

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE

SCIENTIFIQUE

UNIVERSITE ABDELHAMID IBN BADIS - MOSTAGANEM

Faculté des SCiences Exactes et de l’Informatique

Département de Mathématiques et d’Informatique

Filière: Informatique

PROJET DE FIN D'ÉTUDES

Option : Ingénierie des Systèmes d’Information

PRESENTE PAR:

Afoun Bouchra Yousra

THEME :

Heterogeneous Parallel Ensemble Learning

Présenté le 04/07/2022 devant la commission de jury:

Mme Kaid Slimane Bouchra FSEI, université de Mostaganem Présidente

Mr Zahmani Habib Mohamed FSEI, université de Mostaganem Examinateur

Mr Henni Fouad FSEI, université de Mostaganem Encadrant

2021-2022

Acknowledgments

I would like to start by thanking the good lord for helping me and guiding me

through each point of my career that led me here today, allowing me to gain

knowledge and practice in a field that I am very passionate about.

To my parents who were my number one supporters throughout this long

journey, giving me all the support that kept me pushing in the hardest

moments.

To all of my sisters, my nephew, friends and loved ones for showing me

unconditional support and for believing in me since day one.

To my supervisor, who made me love this field five years ago, who poured so

much time and effort, guiding me and sharing a life-long knowledge

throughout the years and was so keen on helping.

I would also like to express the honor to the members of the jury that

accorded me and took their time to evaluate our work.

At the end, I would love to express my gratitude towards anyone who believed

in me.

Thanks.

Abstract

Machine learning is a continuously developing field that benefits humans in enormous

areas, such as systems automation, security, and medical examinations.

Machine learning generally aims to extract knowledge from large masses of data and

fit that data into models that can be understood and utilized. In other terms, this technology

provides systems that can learn and enhance from experience automatically without being

specifically programmed. In many cases, one model is not enough since models can suffer from

overfitting or underfitting. Ensemble learning methods solve this issue by generating multiple

models and combining the results which maintain a better prediction and lead to better

performance .

The goal of this research is to study, conceive and then implement a system that based

on Heterogeneous ensemble learning would allow us to bypass those limits.

Keywords:

Artificial intelligence, Machine learning, Ensemble methods, Bootstrapping, Bagging,

Boosting, Stacking, Homogeneous parallel learning

List of Figures

Figure N° Title Page

Figure I.1 Data mining applications 5

Figure II.1 Ensemble Learning Techniques 12

Figure II.2 The process of bagging 13

Figure II.3 Bootstrap sampling 14

Figure II.4 Detailed bootstrap sampling 15

Figure II.5 Modeling samples 16

Figure II.6 Aggregation 16

Figure III.1 Combining predictions in majority vote 21

Figure III.2 Meta features from 3nn and gnb. 24

Figure III.3 Stacking in details 24

Figure III.4 Stacking results using different types of meta-features 25

Figure III.5 5-fold cross-validation 26

Figure III.6 Stacking using cross-validation 27

Figure IV.1: Support Vector Machine hyperplane 29

Figure IV.2 Logistic function (Sigmoid-Function) 32

Figure IV.3 The KNN classification algorithm 33

Figure IV.4 Distance Metrics 34

Figure IV.5 Plot the elbow curve 35

Figure IV.6: Decision Tree Algorithm 36

Figure IV.7 Gaussian Naive Bayes classifier 38

Figure V.1 Tools used to build the proposed system. 40

Figure V.2 Heterogeneous ensemble learning using functions. 44

Figure V.3
Heterogeneous ensemble learning using logistic

regression as meta-model.
45

Figure V.4 SVC import 46

Figure V.5
 Initiating the model, fitting and then using it for

prediction.
46

Figure V.6 SVC initiated with parameters. 46

Figure V.7 Fine tuning SVC using GridSearch 47

Figure V.8 Import of logistic regression 47

Figure V.9
Initiating the model, fitting and then using it for

prediction.
48

Figure V.10 Fine tuning logistic using GridSearch 48

Figure V.11 Importing KNN 49

Figure V.12 Initiating, fitting and then using knn to predict. 49

Figure V.13 Fine tuning KNN 49

Figure V.14 Importing the Decision Tree 50

 Figure V.15
Initiating, fitting and then using a Decision tree to

predict.
50

Figure V.16 Fine tuning Decision tree using GridSearch 51

Figure V.17 Importing Gaussian Naive Bayes 51

Figure V.18
Initiating Gaussian naive bayes, training it then using it

to predict.
52

Figure V.19 Fine tuning GaussianNB using GridSearch 52

Figure V.20 Storing the base estimators 53

Figure V.21 training, estimating and combining the results 53

Figure V.22 Fit and predict functions 53

Figure V.23 Majority vote combinator 54

Figure V.24 Accuracy weighing 54

Figure V.25 entropy weighting 55

Figure V.26 Fit and predict functions for stacking 56

List of Tables

Table N°
Title Page

Table V.1 The Statlog heart disease dataset description 40

Table V.2
The results obtained by fine tuning the SVC

classifier
47

Table V.3
The results obtained by fine tuning the Logistic

regression classifier
48

Table V.4

 The results obtained by fine tuning the k-nearest

neighbors classifier
50

Table V.5
 The results obtained by fine tuning the Decision

tree classifier
51

Table V.6
 The results obtained by fine tuning the

GaussianNB classifier
52

List of Equations

Table N° Title Page

Equation I.1 Accuracy equation 8

Equation I.2 Preci equation 8

Equation I.3 Recall equation 8

Equation I.4 MSE equation 9

Equation I.5 RMSE equation 9

Equation I.6 MAE equation 9

Equation II.1 Calculating regression prediction 17

Equation II.2 Calculating classification prediction 17

Equation III.1 Accuracy combining equation 21

Equation III.2 Entropy equation 22

Equation III.3 Entropy combining equation 22

Equation IV.1 Hyperplane function 30

Equation IV.2 Polynomial kernel function 31

Equation IV.3 Radial kernel basis function 31

Equation IV.4 Sigmoid function 33

Equation IV.5 Posterior probability 37

Equation IV.6 Likelihood equation 38

List of abbreviations

Abbreviation Complete Expression Page

ML Machine learning 7

RMSE Root Mean squared error 14

MSE Mean Squared Error 14

MAE Mean absolute error 15

OOB Out-of-bag 19

SVM Support vector machines 20

Sklearn Scikit-learn 23

EWM Entropy weight method 28

DST Dempster-Shafer Theory 28

BPA Basic probability assignment 29

3NN 3-nearest neighbor 29

GNB Gaussian naïve Bayes 29

CV Cross-validation 32

Table of contents

Introduction 1

1. Machine Learning 3

1.1 Introduction 3

1.2 Data mining 3

1.2.1 Process 4

1.2.1.1 Data gathering 4

1.2.1.2 Data preparation 4

1.2.1.3 Mining the data 4

1.2.1.4 Data analysis and interpretation 4

1.2.2 Models 4

1.2.2.1 Descriptive modeling 5

1.2.2.1 Predictive modeling 5

1.2.3 Applications of data mining 5

1.2.3.1 Marketing 5

1.2.3.2 Customers' purchase behavior 5

1.2.3.3 Education 6

1.3 Learning methods 6

1.3.1 Regression 6

1.3.2 Classification 6

1.3.2.1 Binary classification 7

1.3.2.2 Multi-class classification 7

1.4 Model evaluation 7

1.4.1 Evaluation methods 7

1.4.1.1 Classification metrics 8

1.4.1.2 Regression metrics 9

1.4.2 Limits of classic models 10

1.4.3 Underfitting 10

1.4.4 Overfitting 10

1.5 Ensemble methods 11

1.6 Conclusion 11

2. Homogeneous Parallel Algorithms (Bagging) 12

2.1 Introduction 12

2.2 Bagging: Bootstrap Aggregating 13

2.2.1 Bootstrap Sampling 13

2.2.2 Modeling 15

2.2.3 Aggregation 16

2.2.4 Parallel Training 17

2.3 Random Forests 17

2.3.1 Randomized Decision Trees 17

2.3.2 Features Importance 18

2.4 Conclusion 18

3. Heterogeneous Parallel Algorithms 19

3.1 Introduction 19

3.2 Principle 19

3.2.1 Combining predictions 20

3.2.2 Classic approach 20

3.2.2.1 Majority Vote 20

3.2.2.2 Accuracy weighting 21

3.2.2.3 Entropy weighting 22

3.2.2.4 Dempster - Shafer combination 22

3.2.3 Meta Model approach 23

3.2.3.1 Stacking 23

3.2.3.2 Stacking with cross validation 25

3.3 Conclusion 27

4. Heterogeneous Parallel Ensemble Learning : Design 28

4.1 Introduction 28

4.2 Process 28

4.2.1 Data splitting 28

4.2.2 Training base estimators / and meta-model 28

4.2.3 Fitting base estimators / and meta-model 28

4.2.4 Combining the predictions 29

4.3 Models used 29

4.3.1 Support Vector Machine (SVM) 29

4.3.1.1 Hyperplane 30

4.3.1.2 Kernel 30

4.3.1.3 Gamma 31

4.3.1.4 Regularization 31

4.3.2 Logistic regression 31

4.3.2.1 Sigmoid-Function 32

4.3.3 K-Nearest Neighbors 33

4.3.3.1 Algorithm 33

4.3.3.2 Distance Metrics 34

4.3.3.3 The K value 34

4.3.4 Decision tree 35

4.3.4.1 Steps 36

4.3.4.2 Criterion 37

4.3.4.3 Splitter 37

4.3.5 Gaussian Naive Bayes 37

4.3.5.1 Bayes Theorem 37

4.3.5.2 Naïve Bayes Classifier 37

4.3.5.3 Gaussian Naïve Bayes Classifier 38

4.4 Conclusion 38

5. Heterogeneous Parallel Ensemble Learning : Implementation 39

5.1 Introduction 39

5.2 Problem at hand and dataset 39

5.3 Tools used 40

5.3.1 Python 41

5.3.2 Github 41

5.3.3 Jupyter notebook 42

5.3.4 Google colab 42

5.4 Libraries used 42

5.4.1 Pandas 42

5.4.2 Numpy 43

5.4.3 Matplotlib 43

5.4.4 Sklearn 43

5.4.5 Scipy 43

5.5 The implemented architecture 44

5.6 Experimentations And results 45

5.6.1 Objective of the experimentation 45

5.6.2 Steps of this experimentation 45

5.6.3 Experimenting on the base estimators 46

5.6.3.1 Support vector machine 46

5.6.3.2 Logistic regression 47

5.6.3.3 K-nearest neighbors 48

5.6.3.4 Decision tree 50

5.6.3.5 Gaussian Naive Bayes 51

5.6.4 Experimenting on meta-model and combinators 52

5.6.4.1 Majority vote 53

5.6.4.2 Accuracy weighing 54

5.6.4.3 Entropy weighing 54

5.6.4.4 Stacking 55

5.6.5 Discussing our results 56

5.7 Conclusion 57

Conclusion 58

Bibliography 60

1

Introduction

Artificial intelligence became so mainstream that it evolved into different subsets. One

of these subsets is Machine learning. This discipline allows software applications to become

more accurate at predicting outcomes without being explicitly told to do so. It uses previous

data as input to predict new output values. It became essential to leading companies such as

Facebook, Google, and Uber since it gives a view of trends in customer behavior and supports

the development of new products.

