000	1.000
24	7 Main Tower	1.000		1.000		0.8401		1.000	1.000
25	8 Main Tower	1.000		1.000		0.7195		1.000	1.000
26	9 Main Tower	1.000		1.000		0.6057		1.000	1.000
27	10 Main Tower	1.000		1.000		0.5245		1.000	1.000
20		1 000		1 000		0.4715		1 000	1.000
20		1.000		1.000		0.4715		1.000	1.000
29	12 Main Tower	1.000		1.000		0.4382		1.000	1.000
30		1.000		1.000		0.0151		1.000	1.000
31	14 Main Tower	1.000		1.000		0.6033		1.000	1.000
32	15 Main Tower	1.000		1.000		0.5814		1.000	1.000
33	16 Main Tower	1.000		1.000		0.5538		1.000	1.000
34	17 Main Tower	1.000		1.000		0.5226		1.000	1.000
35	18 Main Tower	1.000		1.000		0.4909		1.000	1.000
36	19 Main Tower	1.000		1.000		0.4613		1.000	1.000
37	20 Main Tower	1.000		1.000		0.4359		1.000	1.000
20	21 Main Towor	1 000		1 000		0.4155		1 000	1.000
20		1.000		1.000		0.4100		1.000	1.000
39	22 Main Tower	Overall	Hydrogen	1.000	Nitrogen	0.4024	H2O	1.000	MDEthplAmine
44		000101	riyarogen	1 000	Marogen	1 000	1120	1 000	
41	1 Main Lower	1.000		1.000		1.000		1.000	1.000
42	2 Main Tower	1.000		1.000		1.000		1.000	1.000
43	3 Main Tower	1.000		1.000		1.000		1.000	1.000
44	4 Main Tower	1.000		1.000		1.000		1.000	1.000
45	5 Main Tower	1.000		1.000		1.000		1.000	1.000
46	6 Main Tower	1.000		1.000		1.000		1.000	1.000
47	7 Main Tower	1.000		1.000		1.000		1.000	1.000
48	8 Main Tower	1 000		1 000		1 000		1 000	1 000
40	0 Main Tower	1.000		1.000		1.000		1.000	1.000
49 50	10 Main Tower	1.000		1.000		1.000		1.000	1.000
50		1.000		1.000		1.000		1.000	1.000
51	11 Main Tower	1.000		1.000		1.000		1.000	1.000
52	12 Main Tower	1.000		1.000		1.000		1.000	1.000
53	13 Main Tower	1.000		1.000		1.000		1.000	1.000
54	14 Main Tower	1.000		1.000		1.000		1.000	1.000
55	15 Main Tower	1.000		1.000		1.000		1.000	1.000
56	16 Main Tower	1.000		1.000		1.000		1.000	1.000
57	17 Main Tower	1.000		1.000		1.000		1.000	1.000
59	18 Main Tower	1 000		1 000		1 000		1 000	1 000
50	19 Main Tower	1.000		1 000	l	1.000	<u> </u>	1.000	1.000

60	20 Main Tower	1.000	1.000	1.000	1.000	1.000
61	21 Main Tower	1.000	1.000	1.000	1.000	1.000
62	22 Main Tower	1.000	1.000	1.000	1.000	1.000
63	Stages	Overall	Piperazine	H2S		
64	1 Main Tower	1.000	1.000	0.7500		
65	2 Main Tower	1.000	1.000	0.7500		
66	3_Main Tower	1.000	1.000	0.7500		
67	4 Main Tower	1.000	1.000	0.7500		
68	5 Main Tower	1.000	1.000	0.7500		
69	⁶⁹ Aspen Technology Inc. Aspen HYSYS Version 10					

