REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère De L'enseignement Supérieur Et De La Recherche Scientifique

UNIVERSITE ABDLHAMID IBN BADIS MOSTEGANAM

FACULTÉ DES SCIENCES APPLIQUÉES DEPARTEMENT DE GENIE CIVIL ET TRAVAUX PUBLICS

FILIER: travaux publics

Spécialité : VOA

Mémoire De FIN D'étude :

En vue de l'obtention du diplôme de Master 2

Thème:

ETUDE DE MODERNISATION D'UN TRANCON ROUTIER

CW14 DE LA WILAYA DE RILEZANE RELIANT

LA DAIRA DE ZAMOURA A LA DAIRA DE AMMI MOUSSA

(PK 03+928 AU PK 09+239) SUR 5.3 KM

Présenté par :

- Dekki lakhdar

Soutenu Publiquement Devant Le Jury:

Président	D ^r M ^r Belguesmia Nor eddine	M.C.A
Examinateur	M ^r Bouhaloufa Ahmed	M.A.A
Encadreur	M ^r Soltane Benallou Kaddour	M.A.A
Co-Encadreur	Mr cherif Mourad	ING. Consultant

Promotion: 2023

Dédicace

Je dédie ce mémoire A mes chers parents ma mère et monpère et ma femme et mes enfants salsabil, basma, Med abdrahim, ismail Aek

Pour leur patience, leu amour, Leur soutien et leurs encouragements.

A me sœur et mes frère

A tout ma grande famille et tous ceux celles ayant une relation de près ou de loin avec elle.

A mes amis et les collègues de la classe.

Sans oublier tous les enseignants qui ont contribué à mon soutien scolaire

LAKHDAR

بسم الله الرحمن الرحيم الرحيم

REMERCIEMENT

Avant tout, louange à ALLAH qui m'a donné

Le courage, la détermination,

La volonté et la persévérance d'aller jusqu'au bout.

Je tiens à remercier chaleureusement mon encadreur : M' Soltane Benallou

Kaddour pour la sollicitude avec laquelle ils ont suivi et guidé ce travail.

Mes remerciements vont également les membres du jury :

D' M' Belguesmia Nor eddine

M^r Bouhaloufa Ahmed

M^r cherif mourad

Également, je remercie mes amis et collègues de la promotion 2023

RESUME

Notre projet de fin d'étude fait partie d'un tronçon routier qui consiste à étudier le tracé de la CW14 reliant la daïra de Zamoura avec la Daïra de Ammi moussa sur 5,3 Km et ceci dans le cadre des prévisions du schéma national d'aménagement du territoire du schéma directeur routier

Dans notre projet routier, nous avons introduit le long des deux tracés des courbes de raccordement, respectant les normes imposées par le B40 pour assurer le confort et la sécurité de l'usager car toute négligence peut être fatale.

Avec la catégorie de notre route est la catégorie 03. Et :

- ➤ TJMA=1100 v/j.
- ➤ Année de comptage : 2022
- Année de mise en service : 2027.
- \triangleright Le pourcentage des poids lourds : Z = 35%.
- \triangleright Taux de croissance annuelle de trafic : $\tau = 5\%$.
- La durée de vie: 10ans.
- Les calculs sont faits manuellement et modélisé par le logiciel COVADIS 2013

ABSTRACT

Our final study project is part of a road section which consists in studying the layout of the CW14 connecting the daïra of Zamoura with the Daïra of Ammi moussa.

Over 5.3 km and this within the framework of the forecasts of the national land use plan of the road master plan.

In our road project, we have introduced along the two routes connecting curves, respecting the standards imposed by the B40 to ensure the comfort and safety of the user because any negligence can be fatal.

With the category of our road is the category 03. And

- ➤ ADT=1100 v/d.
- > Year of counting: 2022
- > Year of operation: 2027.
- \triangleright The percentage of heavy trucks: Z = 35%.
- \triangleright Annual traffic growth rate: $\tau = 5\%$.
- ➤ Life time: 10 years

The calculations are done manually and modeled by COVADIS 2013 software.

نبذة مختصرة

مشروع نهاية الدراسة هو جزء من مسار يتكون من الطريق الرابط بين دائرة زمورة ودائرة عمي موسى بطول 5.3 كم وهذ ا في إطار توقعات مخطط التخطيط الاقليمي الوطني للخطة الرئيسية للطريق

في مشروع انجاز الطريق ، قدمنا منحنيات اتصال على طول المسار، مع مراعاة المعايير التي تفرضها B40 لضمان راحة وأمان المستخدم لان أي إهمال يمكن أن يكون قاتلا.

مع فئة طريقنا هي الفئة. 03 مع:

متوسط الحركة اليومية TJMA (2022) = 1100 (س.ح.ث / يوم)

النسبة المئوية من مركبات البضائع الثقيلة = 35%

معدل نم والحركة السنوية au = 5 ٪

وقت الدراسة والتنفيذ: ن = 5 سنوات •

عمر الطريق: 10 سنة •

يتم إجراء العمليات الحسابية يدويا و على طريق برنامج كوفا ديس 2013.

SOMMAIRE

REMERCIEMENT RESUME LISTE DES TABLEAUX LISTE DES FIGURES CHAPITRE: I

Présentation de projet :

I.1-Introdution:	1
I.2- Contexte de Project :	2
I.3 - Découpage administratif	2
I.3-1 Daïra et nombre de commune :	2
I.3-2 Infrastructures routières :	2
I.4- Donnes de base :	3
I.4.1 - Levé topographique :	3
I.4.2 - Catégorie de la route :	3
I.5- Objectif de là l'étude :	4
CHAPITRE: II	
II .Etude de trafic:	5
II. 1 Introduction:	5
II.2.1 analyse du trafic :	5
II.2.2 -Les Enquêtes De Type Cordon :	6
II.2.3-Les Enquêtes Qualitatives :	6
II.3. Différents type de trafic :	6
II.3.1.1Trafic Normal:	6
II.3.2- Trafic Dévié :	6
II.3.3-Trafic Induit :	6
II.3.4-Trafic Total:	
II.4.1- Modèles de présentation de trafic :	6
II.4.2-Prolongation De L'évolution Passée :	7
II.4.3- Corrélation Entre Le Trafic Et Des Paramètres Economiques :	7
II.4.3.1-Modèle Gravitaire :	7
II.4.3.2-Modèle De Facteurs De Croissance :	7
II.5- Calcul de la capacité	8
II.5.1- Définition De La Capacité :	8

II.6-Détermination Du Nombre De Voies :	8
II.7- Calcul De Trafic Moyen Journalier (TJMA)	8
II.7.1-Calcul Des Trafics Effectifs :	9
II.7.2-Débit De Pointe Horaire Normal :	9
II.7.3 - Débit Horaire Admissible :	10
II.8- Calcul Du Nombre De Voies :	11
II.9-Application au Projet :	11
II.9.1- Calcul Du TJMA De L'année Horizon	11
II.9.2- Trafic Effectif De L'année De Mise En Service :	12
II.9.3- Débit De Pointe Horaire Normal :	12
II.9.4- Débit Horaire Admissible :	13
II.10- Nombre De Voies :	13
II.11 CONCLUTION	14
CHAPITRE: III	
III.1 - DIFINITION :	15
III.2 - REGLES A RESPECTER DANS LE TRACE EN PLAN :	15
HI.3-LES ELEMENTS DU TRACE EN PLAN:	16
III.3.1- LES ALIGNEMENTS :	16
III.3.2- ARC DE CERCLE :	17
III.3.3- STABILITE EN COURBE :	17
III.4-Les Raccordements Progressifs : (CLOTHOIDE)III.4.1-Expression De La Clothoide :	23 24
III-4.2- LES CONDITIONS DE RACCORDEMENT :	25
III.4.2.1 – Condition De Confort Optique :	25
III.4.2.2 - Condition De Confort Dynamique :	25
III.4.2.3 - Condition De Gauchissement :	26
III.5 - COMBINAISON DES ELEMENTS DU TRACE EN PLAN :	26
III.5.1- Courbe En S:	26
III.5.2- Courbe A Sommet :	27
III.5.3- Courbe En C	27
III.5.4 - Courbe En Ovele	28
III.6- PARAMETRES FONDAMENTAUX :	28
III.7 - LA VITESSE DE REFERENCE (DE BASE):	29

III.7.1- Choix De La Vitesse De Référence :
III.7.2- Vitesse De Projet :
III.8- CALCUL D'AXE :30
III.9 - EXEMPLE DE CALCUL D'AXE MANUELLMENT:30
III.9.1- Caractéristiques De La Courbe De Raccordement :
III.9.2 - Condition De Confort Dynamique Et De Gauchissement :32
III.9.3- Valeur des gisements et des distances :
III.9.4- Calculs éléments de quatre raccordements :
III.10 -Environnement :
III.11 - Elément en profil en long pour définir le relief :
III.12- Sinuosité :
III.13- Caractéristiques De La Courbe De Raccordement :
III.13. 1-Calcul Des Coordonnées Des Points Singuliers
CHAPITRE: IV
IV. Profil en long53
IV.1 - DEFINITION :
IV.2 - REGLES A RESPECTER POUR LE TRACE DU PROFIL EN LONG :53
IV.3 - LES ELEMENTS DE COMPOSITION DU PROFIL EN LONG :54
IV.4 - COORDINATION DU TRACE EN PLAN ET PROFIL EN LONG54
IV.5 - DEFINITION DE LA DECLIVITE :55
IV.5.1- Déclivité Minimale :55
IV.6 – RACCORDEMENT EN PROFIL EN LONG:56
IV.6. 1 - Raccordement Convexes (Angle Saillants)56
IV.6.1.A - Condition De Confort :56
IV.6.1. B - Condition De Visibilité:57
IV.6.2 - Raccordement Concave : (Angle Rentrant) :58
IV.7 – DETERMINATION PRATIQUES DU PROFIL EN LONG :59
IV.7.1- La Courbe Dans Le Profil En Long :60
IV.7.1.A - Détermination De La Position Du Point De Rencontre (S)60
IV.7.1.B - Calcul De La Tangente
IV.7.1.C - Projection Horizontale De La Longueur De Raccordement :61
IV.7.1.D - Calcul De La Flèche :
IV.7.1.E - Calcul De La Flèche Et L'altitude D'un Point Courant M Sur La Courbe62

IV.7.1.F - Calcul Des Coordonnées Du Sommet De La Courbe :	62
IV.8 - APPLICATION AU PROJET :	63
IV.8.1 - Profil En Long Courant :	.64
CHAPITRE: V	
PROFIL EN TRAVERS	.65
V.1 – DEFINITION :	.65
V.2 - DIFFERENTS TYPES DE PROFIL EN TRAVERS :	.65
V.2.A - Profil En Travers Type :	.65
V.2.B - Profil En Travers Courants :	.66
V. 3 - LES ELEMENTS CONSTITUTIFS DU PROFIL EN TRAVERS	.66
V.4 - TYPES DE PROFILS EN TRAVERS :	.67
V.5 - PROFIL EN TRAVERS COURANT:	.67
V.1.A - Cas Remblai :	.67
V.1.B - Cas Déblai:	.67
V.1.C - Cas Mixte:	.68
V.6 - APPLICATION AU NOTRE PROJET :	.68
V.6.1 - Le Profil En Travers Type A Eté Choisi De Manière	.68
CHAPITRE: IV	
VI. Calcul des cubatures	
VI.1 – INTRODUCTION:	.69
VI.2 - DEFINITION :	.69
VI.3 - METHODE DE CALCULE DES CUBATURES :	.69
VI.3 – 1 METHODE De Mr SARRAUS :	70
VI.3.1.A - Formule De Mr SARRAUS :	70
VI.3.1.B - Description De La Méthode :	71
CHAPITRE: VII	
VII. LES CARREFOURS	
VII.1-INTRODUCTION:	
VII.3- CHOIX DE L'AMENAGEMENT:	79
VII.4- VITESSE UNIFORME DANS UN CARREFOUR	79

CHAPITRE : VIII
VIII. E'TUDE GEOTECHNIQUE
VIII.1.INTRODUCTION:81
VIII.2- OBJECTIFS:81
VIII.3 - REGLEMENTATION ALGERIENNE EN GEOTECHNIQUE :81
VIII.4 -LES DIFFERENTS ESSAIS EN LABORATOIRE:82
VIII .5 - CONDITION D'UTILISATION DES SOLS EN REMBLAIS :94
VIII .6 -LES MOYENS DE LA RECONNAISSANCE :95
VIII 7 - Résultats obtenus :95
VIII.8- CONCLUSION :96
CHAPITRE: IX
IX. DIMENSIONNEMENT
IX. 1 –INTRODUCTION :
IX.3- FACTEURS POUR LES ETUDES DE DIMENSIONNEMENT :102
IX 4LES PRINCIPALES METHODES DE DIMENSIONNEMENT :104
IX. 5- APPLICATION AU PROJET :110
CHAPITRE: X
X.1 INTRODUCTION:
X.2 OBJECTIF DE L'ASSAINISSEMENT :
X. 3 ASSAINISSEMENT DE LA CHAUSSEE :
X.4 NATURE ET ROLE DES RESEAUX D'ASSAINISSEMENT ROUTIER :117
X.5 DEFINITIONS DES TERMES HYDRAULIQUE :
X.6 FACTEURS INFLUENÇANT LE CHOIX DES OUVRAGES
HYDRAULIQUES119
X.7 DRAINAGE DES EAUX :
X.8 APPLICATION AU NOTRE PROJET :
CHAPITRE : XI
XI.1 INTRODUCTION:121
XI.2 DEFINITION LA SIGNALISATION
XI.3 BUT DE SIGNALISATION :
XI.4 L'OBJET DE LA SIGNALISATION ROUTIERE :121
XI.5 CATEGORIES DE SIGNALISATION :122

XI. 6 REGLES A RESPECTER POUR LA SIGNALISATION :	122
XI.7 TYPES DE SIGNALISATION :	122
XI.8 CARACTERISTIQUES GENERALES DES MARQUE :	126
XI.9 APPLICATION AU PROJET :	127
CHAPITRE: XII	
DEVIS QUANTITATIF ET ESTIMATIF:	132
CONCLUTION GENERALE	133
BIBLIOGRAPHIC	134
ANNEXE	135

LISTE DES TABLEAU

LISTE DES TABLEAUX			
TABLEAUX	TITRE	PAGE	
CHAPITRE : II	ETUDE DE TRAFIC		
TAB.II.1	Coefficient D'équivalence« P »	08	
TAB.II.2	Valeurs De K ₁	09	
TAB.II.3	Valeurs De K ₂	09	
TAB.II.4	Valeurs De C _{th}	09	
TAB.II.5	Représentés Dans Les Calculs	11	
CHAPITRE : III	TRACE EN PLAN		
TAB.III.1	Rayons Du Tracé En Plan	17	
TAB.III.2	Paramètres Fondamentaux	24	
TAB.III.3	Coordonnées Des Situations	26	
TAB.III.4	Coordonnées des points de sommet	28	
TAB.III.5	Valeur des gisements et des distances	29	
TAB.III.6	les calculs de rayon de la route existante sont illustrés	30	
TAB.III.7	Elément en profil en long pour définir le relief	31	
TAB III.8	.Calcul Des Coordonnées Des Points Singuliers	39	
CHAPITRE : VI	CUBATURES	·	
TAB.VI	cubature de terrassements	56	
CHAPITRE : IV	PROFIL EN LONG		
TAB.IV.1	Déclivité Maximum	43	
TAB.IV.2	Condition De Visibilité	44	
TAB. IV.3	Normes Pratique Du Profil En Long	45	
CHAPITRE: VII	I Étude Géotechnique		
TAB. VIII.1	Classification Des Sols Par Dimension Du Grain	65	
TAB. VIII.2	Classer Indice De Plasticité	67	
TAB. VIII.3	Détaille Essai Proctor	70	
TAB. VIII.4	Portance Du Sol A L'aide De L'indice De CBR.	75	
CHAPITRE : IX	DIMENSIONNEMENT DU CORPS DE CHAUSSEE		
TAB.IX.1	Les Valeurs Des Coefficients D'équivalence	82	
TAB.IX.2	Déterminant La Classe Du Trafic	83	
TAB.IX.3	Déterminant La Classe Du Sol	83	
TAB.IX.5	parti de fascicule 3	87	
CHAPITRE : X			
TAB.X.1	Les Ouvrages D'assainissement Existants	92	
CHAPITRE : XI	SIGNALISATION		
TAB.XI.1	Caractéristiques Des Lignes Discontinues	94	
CHAPITRE XII:	DEVIS QUANTITATIF ET ESTIMATIF		
TAB. XII.1 .1	Devis Quantitatif Et Estimatif	100	

LISTE DES FIGURES

	LISTE DES FIGURES	
FIGURES	TITRE	PAGE
CHAPITRE: I	PRESENTATION DE PROJET	
Fig. I-1	Image Satellitaire Presentation Du Project Sur La Carte	3
CHAPITRE : II	ETUDE DE TRAFIC	1
CHAPITRE : II	II TRACE EN PLAN	
Fig.III.1	Les Elements Du Trace En Plan	14
Fig.III.2	Courbe De Raccordement Clothoïde	20
Fig.III.3	Courbe En S	22
Fig.III.4	Courbe A Sommet	22
Fig.III.5	Courbe En C	23
Fig.III.6	Courbe En Ovale	23
Fig.III.7	Raccordement Entre Deux Alignements	26
CHAPITRE : I'	V PROFIL EN LONG	
Fig. IV .1	La Courbe Dans Le Profil En Long	46
Fig. IV .2	Profils En Long Courant	49
CHAPITRE: V	ROFIL EN TRAVERS	-
Fig.V.1	Les Eléments Constitutifs Du Profile En Travers	50
Fig. V- 5	Profils En Travers Courant (Cas Déblai)	51
Fig. V-6	Profiles En Travers Courant (Cas Remblai)	52
Fig. V-7	Profils En Travers Courant (Cas Mixte)	52
	I CUBATURES	
Fig.VI.1	Explique La Méthode SARRAUS	54
Fig.VI.2	Formule De Mr SARRAUS	55
Fig.VI.3	Calcul Des Cubatures De Terrassement	55
CHAPITRE : V	TI CARREFOUR	
Fig.VII.1	Différents Types Des Carrefours	63
CHAPITRE: V	III ETUDE GEOTECHNIQUE	·
Fig. VIII-1	Appareil De Tamisage	65
Fig. VIII-2	Appareil De Limites d'Atterberg	67
Fig. VIII-3	Appareil d'Equivalent De Sable	68
Fig. VIII-4	Courbe Proctor	69
Fig. VIII-5	Matériels De Compactage Et Accessoires CBR	71
Fig. VIII-6	Appareil Los Angeles	72
Fig. VIII-7	Appareil De Micro Deval	73
CHAPITRE : L	X DIMENSIONNEMENT	1

Fig.IX.1	Différentes Couches Constituant La Structure De La Chaussée.	
Fig.IX.2	Fig.IX.2 Types De Chaussées	
Fig.IX.3	Epaisseur du corps de chaussée en fonction de l'indice de groupe	85
CHAPITRE : X	ASSINISEMENT	
Fig.X.1	L'emplacement Des Ouvrages D'assainissements	88
CHAPITRE : X	SIGNALISATION	
Fig.XI.1	Type De Modalisation	95
Fig XI, 2	Flèche De Signalisation	96
Fig XI, 3	Dimensionnement De La Flèche.	97
Fig.XI.4	Signalisation Horizontale	98

Introduction Générale

Depuis des siècles, l'homme a pensé à ce moyen de communication et les tracés étaient différemment conçus selon les moyens de transports de chaque époque.

la communication est restée le principal souci de l'homme. En effet une grande partie des réalisations humaines s'est portée vers le moyen de se déplacer, de s'informer et d'échanger. Actuellement la richesse d'un pays peut se mesurer à la puissance de ses moyens de communication. De ce fait notre pays a fourni, depuis l'aube de l'indépendance, un effort pour le développement du réseau routier

Les infrastructures de transport, et en particulier les routes, doivent présenter une efficacité économique et sociale. A travers des avantages et des coûts sociaux des aménagements réalisés, elles sont le principal vecteur de communication et d'échange entre les populations et jouent un rôle essentiel dans l'intégration des activités économiques à la vie locale.

La problématique qui est à la base des projets d'infrastructure routière est souvent liée à l'insuffisance de réseau existant, soit par défaut, soit par saturation.

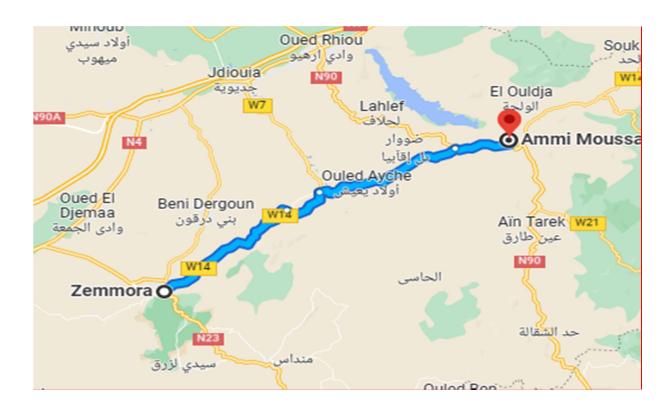
Il est alors nécessaire, pour bien cerner cette problématique, d'en préciser les contours, puis pour en dessiner les solutions et d'en quantifier précisément les composantes.

Nous visons à travers la présente étude, la mise en application nos connaissances acquises durant mes cycle de formation, en mettant en évidence ; les normes géométriques et celles géotechniques appliquées à ce types de projet, avec la prise en considération du volet économique et financier.

Durant la réalisation de la présente étude, nous accordons beaucoup d'importance à la sécurité routière, le confort routier pour les usagers routiers.

Notre thème de fin d'étude, se base sur l'étude D'un (Tronçon Routier De La cw 14 daira zemouradaira ammi moussa Sur 05.310km) ce projet est lancé par la Direction des Travaux Publics de la wilaya de rélizene, sur une distance d'environ 58km dont nos nous contentons de prendre en charge l'étude de 05.310km

CHAPITRE I


Présentation de projet

I. <u>Présentation de projet :</u>

❖ I.1- Introduction:

Le Projet dont on a choisi une partie de cinq KLM comme titre de fin d'étude pour obtention du diplôme de Master en travaux publics, s'agissait bien d'un projet relevant de la compétence de la direction des travaux publics de Rilezane, Inscrit comme un projet sectoriel, intitule "ETUDE DE DU TRACE DU CHEMEIN CW 14 RELIANT LA DAIRA DE ZEMOURA A LA DAIRA DE AMMI MOUSSA".

Ce Projet rentre dans le cadre du développement du secteur des travaux publics au niveau de la Willaya et ayant trait d'accent sur la fluidité et le transports des personnes et marchandise entre les deux pôles urbaines, susceptibles de de recevoir des élargissements industriels et autres pour assoir la politique de notre pays entrepris ses dernières années. Ce projet est le point départ de l'application des concepts théoriques recuises le long de notre formation au niveau de l'université. On a attache de l'importance extrémale la sécurité et le confort des usagers de la route. En bref, voici, l'itinéraire de notre Projet apparaissant en liserée bleue.

***** I.2-Contexte de project :

La wilaya est située au Nord-ouest du pays. Elle est limitée par les wilayas suivantes :

- Au nord par la wilaya de Mostaganem et Chlef.
- Au sud par la wilaya de Mascara et Tiaret;
- A l'ouest par la wilaya de Mascara, Mostaganem;
- A l'est par la wilaya de Chlef, Tiaret et Tissemsilt Le Chef-lieu de la wilaya est située à 280 km à l'Ouest de la capitale, Alger. La wilaya s'étend sur une superficie de 4 851,21 km.

***** I.3-<u>Découpage administratif.</u>

I.3-1 Daira et nombre de commune :

- ➤ 13Daïras
- ➤ 38Communes
- ➤ 6 Subdivisons de travaux publics(STP).
- ➤ 14 Unités d'Intervention Routière(UIR)
- ➤ 10 Maisons cantonnières

I.3-2 Infrastructures routieres:

- > RN: 314,677 kms
- > CW: 476,36 kms
- ➤ CC: 2083 Kms
- Pénétrante: 28 kms
- Autoroute est-ouest: 84.7 kms
- Les ouvrages d'art sur CC : 55
- Les ouvrages d'art sur CW : 44
- Les ouvrages d'art sur RN : 46
- Les ouvrages d'art sur Autoroute est-ouest: 56
- Les ouvrages d'art sur pénétrante: 14
- > 02 trimé au centre-ville
- Aéroport de classe C : fermé à la circulation

I.4- Donnes de base:

I.4.1 - Levé topographique :

Toute étude et conçue sur un fond topographique définissant l'état du relief. Pour notre étude on dispose d'un levé topographique établi à l'échelle 1/1000 comportant les détails planimétriques et altimétriques du terrain naturel.

I.4.2 - Catégorie de la route :

La catégorie d'une route est définie suivant la nature des villes, suivant les activités socioéconomiques et administrative situées sur les localités desservie par la route. Les routes Algériennes ont classées cinq catégories fonctionnelles et sont comme suit :

Catégorie 1 :

Liaison entre les grands centres économique et les centres industriels lourdes considérés deux a deux, et liaison assurant le rabattement des centres d'industries de transformation vers réseau de base ci-dessus.

Catégorie 2 :

Liaison des pôles d'industries de transformation entre eux, et liaisons de raccordement des pôles d'industries légers diversifiés avec le réseau précédent.

Catégorie 3 :

Liaison des chefs-lieux de daïra et des chefs-lieux de wilaya, non desservies par le réseau précédent, avec le réseau de catégorie 1et2.

Catégorie 4:

Liaison entre tous les centres de vie qui ne sont pas reliés au réseau de catégorie 1-2 et 3 avec le chef-lieu de daïra, dont ils dépendent, et avec le réseau précédent.

Catégorie 5 :

Routes et pistes non comprises dans les catégories précédentes.

* I.5-Objectif de là l'étude :

Cette étude a été conçue dont l'objectif d'améliorer l'aménagement de telle sorte pour augmenter le niveau de service.

- > Ce projet est pour objectif la liaison entre la daira de ammi moussa et la daira de zamoura
- Fluidifier la circulation sur la RN 23
- > Economique
- > Environnement
- > Améliorer les conditions de circulations

CHAPITRE II ETUDE DE TRAFIC

II. Etude de trafic:

*** II. 1 Introduction:**

L'étude de trafic est un élément essentiel qui doit être préalable à tout projet de réalisationou d'aménagement d'infrastructure de transport, elle permet de déterminer le type d'aménagement qui convient et, au-delà les caractéristiques à lui donner depuis le nombre de voie jusqu'a l'épaisseur des différentes couches de matériaux qui constituent la chaussée. L'étude de trafic constitue un moyen important de saisie des grands flux à travers un pays ou une région, elle représente une partie appréciable des études de transport, et constitue parallèlement une approche essentielle de la conception des réseaux routiers. Cette conception repose, sur une partie « stratégie, planification » sur la prévision des trafics sur les réseaux routiers, qui est nécessaires pour :

- Apprécier la valeur économique des projets.
- Définir les caractéristiques techniques des différents tronçons.
- Estimer les coûts d'entretiens.

II.2.1 <u>analyse du trafic</u>:

Cette analyse est réalisée par différents procèdes complémentaires :

- Comptages manuels
- Comptages automatique

Ces deux types, permettent de mesurer le trafic sur un tronçon. En ce qui concerne les compteurs automatiques, les dispositifs ont maintenant la capacité de discriminer les véhicules légers et les poids lourds.

II.2.2 -Les Enquêtes De Type Cordon :

Permettent de distinguer les trafics de transit des trafics locaux, et les origines et destinations de chaque flux.

II.2.3-Les Enquêtes Qualitatives:

Permettent de connaître l'appréciation de l'usager par rapport au réseau et les raisonsde son déplacement.

! II.3. <u>Différents type de trafic :</u>

II.3.1.1Trafic Normal:

C'est un trafic existant sur l'ancien aménagement sans prendre en considération le trafic du nouveau projet.

II.3.2- Trafic Dévié :

C'est le trafic attiré vers la nouvelle route aménagé. La déviation du trafic n'est qu'un transfert entre les différents moyens d'atteindre la même destination.

II.3.3-Trafic Induit:

C'est un trafic qui résulte de nouveau déplacement des personnes vers d'autres déviations.

II.3.4-Trafic Total:

C'est la somme du trafic annuel et du trafic dévié.

UI.4.1- Modèles de présentation de trafic :

Dans l'étude des projections des trafics, la première opération consiste à définir un certain nombre de flux de trafic qui constitue des ensembles homogènes, en matière d'évolution ou d'affectation.