Machine learning models are trained on datasets that regroup information of the same

type regarding a specific topic, whether it is medical, sports, real estate, etc. The model is

trained using algorithms for different purposes depending on the type of model we are aiming

for. It can either be a classifier that outputs binary or ordinal values, or linear models for

continuous values. The resulting model is then tested and evaluated before being deployed to

real-world usage.

During the learning phase, a situation can occur where the model sticks too much to the

data and its variation, or cannot perform well on the training data itself. This is due to the lack

of Data and lack of Good Data. Two types of problems linked to that exist: they are known as

underfitting and overfitting. There are techniques used to overcome these limits, among them

we can find ensemble methods [6]. These techniques combine multiple learning algorithms to

improve the accuracy and reduce the variance of the final model.

The ensemble methods are more commonly known for the homogeneous type, such as

Bagging, where the same algorithm is trained on different samples of data by using a bootstrap

mechanism. The other class of ensemble methods consists in Boosting where the same

algorithm is trained sequentially (through numerous iterations) to get the best model. Both

Bagging and Boosting principles are implemented in available modules such as Scikit-learn1.

In this project, we are interested in heterogeneous parallel ensemble learning where,

unlike Bagging, different machine learning algorithms are used to create an ensemble learner.

1
 https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

2

In traditional Bagging, the diversity is created through training the same algorithm on different

samples of data, whereas in this project, we aim to create the diversity through the use of

different algorithms. These algorithms are combined to form the heterogeneous ensemble

learner. The mixture of base algorithms can be done either by using a combination function or

through the use of a meta-model (stacking).

The objective of this study is to design and implement a heterogeneous parallel

ensemble learner over many base algorithms. In this first attempt, five main machine learning

algorithms are considered: decision tree, logistic regression, support vector machine, Gaussian

naive bayes and K-nearest neighbors. These algorithms are first trained and tested on a heart

disease dataset, then combined to produce the ensemble learner which in turn is trained and

tested on the same dataset. Our model improves the results by up to 30%.

The document is divided into 5 chapters :

1. Chapter 1: A global introduction to machine learning, model evaluation and

the known limits.

2. Chapter 2: An introduction to Homogeneous ensemble methods and bagging

3. Chapter 3: Heterogeneous ensemble methods.

4. Chapter 4: Heterogeneous Parallel Ensemble Learning : Design

5. Chapter 5: Heterogeneous Parallel Ensemble Learning : Implementation

3

Chapter 1

Machine Learning

1.1 Introduction

During the past few years, Artificial Intelligence (AI) started getting more and more

visibility and has become a well-known term for many people thanks to its many strong points,

such as its revolutionary solutions and the wide range of products used in most households.

Sub-branches of AI were born for different needs, such as machine learning and deep learning.

Machine learning (ML) is the part of AI that can learn from previously generated observations

(data) without being explicitly told to do as such. It facilitates the process of extracting

knowledge from data which, in turn, makes it excel in solving complex, data-rich problems

where traditional approaches such as human judgment and software engineering sometimes

fail.

Machine learning predicts future outcomes based on pre-existing data. In addition, it

can lead to a variety of automated tasks; which makes this technology affect virtually every

industry, from weather forecasting to stockbrokers looking for optimal trades. Machine

learning requires complex math and a lot of coding to achieve the desired functions and results.

It also incorporates classical algorithms for various kinds of tasks such as clustering, regression,

or classification. We have to train these algorithms on large amounts of data. The more data

you provide for your algorithm, the better your model gets. There are four types of machine

learning algorithms: supervised, semi-supervised, unsupervised, and reinforcement.

To build efficient models and extract features, many started combining data mining

with machine learning, which is currently considered a crucial part of its process.

1.2 Data mining

Data mining is a key part of Machine Learning and one of the core disciplines in data

science, which uses advanced analytics techniques to find valuable patterns and trends hidden

within vast volumes of data [14].

4

1.2.1 Process

The process of data mining can be divided into four steps, starting with data gathering,

then data preparation moving to the mining, and finally data analysis and interpretation.

1.2.1.1 Data gathering

It is the procedure of collecting relevant data for an analytics application to be identified

and assembled. The data can be located in different source systems. The more information

collected, the better the analysis is, under the condition that the source is reliable [14].

1.2.1.2 Data preparation

It is a set of steps that aim to make the data ready to be mined by keeping only the

necessary one and removing the unwanted so that it would not lead us to false conclusions. It

starts with data exploration, profiling, and pre-processing, then cleansing work to fix errors and

other data quality issues, it can be followed by data transformation to make datasets consistent

[24].

1.2.1.3 Mining the data

It is the process that starts with selecting the appropriate data mining technique, then

implementing one or more algorithms to do the mining. However, in machine learning

applications, the algorithms typically must be trained on sample datasets to look for the

information being sought before they are run against the full set of data [14].

1.2.1.4 Data analysis and interpretation

It is the process of assigning meaning to the collected information from the data mining,

finding patterns, and determining the conclusions, significance, and implications of the

findings; this can help drive decision-making and other business actions [14].

1.2.2 Models

Many data mining techniques can be used to turn raw data into actionable insights.

These techniques are divided into two types, namely, Descriptive and Predictive models.

5

1.2.2.1 Descriptive modeling

A descriptive model distinguishes relationships or patterns in data. It detects the

similarities between the collected data and the reasons behind them. It also serves as a way to

explore the properties of the data being examined. Clustering, summarization, associating rules,

and sequence discovery are descriptive model data mining tasks [1].

1.2.2.2 Predictive modeling

Predictive modeling is an approach based on the analysis of various historical data to

create, process, and validate a model that can be used to predict future behaviors [1].

1.2.3 Applications of data mining

Figure I.1 : Data mining applications

As can be seen in Figure I.1, data mining can be used for different applications that can

vary from simple things like marketing to very complex domains like making environmental

disaster predictions. Some of these applications will be discussed in the following sections [1].

1.2.3.1 Marketing

Using data mining, we can analyze customers' behaviors for targeted advertising [1].

1.2.3.2 Customers' purchase behavior

Data Mining will help to identify trends of customers for goods in the market then

allowing the retailer to understand the purchase behavior of a buyer [1].

6

1.2.3.3 Education

Learning institutions would be able to upgrade the proposed courses based on the

behaviors of students extracted using data mining [1].

1.3 Learning methods

A machine learning algorithm, also called model, is a mathematical expression that

represents data in the context of a problem. The aim is to go from data to insight. The process

of learning can be divided into two major categories: unsupervised learning and supervised

learning.

In unsupervised machine learning, the desired output is not given; the techniques that

follow this approach extract conclusions from datasets that consist of the input data without the

labeled response.

Supervised machine learning techniques attempt to find a relationship between input

attributes (independent variables) and a target attribute (dependent variable). These techniques

can further be classified into two main subcategories: classification and regression. In

regression, the output variable takes continuous values while in classification the output

variable takes class labels [10][27].

1.3.1 Regression

Regression is an approach that is used when the output of a problem is continuous.

Different models exist, their usage varies according to the nature of the data, the most popular

among these techniques is linear regression [29].

Linear regression is one of the most basic types of regression in machine learning that

consists of a predictor variable and a dependent variable related linearly to each other. In case

the data involves more than one independent variable, then linear regression is called multiple

linear regression [13].

1.3.2 Classification

Classification is an approach that is used to forecast group membership for data

instances. It represents the process of recognizing, understanding, and grouping ideas and

objects into preset categories using pre-categorized training datasets. The classification type is

7

widely used in Machine learning, including Binary classification and Multi-class classification

[12].

1.3.2.1 Binary classification

Refers to classification techniques that divide instances into two classes. Generally, the

results involve one class that is the normal state and another class that is the abnormal state. For

example: email spam detection (spam or not) [3].

1.3.2.2 Multi-class classification

Multi-class classification is a classification task with more than two classes.This

method makes the assumption that each sample is assigned to one and only one category. For

example : classify a set of images of fruits which may be oranges, apples, or pears, where fruit

can be either an apple or a pear but not both at the same time [20].

1.4 M

odel evaluation

In order to determine if we are on the right track or should furthermore adjust our model,

we should evaluate it. Evaluation is one of the most important steps of the machine learning

process. This step allows us to detect errors at an early stage.

The most important aspect needed to properly evaluate a predictive model is to not train

it on the entire dataset. A typical train/test would be to use a portion of the data (70% in most

cases) for training and the remaining portion for testing. This would prove useful when trying

to prevent overfitting [15].

1.4.1 E

valuation methods

In order to evaluate model accuracy, metrics are made available so that analysts would

test how robust their model is. The choice of metric completely depends on the type of model

and the implementation plan of the model [1.8].

8

1.4.1.1

Classification metrics

When performing classification predictions, the prediction can be considered as one of

the four types below [1.8]:

o True Positives (TP): When a prediction of observation is correctly classified.

o True Negatives (TN): When a prediction of an observation not belonging to a class is

correct.

o False Positives (FP): When an observation is predicted to belong in a class but in

reality, it does not.

o False Negatives (FN): When an observation is predicted to not belong in a class but in

reality it does.

These four outcomes form what is called the confusion matrix, which can be used to

compute different metrics to evaluate the model. The most used ones are described below.

a. Accuracy

It is defined as the percentage of correct predictions for the test data, it can be calculated

using the following formula (Equation I.1):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

Equation I.1: Accuracy equation

b. Precision

It is defined as the fraction of relevant observations among those predicted to belong in

a certain class. It is calculated using the following formula (Equation I.2):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

Equation I.2: Preci equation

c. Recall

It is defined as the fraction of relevant observations among those that belong to a certain

class. It is calculated using the following formula (Equation I.3):

9

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation I.3: Recall equation

1.4.1.2

Regression metrics

Evaluation metrics for regression models are different than the ones used in

classification problems, that is because the prediction is in a continuous value rather than a

defined number of outcomes;

The goal now is instead of checking which class the prediction falls into, we would

rather have a metric that would determine if the prediction was good or not [4].

d. Mean Squared Error

MSE (Mean Squared Error) is an important loss function for algorithms, it uses the least

squares framing of a regression problem. Here “least squares” refers to minimizing the mean

squared error between predictions and expected values.

The MSE is calculated as the mean or average of the squared differences between

predicted and expected target values in a dataset (Equation I.4) [5].

𝑀𝑆𝐸 =
1

𝑁
∑

𝑁

𝑖=1

(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)
2

Equation I.4: MSE equation

e. Root Mean Squared Error

RMSE (Root Mean Squared Error) is an extension of the MSE, with the same units and

not the square of the unit. It may be common to use MSE to train a regression model while

using the RMSE to evaluate its performance (Equation I.5).