1 2 Company Name Net Available		Case Na	ame: Design Simulation	n (3) (2).hsc		
3		Bedford, MA	Unit Se	t: SI		
5		00/1	Date/Ti	me: Mon Jun 12 20:4	7:03 2023	
6						
7			Absorber:	T-100 @Main (continued)	
8			Stane Ef	ficiencies		
9 10	Stages	Overall	Piperazine	H2S		
11	6 Main Tower	1.000	1.000	0.7500		
12	7 Main Tower	1.000	1.000	0.7500		
13	8 Main Tower	1.000	1.000	0.7500		
14	9 Main Tower	1.000	1.000	0.7500		
15	10 Main Tower	1.000	1.000	0.7500		
16	11 Main Tower	1.000	1.000	0.7500		
17	12 Main Tower	1.000	1.000	0.7500		
18	13 Main Tower	1.000	1.000	0.7500		
19	14 Main Tower	1.000	1.000	0.7500		
20	15 Main Tower	1.000	1.000	0.7500		
21	16 Main Tower	1.000	1.000	0.7500		
22	17 Main Tower	1.000	1.000	0.7500		
23	18 Main Tower	1.000	1.000	0.7500		
24	19 Main Lower	1.000	1.000	0.7500		
25	20 Main Tower	1.000	1.000	0.7500		
26	21 Main Tower	1.000	1.000	0.7500		
27		1.000	1.000	0.7500		
28 29			SOL	VER		
30			Column Solving Algorithm:	HYSIM Inside-Out		
31		Solving Options			Acceleration Parameters	
32	Maximum Iterations:		10000	Accelerate K Value & H Mod	el Parameters:	Off
33	Equilibrium Error Tolerance:		1.000e-05			
34	Heat/Spec Error Tolerance:		5.000e-004			
35	Save Solutions as Initial Estin	mate:	On Simple K			
30	Trace Level:	51.				
20					Damning Parameters	
30	Initial I	Estimate Generator Para	meters	Azentrone Chack	Damping Falameters	<u>0</u> #
40	Iterative IEG (Good for Chen	nicals):	Off	Fixed Damping Factor:		1
41		,				· · ·
42						
43				I		
44			ACIE) GAS		
45			Calculation Type:	Efficiency		
46	Column Section			-	Column Section 1	
47	Start Stage				1 Main Tower	
48	End Stage				2 Main Tower	
49	Internal Type				Valve	
50	Column Diameter		(m)		3.330	*
51	Flow Model				VPlug	
52			Tray Pa	rameters		

-					
53	No. of Flow Paths	(m)		1	
54	Tray Spacing tech	(m)	0.	5000	
55	Side Weir Length	(m)	2.	664	*
56	Interfacial Area Method		Sc	heffe	
57	Mass Transfer Method		AI	CHE	
58		Tuning Pa	arameters		
59	Interfacial Area Factor		1	.000	
60	Heat Transfer Factor		1	.000	
61	Liquid Mass Transfer Co-efficient Factor		1	.000	
62	Vapor Mass Transfer Co-efficient Factor		1	.000	
63	P	acking Pa	arameters		
64	Packing Type				
65	Packing Vendor				
66	Packing Material				
67	Packing Dimensions				
68	Packing Height	(m)			
69	Aspen Technology Inc. Aspe	en HYSYS	S Version 10		Page 3 of 23

1		Case N	ame:	Design Simulation (3) (2).hsc			
2	Company Name Not Available Bedford MA		Unit Set: SI				
4	USA	01111 000					
5		Date/Ti	me:	Mon Jun 12 20:47:03 2023			
6							
7	Abso	rber:	T-100	@Main (continued)			
8							
9	Void Fraction						
10	Specific Surface Area	(m2/m3)					
11	Billet & Schultes CL						
12	Billet & Schultes CV						
13	Packing Size	(mm)					
14	Critical Surface Tension						
15	Corrugation Base						
16	Corrugation Height	(mm)					
17	Corrugation Side	(mm)					
18	Corrugation Angle						
19	Surface Enhancement Factor						
20	Surface Renewal Factor						
21							
22	Column Section			Column Section 2			
23	Start Stage			3_Main Tower			
24	End Stage			12 Main Tower			
25	Internal Type			Packed			
26	Column Diameter	(m)		3.330 *			
27	Flow Model			VPlug			
28		Tray Pa	rameters				
29	No. of Flow Paths	(m)					
30	Tray Spacing (m)						
31	Side Weir Length	(m)					
32	Interfacial Area Method		Onda				
33	Mass Transfer Method			Onda			
34		Tuning P	arameters				
35	Interfacial Area Factor			1.000			
36	Heat Transfer Factor			1.000			
37	Liquid Mass Transfer Co-efficient Factor			1.000			
38	Vapor Mass Transfer Co-efficient Factor			1.000			
39	Packing Parameters						
40	Packing Type			IMTP			
41	Packing Vendor			GENERIC			
42	Packing Material			METAL			
43	Packing Dimensions			1-IN OR 25-MM			
44	Packing Height	(m)		1.300 *			
45	Void Fraction			0.9700 *			
46	Specific Surface Area	(m2/m3)		207.0 *			
47	Billet & Schultes CL						

