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Abstract  

Machine learning is a continuously developing field that benefits humans in enormous 

areas, such as systems automation, security, and medical examinations. 

Machine learning generally aims to extract knowledge from large masses of data and 

fit that data into models that can be understood and utilized. In other terms, this technology 

provides systems that can learn and enhance from experience automatically without being 

specifically programmed. In many cases, one model is not enough since models can suffer from 

overfitting or underfitting. Ensemble learning methods solve this issue by generating multiple 

models and combining the results which maintain a better prediction and lead to  better 

performance . 

The goal of this research is to study, conceive and then implement a system that based 

on Heterogeneous ensemble learning would allow us to bypass those limits. 
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Introduction 

Artificial intelligence became so mainstream that it evolved into different subsets. One 

of these subsets is Machine learning. This discipline allows software applications to become 

more accurate at predicting outcomes without being explicitly told to do so. It uses previous 

data as input to predict new output values. It became essential to leading companies such as 

Facebook, Google, and Uber since it gives a view of trends in customer behavior and supports 

the development of new products. 

Machine learning models are trained on datasets that regroup information of the same 

type regarding a specific topic, whether it is medical, sports, real estate, etc. The model is 

trained using algorithms for different purposes depending on the type of model we are aiming 

for. It can either be a classifier that outputs binary or ordinal values, or linear models for 

continuous values. The resulting model is then tested and evaluated before being deployed to 

real-world usage.  

During the learning phase, a situation can occur where the model sticks too much to the 

data and its variation, or cannot perform well on the training data itself. This is due to the lack 

of Data and lack of Good Data. Two types of problems linked to that exist: they are known as 

underfitting and overfitting. There are techniques used to overcome these limits, among them 

we can find ensemble methods [6]. These techniques combine multiple learning algorithms to 

improve the accuracy and reduce the variance of the final model. 

The ensemble methods are more commonly known for the homogeneous type, such as 

Bagging, where the same algorithm is trained on different samples of data by using a bootstrap 

mechanism. The other class of ensemble methods consists in Boosting where the same 

algorithm is trained sequentially (through numerous iterations) to get the best model. Both 

Bagging and Boosting principles are implemented in available modules such as Scikit-learn1. 

In this project, we are interested in heterogeneous parallel ensemble learning where, 

unlike Bagging, different machine learning algorithms are used to create an ensemble learner. 

 
1
 https://scikit-learn.org/stable/  

https://scikit-learn.org/stable/
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In traditional Bagging, the diversity is created through training the same algorithm on different 

samples of data, whereas in this project, we aim to create the diversity through the use of 

different algorithms. These algorithms are combined to form the heterogeneous ensemble 

learner. The mixture of base algorithms can be done either by using a combination function or 

through the use of a meta-model (stacking). 

The objective of this study is to design and implement a heterogeneous parallel 

ensemble learner over many base algorithms. In this first attempt, five main machine learning 

algorithms are considered: decision tree, logistic regression, support vector machine, Gaussian 

naive bayes and K-nearest neighbors. These algorithms are first trained and tested on a heart 

disease dataset, then combined to produce the ensemble learner which in turn is trained and 

tested on the same dataset. Our model improves the results by up to 30%. 

The document is  divided into 5 chapters :  

1. Chapter 1: A global introduction to machine learning, model evaluation and 

the known limits. 

2. Chapter 2: An introduction to Homogeneous ensemble methods and bagging 

3. Chapter 3: Heterogeneous ensemble methods.  

4. Chapter 4: Heterogeneous Parallel Ensemble Learning : Design 

5. Chapter 5: Heterogeneous Parallel Ensemble Learning : Implementation 
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Chapter 1  

Machine Learning 

1.1 Introduction 

During the past few years, Artificial Intelligence (AI) started getting more and more 

visibility and has become a well-known term for many people thanks to its many strong points, 

such as its revolutionary solutions and the wide range of products used in most households. 

Sub-branches of AI  were born for different needs, such as machine learning and deep learning. 

Machine learning (ML) is the part of AI that can learn from previously generated observations 

(data) without being explicitly told to do as such. It facilitates the process of extracting 

knowledge from data which, in turn, makes it excel in solving complex, data-rich problems 

where traditional approaches such as human judgment and software engineering sometimes 

fail. 

Machine learning predicts future outcomes based on pre-existing data. In addition, it 

can lead to a variety of automated tasks; which makes this technology affect virtually every 

industry, from weather forecasting to stockbrokers looking for optimal trades. Machine 

learning requires complex math and a lot of coding to achieve the desired functions and results. 

It also incorporates classical algorithms for various kinds of tasks such as clustering, regression, 

or classification. We have to train these algorithms on large amounts of data. The more data 

you provide for your algorithm, the better your model gets. There are four types of machine 

learning algorithms: supervised, semi-supervised, unsupervised, and reinforcement. 

To build efficient models and extract features, many started combining data mining 

with machine learning, which is currently considered a crucial part of its process. 

1.2 Data mining 

Data mining is a key part of Machine Learning and one of the core disciplines in data 

science, which uses advanced analytics techniques to find valuable patterns and trends hidden 

within vast volumes of data [14]. 
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1.2.1 Process 

The process of data mining can be divided into four steps, starting with data gathering, 

then data preparation moving to the mining, and finally data analysis and interpretation. 

1.2.1.1     Data gathering  

It is the procedure of collecting relevant data for an analytics application to be identified 

and assembled. The data can be located in different source systems. The more information 

collected, the better the analysis is, under the condition that the source is reliable [14]. 

1.2.1.2   Data preparation 

It is a set of steps that aim to make the data ready to be mined by keeping only the 

necessary one and removing the unwanted so that it would not lead us to false conclusions. It 

starts with data exploration, profiling, and pre-processing, then cleansing work to fix errors and 

other data quality issues, it can be followed by data transformation to make datasets consistent 

[24]. 

1.2.1.3   Mining the data 

It is the process that starts with selecting the appropriate data mining technique, then 

implementing one or more algorithms to do the mining. However, in machine learning 

applications, the algorithms typically must be trained on sample datasets to look for the 

information being sought before they are run against the full set of data [14]. 

1.2.1.4   Data analysis and interpretation  

It is the process of assigning meaning to the collected information from the data mining, 

finding patterns, and determining the conclusions, significance, and implications of the 

findings; this can help drive decision-making and other business actions [14]. 

1.2.2 Models 

Many data mining techniques can be used to turn raw data into actionable insights. 

These techniques are divided into two types, namely, Descriptive and Predictive models. 
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1.2.2.1   Descriptive modeling  

A descriptive model distinguishes relationships or patterns in data. It detects the 

similarities between the collected data and the reasons behind them. It also serves as a way to 

explore the properties of the data being examined. Clustering, summarization, associating rules, 

and sequence discovery are descriptive model data mining tasks [1]. 

1.2.2.2   Predictive modeling  

Predictive modeling is an approach based on the analysis of various historical data to 

create, process, and validate a model that can be used to predict future behaviors [1]. 

1.2.3 Applications of data mining 

 

Figure I.1 : Data mining applications  

As can be seen in Figure I.1, data mining can be used for different applications that can 

vary from simple things like marketing to very complex domains like making environmental 

disaster predictions. Some of these applications will be discussed in the following sections [1]. 

1.2.3.1   Marketing 

Using data mining, we can analyze customers' behaviors for targeted advertising [1]. 

1.2.3.2   Customers' purchase behavior 

Data Mining will help to identify trends of customers for goods in the market then 

allowing the retailer to understand the purchase behavior of a buyer [1]. 
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1.2.3.3   Education 

Learning institutions would be able to upgrade the proposed courses based on the 

behaviors of students extracted using data mining [1]. 

1.3 Learning methods 

A machine learning algorithm, also called model, is a mathematical expression that 

represents data in the context of a problem. The aim is to go from data to insight. The process 

of learning can be divided into two major categories: unsupervised learning and supervised 

learning. 

In unsupervised machine learning, the desired output is not given; the techniques that 

follow this approach extract conclusions from datasets that consist of the input data without the 

labeled response. 

Supervised machine learning techniques attempt to find a relationship between input 

attributes (independent variables) and a target attribute (dependent variable). These techniques 

can further be classified into two main subcategories: classification and regression. In 

regression, the output variable takes continuous values while in classification the output 

variable takes class labels [10][27]. 

1.3.1 Regression 

Regression is an approach that is used when the output of a problem is continuous. 

Different models exist, their usage varies according to the nature of the data, the most popular 

among these techniques is linear regression [29].  

Linear regression is one of the most basic types of regression in machine learning that 

consists of a predictor variable and a dependent variable related linearly to each other. In case 

the data involves more than one independent variable, then linear regression is called multiple 

linear regression [13].  