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑

𝑁

𝑖=1

(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2

Equation I.5: RMSE equation

f. Mean absolute error

10

MAE is a metric where, like RMSE, error units match with the target units. The

difference is that, unlike RMSE, the changes in MAE are linear and therefore intuitive.

𝑀𝐴𝐸 =
1

𝑁
∑

𝑁

𝑖=1

|𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖|

Equation I.6: MAE equation

1.4.2 L

imits of classic models

During our learning, we may encounter a situation where our model sticks too much to

the data and its variation, or can not perform well on the training set itself. This is due to the

lack of data and lack of good data. Two types of problems linked to that exists, underfitting

and overfitting:

1.4.2.1 U

nderfitting

Underfitting is the scenario where a model is unable to capture the relationship between

the input and output variables accurately, which leads to a high error rate on both the training

set and predicted data [6].

To prevent underfitting, we can train our model using more data over more training

time.

1.4.2.2 O

verfitting

Overfitting refers to the situation where the model is useful for the training data set, and

irrelevant for any other data sets (irrelevant in generalization). This happens when the model

learns the detail and noise of the training data to the extent that it negatively affects the

performance of the model on new data [6].

 To prevent overfitting, several options are available, the most popular solutions are:

● Cross-validation : It is a standard way to find out-of-sample prediction errors. It is

usual to use a 5-fold cross validation [7].

● Early Stopping : Its rules provide us with guidance as to how many iterations can

be run before the learner begins to over-fit [7].

11

● Training with more data : Training with more data can help the algorithm detect

association rules better. This would not work if the added data is noisy.

In addition to those techniques mentioned above, another type of methods to prevent

from overfitting/underfitting, they are called Ensemble methods [37].

1.5

Ensemble methods

Ensemble methods are techniques that combine multiple learning algorithms to produce

improved results and optimize better predictive performance. These methods reduce overfitting

in models and make the model more robust.

1.6 Conclusion

Data mining, which is a subset of machine learning, provides us with many different

types of classic learning methods such as classification and regression, but they both have a

limit. In this first chapter of our scientific study, we tried to make a clear summary of machine

learning and data mining. This chapter also cited learning methods and how to measure their

performance and also their limits. We also mentioned methods that would help us prevent and

overcome those limits. Now we can carry on in the next chapter to explore one of these

solutions, Ensemble methods.

12

Chapter 2

Homogeneous Parallel Algorithms (Bagging)

2.1 Introduction

Ensemble methods rely on a notion known as the “wisdom of the crowd”. It is the idea

that a combined answer of many diverse models is often better than any one individual answer.

The ensemble learning approach embodies this process by generating multiple models and

combining them, intending to improve model performance.

These methods fall into two broad categories: sequential ensemble techniques which

generate base learners in a sequence, in a way that each model is dependent on the previous

one (Figure II.1, B); and parallel ensemble techniques that utilize the parallel generation of

base learners to encourage independence between the base learners then combines predictions

from individual learners to get the final prediction of the ensemble learner (Figure II.1, A).

Figure II.1 : Ensemble Learning Techniques

Parallel ensemble methods can additionally be divided into homogeneous and

heterogeneous parallel ensembles based on the learning algorithms used in the process.

13

Homogeneous ensemble methods use the same learning algorithm while heterogeneous

ensemble methods train the models using different learning algorithms.

One of the simplest ensemble algorithms with high performance under the parallel

homogeneous methods is known as Bagging [30][33], which will be defined in this chapter, as

long as its principles, down to its implementation.

2.2 Bagging: Bootstrap Aggregating

Bagging is a short term for bootstrap aggregating; it was introduced by Leo Breiman in

1996 [30]. This ensemble technique is the most basic homogeneous parallel ensemble method

that can be constructed to either improve ensemble diversity or overall computational

efficiency.

This technique trains base estimators on replicates of the dataset that result from

multiple base estimators from a single dataset and a single learning algorithm. This process is

achieved through bootstrap sampling which guarantees ensemble diversity. The next step is

performing ensemble prediction through model aggregating [30].

The following paragraphs introduce the 3 steps of bagging as illustrated in Figure II.2

Figure II.2 : The process of bagging

2.2.1 Bootstrap Sampling

A bootstrap sample is a smaller sample that is a subset of the initial dataset. The

bootstrap sample is created from the initial dataset by sampling with replacement. Suppose for

14

a dataset having n rows and f features, we perform a bootstrap sampling that refers to sampling

with replacement into k different smaller datasets each of size m with the same f features. Each

smaller dataset Di formed is used to train the chosen algorithm.

When sampling with replacement, some objects that were already sampled have a

chance to be sampled a second time (or even a third, or fourth, and so on) because they were

replaced. Some objects may be sampled many times, while some objects may never be sampled

[35].

Thus, bootstrap sampling naturally partitions a dataset into two sets: a bootstrap sample

(with training examples that were sampled at least once) and an out-of-bag (OOB) sample (with

training examples that were never sampled even once).

We can use each bootstrap sample for training a different base estimator. Since different

bootstrap samples will contain different entries (some entries are used in different samples),

each base estimator will turn out to be somewhat different from the others.

In Figure II.3, the initial dataset D of shape (n, f) is sampled to k datasets each of shape

(m, f), where m<n [35].

Figure II.3 : Bootstrap sampling

Figure II.4 is an illustration of the bootstrap procedure. The dataset D having 10 rows

is sampled with replacement into k smaller datasets each having 5 rows. Here n=10 and m=5.

It is observed that each of the datasets formed by bootstrapping sees only a part of the original

dataset and all the datasets are independent of each other [35].

15

Figure II.4 : Detailed bootstrap sampling

This is the first step of the bagging ensemble technique in which k smaller independent

datasets are created by bootstrapping [35].

2.2.2 Modeling

Modeling is the second step of bagging. After k smaller datasets are created by

bootstrapping each of the k datasets is trained using the same ML algorithm. In the training

phase, we can either use this algorithm with similar or different configurations for our models.

For example, Decision Tree algorithms can be used as a base model while changing

hyperparameters such as ‘depth’. A combination of different algorithms such as SVM, Naive

Bayes, Logistic Regression can be used. The models which are trained on each bootstrap

dataset are called base models or weak learners. Figure II.5 describes the training of each

dataset of separate models [35]:

16

Figure II.5 : Modeling samples

2.2.3 Aggregation

A final powerful robust model is created by combining the k different base models (as

can be seen in Figure II.6). Since the base models are trained on a bootstrap sample, each model

may have different predictions. An aggregation technique is different depending on the

problem statement [35][33].

Figure II.6 : Aggregation

17

- For a regression problem: The aggregation can be taking the mean of prediction of

each base model (Equation II.1).

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
1

𝑘
× ∑

𝑘

𝑖=1

𝑝𝑟𝑒𝑑𝑖

Equation II.1: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

- For a classification problem: The aggregation can be using majority voting, the class

having the maximum vote can be declared as the final prediction (Equation II.2).

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶(𝑝𝑟𝑒𝑑𝑖[1, 2, 3, ⋯ , 𝑐])

Equation II.2: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

2.2.4 Parallel Training

Bagging is a parallel ensemble algorithm as it trains each base learner independently of

other base learners. This means that training bagging ensembles can be parallelized if one has

access to computing resources such as multiple cores or clusters. The bootstrap samples would

be trained independently and in parallel with each other using weak or base learners [35][33].

2.3 Random Forests

Random forest is a special case of bagging where the learning algorithm used is the

decision tree algorithm; it increases diversification by adding more randomness. It is a widely

utilized technique and a popular go-to method for many applications, especially bioinformatics,

due to its computational efficiency in training. Moreover, it ranks data features by importance,

which is very useful for high-dimensional data analysis [2].

2.3.1 Randomized Decision Trees

Random forest is a particular case of the bagging algorithm that is constructed using

randomized decision trees as base estimators. Starting with performing bootstrap sampling to

generating a training subset, then it trains the base estimators using a modified decision-tree

learning algorithm [2].

The main difference between the decision tree and the random forest algorithm is the

construction of their nodes. In standard decision tree construction, all the features are evaluated,

and the one with the highest information gain is considered as the best feature, this feature is

selected to split the data/dataset. However, if we use the bagging on the standard decision tree

18

algorithm the results will be approximately similar since we are relying on one feature, in a

way the similarity of the result can lead to low variance [2].

Random forest eliminates this problem by introducing randomness in the process of

building trees. While selecting the features, instead of evaluating all the features to identify the

split with the highest information gain. This technique prepares a random subset of features,

then evaluates each subset to identify the best feature to split on, therefore, increasing ensemble

diversity and improving the predictive performance [2].

2.3.2 Features Importance

In the modeling concept, feature selection is a crucial process. It affects the model

accuracy and performance, especially when using high-dimensional data. Fortunately, the

random forests technique enables us to rank the features by importance and identify the most

pertinent ones and drop low impact features. This gives us the ability to ensure that the models

are trained with the most relevant features.

Another important step is ejecting features. This is applied on the least relevant features

which minimizes overfitting, especially since a large number of features can inhibit the model’s

ability to generalize effectively. This helps improve generalization and computational

performance [30][33].

We can also encounter a case where multiple features are strongly correlated or

dependent. then intuitively, dropping one of them wouldn’t affect the model. However, the

order in which features are used can prioritize ones and reduce the importance of the others.

This problem can be mitigated somehow through random features selection.

2.4 Conclusion

In this chapter we discussed how we can improve accuracy and reduce variance of the

prediction results by using homogeneous parallel algorithms, also called homogeneous

ensembles. We then went on to present one of the most efficient, yet simplest homogeneous

algorithms, known as Bagging.

The main difficulty regarding homogenous ensembles is to generate diversity, bagging

solves it using bootstrap sampling, but other techniques such as boosting exist. In the next

chapter, we will discuss another approach that solves it using different learning algorithms, it

is known as Heterogeneous ensemble learning.

19

Chapter 3

Heterogeneous Parallel Algorithms

3.1 Introduction

The main goal of bagging algorithms is improving accuracy and reducing variance,

which eliminates the problem of overfitting. It deals with homogeneous models that are

considered as weak learners. It trains them independently and in parallel, and at the end of the

process, it combines them following a deterministic process [29].

As discussed in the previous chapter, homogeneous ensembles are practically composed

of classifiers of the same type. The ones based on classifiers of different types are called

heterogeneous. Even when using the same learning algorithm, the main difficulty regarding

homogenous ensembles is to generate diversity. Different strategies are used for both of the

mentioned ensembles, bagging solves it through bootstrapping, but it can also be solved using

boosting, etc... These techniques, which have mainly been used in bagging, can also be used to

reach additional diversity in heterogeneous ensembles. Yet, since various learning algorithms

are used to generate the base learners, heterogeneous ensembles are naturally various. The main

difficulty in this case resides in defining the optimal way to combine the different predictions

of the models in the ensemble [29].

3.2 Principle

Heterogeneous ensemble learning is divided into two main steps. This process starts

with training a set of models using different base learning algorithms, then combining the base

estimators results using the weighting approach or the meta-learning which is a model that

predicts the final results.