48	Billet & Schultes CV			
49	Paoking Sizentech	(mm)	m) 25.40	25.40
50	Critical Surface Tension			
51	Corrugation Base			
52	Corrugation Height	(mm)	m)	
53	Corrugation Side	(mm)	m)	
54	Corrugation Angle			
55	Surface Enhancement Factor			
56	Surface Renewal Factor			
57				
58	Column Section		Column Section 3	Column Section
59	Start Stage		1 <u>3</u> Main Tower	13_Main Tow
60	End Stage		22_Main Tower	22_Main Tow
61	Internal Type		Packed	Packed
62	Column Diameter	(m)	m) 4.980	4.980
63	Flow Model		VPlug	VPlug
64	Т			
65	No. of Flow Paths	(m)	m)	
66	Tray Spacing	(m)	m)	
67	Side Weir Length	(m)	m)	
68	Interfacial Area Method		Onda	Onda
69	Aspen Technology Inc. Aspen	HYSY	SYS Version 10 Page 4 of 23	S Version 10

1		Case Name: Design Simulation (3) (2).hsc						
2	Company Name Not Available Bedford MA	Ilable						
4	USA	01111 0001	. 01					
5		Date/Tir	me: Mon Jun	12 20:47	:03 2023			
6								
7	Absorber: T-100 @Main (continued)							
9	Mass Transfer Method							
10	Tuning Parameters							
11	Interfacial Area Factor 1 000							
12	Heat Transfer Factor	1.000						
13	Liquid Mass Transfer Co-efficient Factor	1.000						
14	4 Vapor Mass Transfer Co-efficient Factor 1.000							
15	Packing Parameters							
16	Packing Type IMTP							
17	Packing Vendor	GENERIC						
18	Packing Material	METAL						
19	Packing Dimensions	2-IN OR 50-MM						
20	Packing Height	1.300 *						
21	Void Fraction	0.9800 *						
22	Specific Surface Area	102.0 *						
23	Billet & Schultes CL							
24 Billet & Schultes CV								
25	Packing Size	50.80						
26	Critical Surface Tension							
27	Corrugation Base							
28	Corrugation Height							
29	Corrugation Side							
30	Corrugation Angle							
31	Surface Enhancement Factor							
32	Surface Renewal Factor							
33								
34	4 Flow Paths							
35	Column Sections			Flow F	Paths			
36		Weir I	Height	(mm)	Weir Length	(m)		
37		50	.00	*	2.664	*		
38		SIDE ST	RIPPERS					
39								

40 41	40 SIDE RECTIFIERS							
42 43	PUMP AROUNDS							
44 45	VAP BYPASSES							
46 47	RATING							
48 49	Tray Sections							
50	Tray Section	Main	Tower					
51	Tray Diameter (m)	1.500						
52	Weir Height (m)	5.000e-002		e .				
53	Weir Length (m)	1.200		*				
54	Tray Space (m)	0.6	0.6096					
55	Tray Volume (m3)	0.8	0.8836					
56	Disable Heat Loss Calculations	No						
57	Heat Model	Simple						
58	Rating Calculations	No						
59	Tray Hold Up (m3)	8.836	8.836e-002					
60 61	i0 Vessels							
62	Vessel							
63	Diameter							
64	Length							
65	Volume							
66	Orientation							
67	Vessel has a Boot							
68	Boot Diameter							
69	Aspen Technology Inc. Aspen HYSYS Version 10 Page 5 of 23							