1.3.2 Classification   

Classification is an approach that is used to forecast group membership for data 

instances. It represents the process of recognizing, understanding, and grouping ideas and 

objects into preset categories using pre-categorized training datasets. The classification type is 
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widely used in Machine learning, including Binary classification and Multi-class classification 

[12]. 

1.3.2.1   Binary classification 

Refers to classification techniques that divide instances into two classes. Generally, the 

results involve one class that is the normal state and another class that is the abnormal state. For 

example: email spam detection (spam or not) [3]. 

1.3.2.2   Multi-class classification 

Multi-class classification is a classification task with more than two classes.This 

method makes the assumption that each sample is assigned to one and only one category. For 

example : classify a set of images of fruits which may be oranges, apples, or pears, where fruit 

can be either an apple or a pear but not both at the same time [20]. 

1.4 M

odel evaluation  

In order to determine if we are on the right track or should furthermore adjust our model, 

we should evaluate it. Evaluation is one of the most important steps of the machine learning 

process. This step allows us to detect errors at an early stage. 

The most important aspect needed to properly evaluate a predictive model is to not train 

it on the entire dataset. A typical train/test would be to use a portion of the data (70% in most 

cases) for training and the remaining portion for testing. This would prove useful when trying 

to prevent overfitting [15]. 

1.4.1 E

valuation methods 

In order to evaluate model accuracy, metrics are made available so that analysts would 

test how robust their model is. The choice of metric completely depends on the type of model 

and the implementation plan of the model [1.8]. 
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1.4.1.1   

Classification metrics  

When performing classification predictions, the prediction can be considered as one of 

the four types below [1.8]:  

o True Positives (TP): When a prediction of observation is correctly classified.  

o True Negatives (TN): When a prediction of an observation not belonging to a class is 

correct.  

o False Positives (FP): When an observation is predicted to belong in a class but in 

reality, it does not. 

o False Negatives (FN): When an observation is predicted to not belong in a class but in 

reality it does. 

These four outcomes form what is called the confusion matrix, which can be used to 

compute different metrics to evaluate the model. The most used ones are described below. 

a. Accuracy 

It is defined as the percentage of correct predictions for the test data, it can be calculated 

using the following formula ( Equation I.1):  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
    

Equation I.1: Accuracy equation  

b. Precision 

It is defined as the fraction of relevant observations among those predicted to belong in 

a certain class. It is calculated using the following formula (Equation I.2):  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    

Equation I.2: Preci equation 

c. Recall 

It is defined as the fraction of relevant observations among those that belong to a certain 

class. It is calculated using the following formula (Equation I.3):  
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation I.3: Recall equation 

 

1.4.1.2   

Regression metrics  

Evaluation metrics for regression models are different than the ones used in 

classification problems, that is because the prediction is in a continuous value rather than a 

defined number of outcomes; 

The goal now is instead of checking which class the prediction falls into, we would 

rather have a metric that would determine if the prediction was good or not [4]. 

d. Mean Squared Error 

MSE (Mean Squared Error) is an important loss function for algorithms, it uses the least 

squares framing of a regression problem. Here “least squares” refers to minimizing the mean 

squared error between predictions and expected values. 

The MSE is calculated as the mean or average of the squared differences between 

predicted and expected target values in a dataset ( Equation I.4) [5]. 

𝑀𝑆𝐸 =
1

𝑁
∑

𝑁

𝑖=1

(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)
2 

Equation I.4: MSE equation 

e. Root Mean Squared Error 

RMSE (Root Mean Squared Error) is an extension of the MSE, with the same units and 

not the square of the unit. It may be common to use MSE to train a regression model while 

using the RMSE to evaluate its performance (Equation I.5). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑

𝑁

𝑖=1

(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2 

Equation I.5: RMSE equation 

f. Mean absolute error 
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MAE is a metric where, like RMSE, error units match with the target units. The 

difference is that, unlike RMSE, the changes in MAE are linear and therefore intuitive. 

𝑀𝐴𝐸 =
1

𝑁
∑

𝑁

𝑖=1

|𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖| 

Equation I.6: MAE equation 

1.4.2 L

imits of classic models 

During our learning, we may encounter a situation where our model sticks too much to 

the data and its variation, or can not perform well on the training set itself. This is due to the 

lack of data and lack of good data. Two types of problems linked to that exists, underfitting 

and overfitting:  

1.4.2.1 U

nderfitting 

Underfitting is the scenario where a model is unable to capture the relationship between 

the input and output variables accurately, which leads to a high error rate on both the training 

set and predicted data [6]. 

To prevent underfitting, we can train our model using more data over more training 

time. 

1.4.2.2 O

verfitting 

Overfitting refers to the situation where the model is useful for the training data set, and 

irrelevant for any other data sets (irrelevant in generalization). This happens when the model 

learns the detail and noise of the training data to the extent that it negatively affects the 

performance of the model on new data [6]. 

 To prevent overfitting, several options are available, the most popular solutions are:  

● Cross-validation : It is a standard way to find out-of-sample prediction errors. It is 

usual to use a 5-fold cross validation [7]. 

● Early Stopping : Its rules provide us with guidance as to how many iterations can 

be run before the learner begins to over-fit [7]. 
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● Training with more data : Training with more data can help the algorithm detect 

association rules better. This would not work if the added data is noisy. 

In addition to those techniques mentioned above, another type of methods to prevent 

from overfitting/underfitting, they are called Ensemble methods [37]. 

1.5  

Ensemble methods 

Ensemble methods are techniques that combine multiple learning algorithms to produce 

improved results and optimize better predictive performance. These methods reduce overfitting 

in models and make the model more robust. 

1.6 Conclusion 

Data mining, which is a subset of machine learning, provides us with many different 

types of classic learning methods such as classification and regression, but they both have a 

limit. In this first chapter of our scientific study, we tried to make a clear summary of machine 

learning and data mining. This chapter also cited learning methods and how to measure their 

performance and also their limits. We also mentioned methods that would help us prevent and 

overcome those limits. Now we can carry on in the next chapter to explore one of these 

solutions, Ensemble methods.  
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Chapter 2  

Homogeneous Parallel Algorithms (Bagging) 

2.1 Introduction 

Ensemble methods rely on a notion known as the “wisdom of the crowd”. It is the idea 

that a combined answer of many diverse models is often better than any one individual answer. 

The ensemble learning approach embodies this process by generating multiple models and 

combining them, intending to improve model performance. 

These methods fall into two broad categories: sequential ensemble techniques which 

generate base learners in a sequence, in a way that each model is dependent on the previous 

one (Figure II.1, B); and parallel ensemble techniques that utilize the parallel generation of 

base learners to encourage independence between the base learners then combines predictions 

from individual learners to get the final prediction of the ensemble learner (Figure II.1, A). 

 

Figure II.1 :  Ensemble Learning Techniques 

 

Parallel ensemble methods can additionally be divided into homogeneous and 

heterogeneous parallel ensembles based on the learning algorithms used in the process. 
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Homogeneous ensemble methods use the same learning algorithm while heterogeneous 

ensemble methods train the models using different learning algorithms.  

One of the simplest ensemble algorithms with high performance under the parallel 

homogeneous methods is known as Bagging [30][33], which will be defined in this chapter, as 

long as its principles, down to its implementation.  

 

2.2  Bagging: Bootstrap Aggregating 

Bagging is a short term for bootstrap aggregating; it was introduced by Leo Breiman in 

1996 [30]. This ensemble technique is the most basic homogeneous parallel ensemble method 

that can be constructed to either improve ensemble diversity or overall computational 

efficiency. 

This technique trains base estimators on replicates of the dataset that result from 

multiple base estimators from a single dataset and a single learning algorithm. This process is 

achieved through bootstrap sampling which guarantees ensemble diversity. The next step is 

performing ensemble prediction through model aggregating [30]. 

The following paragraphs introduce the 3 steps of bagging as illustrated in Figure II.2 

 

Figure II.2 :  The process of bagging 

2.2.1 Bootstrap Sampling  

A bootstrap sample is a smaller sample that is a subset of the initial dataset. The 

bootstrap sample is created from the initial dataset by sampling with replacement. Suppose for 
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a dataset having n rows and f features, we perform a bootstrap sampling that refers to sampling 

with replacement into k different smaller datasets each of size m with the same f features. Each 

smaller dataset Di formed is used to train the chosen algorithm. 

When sampling with replacement, some objects that were already sampled have a 

chance to be sampled a second time (or even a third, or fourth, and so on) because they were 

replaced. Some objects may be sampled many times, while some objects may never be sampled 

[35]. 

Thus, bootstrap sampling naturally partitions a dataset into two sets: a bootstrap sample 

(with training examples that were sampled at least once) and an out-of-bag (OOB) sample (with 

training examples that were never sampled even once).  