The first step in building heterogeneous ensembles for any application is training a set

of base estimators using different learning algorithms. Choosing the best base estimators is a

crucial step. The key is to ensure that we choose algorithms that fit the problem and that are

different enough to produce diversity. This difference in the learning process will explicitly

20

visualize the decision behavior and boundaries of each base estimator along with the diversity

of the estimators.

Unlike the homogeneous ensemble learning that uses different training sets for each

base estimator, in the heterogeneous ensembles approach the base estimators are trained using

the same training set. Then a validation set is used to evaluate each base estimator individually

and, eventually, a test set is used to estimate the final model performance. The three subsets

are mutually exclusive, as they do not have any overlapping examples.

In the test phase, which determines the performance of the overall ensemble, we collect

the predictions of each test-set example by each trained base estimator, which represents each

base estimator’s confidence in its predictions. Then we combine the results using one of the

two approaches.

3.3 Combining predictions

As mentioned in the previous section, one of the pillars of the heterogeneous ensembles

approach is combining the results. In the following paragraphs, we will discuss the two main

approaches used to obtain the final prediction of an heterogeneous ensemble model.

3.3.1 Classic approach

For combining predictions, we can use equations to achieve the result we are looking

for. This approach is called the classical approach. In the following, we will discuss some of

the main methods/equations used.

Most of these equations base their computations on a value called weight. This weight

is generated from the given model results and it differs from equation to equation. It allows us

to give more importance to the prediction of a model compared to the other models.

3.3.1.1 Majority Vote

The voting methods rely on a democratic process that combines the predictions

provided by the classification models independently [25]. Among these methods, the majority

vote is the most simple and intuitive approach, since it assigns for each base estimator an equal

weight [31].

In the classification problems, when using the majority vote strategy, each classifier

predicts a class, and then, the class in which the majority predicted would win. In other terms,

we choose the most common (popular) prediction. Figure III.1 illustrates this approach.

21

Figure III.1 : Combining predictions in majority vote

3.3.1.2 Accuracy weighting

When using multiple base estimators on the same training set, it is better to know which

of these base estimators has the best performance, as it is mostly going to give the best

predictions as well.

Likewise, knowing which of the base estimators is well trained helps to combine the

final predictions, since we have a better view of which of these base estimators has the best

impact. In this approach, each base estimator is assigned a weight that represents how well this

base estimator performed which is also known as the accuracy

The accuracy of a machine learning classification algorithm represents the most

intuitive measure that provides how often the algorithm classifies a data point correctly. In

other terms, this measure is simply the percentage of its predictions that turn out to be correct.

After training the base estimators, each one of them would be evaluated and its accuracy

computed using the validation set and the formula presented in section (1.4.1.1) [10,18]. The

accuracy would then help us take into consideration the prediction of the best model since the

higher the accuracy is, the better the estimator is. With this measure we can combine the final

prediction (equation III.1)

1

∑𝑛
𝑗=1 𝐴𝑖

× ∑

𝑛

𝑖=1

𝐴𝑖 . 𝑃𝑖

Equation III.1: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

i: represent the index of the base estimator

Ai: the accuracy of the ith base estimator

22

Pi: the prediction made by the ith base estimator

3.3.1.3 Entropy weighting

Another commonly used weighting method is the entropy weight method (EWM). It

was introduced in the field of information theory by Claude Shannon to quantify the amount

of information conveyed by a variable [25]. This method allows us to measure the value of

dispersion in decision-making. The EWM measures the uncertainty in a set of events. It can be

used as an evaluation metric to judge the value of the estimation. Thus, this notion can evaluate

the classifiers.

The entropy of a base classifier is computed using only the predicted labels (equation

III.2) which defines how uncertain a classifier is about its predictions.

𝐸 = − ∑

𝑛

𝑖=1

𝑃𝑖𝐿𝑜𝑔2𝑃𝑖

Equation III.2: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

The low entropy (uncertainty) signifies a better classifier. Thus, individual base

classifier weights are inversely proportional to their corresponding entropies (equation III.3).

Eventually, all the base estimator predictions are combined taking the weights into

consideration.

𝑊𝑖 =

1
𝐸𝑖

∑𝑛
𝑖=1

1
𝐸𝑖

Equation III.3: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

3.3.1.4 Dempster - Shafer combination

This approach is based on the Dempster-Shafer Theory (DST) which allows fusing

beliefs and evidence from multiple sources, such as base estimators, into an overall final belief,

or prediction probability [29].

DST is a mathematical theory of evidence [29]. This theory was introduced by Arthur

P. Dempster in the context of statistical inference, and later it was developed by Glenn Shafer

into a general framework for modeling epistemic uncertainty [28]. This theory allows one to

combine evidence from different sources and arrive at a degree of belief (represented by a

mathematical object called belief function) that takes into account all the available evidence

[28].

DST uses the basic probability assignment (BPA) to combine the beliefs. This measure

allows us to translate an estimator’s confidence to a belief over the true label. The BPA is

simply a number between 0 and 1 that indicates the belief in a proposition such as “a test

23

example x belongs to Class 1”. Using the BPA value we can express the certainty that the test

example x belongs to Class 1. The decisions made with more certainty are characterized with

BPA values closer to 1 [29][22].

3.3.2 Meta Model approach

We saw in the prior section one of the many approaches to assemble heterogeneous

ensembles classifiers: weighting. Each classifier was weighted by its performance and used a

pre-established function that we had to carefully design so that it would combine predictions

of each classifier reflecting our performance priorities.

Another methodology to construct heterogeneous ensembles is meta-learning. In this

approach, instead of designing the function ourselves, we would train a second-level meta-

classification algorithm that combines inputs that consist of predictions generated by the base

estimators.

Meta-learning techniques are already widely and successfully applied to a variety of

tasks in chemometrics analysis, recommendation systems, text classification, and spam

filtering. Meta-learning methods, stacking, and blending for recommendation systems were

brought to light after being used by top teams during the Netflix prize competition [32].

3.3.2.1 Stacking

One of the most common meta-learning methods is stacking. This method stacks a

second classifier on top of its base estimators and it consists of two steps :

● level 1: This step is similar to bagging. It aims to create a diverse set of base classifiers

by fitting base estimators on training data.

● level 2: Based on the outputs generated by the base classifiers, this step would see us

construct a new data set. The inputs it receives would become meta-features that can

either be predictions or the probability of predictions.

Let us construct a simple heterogeneous ensemble considering a 2d synthetic dataset

and two classifiers (3-nearest neighbor and Gaussian naïve Bayes). We would train the above-

mentioned classifiers then use their classifications to create new features (called meta-features)

as illustrated in Figure III.2. Therefore, for each training example "Xi", we generate two meta-

features, "Yi-3nn" and "Yi-gnb": the prediction probabilities of Xi according to 3nn and gnb

respectively [29].

24

Figure III.2 : Meta features from 3nn and gnb.

These generated features would become meta-data for a second-level classifier. It

would use them as a new training set to learn a combination function, differing from the

combination by weighting that would use them directly in predetermined functions [29].

An infinite number of base estimators can be used in Stacking since our objective is to

ensure sufficient diversity through the predictions of these base estimators. Figure III.3 below

shows the schema of six popular algorithms [29].

Figure III.3 : Stacking in details

For the level 2 estimator, any base learning algorithm can be used to train it. Linear

models like linear and logistic regression proved to be effective when used. A model using

these kinds of linear methods is called linear stacking. It is popular because of how fast and

computationally efficient it is even for large datasets. It can often be an effective exploratory

step in analyzing datasets [29].

Regardless, stacking also uses non-linear classifiers as meta-models such as artificial

neural networks, etc... This lets the ensemble combine meta-features in complex ways but at

the cost of interpretability in linear models.

25

Going back to our example, we can implement a linear stacking procedure passing by

two steps. The first one consists of training the base estimators. The other would see us

construct meta-features from training the base estimators and then train a linear regression

model. It should be important to note that the meta-data can either be the predictions or the

prediction probabilities [29]. The result would be slightly different as can be seen in Figure

III.4.

Figure III.4 : Stacking results using different types of meta-features

To generate predictions, we proceed by two steps:

1. Get the meta-features from the trained level 1 estimators for each test example, and

create a corresponding test meta-example.

2. For each meta-example, get using the level 2 estimator a final prediction.

To prevent overfitting, we can implement k-fold cross-validation so that each base

estimator is trained on a different data set, but instead of using it for parameter selection and

model evaluation, here, we use it to partition the dataset into subsets so that the base estimators

train on different subsets, this often leads to better diversity and more robustness, while

reducing the odds of overfitting.

3.3.2.2 Stacking with cross validation

Cross-validation is a resampling technique for model validation and evaluation used to

simulate out-of-sample testing, tune a model's hyperparameters and test its efficiency and

accuracy [32][21].

The dataset would be partitioned into k subsets, thus the prefix “k-fold”. In a 5-fold

cross-validation example, data is (often randomly) partitioned into five non-overlapping

26

subsets. It then leads to 5 folds or combinations of these subsets for training and validation as

shown in Figure III.5.

Figure III.5 : 5-fold cross-validation

For example, we split a dataset D into five subsets: D1, D2, D3, D4 and D5.These subsets

are disjoint, each fold would constitute a training set and a validation set, that includes the

subset that was excluded from the training set. This fold would allow us to train and validate

one model. Overall, a 5-fold CV allows us to train and validate five models.

The cross-validation procedure will be different in our case. The validation sets k would

be used for generating meta-feature for the level 2 estimator instead of using them for

evaluation.

Combining stacking with cross-validation goes through the following steps:

1. Generating k equal-sized subsets randomly from the data set;

2. For each base estimator, train k models using the training data "trnk" from the

corresponding k-th fold.

3. From each trained base estimator, we would use the validation data "valk" of the

corresponding k-th fold to generate k sets of meta-examples

4. Retrain each level 1 base estimator on the complete data set.

The three first steps of this process are shown in Figure III.6.

27

Figure III.6 : Stacking using cross-validation

Since this approach consists of adding cross-validation, hence additional training time, it

is worth mentioning that for a small-sized data set this increase is well worth the cost. But for

larger data sets, it can be significant.

It is usually acceptable to hold out a single validation set rather than several cross-

validation subsets if the model is too expensive to train, this procedure is known as blending.

3.4 Conclusion

In this chapter, we discussed heterogeneous ensembles and its principle that consists of

training models using different algorithms and then combining their results. We also saw that

different approaches can be used to combine these results, classical ones based on arithmetic

operations and another based on meta-models.

28

Chapter 4

Heterogeneous Parallel Ensemble Learning : Design

4.1 Introduction

As described in the previous chapters, ensemble learning can be done in either

sequential or parallel mode. This chapter presents the design and implementation of a system

that uses a set of heterogeneous base estimators to construct an ensemble parallel learner

capable of achieving better predictions.

4.2 Process

The process of construction of a heterogeneous parallel learner follows mainly the same

steps as when designing a homogeneous parallel estimator. These steps are described in the

following sections.

4.2.1 Data splitting

This step consists in splitting the data to a training set and a testing set that will be used

by all estimators (base + meta). Usually, the splitting ratio varies from 20% to 30% for the test

dataset. Additionally, we can use bootstrapping for better results.

