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INTRODUCTION

In 1925, the Nevanlinna�s theory or values distribution theory of meromorphic functions

founded by the famous mathematician Rolf Nevanlinna, has a very important role in studying the

growth of solutions of linear di¤erential equations in the complex plane.

Bernal [7] was the �rst to de�ne the concept of iterated order to express the growth of solutions

of the complex linear di¤erential equation (k > 2)

f (k) +Ak�1 (z) f
(k�1) + � � �+A1 (z) f 0 +A0 (z) f = 0; (0.0.1)

where Ai 6� 0 (i = 0; 1; :::; k � 1) are analytic functions in the unit disc D = fz 2 C : jzj < 1g.

After that, the iterated order of solution of higher order equation was investigated by Cao in [8] ;

he extend the results of Yang [11], Belaïdi [3] on C and obtained some results concerns equations

of the form

Ak (z) f
(k) +Ak�1 (z) f

(k�1) + � � �+A1 (z) f 0 +A0 (z) f = 0: (0.0.2)

In addition, Cao and Yi [9] obtained several precise theorems about the hyper order, the

hyper convergence exponent of zero points and �xed points of solutions of homogeneous linear

di¤erential equations in D.

Recently, Chen et al. in [10] utilize iteration to investigated the growth and �xed points of

solutions and their arbitrary-order of higher-order linear di¤erential equations (0:0:1) and (0:0:2)

in D.

Many results on [p; q]-order of solutions have been found by di¤erent researchers in D.

This thesis consists of an introduction, three chapters and conclusion.
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The �rst chapter presents an introduction to the theory of Nevanlinna, in which we give some

fundamental notions, notations, de�nitions and results that we will need in the other chapters.

In the second chapter we will prove some results concerning the study of the growth of [p; q]-

order solutions of linear di¤erential equations in the unit disc with analytic coe¢ cients.

In the last chapter we will prove some results concerning the study of the [p; q]-exponent of

convergence of �xed point solutions and their arbitrary-order of di¤erential equations studied in

the second chapter.



Chapter 1

Some Elements of Nevanlinna�s
Theory

The theory of Nevanlinna is the main tool used throughout this thesis. This provides a way to

analyze the meromorphic functions. For this reason, in this chapter, we will give the Jensen, Pois-

son and Poisson-Jensen formulas. Next, we de�ne the functions N (r; a; f) ;m (r; a; f) ; T (r; a; f)

(for a =1 and a 2 C) and mention their properties. After that, we�re going to state the �rst

fundamental theorem of Nevanlinna which is a consequence of Jensen�s formula and we give some

necessary results as well as Cartan�s theorem and its corollaries. We conclude this chapter by giv-

ing a de�nition of the [p; q]-order, the [p; q]-exponent of convergence of a function and the density

of a set.

For more details, consult the references ([2] ; [15] ; [16] ; [18] ; [20] ; [21]) :

1.1 Jensen formula

Theorem 1.1.1 ([18]) Let f be a meromorphic function such that f (0) 6= 0;1 and a1; a2;:::(resp:

b1; b2;:::); its zeros (resp. its poles), each taken into account according to its multiplicity. Then

log jf (0)j = 1

2�

Z 2�

0
log
��f �rei'��� d'+ X

jbj j<r
log

r

jbj j
�
X
jaj j<r

log
r

jaj j
:

Proof. We give the proof for the case that f has no zeros and no poles on the circle jzj = r:
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Consider the function

g (z) = f (z)

Q
jaj j<r

r2 � ajz
r (z � aj)Q

jbj j<r

r2 � bjz
r (z � bj)

:

Then, g 6= 0;1 in the disc jzj 6 r; hence ln jg (z)j is a harmonic function. By the mean formula

of harmonic functions, we have

ln jg (0)j = 1

2�

Z 2�

0
ln
��g �rei'��� d': (1.1.1)

On the other hand,

jg (0)j = jf (0)j

Q
jaj j<r

r

jaj jQ
jbj j<r

r

jbj j
;

from which

log jg (0)j = log jf (0)j+
X
jaj j<r

log
r

jaj j
�
X
jbj j<r

log
r

jbj j
: (1.1.2)