We can use each bootstrap sample for training a different base estimator. Since different 

bootstrap samples will contain different entries (some entries are used in different samples), 

each base estimator will turn out to be somewhat different from the others. 

In Figure II.3, the initial dataset D of shape (n, f) is sampled to k datasets each of shape 

(m, f), where m<n [35]. 

 

Figure II.3 : Bootstrap sampling 

Figure II.4 is an illustration of the bootstrap procedure. The dataset D having 10 rows 

is sampled with replacement into k smaller datasets each having 5 rows. Here n=10 and m=5. 

It is observed that each of the datasets formed by bootstrapping sees only a part of the original 

dataset and all the datasets are independent of each other [35]. 
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Figure II.4 : Detailed bootstrap sampling 

 

This is the first step of the bagging ensemble technique in which k smaller independent 

datasets are created by bootstrapping [35]. 

 

2.2.2 Modeling 

Modeling is the second step of bagging. After k smaller datasets are created by 

bootstrapping each of the k datasets is trained using the same ML algorithm. In the training 

phase, we can either use this algorithm with similar or different configurations for our models. 

For example, Decision Tree algorithms can be used as a base model while changing 

hyperparameters such as ‘depth’. A combination of different algorithms such as SVM, Naive 

Bayes, Logistic Regression can be used. The models which are trained on each bootstrap 

dataset are called base models or weak learners. Figure II.5 describes the training of each 

dataset of separate models [35]:  
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Figure II.5 : Modeling samples 

 

2.2.3 Aggregation 

A final powerful robust model is created by combining the k different base models (as 

can be seen in Figure II.6). Since the base models are trained on a bootstrap sample, each model 

may have different predictions. An aggregation technique is different depending on the 

problem statement [35][33]. 

 

Figure II.6 : Aggregation 
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- For a regression problem: The aggregation can be taking the mean of prediction  of 

each base model (Equation II.1). 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  
1

𝑘
× ∑

𝑘

𝑖=1

𝑝𝑟𝑒𝑑𝑖            

Equation II.1: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

- For a classification problem: The aggregation can be using majority voting, the class 

having the maximum vote can be declared as the final prediction (Equation II.2). 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  𝑎𝑟𝑔𝑚𝑎𝑥𝐶(𝑝𝑟𝑒𝑑𝑖[1, 2, 3, ⋯ , 𝑐])      

Equation II.2: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

2.2.4  Parallel Training  

Bagging is a parallel ensemble algorithm as it trains each base learner independently of 

other base learners. This means that training bagging ensembles can be parallelized if one has 

access to computing resources such as multiple cores or clusters. The bootstrap samples would 

be trained independently and in parallel with each other using weak or base learners [35][33]. 

2.3 Random Forests 

Random forest is a special case of bagging where the learning algorithm used is the 

decision tree algorithm; it increases diversification by adding more randomness. It is a widely 

utilized technique and a popular go-to method for many applications, especially bioinformatics, 

due to its computational efficiency in training. Moreover, it ranks data features by importance, 

which is very useful for high-dimensional data analysis [2]. 

2.3.1 Randomized Decision Trees 

Random forest is a particular case of the bagging algorithm that is constructed using 

randomized decision trees as base estimators. Starting with performing bootstrap sampling to 

generating a training subset, then it trains the base estimators using a modified decision-tree 

learning algorithm [2]. 

The main difference between the decision tree and the random forest algorithm is the 

construction of their nodes. In standard decision tree construction, all the features are evaluated, 

and the one with the highest information gain is considered as the best feature, this feature is 

selected to split the data/dataset. However, if we use the bagging on the standard decision tree 
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algorithm the results will be approximately similar since we are relying on one feature, in a 

way the similarity of the result can lead to low variance [2]. 

Random forest eliminates this problem by introducing randomness in the process of 

building trees. While selecting the features, instead of evaluating all the features to identify the 

split with the highest information gain. This technique prepares a random subset of features, 

then evaluates each subset to identify the best feature to split on, therefore, increasing ensemble 

diversity and improving the predictive performance [2]. 

2.3.2 Features Importance 

In the modeling concept, feature selection is a crucial process. It affects the model 

accuracy and performance, especially when using high-dimensional data. Fortunately, the 

random forests technique enables us to rank the features by importance and identify the most 

pertinent ones and drop low impact features. This gives us the ability to ensure that the models 

are trained with the most relevant features. 

Another important step is ejecting features. This is applied on the least relevant features 

which minimizes overfitting, especially since a large number of features can inhibit the model’s 

ability to generalize effectively. This helps improve generalization and computational 

performance [30][33]. 

We can also encounter a case where multiple features are strongly correlated or 

dependent. then intuitively, dropping one of them wouldn’t affect the model. However, the 

order in which features are used can prioritize ones and reduce the importance of the others. 

This problem can be mitigated somehow through random features selection. 

2.4 Conclusion 

In this chapter we discussed how we can improve accuracy and reduce variance of the 

prediction results by using homogeneous parallel algorithms, also called homogeneous 

ensembles. We then went on to present one of the most efficient, yet simplest homogeneous 

algorithms, known as Bagging. 

The main difficulty regarding homogenous ensembles is to generate diversity, bagging 

solves it using bootstrap sampling, but other techniques such as boosting exist. In the next 

chapter, we will discuss another approach that solves it using different learning algorithms, it 

is known as Heterogeneous ensemble learning.   
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Chapter 3  

Heterogeneous Parallel Algorithms 

3.1 Introduction 

The main goal of bagging algorithms is improving accuracy and reducing variance, 

which eliminates the problem of overfitting. It deals with homogeneous models that are 

considered as weak learners. It trains them independently and in parallel, and at the end of the 

process, it combines them following a deterministic process [29]. 

As discussed in the previous chapter, homogeneous ensembles are practically composed 

of classifiers of the same type. The ones based on classifiers of different types are called 

heterogeneous. Even when using the same learning algorithm, the main difficulty regarding 

homogenous ensembles is to generate diversity. Different strategies are used for both of the 

mentioned ensembles, bagging solves it through bootstrapping, but it can also be solved using 

boosting, etc... These techniques, which have mainly been used in bagging, can also be used to 

reach additional diversity in heterogeneous ensembles. Yet, since various learning algorithms 

are used to generate the base learners, heterogeneous ensembles are naturally various. The main 

difficulty in this case resides in defining the optimal way to combine the different predictions 

of the models in the ensemble [29]. 

3.2 Principle 

Heterogeneous ensemble learning is divided into two main steps. This process starts 

with training a set of models using different base learning algorithms, then combining the base 

estimators results using the weighting approach or the meta-learning which is a model that 

predicts the final results. 

The first step in building heterogeneous ensembles for any application is training a set 

of base estimators using different learning algorithms. Choosing the best base estimators is a 

crucial step. The key is to ensure that we choose algorithms that fit the problem and that are 

different enough to produce diversity. This difference in the learning process will explicitly 
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visualize the decision behavior and boundaries of each base estimator along with the diversity 

of the estimators. 

Unlike the homogeneous ensemble learning that uses different training sets for each 

base estimator, in the heterogeneous ensembles approach the base estimators are trained using 

the same training set. Then a validation set is used to evaluate each base estimator individually 

and, eventually, a test set is used to estimate the final model performance. The three subsets 

are mutually exclusive, as they do not have any overlapping examples. 

In the test phase, which determines the performance of the overall ensemble, we collect 

the predictions of each test-set example by each trained base estimator, which represents each 

base estimator’s confidence in its predictions. Then we combine the results using one of the 

two approaches. 

3.3 Combining predictions 

As mentioned in the previous section, one of the pillars of the heterogeneous ensembles 

approach is combining the results. In the following paragraphs, we will discuss the two main 

approaches used to obtain the final prediction of an heterogeneous ensemble model. 

3.3.1 Classic approach 

For combining predictions, we can use equations to achieve the result we are looking 

for. This approach is called the classical approach. In the following, we will discuss some of 

the main methods/equations used. 

Most of these equations base their computations on a value called weight. This weight 

is generated from the given model results and it differs from equation to equation. It allows us 

to give more importance to the prediction of a model compared to the other models. 

3.3.1.1   Majority Vote 

The voting methods rely on a democratic process that combines the predictions 

provided by the classification models independently [25]. Among these methods, the majority 

vote is the most simple and intuitive approach, since it assigns for each base estimator an equal 

weight [31]. 

In the classification problems, when using the majority vote strategy, each classifier 

predicts a class, and then, the class in which the majority predicted would win. In other terms, 

we choose the most common (popular) prediction. Figure III.1 illustrates this approach. 
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Figure III.1 : Combining predictions in majority vote 

3.3.1.2   Accuracy weighting 

When using multiple base estimators on the same training set, it is better to know which 

of these base estimators has the best performance, as it is mostly going to give the best 

predictions as well. 