- Les diverses méthodes utilisées pour estimer le trafic dans le futur sont :
- > Prolongation de l'évolution passée.
- Modèle de facteur de croissance. [Prolongation de l'évolution passée.
- Corrélation entre le trafic et des paramètres économiques.
- ➤ Modèle gravitaire.

II.4.2-Prolongation De L'évolution Passée :

La méthode consiste à extrapoler globalement au cours des années à venir, l'évolution destrafics observés dans le passé. On établit en général un modèle de croissance du type exponentiel.

Le trafic T_n à l'année n sera :

$$\mathbf{T}_{\mathbf{n}} = \mathbf{T}_{\mathbf{0}} \left(\mathbf{1} + \tau \right)$$

 T_0 : le trafic à l'année de référence.

 τ : est le taux de croissance.

II.4.3- Corrélation Entre Le Trafic Et Des Paramètres Economiques :

Elle consiste à rechercher dans le historique une corrélation entre le niveau de trafic d'une part et certains indicateurs macro-économiques.

- Produit national brut (PNB).
- Produits des carburants, si on pense que cette corrélation restera à vérifier dans le taux de croissance du trafic. Mais cette méthode nécessite l'utilisation d'un modèle de simulation, ce qui sort du cadre de notre étude.

II.4.3.1-Modèle Gravitaire :

Il est nécessaire pour la résolution des problèmes concernant le trafic actuel ou futur proche, mais il se prête mal à la projection.

II.4.3.2-Modèle De Facteurs De Croissance :

Ce type de modèle nous permet de projeter une matrice origine – destination .La méthode la plus utilisée est celle de FRATAR qui prend en considération les facteurs suivants.

- Le taux de motorisation des véhicules légers et leur utilisation.
- Le nombre d'emploi.
- La population de la zone.

Cette méthode nécessite des statistiques précises et une recherche approfondie de lazone à étudier.

* II.5- Calcul de la capacité :

II.5.1- Définition De La Capacité :

On définit la capacité de la route par le nombre maximale des véhicules pouvant raisonnablement passé sur une section donnée d'une voie dans une direction (ou deux directions) avec des caractéristiques géométriques et de circulation pendant une période de temps bien déterminée, La capacité s'exprime sous forme d'un débit horaire.

***** II.6-Détermination Du Nombre De Voies :

La problématique qui est à la base des projets d'infrastructure routière est souvent liée àl'insuffisance du réseau existant, soit par défaut, ou par insuffisance.

Une des solutions est basée sur le nombre de voies.

A partir de la, l'ingénieur fait une comparaison entre le débit admissible et le débit prévisible pour obtenir le choix de nombre de voies pour un tronçon routier.

Donc, il est nécessaire d'évaluer le débit horaire, à l'heure de pointe pour la $10^{\rm eme}$ année d'exploitation.

❖ II.7- Calcul De Trafic Moyen Journalier (TJMA) Horizon :

La formule qui donne le trafic journalier moyen annuel à l'année horizon est :

TJMAH =
$$(1 + \tau)^n$$
 TJMA₀

TJMAn: trafic journalier moyen à l'année n.

TJMA0: trafic journalier moyen à l'année 0.

T: taux d'accroissement annuel.

N : nombre d'années à partir de l'année d'origine.

! II.7.1-Calcul Des Trafics Effectifs :

C'est le trafic traduit en unités des véhicules particuliers (U.V.P) en fonction de Type deroute et de l'environnement (vallonnée, en plaine,...)

Pour cela on utilise des coefficients d'équivalence pour convertir les PL en (U.V.P).

Le trafic effectif donné par la relation :

$$T_{\rm eff} = [(1-Z) + PZ]. T_n$$

Teff: trafic effectif à l'horizon en (U.V.P/j)

Z: pourcentage de poids lourds (%).

P: coefficient d'équivalence pour le poids lourd, il dépend de la nature de la route.

<u>Tableau II-1: la Coefficient D'équivalence « P ».</u>

Environnement	E1	E2	E3
Route à bonne	2-3	4-6	8-12
caractéristique			
Route étroite	3-6	6-12	16-24

Ce tableau nous permet de déterminer le coefficient d'équivalence « **P** » pour le poids lourd en fonction de l'environnement et les caractéristiques de notre route.

❖ II.7.2-Débit De Pointe Horaire Normal :

Le débit de pointe horaire normal est une **fraction** du trafic effectif à l'horizon, il est Donné par la formule :

Q = 0.12Teff (UVP/h)

$$Q = \left(\frac{1}{n}\right)T$$

 $\left(\frac{1}{n}\right)$: Coefficient de pointe prise égale 0.12

Q: est exprimé en UVP/h.

II.7.3 - Débit Horaire Admissible :

Le débit horaire maximal accepté par voie est déterminé par application de la formule.

$$Q_{adm}(uvp/h) = K_1.K_2.C_{th}$$

K1: coefficient lié à l'environnement.

K2: coefficient de réduction de capacité.

C_{th}: capacité effective par voie, qu'un profil en travers peut écouler en régime stable.

❖ Valeurs de K1:

Tableau II: 02: Valeurs de K₁

Environnement	\mathbf{E}_1	\mathbf{E}_2	E ₃
K ₁	0.75	0.85	0.90 a 0.95

Valeurs de K₂:

Tableau II - 03 : Valeurs de K₂

	Catégorie de la route					
Environnement	$\mathbf{C_1}$	\mathbb{C}_2	\mathbb{C}_3	C ₄	C ₅	
$\mathbf{E_1}$	1.00	1.00	1.00	1.00	1.00	
\mathbf{E}_2	0.99	0.99	0.99	0.98	0.98	
E ₃	0.91	0.95	0.97	0.96	0.96	

Valeurs de Cth:

Capacité théorique du profil en travers en régime stable.

Tableau II: 04: Valeurs de C_{th}:

	Capacité théorique	
Route à 2 voies de 3,5 m	1500 à 2000 uvp/h	
Route à 3 voies de 3,5 m	2400 à 3200 uvp/h	
Route à chaussées séparées	15001800 uvp/h	

***** II.8- Calcul Du Nombre De Voies :

• Cas D'une Chaussée unidirectionnelle :

On compare **Q** à **Q**_{adm} et en prend le profil permettant d'avoi : **Q** ≤ **Qadm**

! II.9-Application au Projet :

Données Des Trafics Pour Notre Projet :

Selon les résultats des comptages et de prévisions, effectués par le service spécialiserde la DTP Rélizane nous avons un trafic on 2022 reçu les données suivantes :

- **Application numérique :**
- ❖ II.9.1- Calcul Du TJMA De L'année Horizon (2035) :
- ➤ Le trafic à l'année 2022 TJMA2022 = 1100 v/j
- Année de mise en service : 2027
- \triangleright Le pourcentage des poids lourds : $\mathbb{Z} = 35 \%$
- \triangleright Taux de croissance annuelle du trafic : $\tau = 5\%$.
- La durée de vie : 10ans.
- ➤ La vitesse de base sur le tracé **Vb=80 km/h.**

$$TJMA_h = TJMA_0(1+\tau)^n$$

Avec:

$$TJMA2023 = 1100 (1 + 0.05)^5 = 1404 \text{ v/j}.$$

Trafic à l'année (2037) pour une durée de vie de 10ans.

$$TJMA2037 = 1404 \times (1 + 0.05)^{10} = 2287 \text{ v/j}$$

***** II.9.2-<u>Trafic Effectif De L'année De Mise En Service :</u>

Sinuosité moyenne et Terrain vallonné Donc notre projet se situe dans l'environnement **E**₁ d'après le tableau du coefficient d'équivalence.

on a
$$P = 6$$

$$T_{\text{eff }2037} = [(1 - Z) + Z.P] \text{ TJMA}_{2037}$$

$$T_{\text{eff }2037} = [(1 - 0.35) + 0.35 \times 6] \times 2287 = 6290 \text{ uvp/j.}$$

❖ II.9.3- Débit De Pointe Horaire Normal :

La formule qui donne le débit de pointe horaire normale : $\mathbf{Q} = (1/n)\mathbf{T}_{\text{eff.}}$

Q = débit de pointe horaire.

N = nombre d'heure, (en général n=8 heures), donc : $\frac{1}{n}$ = 0.12

T_{eff}: trafic effectif.

D'où le débit prévisible à la 10^{éme} année.

Q prévisible $2037 = 0.12 \times \text{Teff } 2037$.

Q prévisible
$$2037 = 0.12 \times 6290 = 755$$
 uvp/h

Ce débit prévisible doit être inférieur au débit maximal que notre route peut offrir, c'est le débit admissible : $\mathbf{Q} < \mathbf{Q}$ adm.

! II.9.4- Débit Horaire Admissible :

La formule qui donne le Débit Horaire Admissible est :

$$Q_{adm} = K_1.K_2.C_{th}$$

 K_1, K_2 : coefficients correcteur.

C_{th}: capacité théorique.

Pour notre projet l'environnement est \mathbf{E}_1 donc :

$$K1 = 0.75$$
; $K2 = 1.00$

: Q < Q adm Alors $Q < K1 \times K2 \times Cth$

: $C_{th} > Q / K1 \times K2$

 $C_{th} > 755/(0.75 \times 1) = 1007 uvp/h$

 $C_{th} \ge 1007 \text{ uvp/h}$.

D'après le tableau des capacités **B40**, on trouve :

 $C_{th} = 1500$:

(D'après le B40 pour E_1 , C_3 et pour une chaussée à 2 voies).

Qadm = $0.75 \times 1.00 \times 1500 = 1125 \text{uvp/h}$.

Donc on est besoin de réaliser une route de deux voies de 3m de largeur :

N = 1 voie /sens

II.10- Nombre De Voies :

 $N = S \times (Q/Qadm) S$: le coefficient de dissymétrie, en général égal à 2/3

Avec: S = 2/3.

 $N = (2/3) \times (755/1125) = 0.45 = 1$

N = 1 Voie/sens

Les résultats des calculs sont récapitulés dans le tableau suivant :

Tableau II.5 : Représentés Dans Les Calculs :

TJMA ₂₀₂₃ (V/ J)	TJMA ₂₀₃₇ (V/ J)	T _{eff2037} (UVP/J)	Q ₂₀₃₇ (UVP/H)	N
1404	2287	6290	775	1

II.11-<u>CONCLUSION</u>:

La capacité théorique est de : 775 uvp/h, donc selon la norme de B40, notre route sera unidirectionnelle et de 02 voies de circulation de 03 m de largeur chacune et d'un accotement d'une largeur de 02 m de chaque côté.

Chapitre III TRACE EN PLAN

CHAPITRE.III Trace en plan

❖ III.1 - <u>DIFINITION</u>:

Dans sa définition, le tracé en plan représente la projection verticale sur un plan horizontale de la route, les éléments géométriques du tracé en plan sont les alignements droits, les arcs de courbes de cercles et les courbures de raccordement progressif.

❖ III.2 - REGLES A RESPECTER DANS LE TRACE EN PLAN :

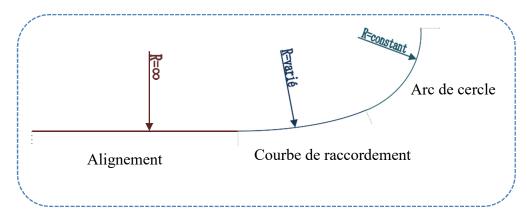
- Le tracé en plan doit assurer aux usagers un trajet confortable et une bonne qualité de service dont le niveau est cependant fonction des difficultés du site.

Dans ce qui suit, on va citer certaines exigences qu'elles nous semblent pertinentes.

- Respecter les normes du **B** 40 si possible.
- L'adaptation de tracé en plan au terrain naturel afin d'éviter les terrassements importants.
- Eviter le franchissement des oueds en minimise au maximum le nombre d'ouvrages d'art et cela pour des raisons économiques.
- Le raccordement de nouveau tracé au réseau routier existant.
- Eviter les sites qui sont sujets à des problèmes géologiques.
- Éviter les dunes de sables.
- Eviter au maximum les propriétés privées.
- Respecter la cote des plus hautes eaux.
- Limiter le pourcentage de longueur des alignements entre 40% et 60% de la longueur total de tracé.
- Respecter la pente maximum, et s'inscrire au maximum dans une même courbe de niveau.
- Respecter la longueur minimale des alignements droits si c'est possible.
- Se raccorder sur les réseaux existants.

*** III.3-LES ELEMENTS DU TRACE EN PLAN:**

Le tracé en plan est constitué par des alignements droits raccordés par des courbes, il est caractérisé par la vitesse de référence qui permet de définir les caractéristiquesgéométriques nécessaires à tout aménagement routier.


Le raccordement entre les alignements droits et les courbes entre elles, il se fait à l'aide de **Clothoïde** qui assure un raccordement progressif.

Un tracé en plan moderne est constitué de trois éléments :

• Des droites (alignements).

CHAPITRE.III Trace en plan

- Des arcs de cercle.
- Des courbes de raccordement progressives :
- **Les Eléments Du Trace En Plan :**

figIII.1- LES ALIGNEMENTS:

- Il existe une longueur minimale d'alignement L min qui devra séparer deux courbes circulaires du même sens. Cette longueur sera prise égale à la distance parcourue pendant 5 secondes à la vitesse maximale permise par le plus grand rayon des deux arcs de cercle.
- Si cette longueur minimale ne peut pas être obtenue, les deux courbes circulaires sont Raccordées par une courbe en C ou Ove.
- La longueur maximale L max est prise égale à la distance parcourue pendant 60 secondes.
- ightharpoonup L max = 60*VB/3.6 avec V en (m/s)
- \triangleright L min = 5*VB/3.6*VB avecV en (m/s)

Pour notre cas Vr = 80 km/h = 22.222 m/s

L max =
$$60 \times 22.22 = 1333.33 \text{ m}$$
 L max = 1333.33 m

$$L \min = 5 \times 22.22 = 111.11m$$
 $L \min = 111.11m$

Donc:

III.2-ARC DE CERCLE:

- Trois éléments interviennent pour limiter la courbe.

- La stabilité des véhicules.
- La visibilité dans les tranchées en courbe.
- L'inscription de véhicules longs dans les courbes de faible rayon.

III.3- STABILITE EN COURBE:

Le véhicule subit en courbe une instabilité à l'effet de la force centrifuge. Afin de réduire cet effet, on incline la chaussée transversalement vers l'intérieur, pour éviter le glissement des véhicules.

Il est nécessaire de fixer les valeurs de l'inclinaison (dévers) ce qui implique un rayon minimal.

Rayon Horizontal Minimal Absolu (Rhm):

- Il est défini comme étant le rayon au devers maximal.
 RH
$$_{min}$$
 = $\frac{{V_r}^2}{127 (\text{ft+d}_{max})}$

F_t: coefficient de frottement transversal Ainsi pour chaque Vr on définit une série de couples (R, d).

Nous avons :
$$Vr=80$$
 ----- $ft=0.15$ ---- $d_{max}=0.07$

Ainsi pour chaque Vr on définit une série de couple (R, d).

RH _{min} =
$$\frac{(80)^2}{127(0.15+0.07)}$$
 = 219.10 m

Selon le B40 à prendre : $RH_{min} = 250m$.

Rayon Minimal Normal (RHN):

Le Rayon minimal normal doit permettre à des véhicules dépassant : V_r de 20 km/h De rouler en sécurité

RHN =
$$\frac{(Vr+20)^2}{127(ft+d_{max})}$$

Pour notre cas :
$$Vr = V+20$$
 ----- $ft = 0.15$ ---- $d_{max} = 0.07$

$$RHN = \frac{(80+20)^2}{127(0.15+0.07)} = RHN = 342.348m$$

Selon le B40 à
$$RHN = 450m$$

Rayon Au Dévers Minimal (Rhd):

C'est le rayon au dévers minimal, au-delà duquel les chaussées sont déversées vers l'intérieur du virage et telle que l'accélération centrifuge résiduelle à la vitesse V_r serait équivalente à celle subie par le véhicule circulant à la même vitesse en alignement droit Dévers associé:

$$d_{min} = -2.5\%$$

$$RHN = \frac{Vr^2}{127*2*d_{min}}$$

Pour notre cas :
$$V_r = 80 \text{ km/h}$$
 ----- $d_{min} = 0.25$

$$RHN = \frac{80^2}{127*2*0.2} = RHN = 839.895m$$

selon le B40 à:
$$RHN = 1000m$$

Rayon Minimal Non Déversé (Rhnd):

Si le rayon est très grand, la route conserve son profil en travers et le divers est négatif Pour l'un des sens de circulation;

le rayon min qui permet cette disposition est le rayon min Non déversé (Rhnd).

Cat 1-2:

RHnd =
$$\frac{{V_r}^2}{127 * 0.025}$$

Cat
$$3 - 4 - 5$$
:

$$RHnd = \frac{{v_r}^2}{127 * (f'-d_{min})}$$

Avec:
$$f' = 0.07$$
 cat 3
 $f' = 0.075$ cat 4 - 5

$$Vr = 80 \text{ km/h}$$
 , $\vec{f} = 0.07$, $d \text{ min} = 0.025$

$$RHnd = \frac{80^2}{127*(0.07-0.025)} = 1259.84m$$

RHnd = 1260 m

RHnd = 1200mselon le B40 à prendre :

Pour notre projet dans un environnement (E1), et classé en catégorie (C3) avec une vitessede base de 80km/h, donc à partir du règlement B40 on peut avoir le tableau suivant :

Tableau III. 1 Rayons Du Tracé En Plan:

Type de rayon	Formule
Rayon horizontal minimal absolu (RHm)	V_{r}^{2} RH min = $\frac{127 \text{ (ft+d}_{\text{max}}\text{)}}{}$
Rayon minimal normal (RHN)	$RHN = \frac{(Vr+20)^2}{127(ft+d_{max})}$
Rayon au dévers minimal (RHd) Dévers associé d _{min} = 2.5%.	Vr^{2} $RHN = \frac{127*2*d_{mi}}{127*2*d_{mi}}$
Rayon minimal non déversé	$RHnd = \frac{{v_r}^2}{127 * (f - d_{min})}$
Pour les catégories 1-2	V_{r}^{2} RHnd = 127 * 0.025
Pour les catégories 3-4-5 Avec : $f = 0.07$ cat 3 $f = 0.075$ cat 4-5	$RH_{nd} = \frac{{v_r}^2}{127 * (f'-d min)}$

Règles Pour L'utilisation Des Rayons En Plan:

Il n'y a aucun rayon inférieur à RHm, on utilise autant des valeurs de rayon ≥ à RHn que possible.

Les rayons compris entre RH m et RHd sont déversés avec un dévers interpolé linéairementen 1/R arrondi à 0,5% prés entre **d** _{max} et d (RHm).

$$Si:RHm < R < RHn$$

$$d = \frac{d \max - d (RHn)}{(1/R - 1/RH \max) + d \max}$$

(1/RHn-1/RHd)

par exemple :
$$250 < R < 450$$
 : $R = 300m$

$$d_{max} = 0.07 \quad RHd = 1000m, \quad RHN = 450m, \quad RH_{max} = 1200m$$

$$d = \frac{d_{max} - d(RHn)}{(1/R - 1/RH_{max})} \quad (1/RHn - 1/RHd) + d_{max}$$

$$d = \frac{0.08 - 0.05}{(1/300 - 1/1200)} \quad (1/300 - 1/1000) + 0.08 = 0.559 \text{ m}$$

$$(1/300 - 1/1200)$$
Entre $d(RHn)$ et d_{min} si $RHn < R < RHd$

$$d = \frac{d(RHn - d_{min})}{(1/R - 1/RHd)} \quad (1/-1/RHd) + d_{min}$$

$$(1/R - 1/RHd)$$
Par exemple : $450 < R < 1000$: $R = 800$

$$d = \frac{d(RHn) - d_{min}}{(1/RHn - 1/RHd)} \quad (1/R - 1/RHd) + d_{min}$$

$$(1/RHn - 1/RHd)$$

$$d = \frac{d(RHn) - d_{min}}{(1/RHn - 1/RHd)} \quad (1/R - 1/RHd) + d_{min}$$

$$(1/RHn - 1/RHd)$$

$$d = \frac{0.05 - 0.03}{(1/800 - 1/1000)} \quad (1/800 - 1/1000) + 0.03 = 0.340m$$

$$(1/450 - 1/1000)$$

Les rayons compris entre RHd et RHnd sont en dévers minimal d min.

Les rayons supérieurs à RHnd peuvent être déversés s'il n'en résulte aucune dépense notable et notamment aucun perturbation sur le plan de drainage. Un rayon RHm doit être encadré par des RHn.

Remarque:

On essaye de choisir le plus grand rayon possible en évitant de descendre en dessous du rayon minimum préconisé.

Sur Largeur :

Un long véhicule à 2 essieux, circulant dans un virage, balaye en plan une bande de chaussée plus large que celle qui correspond à la largeur de son propre gabarit. Pour éviter qu'une partie de sa carrosserie n'empiète sur la voie adjacente, on donne à la voie

Parcourue par ce véhicule une sur largeur par rapport à sa largeur normale en alignement.

 L^2

L: longueur du véhicule (valeur moyenne : L = 10 m).

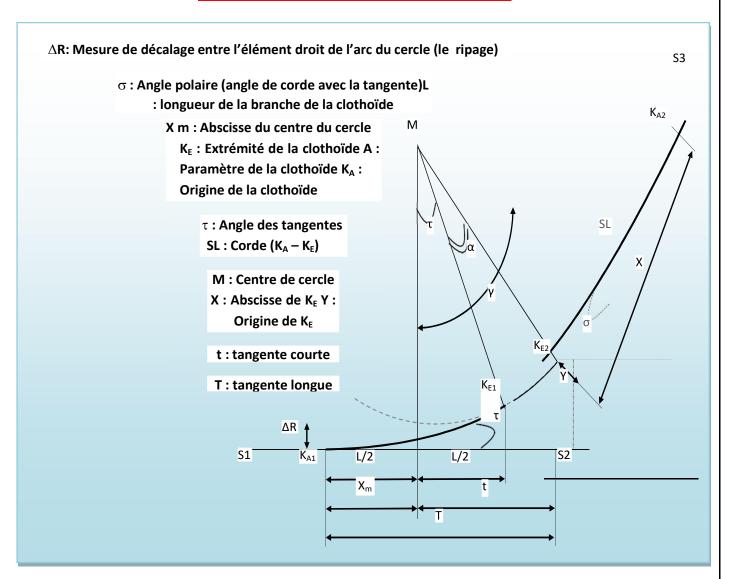
R : rayon de l'axe de la route.

Le passage de l'alignement droit au cercle ne peut se faire brutalement, mais progressivement (courbe dont la courbure droit linéairement de $R=\infty$ jusqu'à R= constant), pour assurer.

La stabilité transversale de véhicule.

!III.4-Les Raccordements Progressifs : (CLOTHOIDE)

- Ne pas empiéter sur les différents réseaux.
- Respecter les servitudes existantes (périmètre agricole).
- Les caractéristiques géométriques du tracé en plan sont :
- Linéaire de 5310.91 ml
- Largeur de plate-forme est de 10 ml
- Largeur des accotements est de (02ml x2)
- Dévers minimal de -2.5 %.
- Dévers maximal de 7 %.
- Rayon Horizontal minimal de 250 m.
- Rayon Horizontal maximal de 1200 m


III.4.1-Expression De La Clothoide :

La courbe est proportionnelle à l'abscisse curviligne (ou longueur de l'arc)

C'est -à- dire que pour le paramètre A choisi, le produit de la longueur L et du rayon R est Constant.

Fig.III.2-Courbe de Raccordement Clothoide:

❖ III.4.2-LES CONDITIONS DE RACCORDEMENT :

La longueur de raccordement progressif doit être suffisante pour assurer les conditions suivantes :

III.4.2.1 - Condition De Confort Optique:

La Clothoïde doit aider à la lisibilité de la route, on amorce le virage, la rotation de latangente doit être $\geq 3^{\circ}$ pour être perceptible a l'œil:

$$\frac{R}{3} \le A \le R$$

❖ REGLE GENERALE (B40)

 $R \ge 2000 \text{ m}$ $\Delta R = 1 \text{ m}$

 $R \ge 5000 \text{ m}$ $\Lambda R = 2.5 \text{m}$ $\tau = 3^{\circ}$

 $2000 < R \le 5000 \text{ m}$ $\Delta R = 1.75 \text{ a } 2.5 \text{ m}$

 $1000 < R \le 2000 \text{ m}$ $\Delta R = 1 \text{ a } 1.75 \text{ m}$

R < 1000 m $\Delta R = 0.5 \text{ a 1 m}$

R < 192 m $\Delta R = 0.5 \text{m}$ (éventuellement 0.5 m)

III.4.2.2 - Condition De Confort Dynamique:

Cette condition Consiste a limite pendant le temps de parcoure Δt du raccordement, la Variation, par unité de temps, de l'accélération transversale.

Vr : vitesse de référence en (Km/h)

R: rayon en (m).

 Δd : variation de dévers

$$L = \frac{Vr^2}{18} \left(\frac{vr^2}{127R} - \Delta d \right)$$

III.4.2.3 - Condition De Gauchissement :

La demi-chaussée extérieure au virage de C.R est une surface gauche qui imprimeun mouvement de balancement au véhicule le raccordement doit assurer.

Un aspect satisfaisant dans les zones de variation de dévers.

$$\frac{R}{3} \le A \le R$$

A cet effet, on limite la pente relative de profil en long du bord de la chaussée déversé et de son axe de telle sorte.

Nous avons : $L = I. \Delta d. V_R$

I : largeur de chaussée.

❖ III.5 - COMBINAISON DES ELEMENTS DU TRACE EN PLAN :

La combinaison des éléments du tracé en plan donne plusieurs types de courbes, on cite.

III.5.1- Courbe En S:

Une courbe constituée de deux arcs de Clothoïde, de concavité opposée tangente enleur point de courbure nulle et raccordant deux arcs de cercle.

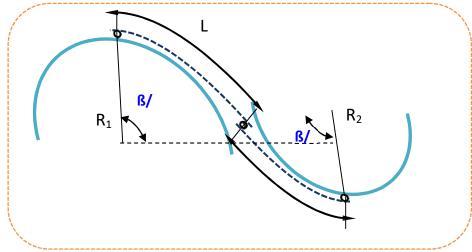


Fig.III.3 - Courbe En S

III.5.2-Courbe A Sommet:

Une courbe constituée de deux arcs de Clothoïde, de même concavité, tangente en un point de même courbure et raccordant deux alignement :

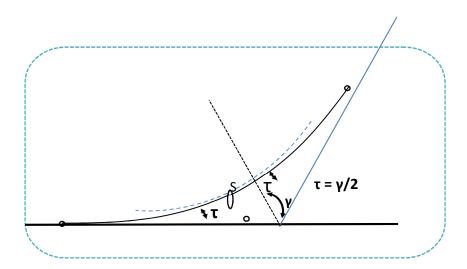


Fig.III.4 - Courbe A Sommet

III.5.3-Courbe En C

Une courbe constituée de deux arcs de Clothoïde, de même concavité, tangente en un point de même courbure et raccordant deux arcs de cercle sécants ou extérieurs l'un à l'autre

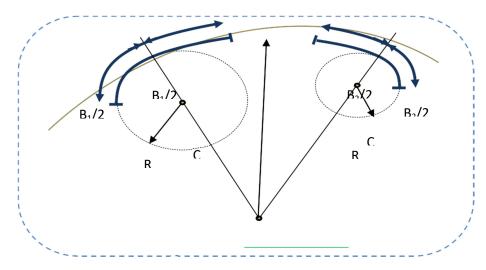
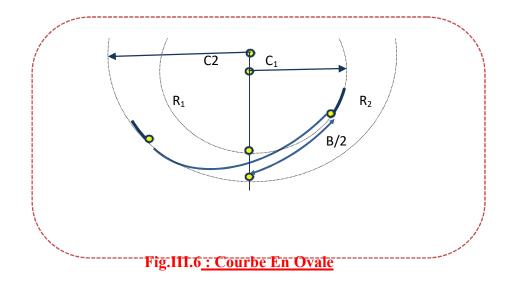



Fig.III. 5 : Courbe En C

III.5.4 - Courbe En Ovele:

Un arc de **Clothoïde** raccordant deux arcs de cercles dont l'un est intérieur à l'autre, sans lui être concentrique.

❖ III.6- PARAMETRES FONDAMENTAUX :

Notre projet s'agit d'une route de catégorie C3, dans un environnement E1, avec une vitesse de base

VB = 80 km/h.

Ces données nous aident à tirer les caractéristiques suivantes qui sont inspiréesde la norme **B40**.