4.2.2 Training base estimators / and meta-model

This step of the process consists of training all the estimators (base + meta) using a

heterogeneous set of estimators as explained in the previous chapter. During this phase, we

would try to do the shared task (training) in parallel. This would prove to be less time

consuming than if it has been done sequentially.

4.2.3 Fitting base estimators / and meta-model

This step of the process consists of testing all the trained estimators (base + meta) using

the test data. During this phase, the shared task (training) can obviously be done in parallel.

29

4.2.4 Combining the predictions

Once the base models are trained and eventually tested, their results can be combined

to get the ensemble parallel estimator. Many combining strategies can be applied.

4.3 Models used

As described in the previous sections, ensemble learning methods require base

estimators / models to achieve their learning part. In our system, and since it is heterogeneous,

we used different models to serve as base estimators and another model that will eventually

serve as the meta-model.

In the following sections, we are going to present each one of these algorithms as well

as their main features.

4.3.1 Support Vector Machine (SVM)

Figure IV.1: Support Vector Machine hyperplane

Support Vector Machine, abbreviated as SVM, can be used for regression and

classification tasks. It is mainly and widely used in classification problems. Many research

studies consider SVM as the off the shelf machine learning algorithm due to its significant

accuracy with less computation power. In this study, SVM is experimented as a base estimator

for the construction of a heterogeneous parallel learner [26][25].

30

The objective of the SVM algorithm is to find the best hyperplane in N-dimensional

space (N-1 — the number of features) that best separates the data points. In a binary problem,

to separate 2 categories, SVM moves the data into a high dimension space and finds a high

dimensional SVC (Support Vector Classifier) that can effectively classify the observations

[26][25].

SVC takes into consideration many different parameters, we will explore some of them

in the following.

4.3.1.1 Hyperplane

A hyperplane is simply a function that helps differentiate between features, the

hyperplane dimension depends on the number of input features in the dataset. If the number of

features is 2 the hyperplane is a line. whereas, if we have 3 input features, it will become a

two-dimensional plane [26]. In other words, a hyperplane is a function that classifies the point

in a higher dimension, thus in an ‘M’ dimensional space, the hyperplane equation can be given

by (Equation IV.1)

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3…

= 𝑤0 + ∑

𝑚

𝑖=1

𝑤𝑖𝑥𝑖

= 𝑤0 + 𝑤𝑇𝑋
= 𝑏 + 𝑤𝑇𝑋

Equation IV.1: Hyperplane function

Where :

Wi = vectors (W0, W1, W2, W3……Wm)

b = biased term (W0)

X = variables.

4.3.1.2 Kernel

The kernel is the function that helps solve problems by transforming the data, in order

to go to higher dimensions and perform smooth calculations. we can cite three types of kernel

[26]:

● Linear kernel : This kernel separates the classes with a straight line.

● Polynomial kernel : The polynomial kernel simply works by increasing the

power of the kernel and calculating the dot product, which can define the

relationship between two points. In the polynomial kernel function (Equation

31

IV.2) the degree of the polynomial (b) is an important parameter that helps

define the best results.

K(𝑋1,𝑋2) = (𝑎 + 𝑋1
𝑇𝑋2)𝑏

Equation IV.2: Polynomial kernel function

● Radial kernel basis (RBF) : RBF kernel function (Equation IV.3) value

depends on the distance from the origin or from some point, where the closest

observations have more influence than the further ones on how to classify the

new observations

K(𝑋1,𝑋2) = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡(−𝛾||𝑋1 − 𝑋2||2)

Equation IV.3: Radial kernel basis function

4.3.1.3 Gamma

The gamma parameter controls the influence distance of a single training point. It is

mainly used in the RBF kernel. A low value of gamma refers to a large similarity radius that

results in more data grouped, whereas, for high gamma, points must be very close to each other

to be grouped together [26].

4.3.1.4 Regularization

The Regularization parameter (also known as the C parameter in Python’s Sklearn

library) is used in the SVM optimization to measure how much we avoid misclassifying each

training example. It adds a penalty for each misclassified data point. Small C means that the

penalty for misclassified points is low, thus a decision boundary with a large margin is chosen

at the expense of a greater number of misclassifications. While if C is large, SVM tries to

minimize the number of misclassified observations due to elevated penalty which results in a

decision boundary with a smaller margin. The penalty is directly proportional to the distance

to the decision boundary [26].

4.3.2 Logistic regression

Regression is a method of modeling a target value based on independent predictors.

This method is mostly used for forecasting and finding out the cause and effect relationship

between variables. Regression techniques mostly differ based on the number of independent

variables and the type of relationship between the independent and dependent variables [11].

32

Logistic regression is a classification algorithm used to assign observations to a discrete

set of classes. Some of the examples of classification problems are email spam or not spam,

online transactions fraud or not fraud, tumor malignant, or benign. Logistic regression

transforms its output using the logistic sigmoid function (Figure IV.2) to return a probability

value [11]. In our study, this algorithm is used as a classifier for a base-estimator and also as a

meta-model.

Figure IV.2 - Logistic function (Sigmoid-Function)

Logistic regression can be divided into three types depending on the outcome types

which are :

● binomial: when a target variable can have only 2 possible types such as “0” or

“1”.

● multinomial: target variable can have 3 or more possible types with no order

such as “disease A” vs “disease B” vs “disease C”.

● ordinal: target variables can take multiple possible categories that are ordered,

for example, the outcome can be “very low”, “low”, “high”, and “very high”.

[11]

4.3.2.1 Sigmoid-Function

The Sigmoid-Function is an S-shaped (Equation IV.4) curve that can take a real-value

number and maps it into a value in the range of 0 and 1, but never exactly at those limits.

𝜎(𝑡) =
𝑒 𝑡

𝑒 𝑡 + 1
 =

1

1 + 𝑒 −𝑡

33

Equation IV.4: Sigmoid function

4.3.3 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a supervised machine learning algorithm that helps

solve both classification and regression problems. KNN is a non-parametric algorithm as it

does not make any assumptions for underlying data distribution [17].

Following this algorithm, the training phase focuses on storing the data, while the

learning process is done during the test phase. It is a distance-based algorithm.

Figure IV.3: The KNN classification algorithm

4.3.3.1 Algorithm

In a binary problem, when we want to classify a new datapoint in category A or category

B, we can use the KNN algorithm (Figure IV.3) that observes the behavior of the nearest points

and classifies itself accordingly. In such a case, the behavior is which category it belongs to.

The KNN algorithm principle can be explained by the following steps [8]:

a) Select the number K of the neighbors to be considered.

b) Calculate the distance between new data points and all the training points.

c) Sort the computed distance between training points and new data points

in ascending order.

d) Choose the first K distances from the sorted list.

e) Take the mean of the classes associated with the distances.

f) Among these K neighbors, count the number of the data points in each

category.

34

g) Assign the new data points to that category for which the number of the

neighbor is maximum.

4.3.3.2 Distance Metrics

Several distance metrics (Figure IV.4) can be used, it's essential to choose the most

appropriate one based on the studied dataset [16].

Figure IV.4: Distance Metrics

● Minkowski Distance : Is calculated where distances are in the form of vectors that

have a length that cannot be negative.

● Manhattan Distance : Represents the distance between two points, calculated with the

sum of the absolute differences of their Cartesian coordinates.

● Euclidean Distance : Represents the length of the straight line between two points in

Euclidean space.

● Cosine Distance : It measures the direction by calculating the angle between two

vectors using the cosine function.

● Jaccard Distance : It analyzes two data sets and tries to find the incident where both

values are equal to 1.

4.3.3.3 The K value

A key process in the KNN algorithm is to find the best K value since a small k value

can lead to overfitting, and a high k value can lead to underfitting. Likewise choosing an even

number in a binary classification can fall in a tie between the two classes [16].

To find the best K, we can use Plot the elbow curve between different K values and

select the K value when there is a sudden drop in the error rate (Figure IV.5).

35

Figure IV.5: Plot the elbow curve

4.3.4 Decision tree

The decision tree Algorithm (Figure IV.6) belongs to the family of supervised machine

learning algorithms. It can be used for both classification problems and regression problems.

The goal of this algorithm is to create a model that predicts the value of a target variable,

for which the decision tree uses the tree representation to solve the problem in which the leaf

node corresponds to a class label and attributes are represented on the internal node of the tree.

Decision trees are constructed via an algorithmic approach that identifies ways to split

a data set based on different conditions. It is one of the most widely used and practical methods

for supervised learning.

36

Figure IV.6: Decision Tree Algorithm

4.3.4.1 Steps

a) Get a list of rows (dataset) which are taken into consideration for making

a decision tree recursively at each node.

b) Calculate uncertainty of our dataset or Gini impurity or how much our

data is mixed up, etc.

c) Generate a list of all questions which need to be asked at that node.

d) Partition rows into True rows and False rows based on each question

asked.

e) Calculate information gain based on gini impurity and partition the data

from the previous step.

f) Update highest information gain based on each question asked.

g) Update best question based on information gain (higher information

gain).

h) Divide the nodes on the best question. Repeat again from step 1 again

until we get pure nodes (leaf nodes).

37

4.3.4.2 Criterion

It is the function that measures the quality of a split. Supported criteria are “gini” for

the Gini impurity and “entropy” for the information gain.

Impurity is a measure of the homogeneity of the labels on a node. There are many ways

to implement the impurity measure, two of which scikit-learn has implemented is the

Information gain and Gini Impurity or Gini Index.

4.3.4.3 Splitter

It is the strategy used to choose the split at each node. Supported strategies are “best”

to choose the best split and “random” to choose a random split.

4.3.5 Gaussian Naive Bayes

Gaussian Naive Bayes is a variant of Naïve Bayes classifiers which are probabilistic

machine learning algorithms used mostly in classification tasks based on the Bayes’ Theorem

[9].

4.3.5.1 Bayes Theorem

Bayes’ Theorem is a mathematical formula (Equation IV.5) that calculates conditional

probabilities, which is a measure of the probability of an event occurring given that another

event has (by assumption, presumption, assertion, or evidence) occurred [9].

P(A|B) =
𝑃(𝐵|𝐴) .𝑃(𝐴)

𝑃(𝐵)

Equation IV.5:Posterior probability

● P(A|B): represents how often A happens given that B happens, also called posterior

probability.

● P(B|A): represents how often B happens given that A happens

● P(A): is how likely A is on its own

● P(B): how likely B is on its own.

4.3.5.2 Naïve Bayes Classifier

Naive Bayes is a probabilistic machine learning algorithm used in several classification

tasks, such as classification of documents, filtering spam, prediction, and so on. This algorithm

38

incorporates in its model features that are independent of each other, which means that any

modification in the values of some features does not impact the other features [9].

Figure IV.7: Gaussian Naive Bayes classifier

4.3.5.3 Gaussian Naïve Bayes Classifier

The Gaussian Naïve Bayes classifier (Figure IV.7) supports continuous-valued models

and features each conforming to a Gaussian (normal) distribution. In another way, when the

predictors take up a continuous value, we assume that these values are sampled from a gaussian

distribution [27][19].