For z = rei'; we have for all aj and bj���� r2 � ajzr (z � aj)

���� = ���� z�z � ajzr (z � aj)

���� = ����z (z � aj)r (z � aj)

���� = 1 = ���� r2 � bjzr (z � bj)

���� :
Hence ��g �rei'��� = ��f �rei'��� : (1.1.3)

Applying (1:1:2) and (1:1:3) to (1:1:1), we obtain the Jensen formula. �

Theorem 1.1.2 (Poisson formula) Let f be an analytic function in the disc j�j 6 R (0 < R <1) :

Then, for z = rei� and r < R, � 2 [0; 2�] ; we have

Ref
�
rei�

�
=
1

2�

Z 2�

0

R2 � r2
R2 � 2rR cos (� � ') + r2Ref

�
Rei'

�
d':

Proof. Let f be an analytic function in the disc j�j < R: According to Cauchy�s integral formula,

we have

f (z) =
1

2�i

I
j�j=R

f (�)

� � z d�:
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Let z� = R2

�z be the symmetric point to z with respect to the circle j�j = R: From the Cauchy

formula, the function
f (�)

� � z� is analytic in j�j 6 R and
1

2�i

I
j�j=R

f (�)

� � z�d� = 0; then

f (z) =
1

2�i

I
j�j=R

f (�)

� � z d� �
1

2�i

I
j�j=R

f (�)

� � z�d�

=
1

2�i

I
j�j=R

�
1

� � z �
1

� � z�

�
f (�) d�:

We have
1

� � z �
1

� � z� =
1

� � z �
1

� � R
2

�z

=
1

� � z �
�z

��z �R2 :

Pose � = Rei' ) d� = Riei'd'; so

f
�
rei�

�
=

1

2�i

Z 2�

0

�
1

Rei' � rei� �
re�i�

Rei're�i� �R2

�
f
�
Rei'

�
Riei'd'

=
1

2�

Z 2�

0

"
Rei'

Rei' � rei� �
rei('��)

rei('��) �R

#
f
�
Rei'

�
d';

we have

Rei'

Rei' � rei� �
rei('��)

rei('��) �R
=

R

R� re�i('��)
� rei('��)

rei('��) �R

=
R

R� re�i('��)
+

rei('��)

R� rei('��)

=
R2 � rRei('��) + rRei('��) � r2

R2 � rR
�
ei('��) + e�i('��)

�
+ r2

=
R2 � r2

R2 � 2rR cos ('� �) + r2 :

Therefore

f
�
rei�

�
=
1

2�

Z 2�

0

R2 � r2
R2 � 2rR cos (� � ') + r2 f

�
Rei'

�
d';

by taking the real part of f(z), we obtain

Ref
�
rei�

�
=
1

2�

Z 2�

0

R2 � r2
R2 � 2rR cos (� � ') + r2Ref

�
Rei'

�
d':

�
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Theorem 1.1.3 ([21]) (Poisson-Jensen formula) Let f be a meromorphic function in the disc

j�j 6 R (0 < R <1) ; such that f (0) 6= 0;1 and a1; a2;:::(resp: b1; b2;:::); its zeros (resp. its

poles), each taken into account according to its multiplicity. Then, for z = rei� and r < R, we

have

log jf (z)j = 1

2�

Z 2�

0

R2 � r2
R2 � 2rR cos (� � ') + r2 log

��f �Rei'��� d'+ P
jaj j<R

log

����R (z � aj)R2 � ajz

����
�
P

jbj j<R
log

����R (z � bj)R2 � bjz

���� :
Proof. Consider the function

g (z) = f (z)

Q
jbj j<R

R (z � bj)
R2 � bjzQ

jaj j<R

R (z � aj)
R2 � ajz

:

Then, g 6� 0;1 and log g is an analytic function in the disc jzj � R; therefore its real part log jgj

is harmonic function. By applying the Poisson formula, we get

log jg (z)j = 1

2�

Z 2�

0

R2 � r2
R2 � 2rR cos (� � ') + r2 log

��g �Rei'��� d': (1.1.4)

For z = rei'; we have for all c 2 C����R (z � c)R2 � cz

���� = ����R (z � c)z�z � cz

���� = ����R (z � c)z (z � c)