<u>Tableau: (2) Paramètres Fondamentaux:</u>

Parameters	Symbols	Valeurs	Unites
Vitesse	V_{B}	80	km/h
Longueur minimale	L min	111	m
Longueur maximale	L max	1333	m
Devers minimal	D min	2.5	%
Devers maximal	D max	7	%
Temps de perception réaction	t1	5	S
Frottement longitudinal	f_L	0.39	
Frottement transversal	f_{t}	0.15	
Distance de freinage	d0	65	m
Distance d'arrêt	d1	109	m
Distance de visibilité de dépassement minimale	dm	325	m
Distance de visibilité de dépassement normale	dN	500	m
R Hm (m) (d'associe %)	RHm	250 (8 %)	m
R HN (m) (d'associe %)	RHN	450 (5 %)	m
R Hd (m) (d'associe %)	RHd	1000 (3 %)	m
R Hnd (m) (d'associe %)	RHnd	1200(25%)	m

❖ III.7 - <u>LA VITESSE DE REFERENCE (DE BASE):</u>

- La vitesse de référence (VB), c'est le paramètre qui permet de déterminer les caractéristiques géométriques minimales d'aménagement des points singuliers.
- Pour assurer le confort et la sécurité des usagers, la vitesse de référence ne devrait pas varier sensiblement entre les sections différentes, un changement de celle-ci ne doit être admis qu'encoïncidence avec une discontinuité perceptible à l'usager (traverser d'une ville, modification du relief, etc...)

III.7.1- Choix De La Vitesse De Référence :

Le choix de la vitesse de référence dépend de.

- > Type de route.
- > Importance et genre de trafic.
- > Topographie
- > Conditions économiques d'exécution et d'exploitation.

III.7.2-Vitesse De Projet :

La vitesse de projet Vp est la vitesse théorique la plus élevée pouvant être admise en chaque point de la route, compte tenu de la sécurité et du confort dans les conditions normales.

On entend par conditions normales:

- ➤ Route propre sèche ou légèrement humide, sans neige ou glace.
- Trafic fluide, de débit inférieur à la capacité admissible.
- > Véhicule en bon état de marche et conducteur en bonne conditions normales.

III.8-CALCUL D'AXE:

Cette étape ne peut être effectuée parfaitement qu'après avoir déterminé le couloir par lequel passera la voie.

Le calcul d'axe consiste à déterminer tous les points de l'axe, en exprimant leurs coordonnées ou directions dans un repère fixe. Ce calcul se fait à partir d'un point fixe dont on connaît ses coordonnées, et il doit suivre les étapes suivantes :

- > Calcul de gisements
- \triangleright Calcul de l'angle γ entre alignements
- Calcul de la tangente T
- > Calcul de la corde SL
- \triangleright Calcul de l'angle polaire σ
- Vérification de non chevauchement
- ➤ Calcul de l'arc de cercle
- Calcul des coordonnées des points singuliers
- > calcul de kilométrage des points particuliers

❖ III.9 - EXEMPLE DE CALCUL D'AXE MANUELLMENT:

Pour illustrer notre travail de calcul d'axe, il nous semble qu'il est intéressant de détailler au moins un calcul d'une liaison de notre axe.

Les coordonnées des sommets et le rayon utilisé sont comme suit :

Tableau .3	Coord	lonnées]	Des	Situations

$V_B=80$ KM/ H	X (M)	Y (<i>M</i>)	R (M)
S1(p1)	52957,989	49177,287	
S2(p2)	52991,845	49179,859	300
S3(p3)	53034,711	49176,482	

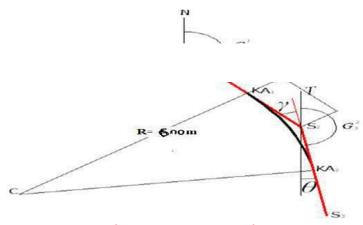


Fig.7 Raccordement Entre Deux Alignements:

III.9.1-Caractéristiques De La Courbe De Raccordement :

• Calcul Du Paramètre A:

On sait que :
$$A^2 = L \times R$$

- Détermination De L :
- 1 Condition De Confort Optique :

$$\frac{R}{3} \le A \min \le R$$
 D'où 200 $\le A_{min} \le 600$
$$R = 250m < 1200m \Rightarrow \Delta R = 0.5 \text{ a partir de B40}$$

$$L = \sqrt{24R}. \Delta R \Rightarrow L = \sqrt{24 * 300 * 0.5} = 60,00m$$

Donc: **L= 60.00m**(1)

! III.9.2 - Condition De Confort Dynamique Et De Gauchissement :

 $RHd \le R \le RHnd$

$$d = ?$$

$$d = d_{min} = -2.5\%$$

$$d = 3.01 - (-2.5) = 5.51\%$$

$$L \ge -\frac{5}{36} \times 5.51 \times 80 = 61.222 m$$

Donc:
$$L = 61.222m$$
(2

De (1) et (2) on aura :

$$L \ge 61.22$$
m

$$L = A^2/R \implies A = \sqrt{LR} = 225.63m$$

On prend : A = 120 m

Lr (réel)
$$\frac{A^2}{R} = \frac{(120^2)}{250} = 57,60$$
m

$$L (réel) = 57,60m$$

3 - Calcul De ΔR

$$\Delta R = L^2 / 24R = (61.22)^2 / (24x300) = 0.5205m$$

$$\Delta \mathbf{R} = \mathbf{0.5} \, \mathbf{m}$$

4 - Calcul Des Gisements :

Le gisement d'une direction est l'angle fait par cette direction avec le nord géographique dans le sens des aiguilles d'une montre.

$$|\Delta X| = |X_A - X_{S1}| = 46.16 \text{ m}$$

 AS_1

$$|\Delta Y| = |Y_A - Y_{S1}| = 8.63 \text{ m}$$

$$|\Delta X_1| = |X_{S1} - X_{S2}| = 33.86 \text{ m}$$

 S_1S_2

$$|\Delta Y_1| = |Y_{S1} - Y_{S2}| = 2.57m$$

D'où:
$$G_{AS1} = 200 + \text{arc tg } \left| \frac{\Delta y}{\Delta x} \right| = 105,0042 \text{ grad}$$
 $G_{S1S2} = 200 + \text{arc tg } \left| \frac{\Delta y}{\Delta x} \right| = 116,2549 \text{ grad}$

Tableur.III.4- Coordonnées des points de sommet:

		angle				
	rayon	(grade)	Т	F	D	В
S1	250,000	6,9357	13,632	5,45	27,223	5,57
S2	380,000	9,8310	29,399	42,864	58,652	48,31
S3	120,000	11,2507	10,631	5,22	21,196	5,46
S4	3000,000	62,4219	1601,168	0,6	2940,071	0,60
S5	175,000	5,4141	7,446	11,55	14,875	12,37
S6	350,000	25,3164	70,524	4,27	139,114	4,32
S7	220,000	7,0257	12,152	6,358	24,267	6,55

***** Tableur.III.5-<u>Valeur des gisements et des distances :</u>

			Axe	e En Plan		
Elts Cara	ctéristiques	}		Points de Co	ontacts	
Nom	Paramètres	S	Longueur	Abscisse	X	Y
Droite 1	Gisement	88,3125	380.55	0.000	52537.74	49098.83
Arc 1	Rayon	250,000	163.6	380.55	52911.83	49168.66
	Centre X	52583.381				
D : 0	Centre Y	48853.0315				
Droite 2	Gisement	114,8863	347.23	544.15	53073.49	49164.22
Arc 2	Rayon	380,000	381.34	891.38	53425.21	49078.46
	Centre Y Centre Y	53337.1625 48708.801				
Droite 3	Gisement	53,8414	72.43	1272.72	5375458	49160.06
Arc 3	Rayon	120,000	101.27	1345.15	53820.0346	49217.8411
	Centre X	53899.6165	101.27	1343.13	33020.0340	7)217.0411
	Centre Y	49128.0262				
Droite 4	Gisement	91,5293	1275.25	1446.42	53910.1392	49259.0685
Arc 4	Rayon	3000,000	137.09	2721.67	55177.05	49428.03
	Centre X	55575.0455				
	Centre Y	46454.5491				
Droite 5	Gisement	93,4480	1419.75	2858.76	55310.14	49444.53
Arc 5	Rayon	175,000	163.98	4278.51	56722.61	49590.25
	Centre X	56740.5889				
	Centre Y	49416.176				
Droite 6	Gisement	46,9606	276.13	4442.49	56864.60	49661.81
Arc 6	Rayon	350,000	173.27	4718.62	57050.02	49864.90
	Centre X	57309.0366				
	Centre Y	49629.5058				
Droite 7	Gisement	66,8621	247.08	4891.89	57185.18	49973.35
Arc 7	Rayon	220,000	171.92	5138.97	57399.66	50096.01
	Centre X	57509.0749				
	Centre Y	49905.147				
Droite 8	Gisement	97,5094			57495.44	50133.43
				5310.89	11407.5993	52683.3255
		Longuei	ır totale de	e l'axe 5310	.89 mètre(s)	

* III.9.4- <u>Calculs éléments de quatre raccordements</u>:

• <u>Bissectrice</u>

$$Biss = R. \left(\frac{1}{\cos \frac{\beta}{2}} - 1 \right)$$

• La <u>développée</u>

$$D = \frac{\pi . \beta^{\text{ deg }} . R}{180} = \frac{\pi . \beta^{\text{ Grad }} . R}{200} = R \beta^{\text{ rd}}$$

• La flèche

$$F = R \left(1 - \cos \frac{\beta}{2} \right)$$

TableurIII.6 -les calculs de rayon de la route existante sont illustrés

	х	У	gissement	angle (grade)
А	52911,890	49168,727	88,3125	
S1	52994,338	49184,036	114,8863	6,9357
S2	53615,281	49036,134	53,8414	9,8310
S3	53858,387	49251,533	91,5293	11,2507
S4	55259,758	49439,102	93,4480	62,4219
S5	56807,669	49598,976	46,9606	5,4141
S6	57106,088	49927,329	66,8621	25,3164
S7	57474,037	50138,266	97,5094	7,0257
В	57563,712	50134,756		

Les longueurs de tracé :

La longueur totale de tracé mesurée : $L_t = 5310.93 \text{ m}$

La longueur totale des arcs de cercles calculée: Lc

D1 = 27.223 m

D2 = 58.652 m

D3 = 21.196 m

D4 = 2940.071 m

D5 = 14.875m

D6 = 139.114 m

D7 = 24.267 m

Lc = 3225.39 m3

La longueur totale des alignements droits calculée : LAD

Ld = LT-Lc = 5310.91 - 3225.39 = 2085.52m

Pourcentage d'alignement droit :

Alignement Droit = 39.27 %

Pourcentage courbe:

Courbe = 60.73 %

! III.10 <u>-Environnement :</u>

Tout itinéraire classé dans l'une des cinq catégories précédentes peut être décomposé en tronçons se

développant selon l'une des trois classes d'environnement E1, E2, E3. En fonction du relief et de sinuosité de la route sur la base d'études des coûts d'aménagement et d'entretien Relief :

Il est caractérisé par la dénivelée cumulée moyenne au Kilomètre (H/L)

Tableur.III.7 - Elément en profil en long pour définir le relief :

NUM	ABSCRISSE	X	Y	Z	ΔΗ	PENT
P1	0	52537,7358	49098,8268	513,08934	/	/
P2	25	52562,3113	49103,4143	512,443281	-0,64605883	-2,58423533
P3	50	52586,8867	49108,0018	511,797222	-0,64605883	-1,29211767
P4	75	52611,4622	49112,5893	511,151164	-0,64605883	-0,86141178
P5	100	52636,0377	49117,1768	510,505105	-0,64605883	-0,64605883
P6	125	52660,6132	49121,7643	509,859046	-0,64605883	-0,51684707
P7	150	52685,1887	49126,3518	509,212987	-0,64605883	-0,43070589
P8	175	52709,7642	49130,9393	508,566928	-0,64605883	-0,36917648
P9	200	52734,3397	49135,5268	507,920869	-0,64605883	-0,32302942
P10	225	52758,9152	49140,1143	507,274811	-0,64605883	-0,28713726
P11	250	52783,4907	49144,7018	506,628752	-0,64605883	-0,25842353
P12	275	52808,0662	49149,2893	505,982693	-0,64605883	-0,23493048
P13	300	52832,6417	49153,8768	505,336634	-0,64605883	-0,21535294
P14	325	52857,2172	49158,4643	504,690575	-0,64605883	-0,19878733
P15	350	52881,7927	49163,0518	504,044516	-0,64605883	-0,18458824
P16	375	52906,3681	49167,6393	503,398458	-0,64605883	-0,17228236

P17	380,55	52911,8287	49168,6586	503,254907	-0,14355014	-0,03772128
P18	400	52930,959	49172,1429	502,752399	-0,50250869	-0,12562717
P19	425	52955,685	49175,8115	502,10634	-0,64605883	-0,15201384
P20	438,15	52968,781	49177,042	501,766388	-0,33995171	-0,07758712
P21	450	52980,6127	49177,5825	501,460281	-0,30610713	-0,06802381
P22	475	53005,5925	49176,8821	500,808064	-0,65221684	-0,13730881
P23	486,55	53017,0828	49175,716	500,490069	-0,3179948	-0,06535702
P24	500	53030,382	49173,7188	500,102969	-0,38710031	-0,07742006
P25	525	53054,8664	49168,6832	499,335292	-0,76767663	-0,14622412
P26	544,15	53073,4894	49164,2207	498,705455	-0,62983798	-0,11574705
P27	550	53079,1722	49162,8334	498,509222	-0,1962324	-0,03567862
P28	575	53103,459	49156,9045	497,670571	-0,8386514	-0,14585242
P29	600	53127,7458	49150,9757	496,831919	-0,8386514	-0,13977523
P30	625	53152,0326	49145,0468	495,993268	-0,8386514	-0,13418422
P31	650	53176,3194	49139,1179	495,155027	-0,83824098	-0,12896015
P32	675	53200,6062	49133,189	494,343036		-0,12029495
P33	700	53224,893	49127,2602	493,572774	-0,77026164	-0,11003738
P34	725	53249,1797	49121,3313	492,844236	-0,72853878	-0,10048811
P35	750	53273,4665	49115,4024	492,157414	-0,686822	-0,09157627
P36	775	53297,7533	49109,4735	491,512303	-0,64511095	-0,08324012
P37	800	53322,0401	49103,5447	490,908897	-0,60340528	-0,07542566
P38	825	53346,3269	49097,6158	490,347193	-0,56170464	-0,06808541
P39	850	53370,6137	49091,6869	489,827184	-0,52000869	-0,06117749
P40	875	53394,9005	49085,758	489,348867	-0,47831707	-0,05466481
P41	891,37	53410,8121	49081,8737	489,05608	-0,29278677	-0,0328465
P42	900	53419,1918	49079,8478	488,903278	-0,15280261	-0,01697807
P43	906,18	53425,2147	49078,4567	488,793715	-0,10956235	-0,01209055
P44	925	53443,674	49074,807	488,460172	-0,33354296	-0,0360587
P45	950	53468,4334	49071,3799	488,017067	-0,44310531	-0,04664266
P46	975	53493,3646	49069,5879	487,573962	-0,44310531	-0,0454467
P47	1000	53518,3596	49069,4389	487,130856	-0,44310531	-0,04431053
P48	1025	53543,3104	49070,9334	486,687751	-0,44310531	-0,04322979
P49	1050	53568,1089	49074,065	486,244646	-0,44310531	-0,04220051
P50	1075	53592,6479	49078,8201	485,80154	-0,44310531	-0,0412191
P51	1100	53616,8213	49085,1781	485,358435	-0,44310531	-0,0402823
P52	1125	53640,5243	49093,1117	484,91533	-0,44310531	-0,03938714
P53	1150	53663,6545	49102,5863	484,472224	-0,44310531	-0,0385309
P54	1175	53686,1118	49113,5611	484,029119	-0,44310531	-0,03771109
P55	1200	53707,799	49125,9885	483,586014	-0,44310531	-0,03692544
P56	1225	53728,6222	49139,8148	483,142909	-0,44310531	-0,03617186
P57	1250	53748,4915	49154,9801	482,699803	-0,44310531	-0,03544842
P58	1257,92	53754,5769	49160,0566	482,559339	-0,14046452	-0,01116637
P59	1272,72	53765,7184	49169,8022	482,296974	-0,26236496	-0,02061438
P60	1297,73	53784,4288	49186,383	481,853822	-0,44315151	-0,03414821

P61	1322,73	53803,1386	49202,9644	481,410717	-0,44310531	-0,0334993
P62	1345,15	53819,9234	49217,8399	481,013199	-0,39751746	-0,02955173
P63	1347,73	53821,8489	49219,5452	480,967612	-0,04558785	-0,00338257
P64	1372,73	53841,1788	49235,3805	480,524506	-0,44310531	-0,03227913
P65	1375,15	53843,1683	49236,7721	480,481474	-0,0430327	-0,00312929
P66	1397,73	53862,8815	49247,6985	480,081557	-0,39991692	-0,02861189
P67	1416,42	53880,5246	49253,824	479,764518	-0,31703836	-0,022383
P68	1422,73	53886,6605	49255,2718	479,662852	-0,10166662	-0,00714588
P69	1446,42	53910,0566	49258,9825	479,304479	-0,35837271	-0,02477645
P70	1447,73	53911,3504	49259,1533	479,285829	-0,01864977	-0,00128821
P71	1472,73	53936,1353	49262,4256	478,950486	-0,3353431	-0,02277017
P72	1497,73	53960,9202	49265,698	478,65682	-0,29366653	-0,01960744
P73	1522,73	53985,7051	49268,9703	478,401679	-0,25514105	-0,0167555
P74	1547,73	54010,49	49272,2426	478,154334	-0,24734488	-0,01598114
P75	1572,73	54035,2749	49275,515	477,906989	-0,24734488	-0,0157271
P76	1597,73	54060,0599	49278,7873	477,659644	-0,24734488	-0,01548102
P77	1622,73	54084,8448	49282,0596	477,412299	-0,24734488	-0,01524252
P78	1647,73	54109,6297	49285,332	477,164954	-0,24734488	-0,01501125
P79	1672,73	54134,4146	49288,6043	476,917609	-0,24734488	-0,0147869
P80	1697,73	54159,1995	49291,8766	476,670264	-0,24734488	-0,01456915
P81	1722,73	54183,9844	49295,149	476,422919	-0,24734488	-0,01435773
P82	1747,73	54208,7693	49298,4213	476,175575	-0,24734488	-0,01415235
P83	1772,73	54233,5542	49301,6937	475,92823	-0,24734488	-0,01395277
P84	1797,73	54258,3391	49304,966	475,680885	-0,24734488	-0,01375873
P85	1822,73	54283,1241	49308,2383	475,43354	-0,24734488	-0,01357002
P86	1847,73	54307,909	49311,5107	475,186195	-0,24734488	-0,01338642
P87	1872,73	54332,6939	49314,783	474,93885	-0,24734488	-0,01320772
P88	1897,73	54357,4788	49318,0553	474,691505	-0,24734488	-0,01303372
P89	1922,73	54382,2637	49321,3277	474,449143	-0,24236278	-0,01260514
P90	1947,73	54407,0486	49324,6	474,258005	-0,1911374	-0,00981334
P91	1972,73	54431,8335	49327,8723	474,129372	-0,12863345	-0,00652058
P92	1997,73	54456,6184	49331,1447	474,06324	-0,06613192	-0,00331035
P93	2022,73	54481,4033	49334,417	474,059608	-0,00363163	-0,00017954
P94	2047,73	54506,1883	49337,6893	474,118477	0,05886858	0,00287482
P95	2072,73	54530,9732	49340,9617	474,239847	0,12136988	0,00585556
P96	2097,73	54555,7581	49344,234	474,42372	0,18387345	0,00876535
P97	2122,73	54580,543	49347,5063	474,655849	0,23212857	0,01093538
P98	2147,73	54605,3279	49350,7787	474,891274	0,23542544	0,01096159
P99	2172,73	54630,1128	49354,051	475,123169	0,23189525	0,01067299
P100	2197,73	54654,8977	49357,3233	475,30637	0,18320021	0,00833588
P101	2222,73	54679,6826	49360,5957	475,427066	0,12069665	0,00543011
P102	2247,73	54704,4675	49363,868	475,485262	0,05819536	0,00258907
P103	2272,73	54729,2525	49367,1403	475,480957	-0,00430485	-0,00018941
P104	2297,73	54754,0374	49370,4127	475,414172	-0,06678499	-0,00290656

P105	2322,73	54778,8223	49373,685	475,317132	-0,09703935	-0,00417781
P106	2347,73	54803,6072	49376,9573	475,220093	-0,09703935	-0,00413333
P107	2372,73	54828,3921	49380,2297	475,123054	-0,09703935	-0,00408978
P108	2397,73	54853,177	49383,502	475,026014	-	-0,00404713
P109	2422,73	54877,9619	49386,7743	474,928975	-0,09703935	-0,00400537
P110	2424,33	54879,5553	49386,9847	474,922737	-0,00623838	-0,00025732
P111	2449,34	54904,3159	49390,4361	474,825697	-0,09703935	-0,00396186
P112	2474,34	54929,0765	49393,8875	474,759206		-0,00268725
P113	2499,34	54953,8371	49397,3389	474,855846		0,00386664
P114	2524,34	54978,5977	49400,7903	475,12941	0,27356371	0,01083704
P115	2549,34	55003,3583	49404,2417	475,448732	0,31932229	0,01252568
P116	2574,34	55028,1189	49407,6931	475,61311	0,16437786	0,00638524
P117	2599,34	55052,8795	49411,1445	475,598912	-0,01419821	-0,00054622
P118	2624,34	55077,6402	49414,596	475,407046	-0,19186589	-0,00731102
P119	2649,34	55102,4008	49418,0474	475,142837	-0,2642087	-0,00997262
P120	2674,34	55127,1614	49421,4988	474,878628	-0,2642087	-0,0098794
P121	2699,34	55151,922	49424,9502	474,61442	-0,2642087	-0,0097879
P122	2721,68	55174,0524	49428,035	474,378277	-0,23614303	-0,00867636
P123	2724,34	55176,6826	49428,4015	474,350211	-0,02806567	-0,00103018
P124	2749,34	55201,4486	49431,8142	474,086002	-0,2642087	-0,0096099
P125	2751,68	55203,7719	49432,1271	474,061226	-0,02477607	-0,0009004
P126	2774,34	55226,2372	49435,0578	473,821794	-0,23943264	-0,00863026
P127	2799,34	55251,052	49438,0948	473,557585	-0,2642087	-0,00943825
P128	2824,34	55275,8912	49440,9249	473,293376	-0,2642087	-0,00935471
P129	2828,77	55280,301	49441,4054	473,246495	-0,04688096	-0,00165729
P130	2849,34	55300,7515	49443,5639	473,029168	-0,21732774	-0,0076273
P131	2858,77	55310,1375	49444,5338	472,929445	-0,0997227	-0,0034883
P132	2874,34	55325,6193	49446,1309	472,764959	-0,164486	-0,00572257
P133	2899,34	55350,4873	49448,6965	472,50075	-0,2642087	-0,00911272
P134	2924,34	55375,3553	49451,262	472,236541	-0,2642087	-0,00903481
P135	2949,34	55400,2234	49453,8275	471,972333	-0,2642087	-0,00895823
P136	2974,34	55425,0914	49456,393	471,708124	-0,2642087	-0,00888294
P137	2999,34	55449,9594	49458,9585	471,443915	-0,2642087	-0,00880889
P138	3024,34	55474,8274	49461,524	471,179707	-0,2642087	-0,00873608
P139	3049,34	55499,6954	49464,0895	470,924377	-0,25532977	-0,00837328
P140	3074,34	55524,5634	49466,655	470,769726	-0,15465106	-0,00503038
P141	3099,34	55549,4314	49469,2205	470,740078	-0,02964774	-0,00095658
P142	3124,34	55574,2995	49471,7861	470,811672	0,07159354	0,00229148
P143	3149,34	55599,1675	49474,3516	470,892494	0,080822	0,00256632
P144	3174,34	55624,0355	49476,9171	470,973316	0,080822	0,0025461
P145	3199,34	55648,9035	49479,4826	471,054138	0,080822	0,00252621
P146	3224,34	55673,7715	49482,0481	471,13496	0,080822	0,00250662
P147	3249,34	55698,6395	49484,6136	471,215782	0,080822	0,00248734
P148	3274,34	55723,5075	49487,1791	471,296604	0,080822	0,00246834

P149	3299,34	55748,3756	49489,7446	471,377426	0,080822	0,00244964
P150	3324,34	55773,2436	49492,3102	471,458248	0,080822	0,00243122
P151	3349,34	55798,1116	49494,8757	471,53907	0,080822	0,00241307
P152	3374,34	55822,9796	49497,4412	471,619892	0,080822	0,00239519
P153	3399,34	55847,8476	49500,0067	471,700714	0,080822	0,00237758
P154	3424,34	55872,7156	49502,5722	471,781536	0,080822	0,00236022
P155	3449,34	55897,5836	49505,1377	471,862358	0,080822	0,00234312
P156	3474,34	55922,4517	49507,7032	471,94318	0,080822	0,00232625
P157	3499,34	55947,3197	49510,2687	472,024002	0,080822	0,00230964
P158	3506,16	55954,1111	49510,9694	472,046074	0,02207251	0,00062953
P159	3531,17	55979,1945	49513,5571	472,13657	0,09049596	0,00256278
P160	3556,17	56004,0625	49516,1226	472,23928	0,10270955	0,00288821
P161	3581,17	56028,9305	49518,6881	472,357615	0,11833501	0,00330437
P162	3606,17	56053,7985	49521,2536	472,491575	0,13396061	0,00371476
P163	3631,17	56078,6665	49523,8191	472,641162	0,14958637	0,00411951
P164	3656,17	56103,5346	49526,3847	472,806294	0,16513217	0,00451653
P165	3681,17	56128,4026	49528,9502	472,977768	0,17147398	0,00465814
P166	3706,17	56153,2706	49531,5157	473,149242	0,17147398	0,00462672
P167	3731,17	56178,1386	49534,0812	473,320716	0,17147398	0,00459572
P168	3756,17	56203,0066	49536,6467	473,49219	0,17147398	0,00456513
P169	3781,17	56227,8746	49539,2122	473,663664	0,17147398	0,00453495
P170	3806,17	56252,7426	49541,7777	473,835138	0,17147398	0,00450516
P171	3831,17	56277,6107	49544,3432	474,006612	0,17147398	0,00447576
P172	3856,17	56302,4787	49546,9087	474,178086	0,17147398	0,00444674
P173	3881,17	56327,3467	49549,4743	474,34956	0,17147398	0,0044181
P174	3906,17	56352,2147	49552,0398	474,521034	0,17147398	0,00438982
P175	3931,17	56377,0827	49554,6053	474,692508	0,17147398	0,00436191
P176	3956,17	56401,9507	49557,1708	474,863982	0,17147398	0,00433434
P177	3981,17	56426,8187	49559,7363	475,035456	0,17147398	0,00430713
P178	4006,17	56451,6868	49562,3018	475,20693	0,17147398	0,00428025
P179	4031,17	56476,5548	49564,8673	475,378404	0,17147398	0,0042537
P180	4056,17	56501,4228	49567,4328	475,549878	0,17147398	0,00422749
P181	4081,17	56526,2908	49569,9984	475,721352	0,17147398	0,00420159
P182	4106,17	56551,1588	49572,5639	475,892826	0,17147398	0,00417601
P183	4131,17	56576,0268	49575,1294	476,0643	0,17147398	0,00415074
P184	4156,17	56600,8948	49577,6949	476,235774	0,17147398	0,00412577
P185	4181,17	56625,7629	49580,2604	476,407248	0,17147398	0,0041011
P186	4206,17	56650,6309	49582,8259	476,578722	0,17147398	0,00407673
P187	4231,17	56675,4989	49585,3914	476,750196	0,17147398	0,00405264
P188	4256,17	56700,3669	49587,9569	476,921669	0,17147398	0,00402883
P189	4278,52	56722,6086	49590,2515	477,075034	0,15336438	0,00358451
P190	4281,17	56725,2349	49590,523	477,093143	0,0181096	0,00042301
P191	4306,17	56750,0366	49593,6343	477,264617	0,17147398	0,00398205
P192	4315,10	56758,8166	49595,2664	477,325876	0,06125825	0,00141962