Likewise, knowing which of the base estimators is well trained helps to combine the 

final predictions, since we have a better view of which of these base estimators has the best 

impact. In this approach, each base estimator is assigned a weight that represents how well this 

base estimator performed which is also known as the accuracy 

The accuracy of a machine learning classification algorithm represents the most 

intuitive measure that provides how often the algorithm classifies a data point correctly. In 

other terms, this measure is simply the percentage of its predictions that turn out to be correct. 

After training the base estimators, each one of them would be evaluated and its accuracy 

computed using the validation set and the formula presented in section (1.4.1.1) [10,18]. The 

accuracy would then help us take into consideration the prediction of the best model since the 

higher the accuracy is, the better the estimator is. With this measure we can combine the final 

prediction (equation III.1) 

1

∑𝑛
𝑗=1 𝐴𝑖

× ∑

𝑛

𝑖=1

𝐴𝑖 . 𝑃𝑖                

Equation III.1: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

i: represent the index of the  base estimator 

Ai: the accuracy of the ith base estimator 
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Pi: the prediction made by the ith base estimator 

3.3.1.3   Entropy weighting  

Another commonly used weighting method is the entropy weight method (EWM). It 

was introduced in the field of information theory by Claude Shannon to quantify the amount 

of information conveyed by a variable [25]. This method allows us to measure the value of 

dispersion in decision-making. The EWM measures the uncertainty in a set of events. It can be 

used as an evaluation metric to judge the value of the estimation. Thus, this notion can evaluate 

the classifiers.  

The entropy of a base classifier is computed using only the predicted labels (equation 

III.2) which defines how uncertain a classifier is about its predictions.  

𝐸 = − ∑

𝑛

𝑖=1

𝑃𝑖𝐿𝑜𝑔2𝑃𝑖              

Equation III.2: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

The low entropy (uncertainty) signifies a better classifier. Thus, individual base 

classifier weights are inversely proportional to their corresponding entropies (equation III.3). 

Eventually, all the base estimator predictions are combined taking the weights into 

consideration. 

𝑊𝑖 =

1
𝐸𝑖

∑𝑛
𝑖=1

1
𝐸𝑖

            

Equation III.3: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

3.3.1.4   Dempster - Shafer combination 

This approach is based on the Dempster-Shafer Theory (DST) which allows fusing 

beliefs and evidence from multiple sources, such as base estimators, into an overall final belief, 

or prediction probability [29]. 

DST is a mathematical theory of evidence [29]. This theory was introduced by Arthur 

P. Dempster in the context of statistical inference, and later it was developed by Glenn Shafer 

into a general framework for modeling epistemic uncertainty [28]. This theory allows one to 

combine evidence from different sources and arrive at a degree of belief (represented by a 

mathematical object called belief function) that takes into account all the available evidence 

[28]. 

DST uses the basic probability assignment (BPA) to combine the beliefs. This measure 

allows us to translate an estimator’s confidence to a belief over the true label. The BPA is 

simply a number between 0 and 1 that indicates the belief in a proposition such as “a test 
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example x belongs to Class 1”. Using the BPA value we can express the certainty that the test 

example x belongs to Class 1. The decisions made with more certainty are characterized with 

BPA values closer to 1 [29][22]. 

3.3.2 Meta Model approach 

We saw in the prior section one of the many approaches to assemble heterogeneous 

ensembles classifiers: weighting. Each classifier was weighted by its performance and used a 

pre-established function that we had to carefully design so that it would combine predictions 

of each classifier reflecting our performance priorities. 

Another methodology to construct heterogeneous ensembles is meta-learning. In this 

approach, instead of designing the function ourselves, we would train a second-level meta-

classification algorithm that combines inputs that consist of predictions generated by the base 

estimators.   

Meta-learning techniques are already widely and successfully applied to a variety of 

tasks in chemometrics analysis, recommendation systems, text classification, and spam 

filtering. Meta-learning methods, stacking, and blending for recommendation systems were 

brought to light after being used by top teams during the Netflix prize competition [32]. 

3.3.2.1   Stacking 

One of the most common meta-learning methods is stacking. This method stacks a 

second classifier on top of its base estimators and it consists of two steps :  

● level 1: This step is similar to bagging. It aims to create a diverse set of base classifiers 

by fitting base estimators on training data.  

● level 2: Based on the outputs generated by the base classifiers, this step would see us 

construct a new data set. The inputs it receives would become meta-features that can 

either be predictions or the probability of predictions.  

Let us construct a simple heterogeneous ensemble considering a 2d synthetic dataset 

and two classifiers (3-nearest neighbor and Gaussian naïve Bayes). We would train the above-

mentioned classifiers then use their classifications to create new features (called meta-features) 

as illustrated in Figure III.2. Therefore, for each training example "Xi", we generate two meta-

features, "Yi-3nn" and "Yi-gnb": the prediction probabilities of Xi according to 3nn and gnb 

respectively [29]. 
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Figure III.2 : Meta features from 3nn and gnb. 

These generated features would become meta-data for a second-level classifier. It 

would use them as a new training set to learn a combination function, differing from the 

combination by weighting that would use them directly in predetermined functions [29]. 

An infinite number of base estimators can be used in Stacking since our objective is to 

ensure sufficient diversity through the predictions of these base estimators. Figure III.3 below 

shows the schema of six popular algorithms [29].  

 

Figure III.3 : Stacking in details 

For the level 2 estimator, any base learning algorithm can be used to train it. Linear 

models like linear and logistic regression proved to be effective when used. A model using 

these kinds of linear methods is called linear stacking.  It is popular because of how fast and 

computationally efficient it is even for large datasets. It can often be an effective exploratory 

step in analyzing datasets [29].  

Regardless, stacking also uses non-linear classifiers as meta-models such as artificial 

neural networks, etc... This lets the ensemble combine meta-features in complex ways but at 

the cost of interpretability in linear models.  



 

25 

Going back to our example, we can implement a linear stacking procedure passing by 

two steps. The first one consists of training the base estimators. The other would see us 

construct meta-features from training the base estimators and then train a linear regression 

model. It should be important to note that the meta-data can either be the predictions or the 

prediction probabilities [29]. The result would be slightly different as can be seen in Figure 

III.4.  

 

 

Figure III.4 : Stacking results using different types of meta-features 

To generate predictions, we proceed by two steps:  

1. Get the meta-features from the trained level 1 estimators for each test example, and 

create a corresponding test meta-example.  

2. For each meta-example, get using the level 2 estimator a final prediction.  

 

To prevent overfitting, we can implement k-fold cross-validation so that each base 

estimator is trained on a different data set, but instead of using it for parameter selection and 

model evaluation, here, we use it to partition the dataset into subsets so that the base estimators 

train on different subsets, this often leads to better diversity and more robustness, while 

reducing the odds of overfitting. 

3.3.2.2   Stacking with cross validation 

Cross-validation is a resampling technique for model validation and evaluation used to 

simulate out-of-sample testing, tune a model's hyperparameters and test its efficiency and 

accuracy [32][21]. 

The dataset would be partitioned into k subsets, thus the prefix “k-fold”. In a 5-fold 

cross-validation example, data is (often randomly) partitioned into five non-overlapping 
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subsets. It then leads to 5 folds or combinations of these subsets for training and validation as 

shown in Figure III.5. 

 

Figure III.5 : 5-fold cross-validation 

For example, we split a dataset D into five subsets: D1, D2, D3, D4 and D5.These subsets 

are disjoint, each fold would constitute a training set and a validation set, that includes the 

subset that was excluded from the training set. This fold would allow us to train and validate 

one model. Overall, a 5-fold CV allows us to train and validate five models. 

The cross-validation procedure will be different in our case. The validation sets k would 

be used for generating meta-feature for the level 2 estimator instead of using them for 

evaluation.  

Combining stacking with cross-validation goes through the following steps: 

1. Generating k equal-sized subsets randomly from the data set; 

2. For each base estimator, train k models using the training data "trnk" from the 

corresponding k-th fold. 

3. From each trained base estimator, we would use the validation data "valk" of the 

corresponding k-th fold to generate k sets of meta-examples 

4. Retrain each level 1 base estimator on the complete data set. 

The three first steps of this process are shown in Figure III.6. 
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Figure III.6 : Stacking using cross-validation 

 

Since this approach consists of adding cross-validation, hence additional training time, it 

is worth mentioning that for a small-sized data set this increase is well worth the cost. But for 

larger data sets, it can be significant. 

It is usually acceptable to hold out a single validation set rather than several cross-

validation subsets if the model is too expensive to train, this procedure is known as blending.  