ANNEXE D
1			Case	Name:	Design Simulation (3) (1).hsc				
2	Company Name Not Av Bedford, MA USA		ble Unit S	Set:	SI					
4			Date/	Time:	Mon Jun 05 15:22:19	2023				
5			Duto	Date/11mc. With Juli 0J 13,22.17 2023						
0 7 8			Absorber:	T-100 @	Main					
9 10			CONNECTIONS							
11			Inlet Stream	nlet Stream						
12	STREAM NAME		Stage			FROM	UNIT O	PERATION		
13	water	Tower		-						
14	to c01	22 Main	n Tower		Separator				205F001	
15	line	3 Main	Tower							
10	semi	13 Mair	Outlet Stream							
19	STREAM NAME		Stage			TO U		PATION		
10	liga	22 Mair	n Tower			100	NII OPE	ERATION		
20	gas outlet	1 Main	Tower							
21	-		MONITOR							
22			Specifications Summary							
24		Spe	ecified Value		Current Value			Wt. Error		
25	gas outlet Rate				1.223e+004	kgmole/h				
26	8	W	Vt. Tol.		Abs. Tol.	Act	ive	Estimate	Used	
27	gas outlet Rate 1.00	0e-002			1.000 kgmole/h	0	ff	On	Off	
28			SPECS							
29 30			Column Specification Para	neters						
31			gas outlet Rate							
32	Fix/Rang: Fixed F	rim/Alter:	Primary	Lower Bn	1:		Upper	Bnd:		
34	Stream: gas outlet F	low Basis:	Mola	r						
35 36			SUBCOOLING	-						
37										
38	Degrees of Subcooling									
39 40	Subcool to									
41			User Variables							
42 43			PROFILES							
44			General Parameters							
45	Sub-Flow Sheet:		T-100 (COL1)	Number of	Stages:			22 *		
40			rrome Estimates			,				
48			Temperatur	e(C)	Net I (kgm	liquid ole/h)		Net Va (kgmo	ipour le/h)	
49	1 Main Tower		70.01		54.30				1.223e+004	
50			09.81		40.55				1.223e+004	
51	3 Main Tower		70.69			2.385e+0	004		1.222e+004	
52 53	4 Main Tower 5 Main Tower		77.30		1	2.410e+0	004		1.261e+004	
5.1	6 Main Tower		82.67			2.4210-0	004		1 300a - 004	
55	7 Main Tower	83.56			2.435e+0	004		1.307e+004		
56	8 Main Tower	84.00		1	2.436e+0	004		1.311e+004		
57	9 Main Tower	84.23		ĺ	2.436e+0	004		1.312e+004		
58	10Main Tower		84.39			2.436e+0	004		1.312e+004	
59	11Main Tower		84.62			2.437e+0	004		1.312e+004	
60	12Main Tower		85.31			2.438e+0	004		1.313e+004	
61	13Main Tower		87.95			1.353e+0	005		1.314e+004	
62	14 Main Tower		88.74			1.355e+0	005		1.337e+004	
03			00.25		<u> </u>	1.55/e+t	05		1.5500+004	
64	10Main Lower		90.25			1.359e+0	105		1.5/4e+004	
05			20.21		1	1.500e+0	05		1.3910+004	

6	6 18Main Tower	91.48	1.362e+005	1.407e+004
6	7 19Main Tower	91.97	1.363e+005	1.421e+004
6	8 20Main Tower	92.37	1.364e+005	1.432e+004
6	9 Aspen Technology Inc.	Aspen HYSYS Version 1	0	Page 1 of 23