���� = 1:
Hence ��g �Rei'��� = ��f �Rei'��� : (1.1.5)

On the other hand, we have

log jg (z)j = log jf (z)j+
X
jbj j<R

log

����R (z � bj)R2 � bjz

����� X
jaj j<R

log

����R (z � aj)R2 � ajz

���� ; (1.1.6)

substituting (1:1:5) and (1:1:6) into (1:1:4) ; we obtain

log jf (z)j =
1

2�

Z 2�

0

R2 � r2
R2 � 2rR cos (� � ') + r2 log

��f �Rei'��� d'+ X
jaj j<R

log

����R (z � aj)R2 � ajz

����
�
X
jbj j<R

log

����R (z � bj)R2 � bjz

���� :
�
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1.2 Characteristic function of Nevanlinna

De�nition 1.2.1 ([18]) Let x be a positive real number. The truncated logarithm log+ is de�ned

by

log+ x = max flog x ; 0g =

�
log x if x > 1:
0 if 0 6 x 6 1:

Notice that the truncated logarithm de�ned above is a continuous function and nonnegative on

(0;1).

Lemma 1.2.1 ([18]) We have the following properties:

(a) log x 6 log+ x; (x > 0):

(b) log+ x 6 log+ y; (0 < x 6 y):

(c) log x = log+ x� log+ 1
x ; (x > 0):

(d) jlog xj = log+ x+ log+ 1
x ; (x > 0):

(e) log+
�

nQ
i=1
xi

�
6

nP
i=1
log+ xi; (xi > 0 ; 1 6 i 6 n):

(f) log+
�

nP
i=1
xi

�
6

nP
i=1
log+ xi + log n; (xi > 0 ; 1 6 i 6 n):

Proof. (c) We have

log+ x� log+ 1
x

= max flog x; 0g �max
�
log

1

x
; 0

�

= max flog x; 0g+min
�
� log 1

x
; 0

�

= max flog x; 0g+min flog x; 0g

= log x:



1.2 Characteristic function of Nevanlinna 9

(d) We have

log+ x+ log+
1

x
= max flog x; 0g+max

�
log

1

x
; 0

�

= max flog x; 0g+max f� log x; 0g

= max flog x; 0g �min flog x; 0g

= jlog xj :

(e) � If
nQ
i=1
xi 6 1; then the inequality holds trivially.

� If
nQ
i=1
xi > 1; then

log+

 
nY
i=1

xi

!
= log

 
nY
i=1

xi

!
=

nX
i=1

log xi 6
(by (a))

nX
i=1

log+ xi:

(f) By (b) and (e) above

log+
�

nP
i=1
xi

�
6 log+

�
n max

16i6n
xi

�
6 log+ n+ log+

�
max
16i6n

xi

�
6 log+ n+

nP
i=1
log+ xi:

�

De�nition 1.2.2 ([18]) (Unintegrated counting function) Let f be a meromorphic function, not

being identically equal to a 2 C. We denote by n(r; a; f) the number of the roots of f(z) = a in

the disc jzj < r, each root according to its multiplicity. Similarly �n(r; a; f) counts the number of

the distincts roots of f(z) = a in the disc jzj < r. And we denote by n(r;1; f) the number of the

poles of f in the disc jzj < r, each pole according to its multiplicity. Similarly �n(r;1; f) counts

the number of the distincts poles of f in the disc jzj < r.

Example 1.2.1 Let f (z) = cosh z; we have

n (r;1; f) = �n (r;1; f) = 0;
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because f has no poles. And we have

n (r; 0; f) = �n (r; 0; f) = 2
h r
�

i
:

Example 1.2.2 Let f (z) = 1
cosh2 z

; we have

�n (r;1; f) = 2
�
r
�

�
and n (r;1; f) = 4

�
r
�

�
;

because f has a poles of order 2 at zk = i
�
�
2 + k�

�
;8k 2 Z:

De�nition 1.2.3 ([18]) Let f be a meromorphic function, we de�ne the a-point function of f by

N(r; a; f) = N

�
r;