Trace en plan

P193	4331,17	56774,3677	49599,2904	477,436091	0,11021574	0,00254471
P194	4356,17	56797,6511	49608,3357	477,607565	0,17147398	0,00393635
P195	4381,17	56819,4096	49620,6038	477,779039	0,17147398	0,00391389
P196	4405,93	56839,0264	49635,6904	477,948921	0,16988206	0,00385575
P197	4406,17	56839,1997	49635,8448	477,950513	0,00159192	3,6129E-05
P198	4431,17	56856,9241	49653,4626	478,121987	0,17147398	0,00386972
P199	4442,50	56864,5977	49661,8109	478,199763	0,07777593	0,00175072
P200	4467,51	56881,454	49680,2735	478,401175	0,20141142	0,00450836
P201	4492,51	56898,3102	49698,7361	478,675759	0,27458422	0,00611204
P202	4517,51	56915,1665	49717,1987	479,02389	0,34813089	0,00770626
P203	4542,51	56932,0227	49735,6613	479,445576	0,4216866	0,00928312
P204	4567,51	56948,8789	49754,1239	479,94083	0,49525325	0,01084296
P205	4592,51	56965,7352	49772,5864	480,50929	0,56846036	0,01237799
P206	4617,51	56982,5914	49791,049	481,107658	0,59836826	0,01295868
P207	4642,51	56999,4477	49809,5116	481,706027	0,59836826	0,0128889
P208	4667,51	57016,3039	49827,9742	482,304395	0,59836826	0,01281986
P209	4692,51	57033,1601	49846,4368	482,902763	0,59836826	0,01275156
P210	4717,51	57050,0164	49864,8994	483,501131	0,59836826	0,01268399
P211	4718,63	57050,7763	49865,7318	483,528109	0,02697762	0,00057172
P212	4742,51	57066,9468	49883,2937	484,0995	0,57139064	0,01204827
P213	4767,51	57084,3581	49901,2314	484,697868	0,59836826	0,01255096
P214	4782,92	57095,5368	49911,8409	485,06677	0,36890217	0,0077129
P215	4792,51	57102,7106	49918,2006	485,296236	0,22946609	0,00478801
P216	4817,51	57122,21	49933,8373	485,894604	0,59836826	0,0124207
P217	4827,61	57130,398	49939,7543	486,136407	0,24180233	0,00500874
P218	4842,51	57142,7623	49948,0629	486,492973	0,35656593	0,00736325
P219	4867,51	57164,0622	49961,1481	487,091341	0,59836826	0,01229311
P220	4891,89	57185,1793	49973,3486	487,675068	0,58372688	0,01193252
P221	4892,51	57185,7103	49973,6522	487,689709	0,01464138	0,00029926
P222	4917,51	57207,4121	49986,0632	488,288077	0,59836826	0,01216811
P223	4942,51	57229,1139	49998,4741	488,886446	0,59836826	0,01210657
P224	4967,51	57250,8157	50010,885	489,481101	0,59465556	0,0119709
P225	4992,51	57272,5175	50023,296	489,986482	0,50538021	0,01012277
P226	5017,51	57294,2194	50035,7069	490,366802	0,38032077	0,00757987
P227	5042,51	57315,9212	50048,1178	490,622092	0,25528982	0,00506275
P228	5067,51	57337,623	50060,5288	490,75237	0,13027797	0,00257085
P229	5092,51	57359,3248	50072,9397	490,757646	0,00527583	0,0001036
P230	5117,51	57381,0266	50085,3506	490,63792	-0,11972595	-0,00233954
P231	5138,98	57399,6644	50096,0093	490,4353	-0,20261964	-0,0039428
P232	5142,51	57402,7288	50097,7609	490,393183	-0,04211713	-0,000819
P233	5167,51	57424,6184	50109,8339	490,023551	-0,36963189	-0,007153
P234	5184,43	57439,8566	50117,1929	489,734681	-0,28887047	-0,00557188
P235	5192,51	57447,3007	50120,3212	489,596856	-0,13782445	-0,00265429
P236	5217,51	57470,9978	50128,2442	489,170161	-0,42669492	-0,00817813

P237	5242,51	57495,4405	50133,4291	488,812627	-0,35753437	-0,00681991
P238	5265,45	57518,2648	50135,7202	488,696939	-0,11568782	-0,00219711
P239	5267,51	57520,3135	50135,8085	488,696854	-8,5193E-05	-1,6173E-06
P240	5292,51	57545,3069	50135,6823	488,831087	0,13423329	0,00253629
P241	5310,91	57563,6878	50134,767	489,08599	0,25490302	0,00479961
			$\sum \Delta H$		-5,52716054	
			$\sum \Delta H/L$		1.040	

- $\Sigma \Delta H = -5.52716$
- Σ Distance = 5310,91m

 $Dc = \sum \Delta H / \sum distance = 1.040$

N°	Classification du terrain	Dénivelée cumulée
1	plat	Dc< 1.5%
2	Plat mais inondable	Dc = 1.5%
3	Terrain vallonné	1.5% <dc≤4%< td=""></dc≤4%<>
4	Terrain montagneux	Dc>4%

On peut conclure toute en se référant au tableau ci-dessus que le relief : Terrain plat

III.12-Sinuosité:

$$\sigma = \frac{Ls}{LT}$$

Avec:

Ls = 0 si aucun rayon n'est inférieur a 200m

Donc: $\sigma = 0$

Les valeurs seuils, déterminées par l'analyse de nombreux itinéraire en Algérie permettent de caractériser trois domaines de sinuosité (Voir le tableau suivant)

N°	N°Classification	Sinuosité	
1	Sinuosité faible	σ<0.10	
2	Sinuosité moyenne	0.10<σ<0.30	
3	Sinuosité forte	σ>0.30	

A partir du tableau ci-dessus, nous pouvons conclure que notre calcul est de sinuosité faible.

Environnement de la route :

Trois types d'environnement sont caractérisés par le croisement des 2 paramètres précédents à partir du tableau suivant :

Sinuosité et relief	Faible	Moyenne	Forte
Plat	E1	E2	
Vallonné	E2	E2	E3
Montagneux		E2	E3

Dans notre cas, nous avons:

<u>Terrain plat</u> <u>Environnement</u> E1 <u>Sinuosité faible</u>

La vitesse de référence :

La catégorie de notre tronçon est CAT3 et environnement **E1** VVL et VPL en fonction de la Cat et E sur B40

Environnement Catégorie	E1	E2	E3
Cat1	120-100-80	100-80-60	80-60-40
Cat2	120-100-80	100-80-60	80-60-40
Cat3	120-100-80	100-80-60	80-60-40
Cat4	100-80-60	80-60-40	60-40
Cat5	80-60-40	60-40	40

À partir du tableau La vitesse à considérer selon les normes est : Vr =80 Km/h

* Calcul De L'angle γ

$$\gamma = |G^{s3} - G^{s2}| = 6.93 \text{ grades}$$

***** Calcul De L'angle τ

$$\tau = \frac{L}{2R} \times \frac{200}{\pi} = \frac{57.60}{2 \times 300} \times \frac{200}{\pi} = 6.11 \text{ grades}$$

 $\tau = 6.11$ grades

Vérification De Non Chevauchement :

 τ = 6.11grades.

$$\gamma/2 = 6.93/2 = 3.46$$
 grades.

Calcul Des Distances :

$$\overline{S_{A}S_{1}} = \sqrt{(\Delta X^{2} + \Delta Y^{2})} = \sqrt{46.16^{2} + 8.63^{2}} = 46.959m$$

$$\overline{S_{1}S_{2}} = \sqrt{(\Delta X_{1}^{2} + \Delta Y_{1}^{2})} = \sqrt{33.86^{2} + 2.57^{2}} = 33.975m$$

III.13-Caractéristiques De La Courbe De Raccordement :

• Calcule De L'abscisse Du Centre Du Cercle

$$Xm = \frac{A^2}{2R} = \frac{L}{2} = 28.80m$$

• Abscisse De KE

$$\mathbf{x} = L(1 - \frac{L}{40 R^2}) = 57.599 \mathbf{m}$$

• Origine De KE

$$Y = \frac{L^2}{6R} = 1.84m$$

• Calcule De La Tangente :

$$T = Xm + (R + \Delta R) tg(\frac{Y}{2}) = 33.625$$
, On $a : \frac{L}{R} = 0.1919$

• Calcul Des Coordonnées SL:

$$SL = \sqrt{X^2 + Y^2} = \sqrt{57.59^2 + 1.84^2} =$$
 60.97

• Calcul De σ

$$\sigma = \arctan(\frac{Y}{x}) = \arctan(\frac{1.84}{57.59}) = 1.829 \text{ grd}$$

• Calcul De L'arc:

$$a = y - 2\tau = 1.84 - (2*6.11) = -10.38gr$$

III.13. 1-Calcul Des Coordonnées Des Points Singuliers

$$Xj = Xi + Dij \times Sin Gij$$

 $Xj = Yi + Dij \times cos Gij$

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
SA K_{A1} X_A Y_A DAKA1 =D _{AS1} -T=13.334 GAKA1 = G _A	_{AS1} =116,2549

K _{A1}	K_{E1}	X _{KA1}	Y _{KA1}	DKA1KE1 =SL = 60.97	GKA1KE1= G_{AS1} + σ =118.083
SC	KA2	XC	YC	$DCKA2 = D_{S1S2} - T = 26.99$	$GCKA2 = G_{S1S2} + 200 = 305.50$
K _{A2}	K _{E2}	X _{KA}	Y _{KA2}	DKA2KE2 = SL = 60.97	GKA2KE2= GCKA2 + σ = 307.329

CHAPITRE IV PROFIL EN LONG

Chapitre: IV profil en long

❖ IV.1 - DEFINITION :

Le profil en long d'une route est une ligne continue obtenue par l'exécution d'une coupe longitudinale fictive, donc il exprime la variation de l'altitude de l'axe routier en fonction de l'abscisse curviligne.

Le but principal du profil en long est d'assurer pour le conducteur une continuité dans l'espace deLa route afin de lui permettre de prévoir l'évolution du tracé et une bonne perception des points singuliers.

Le profil en long est toujours composé d'éléments de lignes droites raccordés par des paraboles.

• IV.2 – REGLES A RESPECTER POUR LE TRACE DU PROFIL EN LONG :

Dans ce paragraphe on va citer les règles qu'il faut les tenir en compte –sauf dans des cas exceptionnels ; lors de la conception du profil en long, l'élaboration du tracé s'appuiera sur les règles suivantes.

- Respecter les règles du B40 (déclivités Max et Min)
- ➤ Un profil en long en léger remblai est préférable à un profil en long en léger déblai, qui complique l'évacuation des eaux et isole la route du paysage.
- > Eviter les angles rentrants en déblai, car il faut éviter la stagnation des eaux et assurerleur écoulement.
- Respecter les valeurs des paramètres géométriques préconisés par les règlements envigueur.
- ➤ Pour assurer un bon écoulement des eaux. On placera les zones des dévers nul dans une pente de 0.5% du profil en long.
- Assurer une bonne coordination entre le tracé en plan et le profil en long, Remplacerdeux cercles voisins de même sens par un cercle unique.
- > Eviter une hauteur excessive en remblai.
- Rechercher un équilibre entre le volume des remblais et les volumes des déblais.
- Adapter le profil en long aux grandes lignes du paysage.

• IV.3 - LES ELEMENTS DE COMPOSITION DU PROFIL EN LONG :

Le profil en long est constitué d'une succession de segments de droites (rampes et pentes)raccordés par des courbes circulaires, pour chaque point du profil en long on doit déterminer :

L'altitude du terrain naturel.

Chapitre: IV profil en long

- L'altitude du projet.
- La déclivité du projet. Etc

• IV.4 - COORDINATION DU TRACE EN PLAN ET PROFIL EN LONG :

Il est très nécessaire de veiller à la bonne coordination du tracé en plan et du profil en longen tenant compte également de l'implantation des points d'échange afin :

- D'avoir une vue satisfaisante de la route en sus des conditions de visibilité minimale.
- D'envisager de loin l'évolution du tracé.
- ➤ De distinguer clairement les dispositions des points singuliers (carrefours, échangeurs, etc.) pour éviter les défauts résultats d'une mauvaise coordination tracé en plan et profil en long, les règles suivantes sont à suivre.
- > D'augmenter le ripage du raccordement introduisant une courbe en plan si le profil en long est convexe.
- D'amorce la courbe en plan avant un point haut.
- lorsque le tracé en plan et le profil en long sont simultanément en courbe.
- ➤ De faire coïncider le plus possible les raccordements du tracé en plan et celle du profil en long (porter les rayons de raccordement vertical à **5 fois** au moins le rayon en plan.

• IV.5 - DEFINITION DE LA DECLIVITE :

La déclivité d'une route est l'angle tangente que fait le profile en long avec l'horizontal, onl'appel pente pour les descentes et rampes pour les montées.

IV.5.1- Déclivité Minimale :

Dans un terrain plat n'emploie normalement jamais de pente nulle de façon à ce que l'écoulement des eaux pluviales s'effectue facilement a long de la route au bord de la chaussé.

On adopte en général les pentes longitudinales minimales suivantes.

Au moins 0,5% et de préférences 1 %, si possible.

- ➤ l_{min}= 0,5 % dans les longues sections en déblai : pour que l'ouvrage d'évacuation des eaux ne soit pas trop profondément.
 - ► l_{min}= 0,5 % dans les sections en remblai prévues avec des descentes d'eau.

IV.5. 2 - Déclivité Maximale :

La déclivité maximale est acceptée particulièrement dans les courtes distances inférieures à 1500m.

• Pour Les Raisons Suivantes :

- la réduction de la vitesse et l'augmentation des dépenses de circulation par la suite (cas de rampe Max)
- l'effort de freinage des poids lourds est très important qui fait l'usure de pneumatique(cas de pente max)

• Donc La déclivité maximale dépend de :

- Conditi on d'adhérence.
- Vitesse minimum de poids lourd
- Condition économique

Selon la norme du B40 :

Tableau.IV .1 : Déclivité Maximum3

V _r Km/h	40	60	80	100	120	140
I max %	8	7	6	5	4	4

Pour notre cas la vitesse $V_r=80$ Km/h, donc la pente maximale $I_{max}=6\%$.

❖ IV.6 – RACCORDEMENT EN PROFIL EN LONG:

Les changements de déclivité constituent des points particuliers dans le profil en long, ce changement est assurer par l'introduction de raccordement circulaire qui doit satisfaire aux conditions de confort et de visibilité. Il y a deux types de raccordements.

• IV.6. 1 - Raccordement Convexes (Angle Saillants)

Les rayons minimums admissibles des raccordements paraboliques en angles saillants sont déterminés à partir de la connaissance de la position de l'œil humain et des obstacles d'une part, des distances d'arrêt et de visibilité d'autre part.

Leur conception doit satisfaire à la condition.

- > Condition de confort.
- Condition de visibilité.

• IV.6.1.A - Condition De Confort :

Elle consiste à limiter l'accélération verticale à laquelle le véhicule sera soumis lorsque le profil en long comporte une forte courbure convexe.

Limitation de l'accélération verticale.

g/40 pour (cat.1-2)

 $Vr^2/Rv < g/40$

Pour g = 10 m/s

Rv min =
$$\begin{cases} 0.3 \text{ Vr}^2 \text{ pour cat. } 1-2 \\ 0.23 \text{ Vr}^2 \text{ pour cat. } 3-4-5 \end{cases}$$

Dans notre cas Rv min = 0.23 Vr^2

Avec: Rv: rayon vertical (m)

Vr: vitesse référence (Km/h)

Pour notre cas Vr = 80 km/h

Rv min = $0.23x 80^2 = 1472m$

• IV.6.1. B - Condition De Visibilité :

Tableau. IV. 2- Condition De Visibilité

Vitesse du véhicule (km/h)	80	
Longueur de freinage d0(m)	65	
Distance d'arrêt en alignement d1(m)	109	
Distance d'arrêt en courbe d2 (m)		120
Distance de visibilité de dépassement	min dd	325
	500	
Distance de visibilité de manœuvre de dépassement	dMd	200

La visibilité intervient seulement dans les raccordements des points hauts comme condition supplémentaire à celle de condition confort.

Il faut que deux véhicules circulant en sens opposés puissent s'apercevoir à une distance double de la distance d'arrêt au minimum. Le rayon de raccordement est donné par la formule suivante.

Avec:

$$\mathbf{RV} = \frac{d0^2}{2} (\mathbf{h}_0 + \mathbf{h}_1 + 2\sqrt{(\mathbf{ho} \times \mathbf{h}1)})$$

d₀: distance d'arrêt (m)

h₀: hauteur de l'œil (m)

h₁: hauteur de l'obstacle (m)

Les rayons assurant ces deux conditions sont données pour les normes en fonction de la

Chapitre: IV profil en long

vitesse de base et de la catégorie.

Dans notre cas ; VB = 80km/h et de catégorie C3

❖ IV.6.2 - Raccordement Concave : (Angle Rentrant)

Dans le cas de raccordement dans les points bas, la visibilité du jour n'est pas déterminante, plutôt c'est pendant la nuit qu'on doit s'assurer que les phares du véhicule devront éclairer un tronçon suffisamment long pour que le conducteur puisse percevoir un obstacle, la visibilité est assurée pour un rayon satisfaisant la relation.

$$R'V = \frac{d0^2}{(1.5+0.035+d0)}$$

Avec : $\mathbf{d_0}$: distance d'arrêt (m)

• La Condition Esthétique :

Une grande route moderne doit être conçue et réalisée de façon à procurer à l'usager une impression d'harmonie, d'équilibre et de beauté. Pour cela, il faut éviter de donner au profil enlong une allure sinusoïdale en changent le sens de déclivités sur des distances courtes. Pour éviter cet effet, en imposera une longueur de raccordement minimale et (b >50) pour Des dévers d < 10% (spécial échangeur).

$$RV_{\min} = 100 \left(\frac{50}{\Delta d (\%)} \right)$$

Avec:

 Δd : changement de dévers.

RV_{min}: rayon verticale minimale.

Pour le cas de la R, on a respecté les paramètres géométriques concernant le tracé de la ligne rouge sont donnés par le tableau suivants (selon le B40).

Tableau.IV.3 -Normes Pratique Du Profil En Long

Catégorie		C3
Environnement	E1	
Vitesse de référence (km/h)	80	
Rayon en angle saillant (Rv1)	250	
	Minimal normal Rvn2	8000
Rayon en angle rentrant (Rv2)	Minimal absolu Rvm	1200
	Minimal normal Rvn	3000
Déclivité maximale Imax (%)	7	
Rayon assurant la distance de visib	vilité de dépassement dm RVD	10000

Vitesse de poids lourd VPL (km/h)	35

❖ IV.7 – DETERMINATION PRATIQUES DU PROFIL EN LONG :

Dans les études des projets, on assimile l'équation du cercle :

$$X^2 + Y^2 - 2RY = 0$$

À l'équation de la parabole :

$$X^2 - 2 RY = 0 \implies \mathbf{Y} = \frac{X^2}{2R}$$

Pratiquement, le calcul des raccordements se fait de la façon suivante :

- Donner les coordonnées (abscisse, altitude) les points A, D
- Donner La pente P_1 de la droite (A_S)
- Donner la pente P₂ de la droite (D_S)
- Donner le rayon.

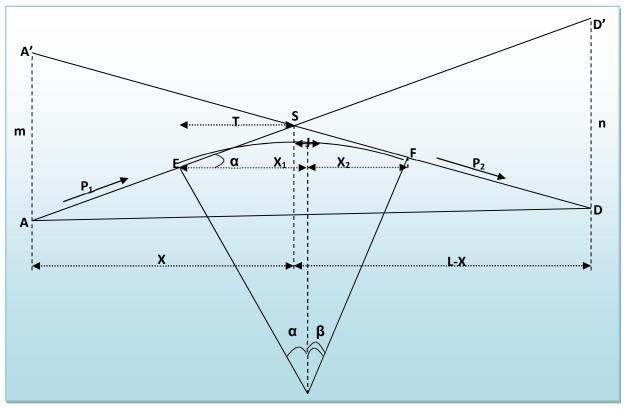


Fig.IV.1-<u>La Courbe Dans Le Profil En Long</u>:

❖ IV.7.1.A - <u>Détermination De La Position Du Point De Rencontre (S)</u>

$$Z_{D} = Z_{A} + L.P_{2}$$
 $m = Z_{A} - Z_{A}$

On à:

$$Z_{A} = Z_{D} + L.P_{1}$$
 $n = Z_{D} - Z_{D}$

Les deux triangles SAA' et SDD' sont semblables donc :

$$\frac{m}{n} - \frac{x}{l - x} \rightarrow x - \frac{ml}{m + n}$$

$$X_S = x + x_A$$

S

$$Z_{S} = P_{1.X} + z_{A}$$

• IV.7.1.B - Calcul De La Tangente :

$$T = \frac{R}{2} |P1 + P2|$$

On prend (+) pour les rampes et (-) pour les pentes :

La tangente (T) permet de positionner les pentes de tangentes B et C

$$\mathbf{E} \left\{ \begin{array}{l} \mathbf{XE} = \mathbf{xs} - \mathbf{T} \\ \mathbf{ZE} = \mathbf{zs} - \mathbf{T} \cdot \mathbf{P1} \end{array} \right. \quad \mathbf{F} \left\{ \begin{array}{l} Xf = Xs + T \\ Zf = Zs + T \cdot \mathbf{P2} \end{array} \right.$$

• IV.7.1.C - Projection Horizontale De La Longueur De Raccordement :

• IV.7.1.D - <u>Calcul De La Flèche</u>:

$$\mathbf{F} = \frac{T^2}{2R}$$

• IV.7.1.E - <u>Calcul De La Flèche Et L'altitude D'un Point Courant M Sur La Courbe :</u>

$$Hx = \frac{X^2}{2R}$$

M

$$Z_M = Z_E + X. P_1 - \frac{X^2}{2R}$$

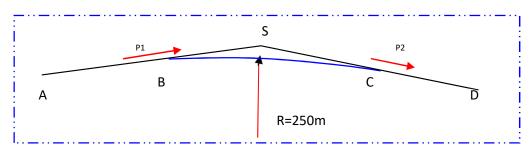
• IV.7.1.F - <u>Calcul Des Coordonnées Du Sommet De La Courbe :</u>

Le point J correspond au point le plus haut de la tangente horizontale.

$$X_J = X_E + R \cdot P_1$$

J

$$Z_J = Z_E + X_1 \cdot P_1 - \frac{X^2}{2R}$$


Avec:

$$\mathbf{X}_1 = \mathbf{R}.\mathbf{P}_1$$

$$\mathbf{X_2} = \mathbf{R.P_2}$$

❖ IV.8 - <u>APPLICATION AU PROJET :</u>

A - Exemple De Calcul Du Profil En Long:

$$S_A = 52911.83m$$

$$S_S = 52968.78m$$

$$S_D = 53017.08 m$$

Α

S

D

$$Z_A = 503.25m$$

$$Z_s = 501.77m$$

$$Z_D = 500.49 m$$

Calcul Des Pentes :

$$P_1 = \Delta Z_1 / \Delta S_1$$

$$P_1 = \frac{501.77 - 503.25}{52968.78 - 52911.83} = -0.025$$

$$P_2 = \Delta Z_2 / \Delta S_2$$
 \Rightarrow $P_2 = \frac{500.49 - 501.77}{53017.08 - 52968.78} = -0.026$

Calcul Des Tangentes :

$$T = \frac{R}{2}(|P1| + |P2|) = 250x (0.025 + 0.026)/2 = 6.375m$$

Calcul Des Flèches:

$$H=T^2/2R \implies (6.375)^2/2 \times 250 = 0.0812 \text{ m}$$

Calcul Des Coordonnées Des Points De Tangentes :

Calcul De La Longueur De La Courbe :

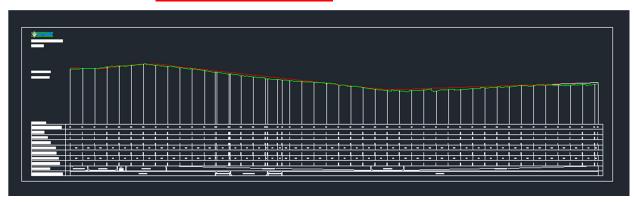


Fig. IV .2- Profils En Long Courant

CHAPITRE V PROFIL EN TRAVERS

• V.1 – <u>DEFINITION</u>:

Le profil en travers c'est la coupe de la route suivant un plan perpendiculaire à son axe.Il définit notamment la largeur et le dévers des chaussées et les zones non rouables de la route

Le choix d'un profil en travers dépend essentiellement du trafic attendu sur CW 14, qui définit le nombre de voies

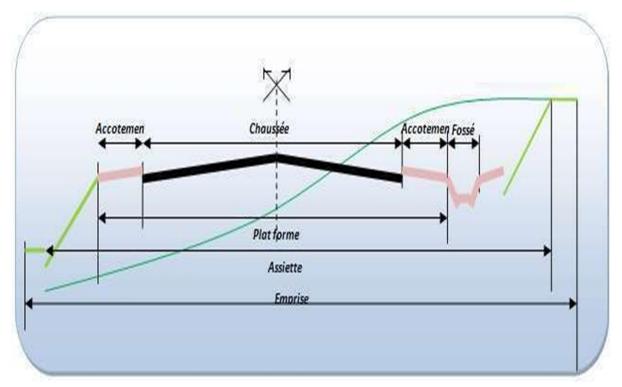


Fig. V.1-Les Eléments Constitutifs Du Profil En Travers

❖ V.2 - DIFFERENTS TYPES DE PROFIL EN TRAVERS :

Dans une étude d'un projet de route l'ingénieur doit dessiner deux types de profil en travers :

V.1.A - Profil En Travers Type:

Il contient tous les éléments constructifs de la future route dans toutes les situations(En remblai, en déblai, en alignement et en courbe)

V.1.B - Profil En Travers Courants:

Se sont des profils dessinés à des distances régulières qui dépendent du terrain naturel.

❖ V. 3 - LES ELEMENTS CONSTITUTIFS DU PROFIL EN TRAVERS :

Le profil en travers doit être constitué par les éléments suivants.

A- La Chaussée:

C'est la partie affectée à la circulation des véhicules.

B - La Largeur Rouable:

Elle comprend les sur-largeurs de chaussée, la chaussée et bande d'arrêt.

C - La Plate-forme :

C'est la surface de la route située entre les fossés ou les crêtes des talus de remblais, comprenant la chaussée et les accotements.

D – Assiette:

C'est la surface de la route délimitée par les terrassements.

E - L'emprise :

C'est la surface du terrain naturel affectée à la route et à ses dépendances (Talus, chemins de désenclavement, exutoires, ext...) limitée par le domaine public.

F - Les Accotements:

En dehors des agglomérations, les accotements sont dérasés. Ils comportent généralement les éléments suivants.

- ✓ Une bande de guidage.
- ✓ Une bande d'arrêt.
- ✓ Une berme extérieure.

H - Le Fossé:

C'est un ouvrage hydraulique destiné à recevoir les eaux de ruissellementprovenant de la route et talus et les eaux de pluie.

I - La Berme:

Elle participe aux dégagements visuels et supporte des équipements(Barrières de sécurité, signalisations..). Sa largeur qui dépend tout de l'espace nécessaire aufonctionnement du type de barrière de sécurité à mettre en place.

❖ V.4 - <u>TYPES DE PROFILS EN TRAVERS</u> :

Il existe trois types de profils en travers :

- remblai
- déblai
- mixtes.

❖ V.5 - PROFIL EN TRAVERS COURANT:

V.1.A - Cas Remblai:



Fig. V – 2 Types De Profils En Travers

V.1.B - Cas Déblai:

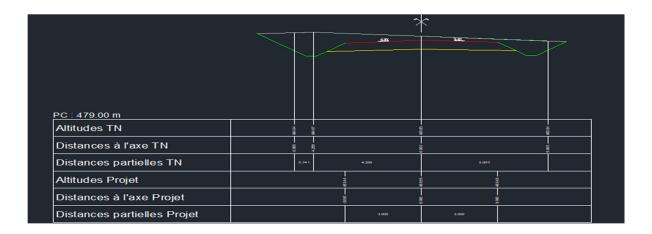


Fig V- 3 Types De Profils En Travers

V.1.C - Cas Mixte:

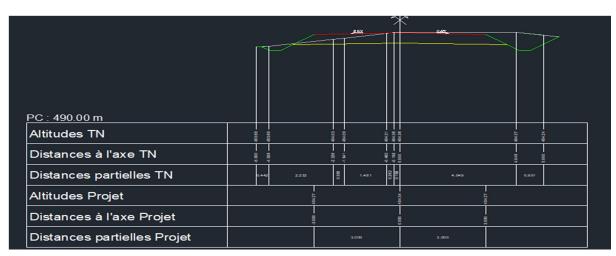


Fig. - 4 Types De Profils En Travers

❖ V.6 - <u>APPLICATION AU NOTRE PROJET</u> :

Après l'étude de trafic, le profil en travers type retenu pour la Projet sera composéd'une chaussée bidirectionnelle. Les éléments du profil en travers type sont comme suit.