1	1 2 Company Name Not Avai 3 Bedford, MA 4 USA			Case Name: Design Simulation (3) (1).hsc					
2 3 4				Unit Set	: \$	SI			
5			Date/Tir	Date/Time: Mon Jun 05 15:22:19 2023					
6									
7				Absorber: T	-100 @	Main (co	ntinued)		
8				Duofilo Eg	timatas				
10				Tronne Es	umates	N	Timil		Net Mener
11				(C)		(kg	mole/h)		(kgmole/h)
12	21 Main Tower		9	92.64			1.365e+005		1.442e+004
13	22Main Tower		9	91.89			1.364e+005		1.448e+004
14				PERCUP	NOTES				
15				EFFICIE	NCIES				
16	0.	0 1		Stage Effi	ciencies		60		
17	Stages	Overall	Me	ethane	CO2		0		Argon
18	1 Main Tower	1.000	1.000			1.954e-002	1.000		1.000
19 20	2 Main Lower 3 Main Tower	1.000	1.000		0.5353	2.60/e-002	1.000		1.000
20	4 Main Towar	1 000	1.000		0.4100		1.000		1 000
21	5 Main Tower	1.000	1.000		0.4190		1.000		1.000
22	6 Main Tower	1.000	1.000		0.3396		1.000		1.000
24	7 Main Tower	1.000	1.000		0.3252		1.000		1.000
25	8 Main Tower	1.000	1.000		0.3107		1.000		1.000
26	9 Main Tower	1.000	1.000			1.000e-002	1.000		1.000
27	10Main Tower	1.000	1.000		0.3474		1.000		1.000
28	11Main Tower	1.000	1.000		0.3380		1.000		1.000
29	12Main Tower	1.000	1.000		0.3376		1.000		1.000
30	13Main Tower	1.000	1.000		0.5546		1.000		1.000
31	14Main Tower	1.000	1.000		0.5411		1.000		1.000
32	15Main Tower	1.000	1.000		0.5238		1.000		1.000
33	16Main Tower	1.000	1.000		0.5077		1.000		1.000
34	17Main Tower	1.000	1.000		0.4933		1.000		1.000
35	18 Main Tower	1.000	1.000		0.4808		1.000		1.000
37	20 Main Tower	1.000	1.000		0.4615		1.000		1.000
38	21 Main Tower	1.000	1 000		0.4570		1.000		1.000
39	22 Main Tower	1.000	1.000		0.4738		1.000		1.000
40	Stages	Overall	Ну	/drogen	Nitrogen		H2O		MDEthnlAmine
41	1 Main Tower	1.000	1.000		1.000		1.000		1.000
42	2 Main Tower	1.000	1.000		1.000		1.000		1.000
43	3 Main Tower	1.000	1.000		1.000		1.000		1.000
44	4 Main Tower	1.000	1.000		1.000		1.000		1.000
45	5 Main Tower	1.000	1.000		1.000		1.000		1.000
46	6 Main Tower	1.000	1.000		1.000		1.000		1.000
47	/ Main Tower	1.000	1.000		1.000		1.000		1.000
48	8 Main Tower	1.000	1.000		1.000		1.000		1.000
49 50	9 Main Tower 10 Main Tower	1.000	1.000		1.000		1.000		1.000
51	11 Main Tower	1.000	1 000		1 000		1.000		1.000
52	12 Main Tower	1.000	1.000		1.000		1.000		1.000
53	13Main Tower	1.000	1.000		1.000		1.000		1.000
54	14Main Tower	1.000	1.000		1.000		1.000		1.000
55	15Main Tower	1.000	1.000		1.000		1.000		1.000
56	16 Main Tower	1.000	1.000		1.000		1.000		1.000
57	17Main Tower	1.000	1.000		1.000		1.000		1.000
58	18Main Tower	1.000	1.000		1.000		1.000		1.000

59	19Main Tower	1.000	1.000	1.000	1.000	1.000	
60	20Main Tower	1.000	1.000	1.000	1.000	1.000	
61	21Main Tower	1.000	1.000	1.000	1.000	1.000	
62	22Main Tower	1.000	1.000	1.000	1.000	1.000	
63	Stages	Overall	Piperazine	H2S			
64	1 Main Tower	1.000	1.000	0.7500			
65	2 Main Tower	1.000	1.000	0.7500			
66	3_Main Tower	1.000	1.000	0.7500			
67	4 Main Tower	1.000	1.000	0.7500			
68	5 Main Tower	1.000	1	0.7500			
69	69 Aspen Technology Inc. Aspen HYSYS Version 10 Pag						