1

f � a

�
:=

Z r

0

n(t; a; f)� n(0; a; f)
t

dt+ n(0; a; f) log r

if f 6� a 2 C and

N(r;1; f) = N (r; f) :=
Z r

0

n(t;1; f)� n(0;1; f)
t

dt+ n(0;1; f) log r:

Similary, we de�ne the a-point distinct function of f by

�N(r; a; f) = �N

�
r;

1

f � a

�
:=

Z r

0

�n(t; a; f)� �n(0; a; f)
t

dt+ �n(0; a; f) log r

if f 6� a 2 C and

�N(r;1; f) = �N (r; f) :=

Z r

0

�n(t;1; f)� �n(0;1; f)
t

dt+ �n(0;1; f) log r:

Example 1.2.3 Let f (z) = exp(zn)
z2

; we have

n (t;1; f) = n(0;1; f) = 2 and �n (t;1; f) = �n(0;1; f) = 1;

then

N (r; f) =

Z r

0

n(t;1; f)� n(0;1; f)
t

dt+ n(0;1; f) log r

= 2 log r;

and

�N (r; f) =

Z r

0

�n(t;1; f)� �n(0;1; f)
t

dt+ �n(0;1; f) log r

= log r:
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Remark 1.2.1 If f is an analytic or entire function, then N (r; f) = �N (r; f) = 0:

Example 1.2.4 Let f (z) = exp
n
� i
1�z

o
(jzj < 1). f is an analytic function in jzj < 1; then

N (r; f) = 0:

Lemma 1.2.2 ([18]) Let f be a meromorphic function with a-points �1; �2; :::; �m in the disc

jzj 6 r such that 0 < j�1j 6 j�2j 6 ::: 6 j�mj 6 r; each counted according to its multiplicity. ThenZ r

0

n(t; a; f)

t
dt =

Z r

0

n(t; a; f)� n(0; a; f)
t

dt =
X

0<j�j j6r
log

r

j�j j
:

Proof. Denoting rj = j�j j (j = 1; 2; :::;m) : Then, we have

X
0<j�j j6r

log
r

j�j j
=

mX
j=1

log
r

rj

= log

�
rm

r1 � :::� rm

�
= log

 
r2
r1
� r

2
3

r22
� :::� r

m�1
m

rm�1m�1
� r

m

rmm

!

=

m�1X
j=1

j (log rj+1 � log rj) +m (log r � log rn)

=
m�1X
j=1

j

Z rj+1

rj

dt

t
+m

Z r

rm

dt

t
=

Z r

0

n(t; a; f)

t
dt:

�

Proposition 1.2.1 ([18]) Let f be a meromorphic function with the Laurent expansion at the

origin

f (z) =
+1X
i=m

ciz
i; cm 2 C�;m 2 Z:

Then

log jcmj =
1

2�

Z 2�

0
log
��f �rei'��� d'+N (r; f)�N �r; 1

f

�
:

Proof. Consider the meromorphic function h, de�ned by

h (z) := f (z) z�m; z 2 C:
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it is clear that m = n (0; 0; f)� n (0;1; f) and h (0) 6= 0;1: Indeed,

If m > 0; then n (0;1; f) = 0 and m = n (0; 0; f) :

If m < 0; then n (0; 0; f) = 0 and n (0;1; f) = �m:

If m = 0; then n (0; 0; f) = n (0;1; f) = 0:

Hence, the functions h and f have the same poles and zeros in 0 < jzj 6 r: from Jensen�s formula

and lemma 1.2.2, we have

log jcmj = log jh (0)j

=
1

2�

Z 2�

0
log
��f �rei'� r�m�� d'+ X

0<jbj j6r
log

r

jbj j
�

X
0<jaj j6r

log
r

jaj j

=
1

2�

Z 2�

0
log
��f �rei'��� d'� [n (0; 0; f)� n (0;1; f)] log r

+

Z r

0

n (t;1; f)� n (0;1; f)
t

dt�
Z r

0

n (t; 0; f)� n (0; 0; f)
t

dt

=
1

2�

Z 2�

0
log
��f �rei'��� d'+N (r; f)�N �r; 1

f

�
:

�

De�nition 1.2.4 ([18]) Let f be a meromorphic function, we de�ne the proximity function of f

by

m (r; a; f) = m

�
r;

1

f � a

�
:=

1

2�

Z 2�

0
log+

1

jf (rei')� ajd' if f 6� a 2 C;

and

m (r;1; f) = m (r; f) := 1

2�

Z 2�

0
log+

��f �rei'��� d':
Example 1.2.5 Let f (z) = exp

n
� i
1�z

o
(jzj < 1) : Then, for z = rei' (r < 1; ' 2 [0; 2�]) ; we

have

m (r; f) =
1

2�

Z 2�

0
log+

����exp�� i

1� rei'

����� d'
=
1

2�

Z 2�

0
log+

�����exp
(
�
i
�
1� re�i'

�
j1� rei'j2

)����� d'
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=
1

2�

Z 2�

0
log+

����exp� r sin'

1 + r2 � 2r cos' � i
(1� r cos')

1 + r2 � 2r cos'

����� d'
=

1

2�

Z 2�

0
log+

�
exp

�
r sin'

1 + r2 � 2r cos'

��
d'

=
1

2�

Z �

0

r sin'

1 + r2 � 2r cos'd'

=
1

2�
� 1
2

Z �

0

d
�
1 + r2 � 2r cos'

�
1 + r2 � 2r cos'

=
1

4�
log
�
1 + r2 � 2r cos'

����
0

=
1

4�
log

�
1 + r

1� r

�2

=
1

2�
log

�
1 + r

1� r

�
:

De�nition 1.2.5 ([18]) Let f be a meromorphic function, the characteristic function of Nevan-

linna of f will be de�ned as

T (r; f) := m(r; f) +N(r; f):

Example 1.2.6 Let f (z) = cosh z: f is an entire function, then

T (r; cosh z) = m(r; cosh z)

=
1

2�

Z 2�

0
log+

��cosh �rei'��� d';
on the other hand, we have

exp (jRe zj)� 1
2

6 jcosh zj 6 exp (jRe zj) ;
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then, log+ jcosh zj = jRe zj+O (1) : Hence

T (r; cosh z) =
1

2�

Z 2�

0
(jr cos'j+O (1)) d'

=
1

2�

Z 3�
2

��
2

jr cos'j d'+O (1)

=
r

2�

Z �
2

��
2

cos'd'� r

2�

Z 3�
2

�
2

cos'd'+O (1)

=
r

2�

�
sin'j

�
2
��
2

� sin'j
3�
2
�
2

�
+O (1)

=
2r

�
+O (1) :

Example 1.2.7 Let f (z) = exp
n
� i
1�z

o
(jzj < 1). f is an analytic function in jzj < 1; then

T (r; f) = m(r; f) =
1

2�
log

�
1 + r

1� r

�
:

Proposition 1.2.2 ([18]) Let f1; :::; fn; f be a meromorphic functions and a 2 C�, then

(1) m

�
r;

nQ
i=1
fi

�
6

nP
i=1
m (r; fi) ; (n 2 N�);

(2) m

�
r;

nP
i=1
fi

�
6

nP
i=1
m (r; fi) + log n; (n 2 N�);

(3) T

�
r;

nQ
i=1
fi

�
6

nP
i=1
T (r; fi) ; (n 2 N�);

(4) T

�
r;

nP
i=1
fi

�
6

nP
i=1
T (r; fi) + log n; (n 2 N�);

(5) T (r; fn) = nT (r; f) ; (n 2 N�);

(6) m (r; a+ f) = m (r; f) +O (1) and m (r; af) = m (r; f) +O (1) ;

(7) T (r; a+ f) = T (r; f) +O (1) and T (r; af) = T (r; f) +O (1) :
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Proof. (1); (3) We have

m

 
r;

nY
i=1

fi

!
=

1

2�

Z 2�

0
log+

�����
nY
i=1

fi
�
rei'

������ d'
6 1

2�

Z 2�

0

nX
i=1

log+
��fi �rei'��� d'

=
1

2�

nX
i=1

Z 2�

0
log+

��fi �rei'��� d'
=

nX
i=1

m (r; fi) :

If fi has a pole of order �i > 0 at z0; then it is a pole of order equal at most to
nP
i=1
�i for the

function
nQ
i=1
fi: Hence

N

 
r;

nY
i=1

fi

!
6

nX
i=1

N (r; fi) ;

therefore

T

 
r;

nY
i=1

fi

!
= m

 
r;

nY
i=1

fi

!
+N

 
r;

nY
i=1

fi

!