P(𝑥𝑖 |y) =
1

√2𝜋𝜎𝑦
2

𝑒𝑥𝑝 (
(𝑥−𝜇𝑦)

2𝜎𝑦
2)

Equation IV.6: Likelihood equation

This distribution gives a bell-shaped curve when plotted (Figure IV.7) that is symmetric

to the mean of the feature values. In a classification process, in order to determine the class

result, we first calculate the likelihood of each class using Equation IV.6 (𝜎 and 𝜇 are the

variance and mean of the continuous). After calculating each likelihood, the class with the

higher likelihood is considered the resulting class [18][19].

4.4 Conclusion

In this chapter, we discussed each algorithm, from the concept to its parameters. The

next step would be implementing them and fine-tuning the parameters to get the best models

out of these algorithms.

39

Chapter 5

Heterogeneous Parallel Ensemble Learning :

Implementation

5.1 Introduction

After describing the full process, the algorithms and the methods used in the design of

our system, it is time to implement them and bring them into fruition. For that, we will be using

a variety of tools and technologies to implement the steps described in the previous chapter.

One the implementation is finished, experimentations will be held to test the effectiveness of

the proposed system.

5.2 Problem at hand and dataset

 Machine learning systems are designed to treat different problems, from

medical to real estate ones. In this study, we will consider a medical problem, to detect whether

a patient will present a heart disease or not.

For that, we used a relatively small dataset (270 records) related to our problem, with

the features presented in the table V.1 splitted into a training and a validation set according to

a 80% 20% ratio. The dataset concerns a special case of heart disease: Coronary Artery Disease

(CAD).

CAD symptoms may differ from person to person. However, because many people have

no symptoms, they do not know they have the CAD until they have chest pain, a heart attack,

or sudden cardiac arrest. This led to the construction of heart disease datasets from previous

patients’ records. Most of CAD datasets are provided by the University of California Irvine

(UCI) machine learning repository [36]. CAD prediction models can be trained on available

datasets and used to diagnose the presence of this disease for new patients.

40

Attr

.

Name Type Description

C1 Age Continuous Age in years

C2 Gender Discrete 0 = female

1 = male

C3 Cp Discrete Chest pain type:1=typical angina, 2=atypical angina,

3=non-anginal pain, 4=asymptomatic

C4 Trestbps Continuous Resting blood pressure (in mm Hg)

C5 Chol Continuous Serum cholesterol in md/dl

C6 Fbs Discrete Fasting blood sugar > 120:

0=False, 1=True

C7 Restecg Discrete Resting electrocardiographic results:

0=normal, 1=having ST-T wave abnormality

2=showing probable or define left ventricular

hypertrophy by Estes’crietria

C8 Thalach Continuous Maximum heart rate achieved

C9 Exang Discrete Exercise induced angina:

0=yes, 1=no

C10 Oldpeak Continuous ST depression induced by exercise relative to rest

C11 Slope Discrete The slope of the peak exercise ST segment:

1=up sloping, 2=flat, 3=down sloping

C12 Ca Discrete Number of major vessels (0-3) colored by fluoroscopy

C13 Thal Discrete 3=normal, 6=fixed defect, 7=reversible defect

C14 Target

class

Discrete Diagnosis class:

1=absence of CAD, 2=presence of CAD

Table V.1: The Statlog heart disease dataset description [36]

5.3 Tools used

 For the implementation of the project, and as mentioned earlier, we needed a set

of tools to make it happen (Figure V.1). We describe these tools in this section.

Figure V.1: Tools used to build the proposed system.

41

5.3.1 Python

Python is an object oriented programming language considered as the most powerful

language people can use these days. It can be used as a scripting language as well as a tool for

data scientists to achieve their goals. One of its key points is the fact that it is an interpreted

language, and since it has a highly readable syntax. It is commonly known to be a very simple

language compared to others.

Also, Python offers many libraries which are open source and installed by a simple

command line (pip install). It is also worth mentioning that many leading companies are using

it as their main programming language [38].

Python is considered very versatile language, it is used in almost all fields [38],

including :

● Data science

● Scientific and mathematical computing

● Web development

● Finance and trading

● System automation and administration

● Computer graphics

● Basic game development

● Security and penetration testing

● General and application-specific scripting

● Mapping and geography (GIS Software)

5.3.2 Github

Github is a hosting platform for software development and version control using Git. It

allows programmers across the globe to share code, search for it, download it and even like it.

Through Github, developers can upload their projects as repositories, and then invite

other people to collaborate with them, review their code and validate it.

Github also provides the ability to execute certain actions automatically after pushing

to the remote repository [39].

To organize one's project, Github offers the ability to push under different branches

constructing a tree, where a developer can develop a new feature in an isolated branch without

messing with the stable version, also creating commits that would serve as points to locate the

current state and old ones [40].

42

5.3.3 Jupyter notebook

Jupyter notebook is an interactive web-based open source computational environment

for creating notebook books/documents from computational material. A notebook can make

reference to many different entities, essentially the web application, the Python web server or

the document depending on context. These documents contain code, equations markdown and

the result of its execution.

This tool was used to hold the code of our algorithms and the result of the training and

the predictions on our dataset.

 With the rise of machine and deep learning, Jupyter notebooks became more popular

than ever. It is now used by many top companies in their environment for this domain. An

example of this is Google's project, known as Google Colaboratory.

5.3.4 Google colab

 Colaboratory, also known as Colab, is a free Jupyter notebook environment

provided by Google that runs on the cloud and uses google drive as a storage for its notebooks.

It started initially as an internal project.

 We used colab as our main environnement for the development of our system,

and that is because google offers highly performing virtual machines that would allow us to get

results in less execution time compared to our local machines (A 2017 model macbook pro).

5.4 Libraries used

To better implement the described algorithms, Python, thanks to its libraries, offers an

out of the box solution that implements them and helps the developer save time and focus on

implementing concrete steps of his system. Below, we are going to describe these libraries.

5.4.1 Pandas

 Before starting the machine learning part, it is necessary to clean and manipulate

the provided dataset. That is why Pandas is now considered as one of the most important python

tools used by Data scientists.

 Pandas, short for Python Data Analysis Library, is an open source Python

library that lets users explore, manipulate and visualize data easily.

43

 Pandas is popular among data scientists for many reasons, most importantly the

fact that it is easy to learn, extremely fast and can take in a huge variety of data (csv, excel, sql,

…etc).

5.4.2 Numpy

 Machine learning implies the need to work with numerical data,

multidimensional arrays and matrix data structures, that is what motivated the use of Numpy.

 Numpy, short for Numerical Python, is an open-source python library that is

used in almost every field of science and engineering. Its API is used in other popular libraries

such as Pandas, Scipy, …etc.

 In this project, it was used to create homogeneous n-dimensional arrays as

required in our algorithms and then efficiently perform computations on them.

5.4.3 Matplotlib

Matplotlib is a 2D plotting library that is built on Numpy arrays and designed to work

with the Scipy stack.

 In this project, and like many other machine learning ones, this library is used

to visualize the predicted values and the actual values on the same plane.

 It is also worth mentioning that it is also used to present data in the form of

graphs or charts to understand complex data and identify trends and patterns easily within it,

which would eventually help decision makers take their decision.

5.4.4 Sklearn

Scikit-learn (also known as Sklearn) is a Python library used to build machine learning

models, in addition to, data preparation and analysis, and evaluation.

The Sklearn library provides methods for data reading, preparation, and unsupervised

clustering, aside from many unsupervised and supervised learning algorithms, and much more

[23].

5.4.5 Scipy

SciPy (stands for Scientific Python) is a computation Python library used to solve many

mathematical equations and algorithms, in addition to data processing, such as numerical

integration, interpolation, optimization, linear algebra, and statistics.

44

This library uses Numpy under the hood, in addition to added and optimized functions

that are frequently used in Data science. Scipy provides extensions for scientific mathematical

formulae such as Matrix Rank, Inverse, polynomial equations, and LU Decomposition.

In our project, we used this library to compute the correlation using a Pearson

correlation coefficient.

5.5 The implemented architecture

During this phase, we tried to implement the proposed architecture in chapter 4. But

due to time constraints, we only implemented it partially.

Our system is construced using models that relies on the algorithms presented in chapter

4. When it comes to the combining methods, we only used 3 of the 4 combining equations

presented (majority vote, accuracy weighing and entropy weighting). On the other hand, we

also propose stacking ensemble learners where a meta-model is applied on the individual

learners' results to get the final result.

The following (FigureV.2 and FigureV.3) illustrate the overall architecture of the

proposed solution. In figure V.2, the results of base learners (Y1…Yn) are combined using a

specific function and in figure V.3, a stacking concept is applied through the use of logistic

regression as a meta-model.

Figure V.2: Heterogeneous ensemble learning using functions.

45

Figure V.3: Heterogeneous ensemble learning using logistic regression as meta-model.

5.6 Experimentations And results

In the following, we will discuss the objective of our experimentation, then present the

results obtained by each implemented algorithm, how we fine tuned2 each one of them to get

better results, and then use them all together to build the heterogeneous parallel ensemble

learner.

5.6.1 Objective of the experimentation

These experimentations aim to build our system by following the presented architecture

as well as the process and concepts defined in the earlier chapters (3 & 4).

Through it, we were able to build the most accurate system by picking the most accurate

base estimators and combinations of models possible.

5.6.2 Steps of this experimentation

This experimentation follows the process described in the previous chapter, but instead

of building the algorithm from scratch, and as mentioned earlier, we are using the Sklearn

module to build our system. It provides a function for each of the implemented base algorithms.

We will then apply both learning and validation in order to get and compare the accuracy of

each model using different parameters.

2
 https://www.merriam-webster.com/dictionary/fine-tune

46

After getting the most accurate base estimators, we will combine the results as described

in chapters and 4.

5.6.3 Experimenting on the base estimators

For each of the discussed algorithms, we will show how we imported it, used it, then

present a table that contains the parameters and the precision of the most accurate models we

got in addition to the default configuration.

To fine tune each base model and get the best configuration possible, we used a

“GridSearch”. GridSearch is a method that takes the possible values for attributes as an input

and tries all possible combinations in order to test the model’s accuracy and then indicate the

best combination possible.

5.6.3.1 Support vector machine

 Sklearn provides an SVC (Support Vector Classification) function that can be

imported and then used as shown in figures V.4 and V.5.

Figure V.4: SVC import

Figure V.5: Initiating the model, fitting and then using it for prediction.

Figure V.5 uses SVM with default values for each of its parameters, but it is possible

to change some parameters as it can be seen in figure V.6.

Figure V.6: SVC initiated with parameters.

47

The provided possibilities for our model can be seen in figure V.7:

Figure V.7: Fine tuning SVC using GridSearch

Parameters Accuracy

default 0,69

C=0.05, kernel='linear' 0,88

C=10, kernel='linear' 0.88

C=100, kernel='poly' 0.85

Table V.2 The results obtained by fine tuning the SVC classifier

The results are shown in table V.2. The first row concerns the accuracy of SVM by

using default parameters while the other rows show the accuracy when changing some

parameters. As it can be noticed, by tuning some parameters, we can improve the accuracy of

the SVC classifier.