Chaussée unidirectionnelle de 2 voies : 2x3=6.00m

Accotement : 2 m de chaque côté
 Largeur de la plate-forme : 10 m

➤ Devers minimum :-2.5 %

> Devers maximum: 7% pour un rayon minimum

Pente de talus en remblai : 4/3
Pente de talus en déblai : 2/3

V.6.1 - <u>Le Profil En Travers Type A Eté Choisi De Manière A :</u>

- > Assurer un équilibre transversal des véhicules
- Assurer l'introduction progressive des dévers au niveau des courbures de façon à respecter les conditions de stabilité.
- Assurer un bon écoulement des eaux pluviales
- > Eviter la stagnation des eaux

CHAPITRE VI CUBATURES

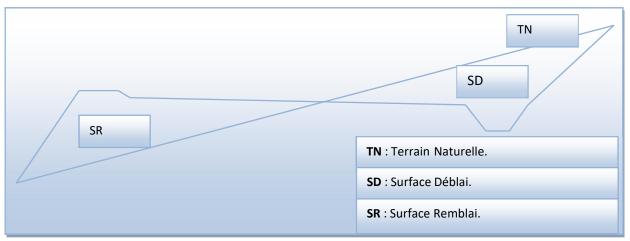
❖ VI.1 − <u>INTRODUCTION:</u>

Les cubatures de terrassement sont l'évolution des cubes de déblais et de remblais, que comporte le projet afin d'obtenir une surface uniforme et parallèlement sous adjacente à la ligne de projet.

Les éléments qui permettent cette évolution sont.

- les profils en long.
- les profils en travers.
- Les distances entre les profils.

Les profils en long et les profils en travers doivent comporter un certain nombre de points suffisamment proches pour que les lignes joignent ces points diffèrent, le moinspossible, de la ligne du terrain qu'ils représentent.


VI.2 - DEFINITION:

La cubature des terrassements consiste à calculer les volumes de terre à enlever (déblais) et les volumes à apporter (Remblai), pour donner à la route une allure uniforme et homogène pour recevoir un corps de chaussée qui permettre aux véhicules de circuler en toutes sécurité et sérénités à partir de :

- Les Surfaces de remblai ou de déblais obtenus par le profil en travers.
- Les Distances entre profils en travers, indiquées sur le profil en long.
- **VI.3** METHODE DE CALCULE DES CUBATURES :
- Les cubatures sont Les calculs effectués pour avoir les volumes des terrassements existants dans notre projet, les cubatures sont fastidieuses, mais il existe plusieurs méthodesde calcul des cubatures qui le simplifie.
- Le travail consiste à calculer les surfaces SD et SR pour chaque profil en travers, en suite onles soustrait pour trouver la section.

❖ VI.3 – 1 METHODE De Mr SARRAUS :

La méthode **SARRAUS** c'est une méthode simple qui se résume dans le calcul des volumes des tronçons compris entre deux profils en travers successifs.

FigVI.1-Explique La Méthode SARRAUS

❖ VI.3.1.A - Formule De Mr SARRAUS :

Cette méthode « formule des trois niveaux »consiste à calculer le volume de déblaiou de remblai des tronçons compris entre deux profils en travers successifs.

V
$$V = \frac{h}{6} (S_1 + S_2 + 4 \times S)_{MO}$$

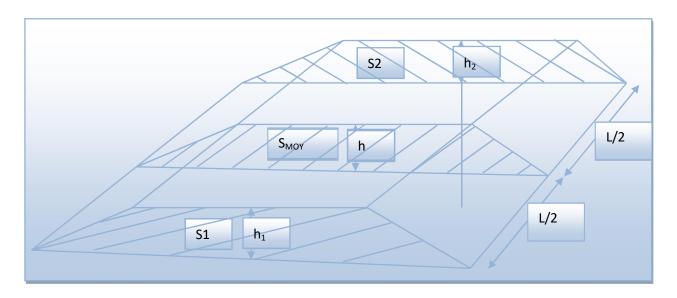


Fig.VI -2- Formule De Mr SARRAUS

VI.3.1.B - Description De La Méthode :

En utilisant la formule qui calcul le volume compris entre deux profils successifs

$$V = \frac{h}{6} (S_1 + S_2 + 4S_0)$$

Où h, S_1 , S_2 et S_0 désignant respectivement :

- ➤ Hauteur entre deux profils.
- Hauteur des deux profils.

Surface limitée à mi-distances des profils.

Ici à la figure ci-dessous on adopte pour des profils en long d'un tracé donnés.

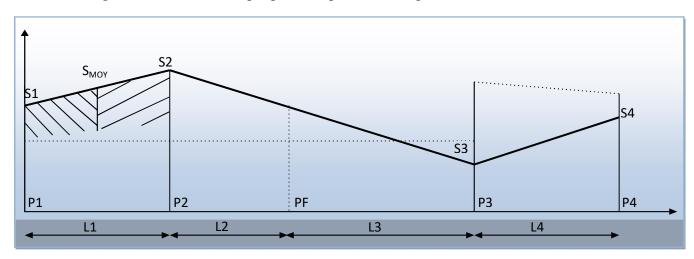


Fig.VI. 3 - Calcul Des Cubatures De Terrassement

PF: profil fictive, surface nulle

Si : surface de profil en travers Pi Li : distance entre ces deux profils

SMOY : surface intermédiaire (surface parallèle et à mi-distance L

Pour éviter des calculs très long, on simplifie cette formule en considérant comme très

Voisines les deux expressions SMOY et (S1+S2).

2

Ceci donne : $V_i = \frac{Li}{2} \times (S_i + S_{i+1})$

Donc les volumes seront :

 $V_1 = \frac{11}{2} \times (S_1 + S_2)$ Entre P1 et P2 $V_2 = \frac{12}{2} \times (S_2 + 0)$ Entre P2 et PF $V_3 = \frac{13}{2} \times (0 + S_3)$ Entre PF et P3 $V_4 = \frac{14}{2} \times (S_3 + S_4)$ Entre P3 et P4

En additionnant membres à membre ces expressions, on a le volume total des terrassements.

Tableur:VI.1- cubature de terrassements

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,00 0,00 0,00 0,00 0,00
P1 0,00 12,50 1,18 1,37 2,55 31,88 31,88 0,00	0,00 0,00 0,00 0,00
P1 0,00 12,50 1,18 1,37 2,55 31,88 31,88 0,00	0,00 0,00 0,00
P1 0,00 12,50 1,18 1,37 2,55 31,88 31,88 0,00 0,00 0,00 0,00 P2 25,00 25,00 1,32 0,90 2,22 55,59 87,47 0,00 0,00 0,00 0,00 P3 50,00 25,00 1,54 2,12 3,67 91,68 179,15 0,00 0,00 0,00 0,00 P4 75,00 25,00 1,80 1,52 3,33 83,22 262,37 0,00 0,00 0,00 0,00 P5 100,00 25,00 1,76 1,74 3,50 87,50 349,88 0,00 0,00 0,00 0,00 P6 125,00 25,00 1,53 1,98 3,52 87,89 437,77 0,00 0,00 0,00 0,00 P7 150,00 25,00 1,12 2,08 3,20 79,96 517,73 0,00 0,00 0,00 0,00 P8 1	0,00 0,00 0,00
P2 25,00 25,00 1,32 0,90 2,22 55,59 87,47 0,00 0,00 0,00 0,00 P3 50,00 25,00 1,54 2,12 3,67 91,68 179,15 0,00 <	0,00
P3 50,00 25,00 1,54 2,12 3,67 91,68 179,15 0,00 0,00 0,00 0,00 P4 75,00 25,00 1,80 1,52 3,33 83,22 262,37 0,00 0,00 0,00 0,00 P5 100,00 25,00 1,76 1,74 3,50 87,50 349,88 0,00 0,00 0,00 0,00 P6 125,00 25,00 1,53 1,98 3,52 87,89 437,77 0,00 0,00 0,00 0,00 P7 150,00 25,00 1,12 2,08 3,20 79,96 517,73 0,00 0,00 0,00 0,00 P8 175,00 25,00 0,44 0,89 1,33 33,20 550,92 0,15 0,00 0,00 0,00 P9 200,00 25,00 0,65 1,06 1,71 42,73 621,10 0,03 0,00 0,04 0,90 P10	0,00
P4 75,00 25,00 1,80 1,52 3,33 83,22 262,37 0,00 0,00 0,00 0,00 P5 100,00 25,00 1,76 1,74 3,50 87,50 349,88 0,00 0,00 0,00 0,00 P6 125,00 25,00 1,53 1,98 3,52 87,89 437,77 0,00 0,00 0,00 0,00 P7 150,00 25,00 1,12 2,08 3,20 79,96 517,73 0,00 0,00 0,00 0,00 P8 175,00 25,00 0,44 0,89 1,33 33,20 550,92 0,15 0,00 0,15 3,75 P9 200,00 25,00 0,50 0,60 1,10 27,44 578,37 0,00 0,00 0,00 0,00 P10 225,00 25,00 0,65 1,06 1,71 42,73 621,10 0,03 0,00 0,04 0,90 P11	0,00
P5 100,00 25,00 1,76 1,74 3,50 87,50 349,88 0,00 0,00 0,00 0,00 P6 125,00 25,00 1,53 1,98 3,52 87,89 437,77 0,00 0,00 0,00 0,00 P7 150,00 25,00 1,12 2,08 3,20 79,96 517,73 0,00 0,00 0,00 0,00 P8 175,00 25,00 0,44 0,89 1,33 33,20 550,92 0,15 0,00 0,15 3,75 P9 200,00 25,00 0,50 0,60 1,10 27,44 578,37 0,00 0,00 0,00 0,00 P10 225,00 25,00 0,65 1,06 1,71 42,73 621,10 0,03 0,00 0,04 0,90 P11 250,00 25,00 0,28 1,21 1,49 37,18 658,28 0,02 0,00 0,02 0,58 P12	
P6 125,00 25,00 1,53 1,98 3,52 87,89 437,77 0,00 0,00 0,00 0,00 P7 150,00 25,00 1,12 2,08 3,20 79,96 517,73 0,00 0,00 0,00 0,00 P8 175,00 25,00 0,44 0,89 1,33 33,20 550,92 0,15 0,00 0,15 3,75 P9 200,00 25,00 0,50 0,60 1,10 27,44 578,37 0,00 0,00 0,00 0,00 P10 225,00 25,00 0,65 1,06 1,71 42,73 621,10 0,03 0,00 0,04 0,90 P11 250,00 25,00 0,28 1,21 1,49 37,18 658,28 0,02 0,00 0,02 0,58 P12 275,00 25,00 0,32 0,72 1,04 25,89 684,18 0,92 0,00 0,92 22,91 P13	0,00
P8 175,00 25,00 0,44 0,89 1,33 33,20 550,92 0,15 0,00 0,15 3,75 P9 200,00 25,00 0,50 0,60 1,10 27,44 578,37 0,00 0,00 0,00 0,00 P10 225,00 25,00 0,65 1,06 1,71 42,73 621,10 0,03 0,00 0,04 0,90 P11 250,00 25,00 0,28 1,21 1,49 37,18 658,28 0,02 0,00 0,02 0,58 P12 275,00 25,00 0,32 0,72 1,04 25,89 684,18 0,92 0,00 0,92 22,91 P13 300,00 25,00 1,53 1,26 2,79 69,75 753,93 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 <td>0,00</td>	0,00
P9 200,00 25,00 0,50 0,60 1,10 27,44 578,37 0,00 0,00 0,00 0,00 P10 225,00 25,00 0,65 1,06 1,71 42,73 621,10 0,03 0,00 0,04 0,90 P11 250,00 25,00 0,28 1,21 1,49 37,18 658,28 0,02 0,00 0,02 0,58 P12 275,00 25,00 0,32 0,72 1,04 25,89 684,18 0,92 0,00 0,92 22,91 P13 300,00 25,00 1,53 1,26 2,79 69,75 753,93 0,00 0,00 0,00 0,00 P14 325,00 25,00 1,89 1,80 3,68 92,04 845,97 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 </td <td>0,00</td>	0,00
P10 225,00 25,00 0,65 1,06 1,71 42,73 621,10 0,03 0,00 0,04 0,90 P11 250,00 25,00 0,28 1,21 1,49 37,18 658,28 0,02 0,00 0,02 0,58 P12 275,00 25,00 0,32 0,72 1,04 25,89 684,18 0,92 0,00 0,92 22,91 P13 300,00 25,00 1,53 1,26 2,79 69,75 753,93 0,00	3,75
P11 250,00 25,00 0,28 1,21 1,49 37,18 658,28 0,02 0,00 0,02 0,58 P12 275,00 25,00 0,32 0,72 1,04 25,89 684,18 0,92 0,00 0,92 22,91 P13 300,00 25,00 1,53 1,26 2,79 69,75 753,93 0,00 0,00 0,00 0,00 P14 325,00 25,00 1,89 1,80 3,68 92,04 845,97 0,00	3,75
P12 275,00 25,00 0,32 0,72 1,04 25,89 684,18 0,92 0,00 0,92 22,91 P13 300,00 25,00 1,53 1,26 2,79 69,75 753,93 0,00	4,65
P13 300,00 25,00 1,53 1,26 2,79 69,75 753,93 0,00	5,22
P14 325,00 25,00 1,89 1,80 3,68 92,04 845,97 0,00	28,13
P15 350,00 25,00 1,95 4,20 6,15 153,76 999,73 0,00	28,13
P16 375,00 15,28 2,65 5,84 8,48 129,60 1129,33 0,00 0,01 0,00	28,13
P17 380,55 12,50 2,16 2,13 4,29 53,61 1182,94 0,00 0,01 0,01 0,01 0,01 0,01 0,02 0,40 0,69 13,14	28,13
P18 400,00 22,22 0,65 1,44 2,09 46,36 1229,30 0,00 0,00 0,00 0,00 0,01 P19 425,00 19,08 0,04 0,04 0,09 1,63 1230,92 0,29 0,40 0,69 13,14	28,13
P19 425,00 19,08 0,04 0,04 0,09 1,63 1230,92 0,29 0,40 0,69 13,14	28,13
	28,14
	41,28
P20 438,15 12,50 0,14 0,13 0,27 3,41 1234,33 0,04 0,07 0,12 1,49	42,77
P21 450,00 18,42 0,22 0,42 0,65 11,90 1246,23 0,07 0,00 0,07 1,20	43,98
P22 475,00 18,28 1,09 3,67 4,77 87,09 1333,32 0,00 0,00 0,00 0,00	43,98
P23 486,55 12,50 0,18 0,55 0,72 9,03 1342,35 0,75 0,00 0,75 9,43	53,40
P24 500,00 19,22 0,00 0,56 0,56 10,75 1353,09 1,25 0,06 1,31 25,26	78,66
P25 525,00 22,08 0,69 2,08 2,77 61,18 1414,27 0,00 0,00 0,00 0,00	78,66
P26 544,15 12,50 0,94 1,26 2,20 27,49 1441,76 0,00 0,00 0,00 0,00	78,66
P27 550,00 15,42 0,98 1,45 2,43 37,51 1479,27 0,00 0,00 0,00 0,00	78,66
P28 575,00 25,00 0,00 1,03 1,03 25,87 1505,14 1,12 0,15 1,27 31,65	110,31
P29 600,00 25,00 0,04 2,21 2,26 56,43 1561,57 1,74 0,00 1,74 43,53	153,84
P30 625,00 25,00 0,86 2,57 3,43 85,65 1647,22 0,00 0,00 0,00 0,11	153,96
P31 650,00 25,00 1,05 2,81 3,87 96,64 1743,86 0,00 0,00 0,00 0,00	154,00
P32 675,00 25,00 1,27 3,11 4,38 109,48 1853,34 0,00 0,00 0,00 0,00	154,00
P33 700,00 25,00 0,75 2,75 3,51 87,67 1941,01 0,03 0,00 0,03 0,73	154,72

LES CUBATURES

P34	725,00	25,00	0,15	2,14	2,29	57,16	1998,17	0,34	0,00	0,34	8,51	163,23
	·		-	·	·		•					
P35	750,00	25,00	0,00	1,98	1,98	49,54	2047,71	1,52	0,07	1,59	39,84	203,07
P36	775,00	25,00	0,33	1,83	2,15	53,81	2101,53	0,01	0,00	0,01	0,18	203,25
P37	800,00	25,00	0,40	1,64	2,03	50,86	2152,38	0,00	0,00	0,00	0,00	203,25
P38 P39	825,00 850,00	25,00 25,00	0,93 0,58	0,89 0,07	1,83 0,65	45,67 16,22	2198,06 2214,28	0,00	0,00 0,07	0,00	0,00 1,69	203,25 204,94
P40			1,21		2,23							
	875,00	20,69		1,02		46,04	2260,31	0,00	0,00	0,00	0,00	204,94
P41	891,38	12,50	1,32	0,15	1,47	18,40	2278,71	0,00	1,80	1,80	22,54	227,47
P42 P43	900,00 906,18	7,40 12,50	1,49 1,76	0,78	2,28	16,84	2295,55	0,00	0,00	0,00	0,00	227,47
P43	925,00	21,91	1,76	0,85 0,00	2,60 1,67	32,52 36,62	2328,07 2364,69	0,00	0,00 0,78	0,00	0,00 17,02	227,47 244,49
P44	950.00	25,00	2,23	0,00	2,32	58,12	2422,81	0,00	0,78	0,78	13,79	258,29
P46	975,00	25,00	2,23	0,10	3,21	80,34	2503,15	0,00	0,02	0,02	0,58	258,86
P47	1000,00	25,00	2,40	0,28	2,67	66,85	2570,01	0,00	0,02	0,02	1,91	260,78
P48	1025,00	25,00	3,60	2,60	6,20	155,05	2725,05	0,00	0,00	0,00	0.00	260,78
P49	1050,00	25,00	3,21	2,75	5,96	148,96	2874,01	0,00	0,00	0,00	0,00	260,78
P50	1075,00	25,00	3,50	2,49	5,99	149,78	3023,80	0,00	0,00	0,00	0,00	260,78
P51	1100,00	25,00	3,31	2,38	5,69	142,21	3166,00	0,00	0,00	0,00	0,00	260,78
P52	1125,00	25,00	2,53	1,86	4,39	109,77	3275,77	0,00	0,00	0,00	0,00	260,78
P53	1150,00	25,00	2,07	1,53	3,60	90.04	3365,81	0,00	0,00	0,00	0,00	260,78
P54	1175,00	25,00	3,84	1,52	5,36	133,89	3499,70	0,00	0,00	0,00	0,00	260,78
P55	1200,00	25,00	5,89	3,73	9,62	240,48	3740,19	0,00	0,00	0,00	0,00	260,78
P56	1225,00	25,00	4,48	2,76	7,25	181,13	3921,32	0,00	0,00	0,00	0,00	260,78
P57	1250,00	16,46	2,55	1,45	4,00	65,88	3987,20	0,00	0,00	0,00	0,00	260,78
P58	1257,93	11,36	2,61	1,24	3,85	43,77	4030,97	0,00	0,00	0,00	0,00	260,78
P59	1272,73	12,50	2,60	0,96	3,57	44,61	44,61	0,00	0,00	0,00	0,00	0,00
P60	1297,73	25,00	3,15	0,78	3,93	98,33	142,94	0,00	0,00	0,00	0,00	0,00
P61	1322,73	23,71	3,80	1,41	5,21	123,57	266,50	0,00	0,00	0,00	0,00	0,00
P62	1345,16	12,50	2,32	0,01	2,33	29,14	295,64	0,00	0,55	0,55	6,88	6,88
P63	1347,73	13,79	2,46	0,03	2,49	34,39	330,03	0,00	0,45	0,45	6,16	13,04
P64	1372,73	13,71	1,62	0,97	2,60	35,61	365,64	0,00	0,00	0,00	0,00	13,04
P65	1375,16	12,50	1,54	1,03	2,57	32,06	397,70	0,00	0,00	0,00	0,00	13,04
P66	1397,73	20,63	1,46	0,75	2,21	45,62	443,32	0,00	0,00	0,00	0,00	13,04
P67	1416,43	12,50	1,16	1,24	2,40	30,04	473,36	0,00	0,00	0,00	0,00	13,04
P68	1422,73	15,00	0,90	0,94	1,84	27,58	500,95	0,00	0,00	0,00	0,00	13,04
P69	1446,43	12,50	2,01	0,98	2,99	37,37	538,31	0,00	0,00	0,00	0,00	13,04
P70	1447,73	13,15	2,05	0,99	3,04	39,95	578,27	0,00	0,00	0,00	0,00	13,04
P71	1472,73	25,00	2,33	0,90	3,23	80,81	659,07	0,00	0,00	0,00	0,00	13,04
P72	1497,73	25,00	2,77	2,41	5,18	129,51	788,59	0,00	0,00	0,00	0,00	13,04
P73	1522,73	25,00	3,54	2,81	6,35	158,87	947,46	0,00	0,00	0,00	0,00	13,04
P74	1547,73	25,00	####	4,55	65,67	1641,67	2589,13	0,00	0,00	0,00	0,00	13,04
P75	1572,73	25,00	4,75	5,77	10,51	262,86	2851,99	0,00	0,00	0,00	0,00	13,04
P76	1597,73	25,00	3,66	1,93	5,59	139,66	2991,65	0,00	0,00	0,00	0,00	13,04
P77	1622,73	25,00	4,83	3,45	8,28	206,98	3198,63	0,00	0,00	0,00	0,00	13,04
P78	1647,73	25,00	2,73	3,03	5,75	143,82	3342,45	0,00	0,00	0,00	0,00	13,04
P79	1672,73	25,00	1,91	2,05	3,96	99,02	3441,47	0,00	0,00	0,00	0,00	13,04
P80	1697,73	25,00	1,61	1,56	3,18	79,39	3520,86	0,00	0,00	0,00	0,00	13,04
P81	1722,73	25,00	1,20	0,52	1,72	42,95	3563,81	0,00	0,70	0,70	17,58	30,62
P82	1747,73	25,00	2,45	1,78	4,23	105,65	3669,46	0,00	0,00	0,00	0,00	30,62
P83	1772,73	25,00	2,84	2,64	5,48	137,05	3806,51	0,00	0,00	0,00	0,00	30,62
P84	1797,73	25,00	2,95	2,68	5,63	140,83	3947,34	0,00	0,00	0,00	0,00	30,62
P85	1822,73	25,00	3,39	2,27	5,65	141,36	4088,70	0,00	0,00	0,00	0,00	30,62
P86	1847,73	25,00	6,74	6,81	13,55	338,77	4427,47	0,00	0,00	0,00	0,00	30,62
P87	1872,73	25,00	2,71	2,82	5,53	138,18	4565,65	0,00	0,00	0,00	0,00	30,62
P88	1897,73	25,00	4,98	4,77	9,75	243,74	4809,39	0,00	0,00	0,00	0,00	30,62
P89	1922,73	25,00	1,67	0,94	2,61	65,17	4874,56	0,00	0,00	0,00	0,00	30,62
P90	1947,73	25,00	0,01	230,74	230,75	5768,69	10643,25	0,42	0,06	0,47	11,84	42,45
P91	1972,73	25,00	1,60	0,22	1,82	45,47	10688,72	0,00	0,09	0,09	2,24	44,69
P92	1997,73	25,00	0,45	0,03	0,48	11,88	10700,60	35,20	72,00	107,2	2680,1	2724,79
		•			•					•		

1 1		1			l					0	0	
P93	2022,73	25,00	0,00	0,70	0,70	17,54	10718,14	1,13	0,12	1,25	31,23	2756,02
P94	2047,73	25,00	1,71	58,85	60,56	1513,93	12232,07	0,00	0,00	0,00	0,00	2756,02
P95	2072,73	25,00	6,60	4,33	10,93	273,33	12505,40	0,00	0,00	0,00	0,00	2756,02
P96	2097,73	25,00	3,72	2,77	6,50	162,43	12667,83	0,00	0,00	0,00	0,00	2756,02
P97	2122,73	25,00	1,98	1,83	3,80	95,06	12762,90	0,00	0,00	0,00	0,00	2756,02
P98	2147,73	25,00	3,90	3,15	7,05	176,37	12939,27	0,00	0,00	0,00	0,00	2756,02
P99	2172,73	25,00	2,78	1,52	4,30	107,52	13046,79	0,00	0,00	0,00	0,00	2756,02
P100	2197,73	25,00	2,29	1,74	4,03	100,73	13147,52	0,00	0,00	0,00	0,00	2756,02
P101	2222,73	25,00	3,56	1,94	5,50	137,59	13285,11	0,00	0,00	0,00	0,00	2756,02
P102	2247,73	25,00	1,51	2,17	3,68	91,90	13377,02	0,00	0,00	0,00	0,00	2756,02
P103	2272,73	25,00	2,84	1,42	4,26	106,52	13483,53	0,00	0,00	0,00	0,00	2756,02
P104	2297,73	25,00	2,38	1,07	3,45	86,31	13569,85	0,00	0,00	0,00	0,00	2756,02
P105	2322,73	25,00	0,94	1,06	1,99	49,87	13619,71	0,00	0,00	0,00	0,00	2756,02
P106	2347,73	25,00	1,39	0,68	2,07	51,72	13671,43	0,00	0,00	0,00	0,00	2756,02
P107	2372,73	25,00	0,97	0,74	1,71	42,72	13714,15	0,00	0,00	0,00	0,00	2756,02
P108	2397,73	25,00	1,03	0,49	1,51	37,78	13751,93	0,00	0,00	0,00	0,00	2756,02
P109	2422,73	13,30	1,71	0,66	2,37	31,50	13783,43	0,00	0,09	0,09	1,23	2757,25
P110	2424,34	12,50	1,70	0,61	2,31	28,92	28,92	0,00	0,20	0,20	2,45	2,45
P111	2449,34	25,00	2,15	0,74	2,90	72,45	101,37	0,00	0,52	0,52	12,99	15,44
P112	2474,34	25,00	3,65	2,63	6,28	156,97	258,34	0,00	0,00	0,00	0,00	15,44
P113	2499,34	25,00	4,85	3,46	8,31	207,74	466,09	0,00	0,00	0,00	0,00	15,44
P114	2524,34	25,00	4,24	3,20	7,44	186,06	652,15	0,00	0,00	0,00	0,00	15,44
P115	2549,34	25,00	3,60	2,27	5,87	146,78	798,93	0,00	0,00	0,00	0,00	15,44
P116	2574,34	25,00	4,81	2,05	6,85	171,32	970,25	0,00	0,00	0,00	0,00	15,44
P117	2599,34	25,00	2,89	1,44	4,32	108,07	1078,32	0,00	0,00	0,00	0,00	15,44
P118	2624,34	25,00	2,07	1,17	3,24	80,96	1159,28	0,00	0,00	0,00	0,00	15,44
P119	2649,34	25,00	2,30	1,82	4,12	102,93	1262,21	0,00	0,00	0,00	0,00	15,44
P120	2674,34	25,00	1,78	1,54	3,32	83,03	1345,24	0,00	0,00	0,00	0,00	15,44
P121	2699,34	23,67	1,40	1,43	2,83	67,05	1412,30	0,00	0,00	0,00	0,00	15,44
P122	2721,68	12,50	1,57	0,84	2,41	30,16	1442,46	0,00	0,00	0,00	0,00	15,44
P123	2724,34	13,83	1,57	0,79	2,36	32,57	1475,03	0,00	0,00	0,00	0,00	15,44
P124	2749,34	13,67	1,53	0,61	2,14	29,24	1504,27	0,00	0,00	0,00	0,02	15,46
P125	2751,68	12,50	1,83	0,72	2,54	31,77	1536,04	0,00	0,00	0,00	0,00	15,46
P126	2774,34	23,83	0,83	0,23	1,05	25,13	1561,16	0,00	0,01	0,01	0,30	15,76
P127	2799,34	25,00	0,91	0,50	1,41	35,16	1596,32	0,00	0,00	0,00	0,08	15,83
P128	2824,34	14,72	1,02	0,10	1,12	16,49	1612,81	0,00	0,24	0,24	3,54	19,37
P129	2828,78	12,50	1,02	0,13	1,15	14,35	1627,15	0,00	0,16	0,16	1,99	21,36
P130	2849,34	15,00	1,14	0,51	1,65	24,74	1651,90	0,00	0,00	0,00	0,00	21,36
P131	2858,78	12,50	1,29	0,76	2,06	25,72	1677,61	0,00	0,00	0,00	0,00	21,36
P132	2874,34	20,28	1,81	1,17	2,97	60,34	1737,95	0,00	0,00	0,00	0,00	21,36
P133	2899,34	25,00	2,12	1,60	3,72	92,88	1830,83	0,00	0,00	0,00	0,00	21,36
P134	2924,34	25,00	3,23	2,08	5,31	132,67	1963,50	0,00	0,00	0,00	0,00	21,36
P135	2949,34	25,00	3,21	2,83	6,04	150,94	2114,44	0,00	0,00	0,00	0,00	21,36
P136	2974,34	25,00	2,73	3,26	5,99	149,75	2264,19	0,00	0,00	0,00	0,00	21,36
P137	2999,34	25,00	2,41	2,62	5,03	125,69	2389,88	0,00	0,00	0,00	0,00	21,36
P138	3024,34	25,00	2,16	3,82	5,98	149,40	2539,28	0,00	0,00	0,00	0,00	21,36
P139	3049,34	25,00	2,62	2,54	5,17	129,14	2668,42	0,00	0,00	0,00	0,00	21,36
P140	3074,34	25,00	2,39	1,31	3,70	92,42	2760,84	0,00	0,00	0,00	0,00	21,36
P141	3099,34	25,00	0,72	1,14	1,87	46,70	2807,54	0,11	0,00	0,11	2,74	24,11
P142	3124,34	25,00	1,54	0,82	2,37	59,21	2866,75	0,00	0,00	0,00	0,00	24,11
P143	3149,34	25,00	2,63	1,27	3,90	97,57	2964,32	0,00	0,00	0,00	0,00	24,11
P144	3174,34	25,00	0,59	0,41	1,01	25,21	2989,53	0,02	0,29	0,31	7,63	31,74
P145	3199,34	25,00	0,67	1,49	2,16	54,03	3043,57	0,00	0,00	0,00	0,00	31,74
P146	3224,34	25,00	1,19	0,12	1,31	32,82	3076,39	0,00	0,66	0,66	16,39	48,12
P147	3249,34	25,00	0,70	0,82	1,52	38,02	3114,41	0,00	0,00	0,00	0,00	48,12
P148	3274,34	25,00	2,90	0,86	3,76	94,10	3208,52	0,00	0,04	0,04	1,01	49,14
P149	3299,34	25,00	2,24	1,14	3,38	84,45	3292,96	0,00	0,00	0,00	0,03	49,16
	/	-,,	, .	, .	1 .,	,	- ,-=	1 -,	- ,	, , , -	1 .,	-, -