6
nX
i=1

m (r; fi) +

nX
i=1

N (r; fi) =

nX
i=1

T (r; fi) :

(2); (4) We have

m

 
r;

nX
i=1

fi

!
=

1

2�

Z 2�

0
log+

�����
nX
i=1

fi
�
rei'

������ d'
6 1

2�

Z 2�

0

 
nX
i=1

log+
��fi �rei'���+ log n! d'

=

nX
i=1

1

2�

Z 2�

0
log+

��fi �rei'��� d'+ log n
=

nX
i=1

m (r; fi) + log n:

If fi has a pole of order �i > 0 at z0; then it is a pole of order equal at most to max
16i6n

�i 6
nP
i=1
�i



1.2 Characteristic function of Nevanlinna 16

for the function
nQ
i=1
fi: Hence

N

 
r;

nX
i=1

fi

!
6

nX
i=1

N (r; fi) ;

therefore

T

 
r;

nX
i=1

fi

!
= m

 
r;

nX
i=1

fi

!
+N

 
r;

nX
i=1

fi

!

6
nX
i=1

m (r; fi) + log n+
nX
i=1

N (r; fi) =
nX
i=1

T (r; fi) + log n:

(5) We have : jfnj = jf jn 6 1() jf j 6 1:

� If jf j 6 1; then

T (r; fn) = N (r; fn) = nN (r; f) = nT (r; f) :

� If jf j > 1; then

m (r; fn) =
1

2�

Z 2�

0
log+

��fn �rei'��� d'
=

1

2�

Z 2�

0
log
��fn �rei'��� d'

=
1

2�
� n
Z 2�

0
log
��f �rei'��� d'

= n � 1
2�

Z 2�

0
log+

��f �rei'��� d'
= nm (r; f) :

Hence

T (r; fn) = m (r; fn) +N (r; fn)

= nm (r; f) + nN (r; f)

= nT (r; f) :

(6) We have

jm (r; a+ f)�m (r; f)j =

���� 12�
Z 2�

0

�
log+

��f �rei'�+ a��� log+ ��f �rei'���� d'����
6 1

2�

Z 2�

0

��log+ ���f �rei'���+ jaj�� log+ ��f �rei'����� d'
6 1

2�

Z 2�

0

��log+ jaj+ log 2�� d' 6 log+ jaj+ log 2;
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and

jm (r; af)�m (r; f)j =

���� 12�
Z 2�

0

�
log+

��af �rei'���� log+ ��f �rei'���� d'����
6 1

2�

Z 2�

0

��log+ �jaj ��f �rei'����� log+ ��f �rei'����� d'
6 1

2�

Z 2�

0

��log+ jaj�� d' = log+ jaj = jlog jajj � log+ 1

jaj
6 jlog jajj :

Hence,

m (r; a+ f) = m (r; f) +O (1) and m (r; af) = m (r; f) +O (1) :

(7) From (6); we get

T (r; a+ f) = N (r; a+ f) +m (r; a+ f)

= N (r; f) +m (r; f) +O (1)

= T (r; f) +O (1) ;

and

T (r; af) = N (r; af) +m (r; af)

= N (r; f) +m (r; f) +O (1)

= T (r; f) +O (1) :

�

Theorem 1.2.1 ([18]) (First Fundamental Theorem of Nevanlinna) Let f be a meromorphic

function, let a 2 C and let

f(z)� a =
+1P
i=m

ciz
i; cm 2 C� ; m 2 Z;

be the Laurent expansion of f � a at the origin. Then

T (r; a; f) = T

�
r;