5.6.3.2 Logistic regression

Sklearn also provides a function for the logistic regression function that can be imported

and then used as shown in figures V.8 and V.9.

Figure V.8: Import of logistic regression

48

Figure V.9: Initiating the model, fitting and then using it for prediction.

Figure V.9 uses Logistic regression with default values for each of its parameters, but

as seen in the previous section, we can explicitly change their values. The figureV.10 shows

some of the possible values.

Figure V.10: Fine tuning logistic using GridSearch

The results are shown in table V.3.

Parameters Accuracy

default 0,89

C=1000 0,89

C=11.513953993264458, penalty='l1',

solver='liblinear'

0.89

C=16.768329368110066, solver='liblinear' 0.89

Table V.3 The results obtained by fine tuning the Logistic regression classifier

5.6.3.3 K-nearest neighbors

Sklearn also provides a function for the KNN algorithm that can be imported and then

used as shown in figures V.11 and V.12.

Figure V.11: Importing KNN

49

Figure V.12: Initiating, fitting and then using knn to predict.

Figure V.12 uses KNN with default values for each of its parameters, but as seen in the

previous sections, we can explicitly change their values.

Figure V.13 shows the possible values for some of the model’s attributes.

Figure V.13: Fine tuning KNN

The results are shown in table V.4.

Parameters Accuracy

default 0,70

n_neighbors=29,

weights="uniform",algorithm="auto"

,metric="minkowski",p=1,

leaf_size=20

0,83

leaf_size=20, n_neighbors=9, p=1 0,76

Table V.4 The results obtained by fine tuning the k-nearest neighbors classifier

50

5.6.3.4 Decision tree

Sklearn also provides a function for the decision tree algorithm that can be imported

and then used as shown in figures V.14 and V.15.

Figure V.14: Importing the Decision Tree

Figure V.15: Initiating, fitting and then using a Decision tree to predict.

Figure V.15 uses the Decision tree with default values for each of its parameters, but

as seen in the previous sections, we can explicitly change their values. Some of these values

are shown in the figure V.16.

Figure V.16: Fine tuning Decision tree using GridSearch

The results are shown in table V.5.

Parameters Accuracy

default 0,81

51

criterion='entropy', max_depth=3,

min_samples_leaf=3,

min_samples_split=5,

random_state=42

0,87

max_depth=4,min_samples_leaf=9,

random_state=1

0,87

Table V.5 The results obtained by fine tuning the Decision tree classifier

5.6.3.5 Gaussian Naive Bayes

Sklearn also provides a function for gaussianNB (Gaussian naive bayes) that can be

imported and then used as shown in figures V.17 and V.18

Figure V.17: Importing Gaussian Naive Bayes

Figure V.18: Initiating Gaussian naive bayes, training it then using it to predict.

The provided possibilities for Gaussian Naive Bayes can be seen in figure V.19.

Figure V.19: Fine tuning GaussianNB using GridSearch

52

The results are shown in table V.6.

Parameters Accuracy

default 0,88

GaussianNB(var_smoothing=4.3287612

81083062e-05)

0.89

Table V.6 The results obtained by fine tuning the GaussianNB classifier

5.6.4 Experimenting on meta-model and combinators

In this section, we will discuss the technical implementation of each of the combining

methods, including the meta-model technique (stacking).

The implementation of these techniques will follow what was stated back in the

previous chapters. First we use the models we experimented on in the previous section and then

run the learning and prediction phases as seen in the implemented architecture.

In the following sections, we will present and explain the code used to bring the

methods to life, then present the result of its execution.

All the following methods share the same starting point, they all invoke the models the

same way by storing them in an array of tuples, as can be seen in Figure V.20 and then execute

the 2 phases mainly the same way (it will be different when using stacking) Figure V.21.

Figure V.20: Storing the base estimators

53

Figure V.21: training, estimating and combining the results

The training phase is just a fitting of each of the models that are in the array of

estimators (Figure V.22). The predicting phase will create an array of size X containing arrays

of size Y, X is the number of instances, and Y is the number of estimators, each nested array

containing the estimation for a given estimator.

Figure V.22: Fit and predict functions

5.6.4.1 Majority vote

 The implementation of this method is the easiest one. We compute the average using

the function mode (supplied by numpy), then reduce the array of arrays to an array of

estimations. Figure V.23 shows this in action.

Figure V.23: Majority vote combinator

54

 Using the estimators shown in Figure V.20, we got an accuracy of 89%.

5.6.4.2 Accuracy weighing

The goal here is the same as in the previous method, which is flatting the array to a uni-

dimensional one while using the equation (Equation III.1) presented in chapter 3.

We first start by saving the accuracy of each model in an array, compute the weight of

it, then use this weight to compute the final outcome. Figure V.24 brings this algorithm to life.

Figure V.24: Accuracy weighing

 The accuracy obtained was equal to 89%.

5.6.4.3 Entropy weighing

 In the following, we will try to implement the equations (Equation III.2 and Equation

III.3) presented in chapter 3, while being coherent to what was presented in the architecture

and done in the previous methods.

 As can be seen in Figure V.25, we started by implementing the entropy equation,

counting the number of occurrences of a value and turning it into a percentage. Let us say the

class we are counting for is 1, overall, we had 10 occurrences of it, we might have an array that

resembles the following: [1,0,4,2,0,1,2]. We then turn them into percentages, giving the

following: [0.1, 0, 0.4, 0.2, 0, 0.1, 0.2]. Then we compute the entropy as defined earlier.

We implemented the combining function, computing the weight using the entropy

function, then using them in the weighing process.

The accuracy was around 89%.

55

Figure V.25: entropy weighting

5.6.4.4 Stacking

When it comes to stacking, the phases differ a bit than what was seen in the previous

methods. According to what we saw in the previous chapters, and as presented in the

architecture we will be doing each step twice. This means training will be done twice. Once for

the base estimators and once for the meta-estimator, and also the estimating phase for both base

and meta-estimators.

The base estimators are treated the same way they were during the previous

experimentations, using the same 2 functions (fit and predict). On the other hand, since the

meta-estimator takes the result of each step as its input, we define a new function that uses the

previous ones in order to forward the base-outputs as meta-inputs.

The following figure (Figure V.26) shows the implementation of the concept that was

detailed in both chapters 3 and 4, and discussed in the architecture. The meta-model used is a

LogisticRegression(C=16.768329368110066, solver='liblinear')

The accuracy was around 90%.

56

Figure V.26: Fit and predict functions for stacking

5.6.5 Discussing our results

 The aim of this project was to develop a system that would be as accurate as possible

reducing the chances for the initial problems to occur (being under and overfitting). This was

possible by introducing as much variance as possible while keeping the right amount of bias.

Throughout this system, we tried to achieve our goal by combining the result of different highly

effective (by extension accurate) models.

 By fine tuning our models in the first phase of this experimentation, we made sure we

would get the best of them (by accuracy terms) so that we would logically get the best accuracy

after combining.

 The base models had different accuracy while on different configurations, but it would

mainly sit at around 87%. It was enough to move on to the next step.

When it comes to combining the results, we would logically have a good accuracy since

the base models are already cherry picked. This was confirmed by the result of what stacking

provided, an accuracy of 90%. A first reaction would be that our experimentation did lead

somewhere, but that we could have used the best base estimator without further overhead, but

this is considered wrong, since our system would not only provide consistent results, but also

would still help us avoid the main issues by adding the variance we were looking for.

57

5.7 Conclusion

During this chapter, we discussed the technologies and tools used, the dataset, the

architecture we implemented, as well as its implementation. We also discussed the results we

got after running our experimentations.

58

Conclusion

Artificial Intelligence is a huge part of our daily life, it helps us achieve numerous tasks

and simplifies the user's life. In this study, we discuss one of its subsets. Machine learning

predicts outcomes without being told to do so.

The first objective of this study is to introduce methods that will allow us to overcome

some limits of actual machine learning algorithms: overfitting and underfitting. For overfitting,

the risk is that the model will be underperforming when used on new data (the model isn’t

generalizing well). To avoid it, we need to add some diversity and to variance. This can be

achieved either by training a model on different versions of data (Bagging) or by training

different base models and combining their results. In this project we are taking the second

direction: constructing a heterogeneous parallel ensemble learner.

Since many base algorithms must be used, we included in this study five machine

learning algorithms among the most used in classification. Also, we have proposed two ways

to produce the ensemble learner: a combination function and the use of a meta-model. In this

first study three combination functions are included. This project can be considered as the first

brick in the construction of heterogeneous parallel ensemble learners. Recall that existing

Python modules (like Sklearn) do not integrate such ensemble learners.

This project represented a huge opportunity to learn about machine learning algorithms

and their limits. It was also a great chance to discover methods and techniques to deal with the

main problems with machine learning algorithms: underfitting and overfitting. On the other

hand, this project gave us the prospect to enlarge our technical knowledge. We tried to use

modern programming paradigms and platforms.

The experimentations held showed that heterogeneous parallel ensemble learners can

improve the effectiveness of machine learning algorithms. Even if the improvement is not huge,

we know that the ensemble learner does not suffer from overfitting. It means that it is intended

to generalize very well. Further experimentations must be done to integrate more base

algorithms in the ensemble learner and also to explore more machine learning datasets.

The objective of this project goes beyond the obtained results. Heterogeneous parallel

ensemble learners must be defined as functions (or as a module) that can be integrated in a

59

programming language like Python. Before reaching that goal, many further experimentations

and adjustments must be done through new M.Sc projects. The other direction to prospect is

the definition of new combining functions to produce the ensemble learner. Once all this is

done, the main objective of this study can be reached.

60

Bibliography

[1] S. Asiri. A Comprehensive Guide to Ensemble Learning (with Python codes).

Available at: https://towardsdatascience.com/data-mining-in-brief-26483437f178 (Accessed

on: 13 December 2021).

[2] J.Brownlee. Bagging and Random Forest Ensemble Algorithms for Machine Learning.

Available at https://machinelearningmastery.com/bagging-and-random-forest-ensemble-

algorithms-for-machine-learning/ (Accessed on: 25 December 2021).

[3] J.Brownlee. 4 Types of Classification Tasks in Machine Learning. Available at:

https://machinelearningmastery.com/types-of-classification-in-machine-learning/ (Accessed

on: 26 December 2021).

[4] J. Brownlee. Difference Between Classification and Regression in Machine Learning

Available at: https://machinelearningmastery.com/classification-versus-regression-in-

machine-learning/ (Accessed on: 20 December 2021).

[5] J.Brownlee .Regression Metrics for Machine Learning. Available at:

https://machinelearningmastery.com/regression-metrics-for-machine-learning/ (Accessed on:

04 february 2022).

[6] J.Brownlee. Overfitting and Underfitting With Machine Learning Algorithms.

Available at:

https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-

algorithms/ (Accessed on: 22 December 2021).