3.4 Conclusion 

In this chapter, we discussed heterogeneous ensembles and its principle that consists of 

training models using different algorithms and then combining their results. We also saw that 

different approaches can be used to combine these results, classical ones based on arithmetic 

operations and another based on meta-models. 
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Chapter 4  

Heterogeneous Parallel Ensemble Learning : Design 

4.1 Introduction 

As described in the previous chapters, ensemble learning can be done in either 

sequential or parallel mode. This chapter presents the design and implementation of a system 

that uses a set of heterogeneous base estimators to construct an ensemble parallel learner 

capable of achieving better predictions. 

4.2 Process  

The process of construction of a heterogeneous parallel learner follows mainly the same 

steps as when designing a homogeneous parallel estimator. These steps are described in the 

following sections.  

4.2.1 Data splitting 

This step consists in splitting the data to a training set and a testing set that will be used 

by all estimators (base + meta). Usually, the splitting ratio varies from 20% to 30% for the test 

dataset. Additionally, we can use bootstrapping for better results. 

4.2.2 Training base estimators / and meta-model 

This step of the process consists of training all the estimators (base + meta) using a 

heterogeneous set of estimators as explained in the previous chapter. During this phase, we 

would try to do the shared task (training) in parallel. This would prove to be less time 

consuming than if it has been done sequentially. 

4.2.3 Fitting base estimators / and meta-model 

This step of the process consists of testing all the trained estimators (base + meta) using 

the test data. During this phase, the shared task (training) can obviously be done in parallel. 
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4.2.4 Combining the predictions 

Once the base models are trained and eventually tested, their results can be combined 

to get the ensemble parallel estimator. Many combining strategies can be applied. 

4.3 Models used 

As described in the previous sections, ensemble learning methods require base 

estimators / models to achieve their learning part. In our system, and since it is heterogeneous, 

we used different models to serve as base estimators and another model that will eventually 

serve as the meta-model. 

In the following sections, we are going to present each one of these algorithms as well 

as their main features. 

4.3.1 Support Vector Machine (SVM) 

 

Figure IV.1: Support Vector Machine hyperplane 

Support Vector Machine, abbreviated as SVM, can be used for regression and 

classification tasks. It is mainly and widely used in classification problems. Many research 

studies consider SVM as the off the shelf machine learning algorithm due to its significant 

accuracy with less computation power. In this study, SVM is experimented as a base estimator 

for the construction of a heterogeneous parallel learner [26][25]. 
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The objective of the SVM algorithm is to find the best hyperplane in N-dimensional 

space (N-1 — the number of features) that best separates the data points. In a binary problem, 

to separate 2 categories, SVM moves the data into a high dimension space and finds a high 

dimensional SVC (Support Vector Classifier) that can effectively classify the observations 

[26][25]. 

SVC takes into consideration many different parameters, we will explore some of them 

in the following. 

4.3.1.1   Hyperplane 

A hyperplane is simply a  function that helps differentiate between features, the 

hyperplane dimension depends on the number of input features in the dataset. If the number of 

features is  2 the hyperplane is a line. whereas, if we have 3 input features, it will become a 

two-dimensional plane [26]. In other words, a hyperplane is a function that classifies the point 

in a higher dimension, thus in an ‘M’ dimensional space, the hyperplane equation can be given 

by (Equation IV.1) 

𝑦 = 𝑤0 +  𝑤1𝑥1 +  𝑤2𝑥2 + 𝑤3𝑥3… 

= 𝑤0 + ∑

𝑚

𝑖=1

𝑤𝑖𝑥𝑖 

= 𝑤0  + 𝑤𝑇𝑋  
= 𝑏 + 𝑤𝑇𝑋  

 
Equation IV.1: Hyperplane function 

Where :  

Wi = vectors (W0, W1, W2, W3……Wm) 

b = biased term (W0) 

X = variables. 

4.3.1.2   Kernel 

The kernel is the function that helps solve problems by transforming the data, in order 

to go to higher dimensions and perform smooth calculations. we can cite three types of kernel 

[26]: 

● Linear kernel : This kernel separates the classes with a straight line. 

● Polynomial kernel : The polynomial kernel simply works by increasing the 

power of the kernel and calculating the dot product, which can define the 

relationship between two points. In the polynomial kernel function (Equation 



 

31 

IV.2) the degree of the polynomial (b) is an important parameter that helps 

define the best results. 

K(𝑋1,𝑋2) = (𝑎 + 𝑋1
𝑇𝑋2)𝑏  

Equation IV.2: Polynomial kernel function   

● Radial kernel basis (RBF) : RBF kernel function (Equation IV.3) value 

depends on the distance from the origin or from some point, where the closest 

observations have more influence than the further ones on how to classify the 

new observations  

 

K(𝑋1,𝑋2) = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡(−𝛾||𝑋1 − 𝑋2||2) 

Equation IV.3: Radial kernel basis function 

4.3.1.3   Gamma 

The gamma parameter controls the influence distance of a single training point. It is 

mainly used in the RBF kernel. A low value of gamma refers to a large similarity radius that 

results in more data grouped, whereas, for high gamma, points must be very close to each other 

to be grouped together [26]. 

4.3.1.4   Regularization 

The Regularization parameter (also known as the C parameter in Python’s Sklearn 

library) is used in the SVM optimization to measure how much we avoid misclassifying each 

training example. It adds a penalty for each misclassified data point. Small C means that the 

penalty for misclassified points is low, thus a decision boundary with a large margin is chosen 

at the expense of a greater number of misclassifications. While if C is large, SVM tries to 

minimize the number of misclassified observations due to elevated penalty which results in a 

decision boundary with a smaller margin. The penalty is directly proportional to the distance 

to the decision boundary [26]. 

4.3.2 Logistic regression 

Regression is a method of modeling a target value based on independent predictors. 

This method is mostly used for forecasting and finding out the cause and effect relationship 

between variables. Regression techniques mostly differ based on the number of independent 

variables and the type of relationship between the independent and dependent variables [11]. 
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Logistic regression is a classification algorithm used to assign observations to a discrete 

set of classes. Some of the examples of classification problems are email spam or not spam, 

online transactions fraud or not fraud, tumor malignant, or benign. Logistic regression 

transforms its output using the logistic sigmoid function (Figure IV.2) to return a probability 

value [11]. In our study, this algorithm is used as a classifier for a base-estimator and also as a 

meta-model. 

 

Figure IV.2 - Logistic function (Sigmoid-Function) 

 

Logistic regression can be divided into three types depending on the outcome types 

which are : 

● binomial: when a target variable can have only 2 possible types such as “0” or 

“1”. 

● multinomial: target variable can have 3 or more possible types with no order 

such as “disease A” vs “disease B” vs “disease C”.  

● ordinal: target variables can take multiple possible categories that are ordered, 

for example, the outcome can be “very low”, “low”, “high”, and “very high”. 

[11] 

4.3.2.1   Sigmoid-Function 

The Sigmoid-Function is an S-shaped (Equation IV.4) curve that can take a  real-value 

number and maps it into a value in the range of 0 and 1, but never exactly at those limits. 

 

𝜎(𝑡)  =  
𝑒 𝑡

𝑒 𝑡  +  1
 =

1

1 + 𝑒 −𝑡
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Equation IV.4: Sigmoid function 

 

4.3.3 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is a supervised machine learning algorithm that helps 

solve both classification and regression problems. KNN is a  non-parametric algorithm as it 

does not make any assumptions for underlying data distribution [17]. 

Following this algorithm, the training phase focuses on storing the data, while the 

learning process is done during the test phase. It is a distance-based algorithm. 

 

Figure IV.3:  The KNN classification algorithm 

4.3.3.1   Algorithm 

In a binary problem, when we want to classify a new datapoint in category A or category 

B, we can use the KNN algorithm (Figure IV.3) that observes the behavior of the nearest points 

and classifies itself accordingly. In such a case, the behavior is which category it belongs to. 

The KNN algorithm principle can be explained by the following steps [8]: 

a)     Select the number K of the neighbors to be considered. 

b)   Calculate the distance between new data points and all the training points. 

c)  Sort the computed distance between training points and new data points 

in ascending order. 

d)   Choose the first K distances from the sorted list. 

e)    Take the mean of the classes associated with the distances. 

f)    Among these K neighbors, count the number of the data points in each 

category.  
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g) Assign the new data points to that category for which the number of the 

neighbor is maximum.  

 

4.3.3.2   Distance Metrics 

Several distance metrics (Figure IV.4) can be used, it's essential to choose the most 

appropriate one based on the studied dataset [16]. 

 

 

Figure IV.4: Distance Metrics 

● Minkowski Distance : Is calculated where distances are in the form of vectors that 

have a length that cannot be negative. 

● Manhattan Distance : Represents the distance between two points, calculated with the 

sum of the absolute differences of their Cartesian coordinates. 