P150	3324,34	25,00	2,58	1,87	4,46	111,41	3404,37	0,00	0,00	0,00	0.00	49,16
P151	3349,34	25,00	2,67	2,52	5,19	129,78	3534,15	0,00	0,00	0.00	0.00	49,16
P152	3374,34	25,00	2,77	1,36	4,13	103,24	3637,39	0,00	0,00	0,00	0,00	49,16
P153	3399,34	25,00	1,87	1,50	3,37	84,19	3721,58	0,00	0,00	0,00	0,00	49,16
P154	3424,34	25,00	1,46	0,56	2,02	50,49	3772,07	0,00	0,10	0,10	2,56	51,72
P155	3449,34	25.00	1,92	0,33	2,25	56,28	3828,35	0,00	0,01	0,01	0,35	52,08
P156	3474,34	25,00	1,42	0,88	2,23	57,67	3886,02	0,00	0,00	0,00	0,00	52,08
P157	3499,34	15,91	1,42									
P157	·		•	0,30	2,14	34,12	3920,14	0,00	0,15	0,15	2,46	54,53
	3506,17	3,41	1,99	0,59	2,58	8,79	3928,93	0,00	0,09	0,09	0,32	54,86
P159	3531,17	25,00	3,13	2,07	5,20	130,12	162,17	0,00	0,00	0,00	0,00	1,20
P160	3556,17	25,00	3,22	2,68	5,90	147,55	309,71	0,00	0,00	0,00	0,00	1,20
P161	3581,17	25,00	4,31	3,02	7,33	183,26	492,98	0,00	0,00	0,00	0,00	1,20
P162	3606,17	25,00	3,51	2,78	6,29	157,27	650,25	0,00	0,00	0,00	0,00	1,20
P163	3631,17	25,00	3,12	2,45	5,57	139,16	789,41	0,00	0,00	0,00	0,00	1,20
P164	3656,17	25,00	2,22	0,30	2,52	63,09	852,50	0,00	0,15	0,15	3,87	5,07
P165	3681,17	25,00	3,67	1,49	5,15	128,82	981,32	0,00	0,00	0,00	0,00	5,07
P166	3706,17	25,00	4,09	1,93	6,02	150,54	1131,86	0,00	0,00	0,00	0,00	5,07
P167	3731,17	25,00	3,22	1,13	4,34	108,53	1240,39	0,00	0,00	0,00	0,00	5,07
P168	3756,17	25,00	1,27	0,33	1,61	40,22	1280,61	0,00	0,00	0,01	0,16	5,23
P169	3781,17	25,00	0,92	0,75	1,67	41,71	1322,32	0,00	0,00	0,00	0,00	5,23
P170	3806,17	25,00	0,86	0,78	1,64	41,05	1363,36	0,00	0,00	0,00	0,00	5,23
P171	3831,17	25,00	1,34	1,78	3,12	78,02	1441,38	0,00	0,00	0,00	0,00	5,23
P172	3856,17	25,00	2,55	2,10	4,65	116,20	1557,59	0,00	0,00	0,00	0,00	5,23
P173	3881,17	25,00	2,67	2,61	5,28	132,01	1689,60	0,00	0,00	0,00	0,00	5,23
P174	3906,17	25,00	0,53	0,47	1,01	25,18	1714,78	0,00	0,00	0,01	0,13	5,36
P175	3931,17	25,00	0,35	0,00	0,35	8,66	1723,44	0,21	0,92	1,14	28,39	33,76
P176	3956,17	25,00	0,42	0,00	0,42	10,41	1733,85	0,35	0,50	0,86	21,48	55,24
P177	3981,17	25,00	0,24	0,00	0,24	5,93	1739,78	0,59	0,80	1,39	34,74	89,98
P178	4006,17	25,00	0,42	0,00	0,42	10,56	1750,35	0,12	0,73	0,85	21,22	111,20
P179	4031,17	25,00	1,22	0,02	1,24	31,03	1781,37	0,00	0,42	0,43	10,64	121,84
P180	4056,17	25,00	0,40	0,22	0,62	15,47	1796,84	0,02	0,06	0,08	1,97	123,82
P181	4081,17	25,00	0,41	0,01	0,41	10,33	1807,17	0,06	0,82	0,88	21,98	145,79
P182	4106,17	25,00	0,32	0,04	0,35	8,87	1816,04	0,13	0,51	0,64	15,89	161,68
P183	4131,17	25,00	1,17	0,24	1,41	35,30	1851,34	0,00	0,01	0,01	0,14	161,82
P184	4156,17	25,00	0,92	0,16	1,08	27,11	1878,46	0,03	0,15	0,19	4,63	166,46
P185	4181,17	25,00	0,14	0,00	0,14	3,54	1882,00	0,46	0,63	1,08	27,05	193,50
P186	4206,17	25,00	1,22	0,52	1,74	43,56	1925,56	0,00	0,00	0,00	0,00	193,50
P187	4231,17	25,00	0,65	0,54	1,20	29,88	1955,44	0,03	0,00	0,03	0,77	194,27
P188	4256,17	23,68	1,86	0,96	2,82	66,68	2022,12	0,00	0,00	0,00	0,00	194,27
P189	4278,53	12,50	0,47	0,61	1,08	13,47	2035,58	0,02	0,00	0,02	0,29	194,56
P190	4281,17	13,82	0,36	0,52	0,89	12,26	2047,84	0,06	0,00	0,06	0,86	195,43
P191	4306,17	16,97	0,70	0,00	0,71	11,97	2059,81	0,14	96,20	96,34	1634,4	1829,91
•			, -			,	, - -		-, -		8	
P192	4315,10	12,50	0,59	0,00	0,59	7,35	2067,17	0,25	0,57	0,83	10,35	1840,26
P193	4331,17	20,53	0,22	0,00	0,22	4,58	2071,75	0,41	0,76	1,17	23,98	1864,24
P194	4356,17	25,00	0,06	0,00	0,06	1,61	2073,36	0,34	0,91	1,24	31,09	1895,33
P195	4381,17	24,88	0,20	0,00	0,20	4,86	2078,22	0,34	1,95	2,29	56,90	1952,23
P196	4405,94	12,50	0,18	0,00	0,18	2,25	2080,47	0,33	44,78	45,11	563,88	2516,11
P197	4406,17	12,62	0,18	0,00	0,18	2,29	2082,76	0,33	44,62	44,95	567,12	3083,23
P198	4431,17	18,17	2,26	0,67	2,93	53,21	2135,97	0,00	0,00	0,00	0,00	3083,23
P199	4442,51	5,67	2,50	1,07	3,58	20,28	2156,25	0,00	0,00	0,00	0,00	3083,23
P200	4467,51	25,00	2,22	1,96	4,17	104,30	149,02	0,00	0,00	0,00	0,00	0,00
P201	4492,51	25,00	3,68	2,77	6,45	161,28	310,30	0,00	0,00	0,00	0,00	0,00
P202	4517,51	25,00	3,29	2,30	5,59	139,80	450,10	0,00	0,00	0,00	0,00	0,00
P203	4542,51	25,00	0,33	0,00	0,33	8,33	458,43	0,00	0,49	0,49	12,30	12,30
P204	4567,51	25,00	0,00	0,00	0,00	0,00	458,43	13,46	16,86	30,32	758,07	770,37
P205	4592,51	25,00	0,03	0,33	0,36	9,00	467,43	1,15	0,00	1,16	28,88	799,25
P206	4617,51	25,00	1,98	2,38	4,36	109,05	576,48	0,00	0,00	0,00	0,00	799,25
		1			l	l		1		1	I	I

P209 4692,5 P210 4717,5 P211 4718,6 P212 4742,5 P213 4767,5 P214 4782,5 P215 4792,5 P216 4817,5 P217 4827,6 P218 4842,5 P219 4867,5 P220 4891,5 P221 4892,5 P222 4917,7 P223 4942,5 P224 4967,5 P225 4992,5 P226 5017,5 P227 5042,7 P228 5067,5 P229 5092,5 P230 5117,5 P231 5138,6 P232 5142,5 P233 5167,5 P234 5184,6 P235 5192,5 P236 5217,7 P237 5242,5 P238 5265,6 P239 5267,5	1667,51 1692,51	25,00 25,00	2,77 6,14	9,04 2,13	11,82 8,27	295,40 206,82	871,88 1078,70	0,06	0,00	0,06	1,41 0,00	800,67 800,67
P211 4718,6 P212 4742,9 P213 4767,9 P214 4782,9 P215 4792,9 P216 4817,9 P217 4827,0 P218 4842,9 P219 4867,9 P220 4891,9 P221 4892,9 P222 4917,9 P223 4942,9 P224 4967,9 P225 4992,9 P226 5017,9 P227 5042,9 P228 5067,9 P229 5092,9 P230 5117,9 P231 5138,9 P232 5142,9 P233 5167,9 P234 5184,4 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,9 P239 5267,9		25,00	3,51	4,17	7,68	192,10	1270,80	0,00	0,00	0,00	0,00	800,67
P212 4742,5 P213 4767,5 P214 4782,5 P215 4792,5 P216 4817,5 P217 4827,6 P218 4842,5 P219 4867,5 P220 4891,5 P221 4892,5 P222 4917,5 P223 4942,5 P224 4967,5 P225 4992,5 P226 5017,5 P227 5042,5 P228 5067,7 P229 5092,5 P230 5117,7 P231 5138,6 P232 5142,5 P234 5184,6 P235 5192,5 P236 5217,7 P237 5242,5 P238 5265,6 P239 5267,5	1717,51	13,06	0,00	0,00	0,00	0,00	1270,80	2,80	3,08	5,88	76,84	877,50
P213 4767, P214 4782, P215 4792, P216 4817, P217 4827, P218 4842, P219 4867, P220 4891, P221 4892, P222 4917, P223 4942, P224 4967, P225 4992, P226 5017, P227 5042, P228 5067, P229 5092, P230 5117, P231 5138, P232 5142, P233 5167, P234 5184, P235 5192, P236 5217, P237 5242, P238 5265, P239 5267,	1718,64	12,50	0,00	0,00	0,00	0,00	1270,80	2,88	3,26	6,13	76,64	954,14
P214 4782,5 P215 4792,5 P216 4817,5 P217 4827,6 P218 4842,5 P219 4867,5 P220 4891,5 P221 4892,5 P222 4917,5 P223 4942,5 P224 4967,5 P225 4992,5 P226 5017,7 P227 5042,5 P228 5067,7 P229 5092,5 P230 5117,5 P231 5138,6 P232 5142,5 P233 5167,7 P234 5184,6 P235 5192,5 P236 5217,7 P237 5242,5 P238 5265,6 P239 5267,5	1742,51	24,44	0,00	0,00	0,00	0,00	1270,80	7,00	16,33	23,33	570,13	1524,27
P215 4792,5 P216 4817,5 P217 4827,6 P218 4842,5 P219 4867,5 P220 4891,5 P221 4892,5 P222 4917,5 P223 4942,5 P224 4967,5 P225 4992,5 P226 5017,7 P227 5042,5 P228 5067,7 P229 5092,7 P230 5117,5 P231 5138,7 P231 5138,7 P232 5142,5 P233 5167,7 P234 5184,4 P235 5192,5 P236 5217,7 P237 5242,5 P238 5265,7 P239 5267,5	1767,51	20,21	0,00	0,00	0,00	0,00	1270,80	7,18	9,48	16,66	336,65	1860,92
P216 4817,5 P217 4827,6 P218 4842,5 P219 4867,5 P220 4891,5 P221 4892,5 P222 4917,5 P223 4942,5 P224 4967,5 P225 4992,5 P226 5017,5 P227 5042,5 P228 5067,5 P229 5092,5 P230 5117,5 P231 5138,5 P232 5142,5 P233 5167,5 P234 5184,6 P235 5192,5 P236 5217,7 P237 5242,5 P238 5265,6 P239 5267,5	1782,92	12,50	0,00	0,00	0,00	0,00	1270,80	5,01	5,52	10,53	131,67	1992,59
P217 4827,6 P218 4842,4 P219 4867,5 P220 4891,5 P221 4892,5 P222 4917,5 P223 4942,5 P224 4967,5 P225 4992,5 P226 5017,6 P227 5042,5 P228 5067,6 P229 5092,7 P230 5117,6 P231 5138,6 P232 5142,5 P234 5184,6 P235 5192,6 P236 5217,7 P237 5242,6 P238 5265,6 P239 5267,6	1792,51	17,29	0,00	0,00	0,00	0,00	1270,80	4,49	4,78	9,27	160,36	2152,95
P218 4842,9 P219 4867,9 P220 4891,9 P221 4892,9 P222 4917,9 P223 4942,9 P224 4967,9 P225 4992,9 P226 5017,9 P227 5042,9 P228 5067,9 P229 5092,9 P230 5117,9 P231 5138,9 P232 5142,9 P233 5167,9 P234 5184,4 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,9 P239 5267,9	1817,51	17,55	0,00	0,00	0,00	0,00	1270,80	4,25	3,96	8,21	144,06	2297,01
P219 4867,4 P220 4891,5 P221 4892,5 P222 4917,4 P223 4942,5 P224 4967,5 P225 4992,5 P226 5017,5 P227 5042,5 P228 5067,7 P229 5092,5 P230 5117,7 P231 5138,6 P232 5142,7 P233 5167,5 P234 5184,6 P235 5192,5 P236 5217,7 P237 5242,5 P238 5265,6 P239 5267,5	1827,61	12,50	0,00	0,00	0,00	0,00	1270,80	3,98	3,38	7,36	91,94	2388,95
P220 4891,9 P221 4892,9 P222 4917,9 P223 4942,9 P224 4967,9 P225 4992,9 P226 5017,9 P227 5042,9 P228 5067,9 P229 5092,9 P230 5117,9 P231 5138,9 P232 5142,9 P234 5184,4 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,4 P239 5267,9	1842,51	19,95	0,00	0,00	0,00	0,00	1270,80	3,22	2,93	6,16	122,82	2511,78
P221 4892,9 P222 4917,9 P223 4942,9 P224 4967,9 P225 4992,9 P226 5017,9 P227 5042,9 P228 5067,9 P229 5092,9 P230 5117,9 P231 5138,9 P232 5142,9 P233 5167,9 P234 5184,9 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,9 P239 5267,9	1867,51	24,69	0,00	0,00	0,00	0,00	1270,80	2,20	3,90	6,11	150,80	2662,58
P222 4917, 9 P223 4942, 9 P224 4967, 9 P225 4992, 9 P226 5017, 9 P227 5042, 9 P228 5067, 9 P229 5092, 9 P230 5117, 9 P231 5138, 9 P232 5142, 9 P233 5167, 9 P234 5184, 9 P235 5192, 9 P236 5217, 9 P237 5242, 9 P238 5265, 9 P239 5267, 9	1891,90	12,50	0,00	0,00	0,00	0,00	1270,80	1,32	2,65	3,98	49,71	2712,29
P223 4942,9 P224 4967,9 P225 4992,9 P226 5017,9 P227 5042,9 P228 5067,9 P229 5092,9 P230 5117,9 P231 5138,9 P232 5142,9 P233 5167,9 P234 5184,4 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,9 P239 5267,9	1892,51	12,81	0,00	0,00	0,00	0,00	1270,80	1,31	2,62	3,93	50,31	2762,60
P224 4967, 9 P225 4992, 9 P226 5017, 9 P227 5042, 9 P228 5067, 9 P229 5092, 9 P230 5117, 9 P231 5138, 9 P232 5142, 9 P233 5167, 9 P234 5184, 9 P235 5192, 9 P236 5217, 9 P237 5242, 9 P238 5265, 9 P239 5267, 9	1917,51	25,00	0,02	0,00	0,02	0,41	1271,21	0,85	1,58	2,44	60,89	2823,49
P225 4992,9 P226 5017,9 P227 5042,9 P228 5067,9 P229 5092,9 P230 5117,9 P231 5138,9 P232 5142,9 P233 5167,9 P234 5184,4 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,4 P239 5267,9	1942,51	25,00	0,00	0,00	0,00	0,00	1271,21	0,97	1,32	2,29	57,31	2880,80
P226 5017,4 P227 5042,4 P228 5067,4 P229 5092,5 P230 5117,4 P231 5138,5 P232 5142,4 P233 5167,5 P234 5184,6 P235 5192,5 P236 5217,4 P237 5242,5 P238 5265,6 P239 5267,5	1967,51	25,00	0,09	0,00	0,09	2,24	1273,45	0,24	0,59	0,83	20,67	2901,47
P227 5042,9 P228 5067,9 P229 5092,9 P230 5117,9 P231 5138,9 P232 5142,9 P233 5167,9 P234 5184,9 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,9 P239 5267,9	1992,51	25,00	0,69	0,52	1,21	30,33	1303,78	0,00	0,00	0,00	0,00	2901,47
P228 5067, 9 P229 5092, 9 P230 5117, 9 P231 5138, 9 P232 5142, 9 P233 5167, 9 P234 5184, 9 P235 5192, 9 P236 5217, 9 P237 5242, 9 P238 5265, 9 P239 5267, 9	017,51	25,00	1,36	0,17	1,53	38,30	1342,08	0,00	0,61	0,61	15,18	2916,65
P229 5092,9 P230 5117,9 P231 5138,9 P232 5142,9 P233 5167,9 P234 5184,4 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,4 P239 5267,9	5042,51	25,00	2,66	1,84	4,49	112,34	1454,42	0,00	0,00	0,00	0,00	2916,65
P230 5117,4 P231 5138,5 P232 5142,4 P233 5167,4 P234 5184,6 P235 5192,5 P236 5217,4 P237 5242,5 P238 5265,6 P239 5267,5	067,51	25,00	3,52	2,19	5,70	142,60	1597,02	0,00	0,00	0,00	0,00	2916,65
P231 5138,9 P232 5142,9 P233 5167,9 P234 5184,4 P235 5192,9 P236 5217,9 P237 5242,9 P238 5265,6 P239 5267,9	092,51	25,00	3,82	1,99	5,81	145,15	1742,17	0,00	0,00	0,00	0,00	2916,65
P232 5142,4 P233 5167,4 P234 5184,4 P235 5192,4 P236 5217,4 P237 5242,4 P238 5265,4 P239 5267,5	5117,51	23,24	3,01	1,49	4,50	104,44	1846,61	0,00	0,00	0,00	0,00	2916,65
P233 5167,4 P234 5184,4 P235 5192,5 P236 5217,5 P237 5242,5 P238 5265,4 P239 5267,5	138,98	12,50	1,82	0,57	2,38	29,78	1876,39	0,00	0,00	0,00	0,00	2916,65
P234 5184,4 P235 5192,5 P236 5217,5 P237 5242,5 P238 5265,4 P239 5267,5	5142,51	14,26	1,45	0,43	1,88	26,83	1903,22	0,00	0,00	0,00	0,00	2916,65
P235 5192,4 P236 5217,5 P237 5242,5 P238 5265,6 P239 5267,5	167,51	20,96	0,32	0,00	0,32	6,79	1910,01	0,36	0,59	0,95	19,95	2936,60
P236 5217,5 P237 5242,5 P238 5265,4 P239 5267,5	5184,43	12,50	0,23	0,00	0,23	2,85	1912,86	1,27	1,51	2,79	34,83	2971,43
P236 5217,5 P237 5242,5 P238 5265,4 P239 5267,5	192,51	16,54	1,12	0,00	1,12	18,52	1931,38	0,11	1,68	1,79	29,64	3001,07
P238 5265,4 P239 5267,5		25,00	0,00	0,00	0,00	0,00	1931,38	3,70	4,15	7,85	196,28	3197,34
P239 5267,5	5217,51	23,97	0,00	0,00	0,00	0,00	1931,38	5,87	6,28	12,15	291,40	3488,74
	5217,51 5242,51	12,50	0,00	0,00	0,00	0,00	1931,38	11,02	23,99	35,01	437,67	3926,40
P240 5292 5		13,53	0,00	0,00	0,00	0,00	1931,38	11,18	24,14	35,32	477,77	4404,17
0_0_,	5242,51	21,70	0,32	0,00	0,32	6,88	1938,26	1,65	5,33	6,99	151,60	4555,77
P241 5310,9	5242,51 5265,46	9,20	7,36	0,12	7,48	68,87	2007,13	0,00	1,25	1,25	11,48	4567,25
'	5242,51 5265,46 5267,51	déblai total :					Remblai	10722.17				
	5242,51 5265,46 5267,51 5292,51									1	1	

Excès de déblai : 15075.90m³

Déblai : = 25798.07 M^3 Remblai = 10722.17 M^3 Excès de déblai : = 15075.90 M^3

CHAPITRE WITTERS

CARRFOURS

VII.1-INTRODUCTION:

Un carrefour est un lieu d'intersection de deux ou plusieurs routes au même niveau, le bon fonctionnement d'un réseau de voirie, dépend essentiellement de la performance des carrefours, car ceux-ci présentent des lieux d'échanges et de conflits où la fluidité de la circulation et la sécurité du trafic sont indispensables

L'analyse des carrefours sera basée sur les données recueillies lors des enquêtes directionnelles, qui doivent fournir les éléments permettant de faire le diagnostic de leur fonctionnemen

Il reste une partie importante du tracé, ou une attention particulière doit être apportée à sa conception et a sa construction en respectant les principes généraux suivants.

- > Fluidité du trafic
- Facilité de la circulation en toute sécurité.
- Visibilité suffisante à l'approche et dans les zones mêmes du carrefour
- Configuration géométrique appréciable.
- L'adaptation des éléments géométriques aux caractéristiques dynamiques des véhicules.

VII.2 - DONNEES APRENDRE POUR L'AMENAGEMENT D'UNCARREFOUR.

Les données ci-dessous sont généralement à prendre en considération lors d'une étude de conception ou d'aménagement d'un carrefour existant. Toutes ces informations ne doivent pas, pour autant, faire l'objet d'un recueil de données systématique a priori.

Les données les plus importantes à examiner sont les suivantes :

- La fonction des itinéraires et la nature du trafic qui les emprunte.
- L'intensité et la composante des différents courants.
- Les vitesses d'approche pratiquées
- Les informations concernant le nombre, le type, l'emplacement et la cause des accidents qui ont pu se produire au carrefour considéré avant l'aménagement.
- Les conditions topographiques, notamment la visibilité en plan et en profil en long

VII.3- CHOIX DE L'AMENAGEMENT:

Le choix du type d'aménagement se fait en fonction de multiples critères :

- L'environnement et la topographie du terrain d'implantation.
- L'intensité et la nature du trafic d'échange dans les différents sens de parcours.
- Objectif de fonctionnement privilégié pour un type d'usager.
- Objectif de la capacité choisie.

- Objectif de sécurité
- **❖ VII.4- VITESSE UNIFORME DANS UN CARREFOUR:**

$$Vc = Vr + 20 (km/h)$$

• CARREFOUR A TROIS BRANCHES(en T)

C'est un carrefour plan ordinaire à trois branches secondaires.

Le courant rectiligne domine, mais les autres courants peuvent être aussi d'importance Semblable.

• CARREFOUR A TROIS BRANCHES (en Y)

C'est un carrefour plan ordinaire à trois branches, comportant une branche secondaire uniquement et dont l'incidence avec l'axe principale est oblique

• CARFFOUR A QUATRES BRANCHES (en Croix)

sortie doit de plus grand rayant pour rendre le dégagement plus facile.

C'est un carrefour plan à quatre branches deux à deux alignées.

• CARRFOURS TYPE GIRATOIRE:

Le carrefour à sens giratoire est un carrefour plan qui comprend un terre-plein central (En forme de cercle ou ovale généralement), ceinturé par une chaussée mise à sens unique. L'îlot central a un rayant souvent supérieure à douze mètre, une courbe de petit rayant à l'entrée freine les véhicules et permet la convergence sous un angle favorable (30°à 40°), la

Université Abdelhamid ibn badis - Mostaganem

CHAPITRE VII: LES CARREFOURS

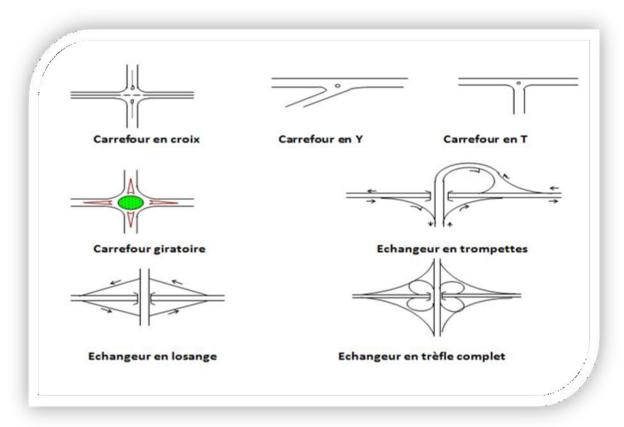


Fig.VII.1-<u>Différents Types Des Carrefours</u>

CHAPITRE VIII

ETUDE GEOTECHNIQUES

VIII.1.INTRODUCTION:

Les études géotechniques sont nécessaires pour mesurer dès l'avant-projet sommaire, L'incident des choix de profil en long et d'une manière générale du tracé en termes de cout. On peut dire aussi que la géotechnique est une science empirique qui se fait en partie sur Les données recueillies lors d'essais en laboratoire et sur terrain.

L'étude géotechnique du site s'est basée essentiellement sur la description géomorphologique et lithologique, l'interprétation des mouvements gravitaires et l'estimation des tassements, le recensement des Gîtes a matériaux et en fin le dimensionnement de la chaussée.

VIII.2- OBJECTIFS:

Les objectifs d'une étude géotechnique se résument en :

- Le bénéfice apporté sur les travaux de terrassement.
- La sécurité en indiquant la stabilité des talus et des remblais.
- L'identification des sources d'emprunt des matériaux et la capacité de ses gisements.
- Préserver l'environnement et les ressources naturelles.

❖ VIII.3 - REGLEMENTATION ALGERIENNE EN GEOTECHNIQUE;

La géotechnique couvre un grand champ d'activité qui va de la reconnaissance des sols au calcul et à l'exécution des ouvrages en passant par les essais de sols en laboratoire ou en place.

Les normes algériennes adoptées dans le domaine de la géotechnique sont relatives aux modes opératoires et des essais de sols couramment réalisées en laboratoire dans le cadre des études géotechniques.