1	Case N			Name: Design Simulation (3) (1).hsc			
3		Company Name Not Ava Bedford, MA USA	Unit	Set: SI			
5			Date	Date/Time: Mon Jun 05 15:22:19 2023			
6							
7			Absorber:	T-100 @Main (c	ontinued)		
8				(-			
9		0 V	Stage Efficiencies	1100	1	1	
10	Stages	Overall	Piperazine	H2S			
11	6 Main Tower	1.000	1.000	0.7500			
12	7 Main Tower 8 Main Tower	1.000	1.000	0.7500			
13	9 Main Tower	1.000	1.000	0.7500			
17		1.000	1.000	0.7500			
15	10 Main Tower	1.000	1.000	0.7500			
17	12 Main Tower	1.000	1.000	0.7500			
10	12 Main Towar	1 000	1 000	0.7500			
18	13Main Lower	1.000	1.000	0.7500			
20	14viain 1 ower 15 Main Tower	1.000	1.000	0.7500			
21	16 Main Towar	1.000	1.000	0.7500			
21	10Main Tower	1.000	1.000	0.7500			
22	17Main Tower 18 Main Tower	1.000	1.000	0.7500			
24	19 Main Tower	1.000	1.000	0.7500			
25	20 Main Towar	1.000	1.000	0.7500			
25	20 Main Tower 21 Main Tower	1.000	1.000	0.7500			
27	22 Main Tower	1.000	1.000	0.7500			
28							
29			SOLVER				
30		Colu	mn Solving Algorithm: HYS	IM Inside-Out			
31	Solving Options				Acceleration Parameters		
32	Maximum Iterations:		10000	Accelerate K Value & H Moo	del Parameters:	Off	
33	Equilibrium Error Tolerance:		1.000e-05				
34	Heat/Spec Error Tolerance:		5.000e-004				
35	Save Solutions as Initial Estimation	te:	On				
36	Super Critical Handling Model:		Simple I				
37	Trace Level:		Low				
38	Init from Ideal K's:		Off		Damping Parameters		
39	Initial	Estimate Generator Param	eters	Azeotrope Check:		Off	
40	Iterative IEG (Good for Chemic	als):	Off	Fixed Damping Factor:		1	
41							
42							
45			ACID GAS				
44							
45	45 Calculation Type: Efficiency				Column Section 1		
47	Start Stage				1 Main Tower		
40	End Stage				2 Main Tower		
48	End Stage				2 Main Lower		
49 50	Column Diameter		(m)		v aive 3.330	*	
51	Flow Model		· ·		VPlug		
21	1 IOW MODEL				v riug		

52		Tray Parameters			
53	No. of Flow Paths	(m)	1		
54	Tray Spacing	(m)		0.5000	
55	Side Weir Length	(m)	2.664		*
56	Interfacial Area Method			Scheffe	
57	Mass Transfer Method			AICHE	
58		Tuning Parameters			
59	Interfacial Area Factor			1.000	
60	Heat Transfer Factor			1.000	
61	Liquid Mass Transfer Co-efficient Factor			1.000	
62	Vapor Mass Transfer Co-efficient Factor			1.000	
63		Packing Parameters			
64	Packing Type				
65	Packing Vendor				
66	Packing Material				
67	Packing Dimensions				
68	Packing Height	(m)			
69	Aspen Technology Inc.	Aspen HYSY	S Version 10		Page 3 of 23

1		Case Name: Design Simulation (3) (1).hsc			
3	Company Name Not Available Bedford, MA	Unit Set: SI			
4	USA				
5		Date/Time: Mon Jun 05 15:22:19 2023			
6					
7	Absor	per: T-100 @Main (continued)			
8					
9	Void Fraction				
10	Specific Surface Area (m2/m3)				
11	Billet & Schultes CL				
12	Billet & Schultes CV				
13	Packing Size (mm)				
14	Critical Surface Tension				
15	Corrugation Base				
16	Corrugation Height (mm)				
17	Corrugation Side (mm)				
18	Corrugation Angle				
19	Surface Enhancement Factor				
20	Surface Renewal Factor				
21					
22	Column Section	Column Section 2			
23	Start Stage	3 Main Tower			
24	End Stage	12Main Tower			
25	InternalType	Packed			
26	Column Diameter (m)	3.330	*		
27	Flow Model	VPlug			
28	Tray Para	neters			
29	No. of Flow Paths (m)				
30	Tray Spacing (m)				
31	Side Weir Length (m)				
32	Interfacial Area Method	Onda			
33	Mass Transfer Method	Onda			
34	Tuning Pa	ameters			
35	Interfacial Area Factor	1.000			
36	Heat Transfer Factor	1.000			
37	Liquid Mass Transfer Co-efficient Factor	1.000			
38	Vapor Mass Transfer Co-efficient Factor	1.000			
39	Packing P	rameters			
40	Packing Type	IMTP			
41	Packing Vendor	GENERIC			
42	Packing Material	METAL			
43	Packing Dimensions	1-IN OR 25-MM			
44	Packing Height (m)	1.300	*		
45	Void Fraction	0.9700	*		
46	Specific Surface Area (m2/m3)	207.0	*		