● Euclidean Distance : Represents the length of the straight line between two points in 

Euclidean space. 

● Cosine Distance : It measures the direction by calculating the angle between two 

vectors using the cosine function. 

● Jaccard Distance : It analyzes two data sets and tries to find the incident where both 

values are equal to 1.  

4.3.3.3   The K value 

A key process in the KNN algorithm is to find the best K value since a small k value 

can lead to overfitting, and a high k value can lead to underfitting. Likewise choosing an even 

number in a binary classification can fall in a tie between the two classes [16]. 

To find the best K, we can use Plot the elbow curve between different K values and 

select the K value when there is a sudden drop in the error rate (Figure IV.5). 
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Figure IV.5: Plot the elbow curve 

4.3.4 Decision tree 

The decision tree Algorithm (Figure IV.6) belongs to the family of supervised machine 

learning algorithms. It can be used for both classification problems and regression problems. 

The goal of this algorithm is to create a model that predicts the value of a target variable, 

for which the decision tree uses the tree representation to solve the problem in which the leaf 

node corresponds to a class label and attributes are represented on the internal node of the tree. 

Decision trees are constructed via an algorithmic approach that identifies ways to split 

a data set based on different conditions. It is one of the most widely used and practical methods 

for supervised learning. 
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Figure IV.6: Decision Tree Algorithm 

4.3.4.1   Steps 

a)   Get a list of rows (dataset) which are taken into consideration for making 

a decision tree recursively at each node.  

b)   Calculate uncertainty of our dataset or Gini impurity or how much our 

data is mixed up, etc.  

c)      Generate a list of all questions which need to be asked at that node.  

d)     Partition rows into True rows and False rows based on each question 

asked.  

e)   Calculate information gain based on gini impurity and partition the data 

from the previous step.  

f)    Update highest information gain based on each question asked.  

g)     Update best question based on information gain (higher information 

gain).  

h)    Divide the nodes on the best question. Repeat again from step 1 again 

until we get pure nodes (leaf nodes). 
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4.3.4.2   Criterion  

It is the function that measures the quality of a split. Supported criteria are “gini” for 

the Gini impurity and “entropy” for the information gain. 

  

Impurity is a measure of the homogeneity of the labels on a node. There are many ways 

to implement the impurity measure, two of which scikit-learn has implemented is the 

Information gain and Gini Impurity or Gini Index. 

4.3.4.3   Splitter  

It is the strategy used to choose the split at each node. Supported strategies are “best” 

to choose the best split and “random” to choose a random split. 

4.3.5 Gaussian Naive Bayes 

Gaussian Naive Bayes is a variant of Naïve Bayes classifiers which are probabilistic 

machine learning algorithms used mostly in classification tasks based on the Bayes’ Theorem 

[9]. 

4.3.5.1   Bayes Theorem 

Bayes’ Theorem is a mathematical formula (Equation IV.5) that calculates conditional 

probabilities, which is a measure of the probability of an event occurring given that another 

event has (by assumption, presumption, assertion, or evidence) occurred [9]. 

P(A|B) = 
𝑃(𝐵|𝐴) .𝑃(𝐴)

𝑃(𝐵)
 

Equation IV.5:Posterior probability 

● P(A|B): represents how often A happens given that B happens, also called posterior 

probability.  

● P(B|A): represents how often B happens given that A happens 

● P(A):  is how likely A is on its own 

● P(B): how likely B is on its own. 

4.3.5.2 Naïve Bayes Classifier 

Naive Bayes is a probabilistic machine learning algorithm used in several classification 

tasks, such as classification of documents, filtering spam, prediction, and so on.  This algorithm 
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incorporates in its model features that are independent of each other, which means that any 

modification in the values of some features does not impact the other features [9].  

 

Figure IV.7: Gaussian Naive Bayes classifier 

4.3.5.3   Gaussian Naïve Bayes Classifier 

The Gaussian Naïve Bayes classifier (Figure IV.7) supports continuous-valued models 

and features each conforming to a Gaussian (normal) distribution. In another way, when the 

predictors take up a continuous value, we assume that these values are sampled from a gaussian 

distribution [27][19]. 

P(𝑥𝑖 |y) = 
1

√2𝜋𝜎𝑦
2

𝑒𝑥𝑝 (
(𝑥−𝜇𝑦 )

2𝜎𝑦
2 ) 

Equation IV.6: Likelihood equation 

This distribution gives a bell-shaped curve when plotted (Figure IV.7) that is symmetric 

to the mean of the feature values. In a classification process, in order to determine the class 

result, we first calculate the likelihood  of each class using Equation IV.6 (𝜎 and 𝜇 are the 

variance and mean of the continuous). After calculating each likelihood, the class with the 

higher likelihood is considered the resulting class [18][19]. 

4.4 Conclusion 

In this chapter, we discussed each algorithm, from the concept to its parameters. The 

next step would be implementing them and fine-tuning the parameters to get the best models 

out of these algorithms.   
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Chapter 5  

Heterogeneous Parallel Ensemble Learning : 

Implementation  

5.1 Introduction 

After describing the full process, the algorithms and the methods used in the design of 

our system, it is time to implement them and bring them into fruition. For that, we will be using 

a variety of tools and technologies to implement the steps described in the previous chapter. 

One the implementation is finished, experimentations will be held to test the effectiveness of 

the proposed system. 

5.2 Problem at hand and dataset 

 Machine learning systems are designed to treat different problems, from 

medical to real estate ones. In this study, we will consider a medical problem, to detect whether 

a patient will present a heart disease or not. 

For that, we used a relatively small dataset (270 records) related to our problem, with 

the features presented in the table V.1 splitted into a training and a validation set according to 

a 80% 20% ratio. The dataset concerns a special case of heart disease: Coronary Artery Disease 

(CAD). 

CAD symptoms may differ from person to person. However, because many people have 

no symptoms, they do not know they have the CAD until they have chest pain, a heart attack, 

or sudden cardiac arrest. This led to the construction of heart disease datasets from previous 

patients’ records. Most of CAD datasets are provided by the University of California Irvine 

(UCI) machine learning repository [36]. CAD prediction models can be trained on available 

datasets and used to diagnose the presence of this disease for new patients. 
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Attr

. 

Name Type Description 

C1 Age Continuous Age in years 

C2 Gender Discrete 0 = female 

1 = male 

C3 Cp Discrete Chest pain type:1=typical angina, 2=atypical angina, 

3=non-anginal pain, 4=asymptomatic 

C4 Trestbps Continuous Resting blood pressure (in mm Hg) 

C5 Chol Continuous Serum cholesterol in md/dl 

C6 Fbs Discrete Fasting blood sugar > 120: 

0=False, 1=True 

C7 Restecg Discrete Resting electrocardiographic results: 

0=normal, 1=having ST-T wave abnormality 

2=showing probable or define left ventricular 

hypertrophy by Estes’crietria 

C8 Thalach Continuous Maximum heart rate achieved 

C9 Exang Discrete Exercise induced angina: 

0=yes, 1=no 

C10 Oldpeak Continuous ST depression induced by exercise relative to rest 

C11 Slope Discrete The slope of the peak exercise ST segment: 

1=up sloping, 2=flat, 3=down sloping 

C12 Ca Discrete Number of major vessels (0-3) colored by fluoroscopy  

C13 Thal Discrete 3=normal, 6=fixed defect, 7=reversible defect 

C14 Target 

class 

Discrete Diagnosis class: 

1=absence of CAD, 2=presence of CAD 

Table V.1: The Statlog heart disease dataset description [36] 

5.3 Tools used 

 For the implementation of the project, and as mentioned earlier, we needed a set 

of tools to make it happen (Figure V.1). We describe these tools in this section. 

 

Figure V.1: Tools used to build the proposed system. 
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5.3.1 Python 

Python is an object oriented programming language considered as the most powerful 

language people can use these days. It can be used as a scripting language as well as a tool for 

data scientists to achieve their goals. One of its key points is the fact that it is an interpreted 

language, and since it has a highly readable syntax. It is commonly known to be a very simple 

language compared to others. 

Also, Python offers many libraries which are open source and installed by a simple 

command line (pip install). It is also worth mentioning that many leading companies are using 

it as their main programming language [38]. 

Python is considered very versatile language, it is used in almost all fields [38], 

including :  

● Data science 

● Scientific and mathematical computing 

● Web development 

● Finance and trading 

● System automation and administration 

● Computer graphics 

● Basic game development 

● Security and penetration testing 

● General and application-specific scripting 

● Mapping and geography (GIS Software) 

5.3.2 Github 

Github is a hosting platform for software development and version control using Git. It 

allows programmers across the globe to share code, search for it, download it and even like it.  