❖ VIII.4_-LES DIFFERENTS ESSAIS EN LABORATOIRE:

Les Essais D'identification:

A- Masse Volumique Et Teneur En Eau: (NFP 94-050 Septembre 1995)

• Teneur En Eau:

Exprime, pour un volume de sol donné, le rapport du poids de l'eau au poids du sol sec, Soit.

ω= W_w/W_s

• Masse Volumique:

 (γ) est la masse d'un volume unité de sol :

 $\gamma = W/V$.

On calcule aussi la masse volumique sèche.

 $\gamma_{\rm d} = W_{\rm s}/V$

• Domaine D'utilisation:

Cet essai utilise pour classer les différents types de sols.

• Interprétation D'essais :

Les teneurs en eau sont faibles .le long de l'itinéraire avec des valeurs variant de 5 à 7 %

• **B- Analyses Granulométriques**: (NFP 18-560 Septembre 1990.)

Les résultats de l'analyse granulométrique sont donnés sous la forme d'une courbe dite Courbe granulométrique. Cette analyse se fait en générale par un tamisage.

Principe D'essai :

L'essai consiste à fractionner au moyen d'une série de tamis et passoires reposants sur un fond de tamis un matériau en plusieurs classes de tailles décroissantes.

• But De L'essai

C'est un essai qui a pour objet de la détermination le poids des éléments d'un sol (matériau) suivant leurs dimensions (cailloux, gravier, gros sable, sable fin, limon et argile.

• **Domaine D'utilisation :** La granulométrie est utilisée pour la classification des sols en vue de leur utilisation dans la chaussée.

Dimension D des grains (mm)	dénomination	Type de sols
D > 20	Cailloux	Sols Grenus
20>D>2	Graves	Sols Grenus
2>D>0.2	Gros sable	Sols Grenus
0.2>D>0.02	Sable fin	Sols Grenus
0.02>D>2 μ	Limons	Sols fins
D<2 μ	Argiles	Sols fins

Tableau VIII-1 : Classification Des Sols Par Dimension Du Grain

FIG VIII-1 Appareil De Tamisage

❖ Interprétation D'essais :

Les analyses granulométrique montrent que les matériaux analysés des quatre carrières contiennent un pourcentage de fines variant entre 25 % et 48 %.

C - Limites D'atterberg: (NFP18-561 Septembre 1990

- Limite De Plasticité (Wp):

Caractérisant le passage du sol de l'état solide à l'état plasticité.

- Limite De Liquidité (WL) :

Caractérisant le passage du sol de l'état plastique à l'état liquide.

$$W_L = \omega (N/25)^{0.121}$$

ω: teneur en eau au moment de l'essai donnant n coups.

N: nombre de coups.

- L'indice De Plasticité (Ip) :

$$\mathbf{IP} = \mathbf{WL} - \mathbf{WP}$$

• Principe De L'essai :

La détermination de WL et WP donnent une idée approximative des propriétés du matériau étudie, elle permette de le classé grâce à l'abaque de plasticité de Casagrande.

• But De L'essai:

Cet essai permet de prévoir le comportement des sols pendant les opérations deterrassement.

• Domaine D'application :

L'essai s'applique aux sols fins pendant les opérations de terrassement dans le Domaine des travaux publics (assises de chaussées y compris les couches de forme).

Tableau: VIII.2-Classer Indice De Plasticité

Indice de plasticité	Degré de plasticité
0 < <u>Ip</u> < 5	Non plastique.
5 < <u>Jp.</u> < 15	Moyennement plastique.
15 < <u>Ip</u> < 40	Plastique.
<u>Ip</u> > 40	Très plastique.

Limite De Plasticité (Wp)

FIG VIII-2: Appareil De Limites d'Atterberg

Elle varie de 0% à 100%, mais elle demeure généralement inférieure à 40%.

- L'indice De Plasticité (Ip) :

Une indice de plasticité (IP : entre 7.92 et 23.84 %)

D)-Equivalent De Sable: (NF P 18-597 Décembre 1990):

Lorsque les sols contiennent très peu particules fines, les limites d'atterberg ne sont pas mesurables, pour déclarer la présence en quantité plus ou moins importante de limon et d'argile, on réalise un essai appelé « équivalent de sable »

la hauteur du sommet du floculat totale, exprimé en pourcentage.

$$ES = \frac{h2}{h1} \times 100$$

• Principe De L'essai :

L'essai équivalent de sable s'effectue sur la fraction des sols passant au tamis de5mm; en exprimant un rapport conventionnel volumétrique entre les éléments dits sableux et les éléments plus fins (argileux par exemple).

• But De L'essai :

Cet essai permet de mettre en victoire la proportion de poussière fine nuisible dans un matériau. Et surtout utilisé par les matériaux routiers et les sables à béton. Car il permet de séparer les sables et graviers des particules fines comme les limons et argiles.

• Domaine D'application :

Cette détermination trouve son application dans de nombreux domaines notamment les domaines de classification, étude, choix et contrôle des sols et sables.

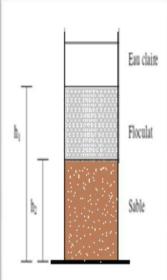


FIG VIII-3: Appareil d'Equivalent De Sable

• Interprétation D'essais :

Les résultats de cet essai nous ont donné des résultats variant de 15 à 35 %, du fait de la présence de fines Tuf.

E)-Analyse Chimique: (NFP15-461version 1964)

L'analyse chimique des granulats consiste a déterminé le taux des composants suivants :

- Les Carbonates CaCo3
- Les chlorures NaCl
- Les sulfates CaSo4

Ces essais sont effectués afin de vérifier l'efficacité et la compatibilité de ces granulats entre eux et le liant utilisé

> Interprétation D'essais :

L'analyse chimique qui est l4un des critères essentiels de sélection des Tuf, montre la présence d'un fort pourcentage de sulfate + carbonate allant avec une dominance du gypse sur la majorité des carrières analysées, Ces analyses nous permettent de classer ces matériaux avec ceux utilisables en corps de chaussée en technique routière saharienne.

> Analyse chimique :

• % d'insoluble : entre 8.4 et 44 %

- $\% SO_3^2$: entre 00 et 6.75 %
- % CA CO3 entre 40 et 77 %

Les Essais Mécaniques :

A). Essai Proctor: (NFP 94-093 (12/93):

L'essai Proctor est un essai routier conviennent à la plupart des sols, y a deux essais de Proctor normal et modifie.

• Principe De L'essai :

L'essai consiste à mesurer le masse volumique sèche d'un sol disposer en trois couches dans un moule Proctor de volume connu, dans chaque couches étant compacter avec la dame Proctor, l'essai est répété plusieurs fois et on varie à chaque fois la teneur en eau de l'échantillon et on fixe l'énergie de compactage.

Les grains passants par le tamis de 20 mm sont compactés dans le moule Proctor.

• But De L'essai :

L'essai Proctor consiste à étudier le comportement d'un sol sous l'influence de compactage (la réduction de son volume par réduction des vides d'air) et une teneur en eau c'est-à-dire la détermination de la teneur en eau optimale et la densité sèche maximale, pour un compactage bien défini.

• Domaine D'utilisation :

Cet essai est utilisé pour les études de remblai en terre, en particulier pour les sols de Fondations (route, piste d'aérodromes)

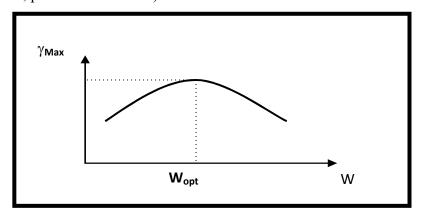


Fig. VIII -4: Courbe Proctor

Nature de l'essai	Caractéristiques de l'essai	Moule Proctor	Moule CBR	Schéma réca	pitulatif
	Masse de la dame	2 490 g	2 490 g	3 couches, à ra	ison de :
	Diamètre du mouton	51 mm	51 mm	25 coups par couche	56 coups par couche
Essai Proctor normal	Hauteur de chute	305 mm	305 mm		
	Nombre de couches	3	3	Moule Proctor	Moule CBR
	Nombre de coups par couche	25	56	Dame Proctor no	rmal
	Masse de la dame	4 535 g	4 535 g	5 couches, à ra	ison de :
	Diamètre du mouton	51 mm	51 mm	25 coups par couche	56 coups par couche
Essai Proctor modifié	Hauteur de chute	457 mm	457 mm		
modifie	Nombre de couches	5	5	Moule Proctor	Moule CBR
	Nombre de coups par couche	25	56	Dame Proctor m	

Tableau VIII -3: Détaille Essai Proctor :

• Interprétation D'essais:

Les résultats obtenus ont donné des valeurs de teneurs en eau qui varient de 6 à 12 % et des densités sèches variant entre 1,58 et 1,93 g/cm3.

B)- Essai C.B.R (California Bearing Ratio): (NFP94-078)

On réalise en général trois essais.

« CBR standard », « CBR immédiat »,

«CBRimbibé».

• Principe De L'essai :

On compacte avec une dame standard dans un moule standard, l'échantillon de sol recueilli sur le site, selon un processus bien déterminé, à la teneur en eau optimum (Proctor modifié) avec trois (3) énergies de compactage 25 c/c; 55 c/c; 10 c/c et imbibé pendant quatre (4) jours. Les passants sur le tamis inférieur à 20 mm dans le moule CBR.

• But De L'essai:

L'essai a pour but de déterminer pour un compactage d'intensité donnée la teneur en eau optimum correspondant, elle permet d'évaluer la portance du sol en estimant sa résistance au poinçonnement.

• Domaine D'utilisation:

Cet essai est utilisé pour dimensionnement des structures des chaussées et orientation les travaux de terrassements.

On jugera ainsi la portance du sol à l'aide de l'indice de CBR en se reformant une Fourchette telle que le tableau suivant :

Tableau VIII-4: Portance Du Sol A L'aide De L'indice De CBR.

ICBR	Portance du sol
< 3	Mauvaise
3 à 8	Médiocre
8 à 30	Bonne
> 30	Très bonne

Fig.VIII-5: Matériels De Compactage Et Accessoires CBR

> Interprétation D'essais :

Les indices CBR immédiats trouvés varient entre 6.93 et 9.95. Le CBR imbibé varie entre 4.93 et 6.73

Ces résultats montrent qu'on est en présence d'un matériau de portance bonne avec un CBR (imbibé qui est le cas le plus défavorable) de 12 % permettant de classer ce matériau à la Classe de **portance S3**.

• Portance Du Sol:

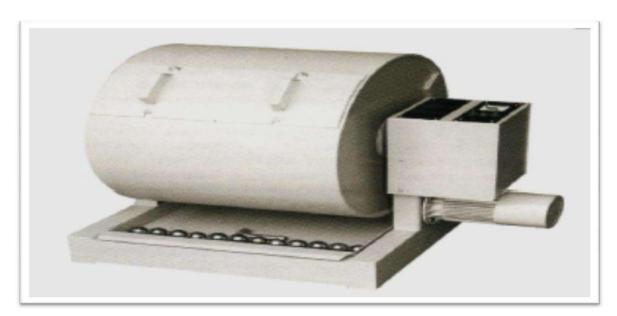
En se basant sur les résultats géotechniques présentés précédemment et sur notre constatation sur site on peut déduire que le sol support présente une portance de classe (S3) pour la majorité des lots auscultés.

• Essai Los Angeles: (NF P 18-573 Décembre 1990):

L'essai LA est un essai très fiable est de très courte durée, il nous permet d'évaluer la qualité du matériau.

Principe De L'essai

L'essai consiste à mesurer la quantité d'éléments inférieurs à 1,6 mm produite en soumettant le matériau aux chocs de boulets normalisés dans la machine Los Angles.


But De L'essai :

L'essai a pour but de déterminer la résistance à la fragmentation par choc et la résistance obtenue par frottement des granulats.

Domaine D'application:

L'essai s'applique aux granulats d'origine naturelle ou artificielle utilisés dans le Domaine des travaux publics (assises de chaussées y compris les couches de roulement)

Fig.VIII -6: Appareil Los Angeles.

> Interprétation D'essais :

- Caractéristique Des Agrégats :
- Agrégats Pour Couche De Base :

Los Angeles (L.A) <35%.

- Agrégats Pour Couche De Roulement :

Los Angeles (L.A) <20%.

B) - Essai Micro Deval: (NF P 18-572 Décembre 1990):

Il est en général effectué deux essais, pour avoir deux coefficients (Deval sec) et (Deval humide).

On s'intéresse actuellement au MDE (DEVAL humide) qui est de plus en plus pratiquée.

• Principe De L'essai :

L'essai consiste à mesurer la quantité d'éléments inférieurs à 1.6 mm

(Tamis de 1.6 mm) produits dons la machine Deval par les frottements réciproques.

• But De L'essai :

L'essai a pour but d'apprécier la résistance à l'usure par frottements réciproques des granulats et leur sensibilité à l'eau.

• Domaine D'application :

Choix des matériaux utilisés dans les structures de chaussée.

FIG VIII-7: Appareil De Micro Deval

> Interprétation D'essais :

- Caractéristique Des Agrégats :
- Agrégats Pour Couche De Base :
- Micro- Deval en présence d'eau (M.D.E) <30%.
- Agrégats Pour Couche De Roulement :
- Micro- Deval en présence d'eau (M.D.E) <20%.

❖ VIII.5 - CONDITION D'UTILISATION DES SOLS EN REMBLAIS:

Les remblais doivent être constitues de matériaux provenant de déblais ou d'emprunts

Éventuels.

Les matériaux de remblais seront exempts de :

- -Pierre de dimension > 80 mm
- -Matériaux plastique IP > 20% ou organique.
- -Matériaux gélifs.

On évite les sols à forte teneur en argile.

Les remblais seront réglés et soigneusement compactes sur la surface pour laquelle seront exécutés.

Les matériaux des remblais seront étalés par couche de 30 cm d'épaisseur en moyenne avant leurs compactages. Une couche ne devra pas être mise en place et compactée avant que la couche précédente n'ait été réceptionnée après vérification de son compactage.

La seul condition exigé et donne l'intensité du compactage, dans notre cas le GTR exige un compactage moyen.

- pas de conditions particulières dans les taches de l'extraction, granulométrie, teneur en eau, le traitement, le réglage du fond, et selon les expériences la hauteur des remblais est limitée à 4 mètre.

❖ VIII .6 -LES MOYENS DE LA RECONNAISSANCE :

Les moyens de reconnaissance du sol pour l'étude d'une trace routière sont Essentiellement :

- L'étude des archives et documents existants.
- Les visites de site et les essais « in –situ »
- Les essais de laboratoire.

L'étude géotechnique est un élément inséparable des études géologiques et hydrologiques pour la reconnaissance du terrain, elle doit permettre de:

Compléter l'étude géologique

- Prévoir le comportement des terrains ainsi que la stabilité des ouvrages pendant la phase d'exécution.
- Dégager les éléments caractéristiques au dimensionnement géométrique et aux méthodes d'exécution.

❖ VIII 7 <u>- Résultats obtenus :</u>

Analyse chimique	GR	LM	ES	Proctor	CBR	L.A	MDE

d'insoluble	CaCo ₃	So ₄ -2	(%)	(IP)	(%)	g/cm3	(%)	(%)	(%)
				(%)					
8.4	40	00	25	7.92	15	1.58	6.93	35	30
44	77	6.75	48	23.84	35	1.93	9.95	20	20

❖ VIII.8- <u>CONCLUSION</u> :

L'étude de sol devant recevoir le projet à montre que les faciès forment l'assise de la Route ne présente pas caractères spéciaux nécessitant des précautions spéciales.

Dans l'ensemble la portance est bonne, on peut conclure que :

- Les matériaux choisis présentent des granulométries bien étalées.
- La plasticité de la fraction fine est faible voire nulle.
- Les paramètres de compactage (densité sèche maximale etteneur en eauoptimale) sont acceptables.
- Les matériaux choisis se prêtent très bien au compactage.
- La dureté de la roche utilisée acceptable :

CHAPITRE IX DIMENSIONNEMENT

❖ IX. 1 −<u>INTRODUCTION</u>:

Le corps de chaussée est dimensionné pour supporter la circulation du trafic pour une durée bien déterminée. Il est défini comme étant l'épaisseur des différentes couches et matériaux qui seront mis en place pour constituer le corps de chaussée.

On doit non seulement penser au trafic existant mais aussi au trafic futur, ce qui nous amène à définir le taux d'accroissement de la circulation et le type de véhicules empruntant cette route. Le dimensionnement d'une chaussée est conditionné par trois familles de paramètres, qui sont les suivantes :

- le trafic (l'importance de la circulation et surtout l'intensité du trafic en poids lourds).
- la portance du sol support désignée par son indice C.B.R.
- la durée de service

***** IX.2 - PRINCIPE DE CONSTRUCTION DES CHAUSSEES:

IX 2.1 Définition De La Chaussée :

La chaussée est un ouvrage destiné essentiellement à la répartition des charges roulantes sur le terrain de fondation. Pour que le roulage s'effectue rapidement, sûrement et sans usure exagérée du matériel, il faut que la surface de roulement résiste aux différentes sollicitations et notamment aux :

- charges des véhicules.
- chocs.
- intempéries.
- efforts tangentiels dus à l'accélération, au freinage et au dérapage
- Au Sens Géométrique :

La surface aménagée de la route sur laquelle circule les véhicules.

• Au Sens Structurel:

L'ensemble des couches des matériaux superposées qui permettent la reprise des charges.

IX 2.2 Les Différents Types De Chaussée:

Il existe trois types de chaussée :

• Chaussée Souple :

La chaussée souple est constituée de deux éléments constructifs :

- les sols et matériaux pierreux granulométrie étalée ou serrée.
- les liants hydrocarbonés qui donnent de la cohésion en établissent des liaisons souples entre les grains de matériaux pierreux.
- La chaussée souple se compose généralement de trois couches différentes :

A)-Couche De Roulement (Surface):

La couche de surface est en contact direct avec les pneumatiques des véhicules et les charges extérieures. Elle a pour rôle essentiel d'encaisser les efforts de cisaillement provoque par la circulation. Elle est en générale composée d'une couche de roulement qui a pour rôle :

- d'imperméabiliser la surface de chaussée.
- d'assurer la sécurité (par l'adhérence) et le confort des usages.

La couche de liaison a, pour rôle essentiel, d'assurer une transition, avec les couches Inférieures les plus rigides.

L'épaisseur de la couche de roulement en général entre 5, 6 et 8 cm

B)-Couche De Base:

Pour résister aux déformations permanentes sous l'effet de trafic ainsi lâche de sol, elle reprend les efforts verticaux et repartis les contraintes normales qui en résultent sur les couches sous-jacentes.

L'épaisseur de la couche de base est entre 10 et 25 cm

C)-Couche De Fondation:

Assurer un bon uni et bonne portance de la chaussée finie, et aussi, Elle a le même rôle que celui de la couche de base.

D)-Couche De Forme:

Elle est prévue pour répondre à certains objectifs à court terme. Sol rocheux : Joue le rôle de nivellement afin d'aplanir la surface ;

Sol peu portant (argileux à teneur en eau élevée) : Elle assure une portance suffisante à court terme permettant aux engins de chantier de circuler librement.

Actuellement, on tient compte d'améliorer de la portance du sol support à long terme, par la couche de forme.

L'épaisseur de la couche de forme est en général entre 30 et 70 cm.

Dans la figure (IX. 1) on rentre les différent couches pouvant entre dans le dimensionnement du corps de chaussé.

CHAPITRE IX:

DIMENSIONNEMENT

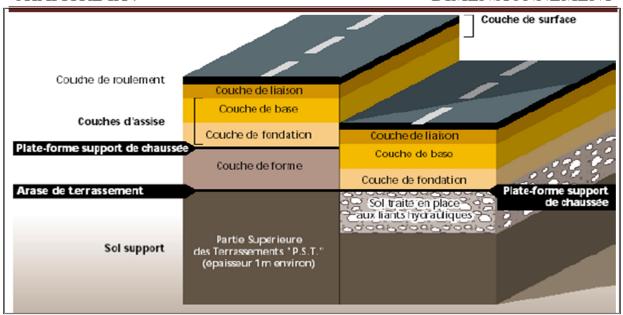


Fig. (IX, 1) <u>Différentes Couches Constituant La Structure De La Chaussée.</u>

• Chaussée Semi-rigide :

On distingue:

- Les chaussées comportant une couche de base (quelques fois une couche de fondation) traitée au liant hydraulique (ciment, granulat,...)
- ❖ La couche de roulement est en enrobé hydrocarboné et repose quelque fois par l'intermédiaire d'une couche de liaison également en enrobé strictement minimale doitêtre de 15 cm. Ce type de chaussée n'existe à l'heure actuelle qu'à titre expérimental en Algérie.
- Les chaussées comportant une couche de base ou une couche de fondation en sable gypseux.

- Chaussée Rigide:

Elle est constituée d'une dalle de béton, éventuellement armée (correspondant à la couche de surface de chaussée souple) reposant sur une couche de fondation qui peut être ungrave stabilisé mécaniquement, une grave traitée aux liants hydrocarbonés ou aux liants hydrauliques. Ce type de chaussée est très peu pratiqué en Algérie.

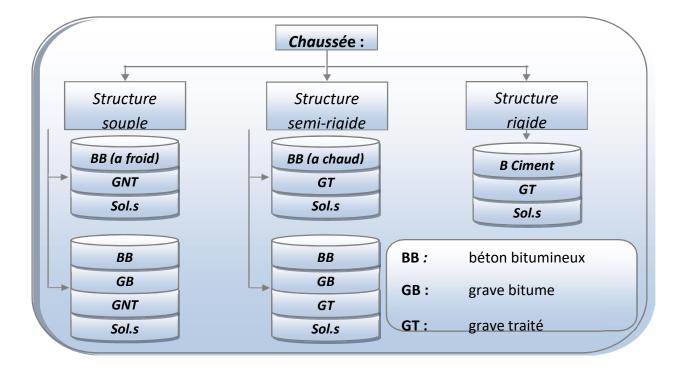


Fig. (IX. 2): Types De Chaussées

❖ IX.3- FACTEURS POUR LES ETUDES DE DIMENSIONNEMENT :

Toutes les méthodes de dimensionnement basées sur la connaissance de certainsparamètres fondamentaux liés au.

IX 3-1. TRAFIC:

Le trafic principalement le poids lourds est l'un des paramètres prépondérants dans la conception des structures, il intervient en fait d'abord dans le choix des matériaux puis dans le dimensionnement proprement dit de façon plus détaillée, le trafic gouverne les choix suivants:

- Choix d'un niveau de service qui se traduira notamment par le choix de la couche de surface.
- Choix de l'épaisseur des structures qui implique la fixation d'un niveau de risque.
 Il est apparu nécessaire de caractériser le trafic à partir de deux paramètres :

De trafic poids lourds « T » à la mise en service, résultat d'une étude de trafic et de comptages sur les voies existantes.

De trafic cumulé sur la période considérée qui est donnée par :

Avec: N = T.A.C

N: trafic cumulé:

A : facteur d'agressivité globale du trafic.

C : facteur de cumul.

$$C = [(1+\tau)^n - I] /\tau$$
.

Avec:

 τ : Taux de croissance du trafic.

n : Nombre d'années de service (durée de vie) de la chaussée.

IX 3-2. ENVIRONNEMENT:

L'environnement extérieur de la chaussée est l'un des paramètres d'importance essentielle dans le dimensionnement, la teneur en eau des sols détermine leurs propriétés, latempérature a une influence marquée sur les propriétés des matériaux bitumineux et conditionne la fissuration des matériaux traités par des liants hydrauliques.

IX 3-3. SOL SUPPORT:

Les structures de chaussées reposent sur un ensemble dénommé « plate – forme support de chaussée » constitué du sol naturel terrassé, éventuellement traité, surmonté en cas de besoin d'une couche de forme.

Les plates-formes sont définies à partir :

- De la nature et de l'état du sol.
- De la nature et de l'épaisseur de la couche de forme

IX.3.4 - MATERIAUX:

Les matériaux utilisés doivent résister à des sollicitations répétées un très grand nombre de fois (le passage répété des véhicules lourd).

❖ IX 4-.LES PRINCIPALES METHODES DE DIMENSIONNEMENT :

On distingue deux familles des méthodes :

- Celle qui utilise la structure de la chaussée à travers un modèle mécanique pour la détermination des contraintes et déformations, cette méthode est dite rationnelle.
- L'autre qui consiste à observer le comportement sous trafic des chaussées (réelles ou expérimentales) et d'en déduire les règles pratiques du dimensionnement, et c'est la méthode empirique.
- Les méthodes du dimensionnement de corps de chaussée les plus utilisée sont :
- La méthode de C.B.R (California -Bearing Ratio)

- Méthode du catalogue de dimensionnement des chaussées neuves
- Méthode du catalogue des structures
- La méthode de l'indice de groupe" Ig "

Pour le dimensionnement du corps de chaussée dans notre projet on va utiliser :

La méthode dite CBR.

Ix 4-1. Méthode C.B.R (California – Bearing – Ratio):

C'est une méthode semi empirique qui se base sur un essai de poinçonnement sur un échantillon du sol support en compactant les éprouvettes de (90° à 100°) de l'optimum Proctor modifié.

La détermination de l'épaisseur totale du corps de chaussée à mettre en œuvre s'obtient par l'application de la formule présentée ci-après.

➤ Pour un trafic en voiture particulaire : TMJA×365×1.5t < 100000 t/ans

$$e = \frac{100 + 150\sqrt{P}}{I_{CBR} + 5} \tag{cm}$$

Pour un trafic en voiture particulaire: TMJA \times 365 \times 1.5 $t \ge 100000 t/ans$

$$e = \frac{100 + \sqrt{P}(75 + 50\log\frac{N}{10})}{I_{CBR} + 5}$$

- e: épaisseur équivalente
- I_{CBR}: indice CBR (sol support)
- N: désigne le nombre journalier de camion de plus 1500 kg à vide
- P: charge par route P = 6.5 t (essieu 13 t)
- Log: logarithme décimal

L'épaisseur équivalente : est donnée par la relation suivante :

$$\mathbf{e} = \mathbf{c}_1 \times \mathbf{e}_1 + \mathbf{c}_2 \times \mathbf{e}_2 + \mathbf{c}_3 \times \mathbf{e}_3$$

Ou:

 C_1 , C_2 , C_3 : coefficients d'équivalence.

e₁, e₂, e₃: épaisseurs réelles des couches.

Coefficient D'équivalence :

Le tableau ci-dessous indique les coefficients d'équivalence pour chaque matériau :

Tableau (IX. 1): Les Valeurs Des Coefficients D'équivalence

Matériaux utilises	Coefficient d'équivalence
Béton bitumineux ou enrobe dense	2.00
Grave ciment – grave laitier	1.50
Grave bitume	1.20 à 1.70
Grave concassée ou gravier	1.00
Grave roulée – grave sableuse T.V.O	0.75
Sable ciment	1.00 à 1.20
Sable	0.50
Tuf	0.60

IX 4-2. Méthode Du Catalogue Des Structures:

Catalogue des structures type neuf est établi par «SETRA».

- Il distingue les structures de chaussées suivant les matériaux employés.
- Il considère également quatre classes de trafic selon leur importance, allant de 200 à 1500 Véh/J.
- Il tient compte des caractéristiques géotechniques du sol de fondation.
- Il se présente sous la forme d'un jeu de fiches classées en deux paramètres de données :
- 1. Trafic cumule de poids lourds à la 10^{ème} année Tj.
- 2. Les caractéristiques de sol (Sj)

Détermination De La Classe De Trafic:

Le tableau ci-dessous indique la classe du trafic :

Tableau (IX. 2): <u>Déterminant La Classe Du Trafic</u>

Trafic poids lourds cumule
T< 7.3×10 ⁵
$7.3 \times 10^5 < T < 2 \times 10^6$
$2 \times 10^6 < T < 7.3 \times 10^6$
$7.3 \times 10^6 < T < 4 \times 10^7$
$T > 4 \times 10^7$

Le trafic cumulé est donné par la formule suivante :

Tc = Tpl
$$\left[1 + \frac{(1+\tau)^{n+1}-1}{\tau}\right] \times 365$$

Avec:

Tpl: trafic poids lourds à l'année de mise en service.

 τ : taux d'accroissement annuel.

Détermination De La Classe Du Sol

Le Tableau Ci-dessous Déterminant La Classe Du Sol:

Tableau (IX. 3): <u>Déterminant La Classe Du Sol</u>

PORTANCE (S _I)	CBR
S4	<5
S3	5-10
S2	10-25
S1	25-40
S0	>40

IX 4-3. Méthode De L'indice De Groupe" Ig ":

Cette méthode est basée sur les caractéristiques du sol, de ses limites d'atterberg et de l'intensité du trafic poids lourds.