[7] J.Brownlee. A Gentle Introduction to Early Stopping to Avoid Overtraining Neural

Networks. Available at: https://machinelearningmastery.com/early-stopping-to-avoid-

overtraining-neural-network-models/ (Accessed on: 13 December 2021).

[8] A.Christopher. K-Nearest Neighbor. Available at : https://medium.com/swlh/k-nearest-

neighbor-ca2593d7a3c4 (Accessed on : 11 May 2022).

https://towardsdatascience.com/data-mining-in-brief-26483437f178
https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/
https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/regression-metrics-for-machine-learning/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/
https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/
https://medium.com/swlh/k-nearest-neighbor-ca2593d7a3c4
https://medium.com/swlh/k-nearest-neighbor-ca2593d7a3c4

61

[9]: N. S.Chauhan.Naïve Bayes Algorithm: Everything You Need to Know. Available at:

https://www.kdnuggets.com/2020/06/naive-bayes-algorithm-everything.html (Accessed on :

15 May 2022).

[10] D.Fumo. Types of Machine Learning Algorithms You Should Know, Available at:

https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-

953a08248861

[11] A.Gupta, M.Dayanand,Understanding Logistic Regression. Available at:

https://www.geeksforgeeks.org/understanding-logistic-regression/ (Accessed on: 02 Mars

2022).

[12] D.Gong. Top 6 Machine Learning Algorithms for Classification. Available at:

https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-

2197870ff501 (Accessed on: 05 December 2021).

[13] R.Gandhi. Introduction to Machine Learning Algorithms: Linear Regression.

Available at:https://towardsdatascience.com/introduction-to-machine-learning-algorithms-

linear-regression-14c4e325882a (Accessed on: 03 December 2021).

[14] A.Hughes. Data mining, By Craig Stedman. Available at:

https://www.techtarget.com/searchbusinessanalytics/definition/data-mining (Accessed on: 07

December 2021).

[15] J.Jordan. Evaluating a Machine Learning Model. Data mining. Available at:

https://www.jeremyjordan.me/evaluating-a-machine-learning-model/ (Accessed on: 20

December 2021).

[16] V.Jain. Introduction to KNN Algorithms. Available at:

https://www.analyticsvidhya.com/blog/2022/01/introduction-to-knn-algorithms/ (Accessed on:

08 May 2022).

[17] R.Khandelwal K-Nearest Neighbors(KNN) Available at:

https://medium.datadriveninvestor.com/k-nearest-neighbors-knn-7b4bd0128da7 (Accessed on:

07 May 2022).

[18] P.Majumder. Gaussian Naive Bayes. Available at: https://iq.opengenus.org/gaussian-

naive-bayes (Accessed on: 04 May 2022).

https://www.kdnuggets.com/2020/06/naive-bayes-algorithm-everything.html
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://www.geeksforgeeks.org/understanding-logistic-regression/
https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501
https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501
https://medium.com/@grohith327?source=post_page-----14c4e325882a-----------------------------------
https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a
https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a
https://www.techtarget.com/searchbusinessanalytics/definition/data-mining
https://www.jeremyjordan.me/evaluating-a-machine-learning-model/
https://www.analyticsvidhya.com/blog/2022/01/introduction-to-knn-algorithms/
https://medium.datadriveninvestor.com/k-nearest-neighbors-knn-7b4bd0128da7
https://iq.opengenus.org/gaussian-naive-bayes/#:~:text=Gaussian%20Naive%20Bayes%20supports%20continuous,(independent%20dimensions)%20between%20dimensions
https://iq.opengenus.org/gaussian-naive-bayes/#:~:text=Gaussian%20Naive%20Bayes%20supports%20continuous,(independent%20dimensions)%20between%20dimensions

62

[19] S .ML grows its family of classifiers: Gaussian Naive Bayes on Arduino Available at:

https://eloquentarduino.github.io/2020/08/eloquentml-grows-its-family-of-classifiers-

gaussian-naive-bayes-on-arduino/ (Accessed on: 02 May 2022).

[20] J.Nabi. Machine Learning — Multiclass Classification with Imbalanced Dataset

Available at:

https://towardsdatascience.com/machine-learning-multiclass-classification-with-imbalAnced-

data-set-29f6a177c1a (Accessed on: 03 December 2021).

[21] A.Oppermann.Artificial Intelligence vs. Machine Learning vs. Deep Learning: What’s

the Difference? Available at: https://builtin.com/artificial-intelligence/ai-vs-machine-learning

(Accessed on: 02 December 2021).

[22] K.Sentz, S.Ferson. Combination of Evidence in Dempster-Shafer Theory. Sandia

National Laboratories, Sand2002-0835. Available at:

https://www.stat.berkeley.edu/~aldous/Real_World/dempster_shafer.pdf (Accessed on : 16

January 2022).

[23] S. Shukla. Introduction to scikit-learn. Available at:

https://blog.rwth-aachen.de/itc-events/files/2021/02/01a_Introduction_to_scikit-learn.pdf

(Accessed on: 04 february 2022).

[24] C.Stedman. What is data preparation? An in-depth guide to data prep. Available at:

https://www.techtarget.com/searchbusinessanalytics/definition/data-preparation (Accessed on:

10 January 2022).

[25] S.Saxena. Beginner’s Guide to Support Vector Machine(SVM) Available at:

https://www.analyticsvidhya.com/blog/2021/03/beginners-guide-to-support-vector-machine-

svm/ (Accessed on: 23 April 2022).

[26] A.Yadav. SUPPORT VECTOR MACHINES(SVM). Available at:

https://towardsdatascience.com/support-vector-machines-svm-c9ef22815589 (Accessed on: 22

April 2022).

[27] S.Shukla. Regression and Classification | Supervised Machine Learning. Available at:

https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/

(Accessed on: 22 January 2022).

https://eloquentarduino.github.io/2020/08/eloquentml-grows-its-family-of-classifiers-gaussian-naive-bayes-on-arduino/
https://eloquentarduino.github.io/2020/08/eloquentml-grows-its-family-of-classifiers-gaussian-naive-bayes-on-arduino/
https://towardsdatascience.com/machine-learning-multiclass-classification-with-imbalanced-data-set-29f6a177c1a
https://towardsdatascience.com/machine-learning-multiclass-classification-with-imbalanced-data-set-29f6a177c1a
https://builtin.com/artificial-intelligence/ai-vs-machine-learning
https://www.stat.berkeley.edu/~aldous/Real_World/dempster_shafer.pdf
https://auth.geeksforgeeks.org/user/Sagar%20Shukla/articles
https://auth.geeksforgeeks.org/user/Sagar%20Shukla/articles
https://blog.rwth-aachen.de/itc-events/files/2021/02/01a_Introduction_to_scikit-learn.pdf
https://www.techtarget.com/searchbusinessanalytics/definition/data-preparation
https://www.analyticsvidhya.com/blog/2021/03/beginners-guide-to-support-vector-machine-svm/#:~:text=A%20hyperplane%20is%20a%20decision,input%20features%20in%20the%20dataset
https://www.analyticsvidhya.com/blog/2021/03/beginners-guide-to-support-vector-machine-svm/#:~:text=A%20hyperplane%20is%20a%20decision,input%20features%20in%20the%20dataset
https://towardsdatascience.com/support-vector-machines-svm-c9ef22815589
https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/

63

[28] Dempster-Shafer Theory. Available at:

https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory. (Accessed on: 15

February 2022).

[29] Heterogeneous Parallel Ensembles: Combining Strong Learners. Available at:

https://livebook.manning.com/book/ensemble-methods-for-machine-learning/chapter-3/v-4/1

(Accessed on: 01 November 2021).

[30] Homogeneous Parallel Ensembles: Bagging and Random Forests. Available at:

https://livebook.manning.com/book/ensemble-methods-for-machine-learning/chapter-2/v-4/

(Accessed on: 01 November 2021).

[31] Majority Voting. Available at: https://www.sciencedirect.com/topics/computer-

science/majority-voting (Accessed on: 22 January 2022).

[32] Manning Live Book. Ensemble Methods for Machine Learning. Available at:

https://livebook.manning.com/book/ensemble-methods-for-machine-learning/chapter-2/v-4

(Accessed on: 20 December 2021).

[33] Bagging. Available at: https://www.ibm.com/cloud/learn/bagging (Accessed on: 12

December 2021).

[34] Coronary Artery Disease Available at:

https://www.cdc.gov/heartdisease/coronary_ad.htm#:~:text=Coronary%20Artery%20Disease

%20(CAD)&text=Coronary%20artery%20disease%20is%20caused,arteries%20to%20narrow

%20over%20time (Accessed on: 2 June 2022).

[35] Improving the Performance of Machine Learning Model using Bagging Available at:

https://towardsdatascience.com/improving-the-performance-of-machine-learning-model-

using-bagging-534cf4a076a7 (Accessed on: 5 January 2022).

[36] Dua, D., & Graff. UCI Machine Learning Repository. Irvine, CA: University of

California, School of Information and Computer Science, 2019, http://archive.ics.uci.edu/ml

(Accessed on: 2 February 2022).

[37] Soner Yıldırım. The Power of Ensemble Methods in Machine Learning

https://towardsdatascience.com/the-power-of-ensemble-methods-in-machine-learning-

7ddd28d7d8e6 (Accessed on: 1 june 2022).

https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/chapter-3/v-4/1
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/chapter-2/v-4/
https://www.sciencedirect.com/topics/computer-science/majority-voting
https://www.sciencedirect.com/topics/computer-science/majority-voting
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/chapter-2/v-4
https://www.ibm.com/cloud/learn/bagging
https://www.cdc.gov/heartdisease/coronary_ad.htm#:~:text=Coronary%20Artery%20Disease%20(CAD)&text=Coronary%20artery%20disease%20is%20caused,arteries%20to%20narrow%20over%20time
https://www.cdc.gov/heartdisease/coronary_ad.htm#:~:text=Coronary%20Artery%20Disease%20(CAD)&text=Coronary%20artery%20disease%20is%20caused,arteries%20to%20narrow%20over%20time
https://www.cdc.gov/heartdisease/coronary_ad.htm#:~:text=Coronary%20Artery%20Disease%20(CAD)&text=Coronary%20artery%20disease%20is%20caused,arteries%20to%20narrow%20over%20time
https://towardsdatascience.com/improving-the-performance-of-machine-learning-model-using-bagging-534cf4a076a7
https://towardsdatascience.com/improving-the-performance-of-machine-learning-model-using-bagging-534cf4a076a7
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://towardsdatascience.com/the-power-of-ensemble-methods-in-machine-learning-7ddd28d7d8e6
https://towardsdatascience.com/the-power-of-ensemble-methods-in-machine-learning-7ddd28d7d8e6

64

[38] Sarah LillyWhite. What is python used for ?

https://www.futurelearn.com/info/blog/what-is-python-used-for (Accessed on: 1 june 2022).

[39] Github documentation. Understanding github actions.

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

(Accessed on: 1 june 2022).

[40] Github documentation. Git commit https://github.com/git-guides/git-commit

(Accessed on: 1 june 2022).

https://www.futurelearn.com/info/blog/what-is-python-used-for
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://github.com/git-guides/git-commit