Through Github, developers can upload their projects as repositories, and then invite 

other people to collaborate with them, review their code and validate it.  

Github also provides the ability to execute certain actions automatically after pushing 

to the remote repository [39]. 

To organize one's project, Github offers the ability to push under different branches 

constructing a tree, where a developer can develop a new feature in an isolated branch without 

messing with the stable version, also creating commits that would serve as points to locate the 

current state and old ones [40].  
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5.3.3 Jupyter notebook 

Jupyter notebook is an interactive web-based open source computational environment 

for creating notebook books/documents from computational material. A notebook can make 

reference to many different entities, essentially the web application, the Python web server or 

the document depending on context. These documents contain code, equations markdown and 

the result of its execution. 

This tool was used to hold the code of our algorithms and the result of the training and 

the predictions on our dataset. 

 With the rise of machine and deep learning, Jupyter notebooks became more popular 

than ever. It is now used by many top companies in their environment for this domain. An 

example of this is Google's project, known  as Google Colaboratory. 

5.3.4 Google colab 

 Colaboratory, also known as Colab, is a free Jupyter notebook environment 

provided by Google that runs on the cloud and uses google drive as a storage for its notebooks. 

It started initially as an internal project. 

 We used colab as our main environnement for the development of our system, 

and that is because google offers highly performing virtual machines that would allow us to get 

results in less execution time compared to our local machines (A 2017 model macbook pro). 

5.4 Libraries used 

To better implement the described algorithms, Python, thanks to its libraries, offers an 

out of the box solution that implements them and helps the developer save time and focus on 

implementing concrete steps of his system. Below, we are going to describe these libraries. 

5.4.1 Pandas 

 Before starting the machine learning part, it is necessary to clean and manipulate 

the provided dataset. That is why Pandas is now considered as one of the most important python 

tools used by Data scientists. 

 Pandas, short for Python Data Analysis Library, is an open source Python 

library that lets users explore, manipulate and visualize data easily.   
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 Pandas is popular among data scientists for many reasons, most importantly the 

fact that it is easy to learn, extremely fast and can take in a huge variety of data (csv, excel, sql, 

…etc). 

5.4.2 Numpy 

 Machine learning implies the need to work with numerical data, 

multidimensional arrays and matrix data structures, that is what motivated the use of Numpy. 

 Numpy, short for Numerical Python, is an open-source python library that is 

used in almost every field of science and engineering. Its API is used in other popular libraries 

such as Pandas, Scipy, …etc.   

 In this project, it was used to create homogeneous n-dimensional arrays as 

required in our algorithms and then efficiently perform computations on them.  

5.4.3 Matplotlib 

Matplotlib is a 2D plotting library that is built on Numpy arrays and designed to work 

with the Scipy stack. 

 In this project, and like many other machine learning ones, this library is used 

to visualize the predicted values and the actual values on the same plane. 

 It is also worth mentioning that it is also used to present data in the form of 

graphs or charts to understand complex data and identify trends and patterns easily within it, 

which would eventually help decision makers take their decision.   

5.4.4 Sklearn 

Scikit-learn (also known as Sklearn) is a Python library used to build machine learning 

models, in addition to, data preparation and analysis, and evaluation. 

The Sklearn library provides methods for data reading, preparation, and unsupervised 

clustering, aside from many unsupervised and supervised learning algorithms, and much more 

[23]. 

5.4.5 Scipy 

SciPy (stands for Scientific Python) is a computation Python library used to solve many 

mathematical equations and algorithms, in addition to data processing, such as numerical 

integration, interpolation, optimization, linear algebra, and statistics. 
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This library uses Numpy under the hood, in addition to added and optimized functions 

that are frequently used in Data science. Scipy provides extensions for scientific mathematical 

formulae such as Matrix Rank, Inverse, polynomial equations, and LU Decomposition.  

In our project, we used this library to compute the correlation using a Pearson 

correlation coefficient.  

5.5 The implemented architecture 

During this phase, we tried to implement the proposed architecture in chapter 4. But 

due to time constraints, we only implemented it partially. 

Our system is construced using models that relies on the algorithms presented in chapter 

4. When it comes to the combining methods, we only used 3 of the 4 combining equations 

presented (majority vote, accuracy weighing and entropy weighting). On the other hand, we 

also propose stacking ensemble learners where a meta-model is applied on the individual 

learners' results to get the final result.  

The following (FigureV.2 and FigureV.3) illustrate the overall architecture of the 

proposed solution. In figure V.2, the results of base learners (Y1…Yn) are combined using a 

specific function and in figure V.3, a stacking concept is applied through the use of logistic 

regression as a meta-model. 

 

Figure V.2: Heterogeneous ensemble learning using functions. 



 

45 

 

Figure V.3: Heterogeneous ensemble learning using logistic regression as meta-model. 

5.6 Experimentations And results 

In the following, we will discuss the objective of our experimentation, then present the 

results obtained by each implemented algorithm, how we fine tuned2 each one of them to get 

better results, and then use them all together to build the heterogeneous parallel ensemble 

learner. 

5.6.1 Objective of the experimentation 

These experimentations aim to build our system by following the presented architecture 

as well as the process and concepts defined in the earlier chapters (3 & 4).  

Through it, we were able to build the most accurate system by picking the most accurate 

base estimators and combinations of models possible. 

5.6.2 Steps of this experimentation 

This experimentation follows the process described in the previous chapter, but instead 

of building the algorithm from scratch, and as mentioned earlier, we are using the Sklearn 

module to build our system. It provides a function for each of the implemented base algorithms. 

We will then apply both learning and validation in order to get and compare the accuracy of 

each model using different parameters. 

 
2
 https://www.merriam-webster.com/dictionary/fine-tune 
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After getting the most accurate base estimators, we will combine the results as described 

in chapters  and 4. 

5.6.3 Experimenting on the base estimators 

For each of the discussed algorithms, we will show how we imported it, used it, then 

present a table that contains the parameters and the precision of the most accurate models we 

got in addition to the default configuration. 

To fine tune each base model and get the best configuration possible, we used a 

“GridSearch”. GridSearch is a method that takes the possible values for attributes as an input 

and tries all possible combinations in order to test the model’s accuracy and then indicate the 

best combination possible. 

5.6.3.1  Support vector machine 

 Sklearn provides an SVC (Support Vector Classification) function that can be 

imported and then used as shown in figures V.4 and V.5. 

 

 

Figure V.4: SVC import 

 

 

Figure V.5: Initiating the model, fitting and then using it for prediction. 

 

Figure V.5 uses SVM with default values for each of its parameters, but it is possible 

to change some parameters as it can be seen in figure V.6. 

 

Figure V.6: SVC initiated with parameters. 
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The provided possibilities for our model can be seen in figure V.7: 

 

Figure V.7: Fine tuning SVC using GridSearch 

 

Parameters Accuracy 

default 0,69 

C=0.05, kernel='linear' 0,88 

C=10, kernel='linear' 0.88 

C=100, kernel='poly' 0.85 

Table V.2 The results obtained by fine tuning the SVC classifier 

The results are shown in table V.2. The first row concerns the accuracy of SVM by 

using default parameters while the other rows show the accuracy when changing some 

parameters. As it can be noticed, by tuning some parameters, we can improve the accuracy of 

the SVC classifier. 

5.6.3.2  Logistic regression 

Sklearn also provides a function for the logistic regression function that can be imported 

and then used as shown in figures V.8 and V.9. 

 

 

Figure V.8: Import of logistic regression 
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Figure V.9: Initiating the model, fitting and then using it for prediction. 

 

Figure V.9 uses Logistic regression with default values for each of its parameters, but 

as seen in the previous section, we can explicitly change their values. The figureV.10 shows 

some of the possible values. 

 

Figure V.10: Fine tuning logistic using GridSearch 

The results are shown in table V.3. 

Parameters Accuracy 

default 0,89 

C=1000 0,89 

C=11.513953993264458, penalty='l1', 

solver='liblinear' 

0.89 

C=16.768329368110066, solver='liblinear' 0.89 

Table V.3 The results obtained by fine tuning the Logistic regression classifier 

5.6.3.3  K-nearest neighbors 

Sklearn also provides a function for the KNN algorithm that can be imported and then 

used as shown in figures V.11 and V.12. 

 

Figure V.11: Importing KNN 
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Figure V.12: Initiating, fitting and then using knn to predict. 

 

Figure V.12 uses KNN with default values for each of its parameters, but as seen in the 

previous sections, we can explicitly change their values. 

 

Figure V.13 shows the possible values for some of the model’s attributes. 

 

 

Figure V.13: Fine tuning KNN 

 

The results are shown in table V.4. 