L'indice de groupe Ig est un coefficient compris entre (0 et 20) qui caractérisent le sol.

$$Ig = 0.2 a + 0.005 a \times c + 0.01 b \times d$$

"0" pour un excellent sol et "20" pour un mauvais sol

"a" et "b" sont des coefficients fonction du pourcentage f du sol passant à 0,008 mm

"c "est un coefficient en fonction de la limite de liquidité W_L

$$W_L < 40$$
...... $c = 0$
 $40 < W_L < 60$ $c = W_L - 40$
 $C = 20$

"d" est un coefficient en fonction de l'indice de plasticité I_{P.}

Détermination De L'épaisseur Des Couches

L'abaque ci-dessous donne l'épaisseur totale de la structure de chaussée pour l'essieu de reference de 13 tones en fonction de l'indice de groupe Ig et de l'intensité de trafic PL.

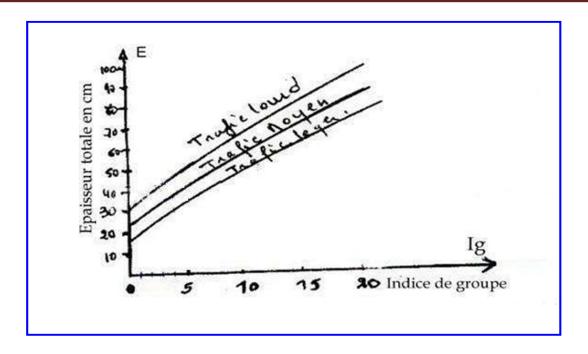


Fig. (IX. 3): Epaisseur Du Corps De Chaussée En Fonction De L'indice De Groupe

❖ IX. 5- APPLICATION AU PROJET :

Ix 5-1. Méthode C.B.R:

Données De L'étude :

- Le trafic à l'année 2022 TJMA2022 = 1100 v/j
- Année de mise en service : 2027
- Le pourcentage des poids lourds : Z = 35 %.
- Taux de croissance annuelle du trafic : $\tau = 5\%$.
- La durée de vie : 10ans.
- La vitesse de base sur le tracé Vb=80 km/h.

A Répartition De Trafic :

- TJMA₂₀₂₂= **1100** (V/j).
- TPL₂₀₂₂= $0.35 \times 1100 = 385$ PL/j
- TJMA₂₀₂₇ = $1100(1 + 0.05)^3 \approx 1274 \text{ v/j}$.
- $T_{PL2027}=0$, $35 \times 1274 = 446 PL /j/sens$
- TJMA₂₀₂₇ = $385 \times 0.5 = 193$ (V/j/sens)
- $T_{PL2037} = (1+\tau)^{10}$. $TJMA_{2027} = (1+0.05)^{10} \times 193 \approx 315$ (PL/j/sens)
- TJMA₂₀₃₇ = 1274 x $(1 + 0.05)^{10}$ = **2076** v/j.
- CBR = 10

TMJA×365×1.5t \geq 100000 t/ans \Rightarrow 2076×365×1.5=1136610 (t/ans) \geq 100000 (t/ans)

$$E_{\text{\'equi}} = [100 + \sqrt{P} (75 + 50 \log_{10} (N/10))] / (ICBR + 5)$$

$$E_{\acute{e}qui} = \left[100 + \sqrt{\frac{13}{2}} \left(75 + 50 \ log_{10} \left(2076/10\right)\right] / \left(10 + 5\right) = \frac{39.10 \ cm}{cm}$$
 L'épaisseur totale :
$$\boxed{e = 39.10 cm}$$

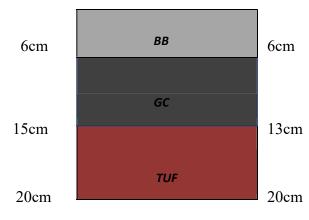
Epaisseur Equivalente:

$$e \text{ \'equivalente} = a_1 \times e_1 + a_2 \times e_2 + a_3 \times e_3.$$

Pour proposer le dimensionnement de la structure de notre chaussée, il nous faut résoudre l'équation suivante :

$$a_1 \times e_1 + a_2 \times e_2 + a_3 \times e_3 = 39$$
 cm

Pour résoudre l'équation précédente, on fixe 2 épaisseurs et on calcule la 3^{ème}


- Couche de roulement en béton bitumineux (B.B) : $a_1 \times e_1 = 6 \times 2 = 12$ cm.
- Couche de base en Grave concassée (G.C): $a_2 \times e_2 = 15 \times 1 = 15$ cm

Donc L'épaisseur de la couche de fondation e_3 en (TUF) est de $:a_3 \times e_3 = 20 \times 0.60 = 12$ cm

$$\acute{e}_{quivalent} = a_1 \times e_1 + a_2 \times e_2 + a_3 \times e_3 = 6 \times 2 + 15 \times 1 + 0.60 \times 20 = 39 cm$$

Epaisseur équivalent

Epaisseur réelle

TOTAL: 47cm TOTAL: 45cm

B)-Détermination De La Classe Du Sol:

$$I_{CBR} = 10$$
 \rightarrow I_{CBR} (5 - 10)

Donc : Le sol est classe sur la classe S₃.

D'après le catalogue des structures on trouve la structure suivante:Structure souple (s, fiche n° 2) on a sol S3 et trafic TPL3

On a besoin de faire une couche de forme de 40 cm pour augmenter la portance de sol.

Tableau (IX. 4): <u>Sur Classement Avec Couche De Forme En Matériau Non Traité</u>

Classe de portance de sol terrassé (Si)	Matériau de couche de forme	Epaisseur de matériau de couche de forme	Classe de portance de sol-support visée (Sj)
< S4	Matériaux non traités (*)	50 cm (en 2 couches)	S3
S4	//	35 cm	S3
S4	"	60 cm (en 2 couches)	S2
S3	"	40 cm (en 2 couches)	S2
S3	//	/0 cm (en 2 couches)	SI

Tableau (IX. 5) Parti De Fascicule 3

CHAPITRE X ASSAINISSEMENT

***** X-1-INTRODUCTION:

Nous avons vu que les eaux ruisselant sur une chassée dont l'accotement est surélevé se rassemblaient sur la rive et s'écoulaient jusqu'aux saignées. L'existence de bordure facilite cet écoulement. Quand la pente de la chaussée est faible (moins de 1%) ou forte (plus de 3%), il et recommandé d'établir un demi-caniveau (pavés, béton, brique) de 0.3 à 0.5 m de largeur, 6 à 10% de pente traversable. Dans le premier cas, la régularité du fil d'eau maçonné supplée à l'insuffisance de pente ; dans le second, on évite l'érosion de la rive par un courant rapide. Les saignées conduisant l'eau jusqu'au talus du remblai ou jusqu'à la fosse.

Si l'accotement est dérasé et si la plate-forme n'est pas trop large, les eaux ruissellent uniformément jusqu'à la fosse. Il faut éviter que s'amorcent et se formant sur l'accotement des circuits d'écoulement localisés (ravins) qui faciliteraient l'érosion ; c'est une raison de plus pour reprofiler périodiquement et stabiliser si possible les accotements dérases

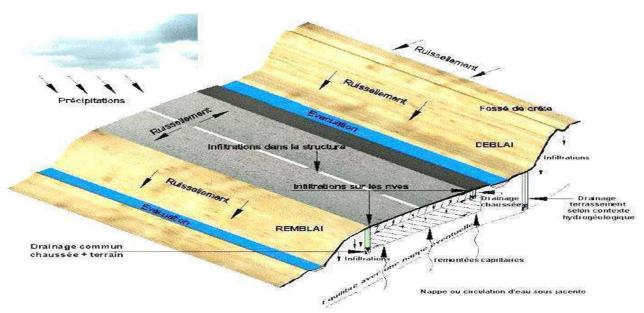


Fig. (X-1): L'emplacement Des Ouvrages D'assainissements

Les types de dégradation provoquée par les eaux sont engendrés comme suit :

1)- Pour Les Chaussées :

- Affaissement (présence d'eau dans le corps de chaussées).
- Dés enrobage.
- Nid de poule (dégel, forte proportion d'eau dans la chaussée avec un trafic important).
- Décollement des bords (affouillement des flancs).

2)- Pour Les Talus :

- Glissement.
- Erosion.
- Affouillements du pied de talus.

Les études hydrauliques inventorient l'existence de cours d'eau et d'une manière générale des écoulements d'eau en surface. Elles détermineront ensuite l'incidence du projet sur ces écoulements et les équipements à prendre en compte pour maintenir ces écoulements

***** X-2-OBJECTIF DE L'ASSAINISSEMENT :

L'assainissement des routes doit remplir les objectifs suivants :

- Assurer l'évacuation rapide des eaux tombant et s'écoulant directement sur le revêtement
- de la chaussée (danger d'aquaplaning).
- Le maintien de bonne condition de viabilité.
- Réduction du coût d'entretien.
- Eviter les problèmes d'érosions.
- Assurer l'évacuation des eaux d'infiltration à travers de corps de la chaussé,(Danger de ramollissement du terrain sous-jacent et effet de gel).
- Evacuation des eaux s'infiltrant dans le terrain en amant de la plate-forme(Danger de diminution de l'importance de celle-ci et l'effet de gel).

X.3-ASSAINISSEMENT DE LA CHAUSSEE:

La détermination du débouché a donné aux ouvrages tels que dalots, ponceaux, ponts, etc. dépend du débit de crue qui est calculé d'après les mêmes considérations. Les ouvrages sous chaussée les plus courants utilisés pour l'évacuation des petits débits sont les dalots et buses à section circulaire.

Parmi les ouvrages destinés à l'écoulement des eaux, on peut citer ces deux catégories :

- Les réseaux de canalisation longitudinaux (fossés, cuvettes, caniveaux).
- Ouvrages transversaux et ouvrages de raccordement (regards, décente d'eau, tête de Collecteur et dalot.

***** X-4-NATURE ET ROLE DES RESEAUX D'ASSAINISSEMENT ROUTIER:

Un réseau est constitué d'un assemblage d'ouvrages élémentaires, linéaires ou Ponctuels superficiels ou enterrés.

Son rôle est de collecter les eaux superficielles ou internes et de les canaliser vers un exutoire, point de rejet hors de l'emprise routière ; il peut également contribuer au rétablissement d'un

écoulement naturel de faible importance, coupé par la route.

Les ouvrages d'assainissement doivent être conçus dans le but d'assainir la chaussée et l'emprise de la route dans les meilleures conditions possibles et avec un moindre coût.

❖ X-5-<u>DEFINITIONS DES TERMES HYDRAULIQUE</u>:

A)- Bassin Versant:

C'est un secteur géographique qui est limité par les lignes de crêtes ou lignes de partage des eaux. C'est la surface totale de la zone susceptible d'être alimentée en eau pluviale, d'une façon naturelle, ce qui nécessite une canalisation en un point bas considéré (exutoire)

B)- Collecteur Principal (Canalisation):

C'est la Conduite principale récoltant les eaux des autres conduites (dites collecteurs secondaires), recueillant directement les eaux superficielles ou souterraines.

C)- Chambre De Visite (Cheminée):

C'est un ouvrage placé sur les canalisations pour permettre leur contrôle et le nettoyage. Les chambres de visites sont à prévoir aux changements de calibre, de direction ou de pente longitudinale de la canalisation, aussi qu'aux endroits où deux collecteurs se rejoignent. Pour faciliter l'entretien des canalisations, la distance entre deux chambres consécutives ne devrait pas dépasser 80 à 100m.

D)- Sacs :

C'est un ouvrage placé sur les canalisations pour permettre l'introduction des eaux superficielles. Les sacs sont fréquemment équipés d'un dépotoir, destiné à retenir des déchets solides qui peuvent être entraîné, par les eaux superficielles.

E)- Fossés De Crêtes :

C'est un outil construit à fin de prévenir l'érosion du terrain ou cours des pluies.

F)-Décente D'eau:

Elle draine l'eau collectée sur les fossés de crêts.

G)-Les Regards:

Ils sont constitués d'un puits vertical, muni d'un tampon en fonte ou en béton armé, dont le rôle est d'assurer pour le réseau des fonctions de raccordement des conduites, de ventilation et d'entretien entre autres et aussi à résister aux charges roulantes et aux poussées des terres.

X-6- INFLUENÇANT LE CHOIX DES OUVRAGES HYDRAULIQUES:

Le choix des ouvrages est guidé par le souci permanent de la pérennité de la route, de la

sécurité des usagers, du coût d'investissement et des modalités d'entretien ultérieur de l'ouvrage. Les facteurs influençant le choix sont :

- l'importance du débit à évacuer qui fixe la section d'écoulement et le type de l'ouvrage.
- les caractéristiques hydrauliques de l'ouvrage : coefficient de rugosité (K), coefficient d'entonnement.
 - (Ke): Créant une perte de charge à l'entrée, forme de la section d'écoulement;
- la largeur du lit. Un ouvrage unique adapté au débit à évacuer et à la largeur du lit du cours d'eau est généralement préférable à des ouvrages multiples qui augmentent les pertes de charge et rendent plus difficile le passage des corps flottants ;
- la hauteur disponible entre la cote du projet et le fond du talweg;
- les charges statiques et dynamiques qui sollicitent l'ouvrage hydraulique ;
- les conditions de fondation des ouvrages ;
- la rapidité et la facilité de mise en œuvre : les produits industrialisés approvisionnés en éléments transportables et montés sur place peuvent constituer une solution intéressante pour réduire les délais d'exécution et dans le cas où l'accès au chantier est difficile ;
- la résistance aux agents chimiques.
- la résistance au choc : les ouvrages massifs résistent mieux aux chocs et à l'abrasion par le charriage de matériaux solides.

***** X.7- DRAINAGE DES EAUX :

Les méthodes de calcul des débits de ruissellement utilisent généralement un modèle statistique de la relation (pluie- ruissellement " Q = f(I)". Leur application présente la difficulté d'apprécier les caractéristiques physiques et géographiques du bassin versant- temps de parcours ; coefficient de ruissellement, ... etc

X.8- APPLICATION AU NOTRE PROJET :

<u>Tableau X.1 : Les Ouvrages D'assainissement Existants.</u>

: ASSAINISSEMENT

N°	Localisation en	TYPE	Ouvert	
PROF	Point Repère(m)	D'OUVRAGE	ure	Longueur en mL
			(mm)	
13+14	300	BUS	1 Ø1000	10
29+30	700	BUS	1 Ø 1000	10
35+36	850	BUS	1 Ø 1000	10
41+42	1000	BUS	1 Ø 1000	10
91+92	2250	BUS	1 Ø 1000	10
92+93	2275	BUS	2Ø 1000	10
142+143	3525	BUS	1 Ø 1000	10
146+147	3625	BUS	1 Ø 1000	10
147+148	3675	BUS	1 Ø 1000	10
81+82	2000	DALOT	2* 3	10
204+205	5075	DALOT	0.5*1	10
212+213	5275	DALOT	0.5*1	10

CHAPITER XI SIGNALISATION

XI.1. INTRODUCTION:

La signalisation routière joue un rôle important dans la mesure où elle permet à la circulation de se développer dans de très bonnes conditions (vitesse, sécurité).

Elle doit être uniforme, continue et homogène afin de ne pas fatiguer l'attention de l'usager par une utilisation abusive de signaux

La signalisation routière comprend la signalisation verticale et la signalisation horizontale.

XI.2-DEFINITION LA SIGNALISATION:

Les signaux, leur condition d'implantation et toutes les règles se rapportant à L'établissement de la signalisation sont indispensables. Dans la conception et L'implantation de la signalisation routière, on ne doit pas prendre en considération les conditions de perception par l'usager qui se déplace à une vitesse peut être très grande.

La signalisation routière comprend la signalisation verticale et la signalisation horizontale.

XI.3-BUT DE SIGNALISATION:

Le but de la signalisation est de rendre plus sur et facile la circulation et d'assurer aux usagers la sécurité totale.

❖ XI.4. L'OBJET DE LA SIGNALISATION ROUTIERE :

La signalisation routière a pour objet :

- De rendre plus sur la circulation routière.
- De faciliter cette circulation.
- D'indiquer ou de rappeler diverses prescriptions particulières de police.
- De donner des informations relatives à l'usage de la route.

XI.5. CATEGORIES DE SIGNALISATION:

On distingue:

- La signalisation par panneaux.
- La signalisation par feux.
- La signalisation par marquage des chaussées.
- La signalisation par balisage.
- La signalisation par bornage.

REGLES A RESPECTER POUR LA SIGNALISATION:

Il est nécessaire de concevoir une bonne signalisation en respectant les règles suivantes:

- Cohérence entre la géométrie de la route et la signalisation (homogénéité).
- Cohérence avec les règles de circulation.

- Cohérence entre la signalisation verticale et horizontale.
- Eviter la publicité irrégulière.
- Simplicité qui s'obtient en évitant une surabondance de signaux qui fatiguent l'attention del'usager.

TYPES DE SIGNALISATION:

On distingue deux familles de signalisation :

- > Signalisation Horizontale.
- > Signalisation Verticale.

1. Signalisations Horizontales:

Elles comportent uniquement les marques sur chaussée; Elle se divise en deux types:

A). Lignes Longitudinales:

Elles sont utilisées pour délimiter les voies de circulation, on trouve :

• Les Lignes Continues :

Ces linges sont utilisés pour indiquer les sections de route ou le dépassement Est interdit, notamment parce que la visibilité est insuffisante.

• Les Lignes Discontinues :

Sont de type T1, T2 ou T3 (ligne d'avertissement, ligne de rive). (Voir le tableau suivant)

Modulation Des Lignes Discontinues :

Elles sont basées sur une longueur Périodique de 13 m. leurs caractéristiques sont données par le tableau suivant :

Tableaux. (XI, 1): Caractéristiques Des Lignes Discontinues

Type de	Longueur du trait(m)	Intervalle entre	Rapport
modulation		trait (m)	Plein/ vide
T_1	3.00	10.00	~ 1/3
T_2	3.00	3.5	~1
T ₃	3.00	1.33	~3

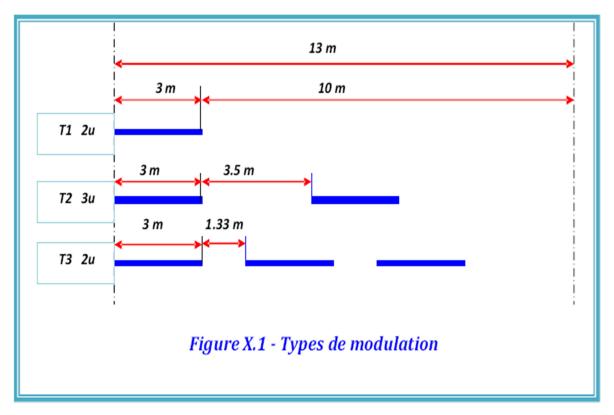


Figure (XI, 1) Type De Modélisation.

B)- Lignes Transversales:

Elles sont utilisées pour le marquage, on distingue :

• Ligne De Stop:

C'est une ligne continue qui oblige les usagers de marquer un arrêt Sont des lignes continues doublées par des lignes discontinues du type T1 dans le Cas général.

Autres Signalisation:

• Les Flèches De Rabattement :

Ces flèches légèrement incurvées signalent aux usagers qu'ils doivent Emprunter la voie située du coté qu'elles indiquent.

• Les Flèches De Sélection :

Ces flèches situées au milieu d'une voie signalent aux usagers, notamment àProximité des intersections, qu'il doive suivre la direction indiquée.

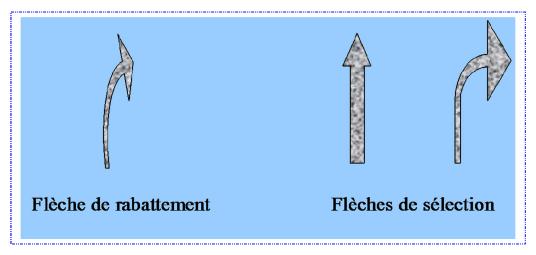


Figure (XI, 2): Flèche De Signalisation

Xi.7. 2. Signalisations Verticales:

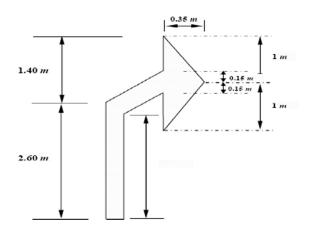
Elle se fait à l'aide des panneaux qui transmettent un message visuel grâce à leur Emplacement, leur type, leur couleur et leur forme.

A)- Signalisation Avancée:

Le signal A24 est placé à une distance de 150 m de l'intersection.

Le signale B3 accompagné dans tous les cas d'un panneau additionnel (modèle G5) est implanté sur la route prioritaire.

B)- Signalisation De Position:


Le signal de type B2 « arrêt obligatoire » est placé sur la route où les usagers doivent marquer l'arrêt.

C)- Signalisation De Direction:

L'objet de cette signalisation est de permettre aux usagers de suivre la route ou l'itinéraire qu'ils se sont fixés, ces signaux ont la forme d'un rectangle terminé par une pointe de flèche d'angle au sommet égal à 75°.

XI.8- CARACTERISTIQUES GENERALES DES MARQUES:

- Le blanc est la couleur utilisée pour les marquages sur chaussée définitive et l'orangepour les marques provisoires.
- La largeur des lignes est définie par rapport à une largeur unité « U » différente suivant le type de route, à savoir :
- U = 7.5cm sur les autoroutes et voies rapides urbaines.
- U = 6cm sur les routes et voies urbaines.
- U = 5cm pour les autres routes.

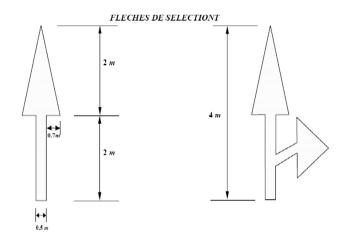


Figure (XI, 3) Dimensionnement Du Flèche.

APPLICATION AU PROJET:

Les différents types de panneaux de signalisation utilisés pour notre étude sont les

Suivants:

- Panneaux de signalisation d'avertissement de danger (type A).
- Panneaux de signalisation d'interdiction de priorité (type B).
- Panneaux de signalisation d'interdiction de priorité (type C).
- Panneaux de signalisation d'obligation (type D).

Exemple:

• Signalisation Horizontale:

La signalisation routière horizontale regroupe l'ensemble des marquages peints sur la route et qui indiquent aux usagers quel comportement adopter à ces endroits.

Ligne Continue:

Infranchissable, dépassement et changement de voie interdits.Il est également interdit de la traverser

perpendiculairement

Ligne Discontinue: trait 3m,

intervalle 10m Dépassement et

changement de voie autorisés.

SIGNALISATION

Ligne De Rive : trait 3m, intervalle 3,50m

Sépare la chaussée de l'accotement, peut être franchie pour s'arrêter ou stationner. Dans les sens uniques, la ligne de rive à gauche est continue.

Figure (XI, 4) Signalisation Horizontale

• Signalisations Verticales:

Balisage des virages (J1)

> Type A:

LES SIGNAUX DE DANGER

Virage A Droite:

Pk: 375.00m

Pk:544.15m

Virage A Gauche:

Pk: 900.00m

Pk:1257.93m

Alb

> Type B:

\triangleright Type C:

> Type D:

Signaux D'identification Des Routes (Type D)

CHAPITRE XII DEVIS QUANTITATIF ET ESTIMATIF

DEVIS QUANTITATIF ET ESTIMATIF

N	Désignation Des	U	Quantité	P.U (DA)	Montant (DA)		
	Travaux						
	Terrassements						
	Déblai En Terrain Meuble						
1	Mis En Dépôt	M^3	17735.04	700	12,414,535.00		
	Déblai En Terrain Rocheux						
2	et Semi-Rocheux Exécuté AuRipper	M^3	3937.26	2500	9,843,150.00		
3	Déblai Mis En Remblai	M^3	4125.77	500	2,062,885.00		
	Remblais En Provenance	M^3	10722.17	700	7,505,519.00		
4	D'emprunt Y Compris				7,000,01500		
	Transport						
			Chaussée	1			
	Couche de fondation en tuf						
	sur 20 cm d'épaisseur et 10						
	m de largeur y compris						
	extraction, transport de tuf et						
	de l'eau, malaxage et						
	compactage jusqu'à 95 % de						
5	l'OPM, et toutes sujétions de	M^3	10621.82	800	8,497,456.00		
	bonne exécution.						
	Couche de base en grave						
	concassée 0/31, sur 15 cm						
	d'épaisseur et 10 m de						
	largeur y compris le						
	transportdes agrégats et de						
	l'eau, l'arrosage, malaxage				22 000 005 00		
6	et compactage jusqu'à 98 %		7,966,365.00	3000	23,899,095.00		
	de l'OPM, et toutes sujétions de	M^3					

DEVIS QUANTITATIF ET ESTIMATIF

	bonne exécution.				
	Couche d'imprégnation au				
	cut-back 0/1 sur une largeur				
	de 10 m à raison de 1,2				
	kg/m2 y compris transport				
	ducut-back, balayage et				
	soufflage préalable de la				
7	couche à imprégné et toutes	M^2	53109.1	900	47,798,190.00
	sujétions de bonne exécution.	171			
	Revêtement en enrobé à				
	chaud 0/14 sur 6 cm				
	d'épaisseur et 6 m de largeur				
	y compris le transport des				
	agrégats, de bitume et de				
	l'enrobé, mise en œuvre de				
8	l'enrobé, compactage et	Т	7,647.7104	9000	68,829,393.6
O	toutes sujétions de bonne	1	7,0 - 7,0 - 7	200	
	exécution.				

	Rechargement des				
	accotements en grave				
	concassée 0/31 sur 6 cm				
	d'épaisseur et y compris				
	transport de tuf et de l'eau,				
	malaxage et compactage				
9	jusqu'à 95 % de l'OPM et	M^3	2549.2368	800	2,039,389.44
	toutes sujétions de bonne	111	231712000		
	exécution				
	1		<u> </u>	<u> </u>	1

	PASSAGE BUSSE ET GABIONNAGE						
10	Buse Diamètre Ø1000 mm	ML	200	25000	5,000,000.00		
11	Réalisation Du Gabion	M ³	250	5000	1,250,000.00		
		Si	gnalisati	on			
12	Signalisation Horizontale	ML	10761	1000	1,076,100.00		
13	Signalisation Verticale	F	1	600000	600,000.00		
	TOTAL	810,192,993.20					
	TVA	153,936,668.7					
	TOTAL	964,129,661.9					

Neuf cent soixante-quatre millions cent vingt-neuf milles six cent soixante et un dinars et neuf centimes.

CONCLITION GENERALE

Le travail entrepris s'inscrit dans le cadre de la préparation d'un mémoire de fin d'étude de Mater 02 en voies et ouvrages d'art, il porte une étude détaillée d'un tronçon de route de cinq Klm du trace routier reliant Ammi Moussa à Zamoura.

L'objectif de ce trace est de rependre aux besoins de l'amabilité extrémale entre les deux pôles urbaines, mobilité économique et personnelle qui ne cesse d'accentuer de plus en plus et le développement économique du pays. C'est un projet qui est du type sectoriel, gouverné par la direction des travaux publics de Rilézane.

Le sujet est traite en phases une phase de jugement de son utilité en s'appuyant sur le calcul d'un TMJA extrapolé a partir des traces existantes environnantes. Et les deux autres phases qui sont ;

Étude géométrique et cinématique du tracé à travers un levé topographique mis à notre disposition

Etude géotechnique et mouvements des terres ainsi qu'une estimation sommaire approximative du cout du Projet

Ce projet était pour nous une occasion d'apprendre :

la façon de mener une étude de Route

Connaitre les logiciels en références et relation avec les projets de routes

Apprendre en main la maitrise des logiciels DAO et CAO en relation avec la discipline

BOBLIOGRAPHIE

- B40 (Normes Techniques D'aménagement Des Routes EtTrafic Et Capacité Des Routes 1972).
- Rapport d'activités techniques, DTP Rilézane(Base De Données) mois d'Avril 2016)
- Rapport de sol de l' LTPO (Etude Géotechnique) mois d'mai2001.
- Rapport de Levé Topographie de SETS (Société D'études Technique Sétif)
- Fascicule 3 Du Catalogue Algérien Réf 2002
- Les Signaux Routiers Réglementaires Edition Juin 2009
- Sites INTERNET: WWW. Google Earth.Com
- Catalogue De Dimensionnement Des Chaussées Neuves (C.T.T.P)
 Fascicule 1 .2 .3. Novembre 2001
- Documentation **SETRA** (Aménagement Des Carrefours).
- Conception Géométrique Route (Collection Les RapportsSetra) Janvier 2006.
- Dimensionnements Verticale Des Routes
- Cours Route Partie 1 Chaussés