47	Billet & Schultes CL				
48	Bitters Schules (2)				
49	Packing Size (mm)			25.40	
50	Critical Surface Tension				
51	Corrugation Base				
52	Corrugation Height (mm)				
53	Corrugation Side (mm)				
54	Corrugation Angle				
55	Surface Enhancement Factor				
56	Surface Renewal Factor				
57					
58	Column Section			Column Section 3	
59	Start Stage			13Main Tower	
60	End Stage			22Main Tower	
61	InternalType			Packed	
62	Column Diameter (m)		4.980		*
63	Flow Model			VPlug	
64		Tray Parameters			
65	No. of Flow Paths (m)				
66	Tray Spacing (m)				
67	Side Weir Length (m)				
68	Interfacial Area Method			Onda	
69	Aspen Technology Inc.	Aspen HYSY:	S Version 10		Page 4 of 23

_							
1		Case N	Case Name: Design Simulation (3) (1) hac				
3	@aspentech Bedford, MA	Unit Set	t 8	51		0	
4	USA	Date/Tir	me: V	Wed Jun 07 23:37:43 2023		-8	
6							8
7		A	bsorber:	T-100	@Main	5	att.
8							E.
10			CONNE	CTIONS		ă	C vá
11	STREAMNAME	iniet8	mean	ERC	MUNE OPERATION	- <u>6</u>	
13	water	1 Main To	wer		- FRG	S	3 2
14	to c01	22 Main T	ower		Separator		10 -205F001
16	semi	3 Main To 13 Main T	wer	-		8	0 0
17	17 Outlet Stream				0 >		
18	STREAMNAME	22 Main T	Stage		TC		O TI
20	gas outet	1 Main To	wer				
21			MON	ITOR			
22			Specification	ns Summary			
24		Specified	Value		CurrentValue	WEE	rior
25	gas outlet Rate	1810 T-1	Ē		1.223e+004 kgmoleh	dia Calimata	-
27	gas outlet Rate	AA.C. 101	1.000e-002	A	1.000 kgmole/h	Off On	Off
28			SPI	ECS	200 - Ma	101	10 S
29			Column Specific	ation Paramat	ans.		
31			Guumopeuno	at Date			
32			gas out	I OL PLALO		1	
33	Fixed Prim Stream: gas outlet Flow	Ater. Basis:	Primary Molar	Lower Brid		Upper Brid:	
35		0078	SUBCO				
36			00000	- C Linto	T.		
38	Degrees of Subcooling						
39	Subcool to				8		
40			User Va	ariables			
42			PRO	FILES			
43			General P	arameters			
45	Sub-Flow Sheet:		T-100 (COL 1)	Number of	Stagen:		22 *
46			Profile E	stimates	Nut hid	1	Marmur
48			(C)	1	(kgmole/h)	(kg	molevitý
49	1_M	ain Tower		70.01		54.30	1.223e+004
51	2_M 3_M	ain Tower		69.81 70.69	2385	46.53	1223e+004 1222e+004
52	4_M	ain Tower		77.30	2410	1+004	1261e+004
53	5_M	ain Tower		88.08	2.424	t+004	12860+004
55	6_M 7 M	ain Tower		83.56	2431	+004	1300e+004 1307e+004
56	8_M	ain Tower		84.00	2436	+004	1313e+004
57	9_M	ain Tower		8423	2.436	+004	13120+004
59	10_M	ain Tower		84.62	2436	±+004	13128+004
60	12_M	ain Tower		85.31	2.438	+004	1.313e+004
61	13_M	ain Tower		87.95	1.353	++005	1314e+004
63	7_m 15_M	ain Tower		89.51	1367	b+005	1.356e+004
64	16_M	ain Tower		90.25	1359	+005	1.374e+004
66	57_M	ain Tower		90.91	1360	+005	1.391e+004 1.407e+004
67	19_M	ain Tower		91.97	1363	+005	1421e+004
68	20_M	ain Tower		92.37	1364	1+005	14320+004
108	Aspen Technology Inc.		Aspen HYSY	o version	10		Page 1 0123

Licensed to: Company Name Not Available

* Specified by user.