 

Parameters Accuracy 

default 0,70 

n_neighbors=29, 

weights="uniform",algorithm="auto"

,metric="minkowski",p=1, 

leaf_size=20 

0,83 

leaf_size=20, n_neighbors=9, p=1 0,76 

Table V.4 The results obtained by fine tuning the k-nearest neighbors classifier 
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5.6.3.4  Decision tree 

Sklearn also provides a function for the decision tree algorithm that can be imported 

and then used as shown in figures V.14 and V.15. 

 

Figure V.14: Importing the Decision Tree 

 

 

Figure V.15: Initiating, fitting and then using a Decision tree to predict. 

 

Figure V.15 uses the Decision tree with default values for each of its parameters, but 

as seen in the previous sections, we can explicitly change their values. Some of these values 

are shown in the figure V.16. 

 

 

Figure V.16: Fine tuning Decision tree using GridSearch 

 

The results are shown in table V.5. 

 

 

Parameters Accuracy 

default 0,81 
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criterion='entropy', max_depth=3, 

min_samples_leaf=3, 

                       

min_samples_split=5, 

random_state=42 

0,87 

max_depth=4,min_samples_leaf=9, 

random_state=1 

0,87 

Table V.5 The results obtained by fine tuning the Decision tree classifier 

5.6.3.5  Gaussian Naive Bayes 

Sklearn also provides a function for gaussianNB (Gaussian naive bayes) that can be 

imported and then used as shown in figures V.17 and V.18 

 

Figure V.17: Importing Gaussian Naive Bayes 

 

 

Figure V.18: Initiating Gaussian naive bayes, training it then using it to predict. 

 

The provided possibilities for Gaussian Naive Bayes can be seen in figure V.19. 

 

Figure V.19: Fine tuning GaussianNB using GridSearch 
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The results are shown in table V.6. 

Parameters Accuracy 

default 0,88 

GaussianNB(var_smoothing=4.3287612

81083062e-05) 

0.89 

Table V.6 The results obtained by fine tuning the GaussianNB classifier 

5.6.4 Experimenting on meta-model and combinators 

In this section, we will discuss the technical implementation of each of the combining 

methods, including the meta-model technique (stacking). 

The implementation of these techniques will follow what was stated back in the 

previous chapters. First we use the models we experimented on in the previous section and then 

run the learning and prediction phases as seen in the implemented architecture. 

In the following sections, we will present and explain the code used to bring the 

methods to life, then present the result of its execution. 

All the following methods share the same starting point, they all invoke the models the 

same way by storing them in an array of tuples, as can be seen in Figure V.20 and then execute 

the 2 phases mainly the same way (it will be different when using stacking) Figure V.21. 

 

Figure V.20: Storing the base estimators 
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Figure V.21: training, estimating and combining the results 

The training phase is just a fitting of each of the models that are in the array of 

estimators (Figure V.22). The predicting phase will create an array of size X containing arrays 

of size Y, X is the number of instances, and Y is the number of estimators, each nested array 

containing the estimation for a given estimator. 

 

Figure V.22: Fit and predict functions 

5.6.4.1  Majority vote 

 The implementation of this method is the easiest one. We compute the average using 

the function mode (supplied by numpy), then reduce the array of arrays to an array of 

estimations. Figure V.23 shows this in action. 

 

Figure V.23: Majority vote combinator 
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 Using the estimators shown in Figure V.20, we got an accuracy of  89%. 

5.6.4.2  Accuracy weighing 

The goal here is the same as in the previous method, which is flatting the array to a uni-

dimensional one while using the equation (Equation III.1) presented in chapter 3.  

We first start by saving the accuracy of each model in an array, compute the weight of 

it, then use this weight to compute the final outcome. Figure V.24 brings this algorithm to life.  

 

Figure V.24: Accuracy weighing 

 

 The accuracy obtained was equal to 89%. 

5.6.4.3  Entropy weighing 

 In the following, we will try to implement the equations (Equation III.2 and Equation 

III.3) presented in chapter 3, while being coherent to what was presented in the architecture 

and done in the previous methods. 

 As can be seen in Figure V.25, we started by implementing the entropy equation, 

counting the number of occurrences of a value and turning it into a percentage. Let us say the 

class we are counting for is 1, overall, we had 10 occurrences of it, we might have an array that 

resembles the following:  [1,0,4,2,0,1,2]. We then turn them into percentages, giving the 

following: [0.1, 0, 0.4, 0.2, 0, 0.1, 0.2]. Then we compute the entropy as defined earlier. 

We implemented the combining function, computing the weight using the entropy 

function, then using them in the weighing process. 

The accuracy was around 89%. 
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Figure V.25: entropy weighting 

5.6.4.4  Stacking 

When it comes to stacking, the phases differ a bit than what was seen in the previous 

methods. According to what we saw in the previous chapters, and as presented in the 

architecture we will be doing each step twice. This means training will be done twice. Once for 

the base estimators and once for the meta-estimator, and also the estimating phase for both base 

and meta-estimators. 

The base estimators are treated the same way they were during the previous 

experimentations, using the same 2 functions (fit and predict). On the other hand, since the 

meta-estimator takes the result of each step as its input, we define a new function that uses the 

previous ones in order to forward the base-outputs as meta-inputs. 

The following figure (Figure V.26) shows the implementation of the concept that was 

detailed in both chapters 3 and 4, and discussed in the architecture. The meta-model used is a 

LogisticRegression(C=16.768329368110066, solver='liblinear') 

The accuracy was around 90%. 
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Figure V.26: Fit and predict functions for stacking 

5.6.5 Discussing our results 

 The aim of this project was to develop a system that would be as accurate as possible 

reducing the chances for the initial problems to occur (being under and overfitting). This was 

possible by introducing as much variance as possible while keeping the right amount of bias. 

Throughout this system, we tried to achieve our goal by combining the result of different highly 

effective (by extension accurate) models. 

 By fine tuning our models in the first phase of this experimentation, we made sure we 

would get the best of them (by accuracy terms) so that we would logically get the best accuracy 

after combining. 

 The base models had different accuracy while on different configurations, but it would 

mainly sit at around 87%. It was enough to move on to the next step. 

When it comes to combining the results, we would logically have a good accuracy since 

the base models are already cherry picked. This was confirmed by the result of what stacking 

provided, an accuracy of 90%. A first reaction would be that our experimentation did lead 

somewhere, but that we could have used the best base estimator without further overhead, but 

this is considered wrong, since our system would not only provide consistent results, but also 

would still help us avoid the main issues by adding the variance we were looking for. 



 

57 

5.7 Conclusion 

During this chapter, we discussed the technologies and tools used, the dataset, the 

architecture we implemented, as well as its implementation. We also discussed the results we 

got after running our experimentations. 
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Conclusion 

Artificial Intelligence is a huge part of our daily life, it helps us achieve numerous tasks 

and simplifies the user's life. In this study, we discuss one of its subsets. Machine learning 

predicts outcomes without being told to do so.  

The first objective of this study is to introduce methods that will allow us to overcome 

some limits of actual machine learning algorithms: overfitting and underfitting. For overfitting, 

the risk is that the model will be underperforming when used on new data (the model isn’t 

generalizing well). To avoid it, we need to add some diversity and to variance. This can be 

achieved either by training a model on different versions of data (Bagging) or by training 

different base models and combining their results. In this project we are taking the second 

direction: constructing a heterogeneous parallel ensemble learner.  

Since many base algorithms must be used, we included in this study five machine 

learning algorithms among the most used in classification. Also, we have proposed two ways 

to produce the ensemble learner: a combination function and the use of a meta-model. In this 

first study three combination functions are included. This project can be considered as the first 

brick in the construction of heterogeneous parallel ensemble learners. Recall that existing 

Python modules (like Sklearn) do not integrate such ensemble learners. 

This project represented a huge opportunity to learn about machine learning algorithms 

and their limits. It was also a great chance to discover methods and techniques to deal with the 

main problems with machine learning algorithms: underfitting and overfitting. On the other 

hand, this project gave us the prospect to enlarge our technical knowledge. We tried to use 

modern programming paradigms and platforms. 

The experimentations held showed that heterogeneous parallel ensemble learners can 

improve the effectiveness of machine learning algorithms. Even if the improvement is not huge, 

we know that the ensemble learner does not suffer from overfitting. It means that it is intended 

to generalize very well. Further experimentations must be done to integrate more base 

algorithms in the ensemble learner and also to explore more machine learning datasets.  

The objective of this project goes beyond the obtained results. Heterogeneous parallel 

ensemble learners must be defined as functions (or as a module) that can be integrated in a 
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programming language like Python. Before reaching that goal, many further experimentations 

and adjustments must be done through new M.Sc projects. The other direction to prospect is 

the definition of new combining functions to produce the ensemble learner. Once all this is 

done, the main objective of this study can be reached. 
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