1

f � a

�
= T (r; f)� log jcmj+ ' (r; a) ;

where j' (r; a)j 6 log 2 + log+ jaj :
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Proof. Assume �rst a = 0, then by the Proposition1.2.1 and Lemma1.2.1 (c), we have

log jcmj =
1

2�

Z 2�

0
log
��f �rei'��� d'+N (r; f)�N �r; 1

f

�
=

1

2�

Z 2�

0
log+

��f �rei'��� d'� 1

2�

Z 2�

0
log+

1

jf (rei')jd'+N (r; f)�N
�
r;
1

f

�
= m (r; f)�m

�
r;
1

f

�
+N (r; f)�N

�
r;
1

f

�
= T (r; f)� T

�
r;
1

f

�
;

hence

T

�
r;
1

f

�
= T (r; f)� log jcmj ; where ' (r; 0) � 0: (1.2.1)

Proceeding now to the general case a 6= 0, we pose h := f � a: Then

N

�
r;
1

h

�
= N

�
r;

1

f � a

�
; N (r; f) = N (r; h) et m

�
r;
1

h

�
= m

�
r;

1

f � a

�
:

Moreover

log+ jhj = log+ jf � aj 6 log+ jf j+ log+ jaj+ log 2;

log+ jf j = log+ jh+ aj 6 log+ jhj+ log+ jaj+ log 2:

By integrating these two inequalities, we �nd that

m (r; h) =
1

2�

Z 2�

0
log+

��h �rei'��� d'
6 1

2�

Z 2�

0

�
log+

��f �rei'���+ log+ jaj+ log 2� d'
= m (r; f) + log+ jaj+ log 2;

and

m (r; f) =
1

2�

Z 2�

0
log+

��f �rei'��� d'
6 1

2�

Z 2�

0

�
log+

��h �rei'���+ log+ jaj+ log 2� d'
= m (r; h) + log+ jaj+ log 2:

We pose ' (r; a) := m (r; h)�m (r; f) : Then

�
�
log+ jaj+ log 2

�
6 m (r; h)�m (r; f) 6 log+ jaj+ log 2() j' (r; a)j 6 log+ jaj+ log 2:
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Applying (1; 2; 1) for h; we obtain

T

�
r;
1

h

�
= T (r; h)� log jcmj

= m (r; h) +N (r; h)� log jcmj

= m (r; f) + ' (r; a) +N (r; f)� log jcmj

= T (r; f)� log jcmj+ ' (r; a) :

�

Remark 1.2.2 The �rst fundamental theorem may be expressed as: for all a 2 C; we have

T

�
r;

1

f � a

�
= T (r; f) +O(1); r ! +1:

Theorem 1.2.2 ([18]) Let f be an entire function and assume that 0 < r < R < +1. Then

T (r; f) 6 log+M (r; f) 6 R+ r

R� rT (R; f) ;

where M (r; f) = max
jzj=r

jf(z)j :

Proof. The �rst inequality is trivial. Indeed, f being an entire function, then

T (r; f) = m (r; f)

=
1

2�

Z 2�

0
log+

��f �rei'��� d'
6 1

2�

Z 2�

0
log+M (r; f) d' = log+M (r; f) :

� If M (r; f) 6 1; then log+M (r; f) = 0 6 R+ r

R� rT (R; f) :

� Suppose that M (r; f) > 1; we then take z0 such that z0 = rei� and jf (z0)j = M (r; f) : Since����R (z � aj)R2 � ajz

���� < 1; for jzj < R;

then by the Poisson-Jensen formula, we obtain

log+M (r; f) = logM (r; f) = log jf (z0)j

6 1

2�

Z 2�

0

R2 � r2
R2 � 2rR cos (� � ') + r2 log

��f �Rei'��� d'
6 1

2�

Z 2�

0

R2 � r2

(R� r)2 + 2rR (1� cos (� � '))
log+

��f �Rei'��� d'
6 R2 � r2

(R� r)2

�Z 2�

0
log+

��f �Rei'��� d'� = R+ r

R� rm (R; f) =
R+ r

R� rT (R; f) :

�
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The following lemma is needed to present an identity of H. Cartan that will be used to discuss

further properties of characteristic functions.

Lemma 1.2.3 For all w 2 C; we have

1

2�

Z 2�

0
log
���w � ei���� d� = log+ jwj ;

and
1

2�

Z 2�

0

���log ���w � ei������� d� 6 log+ jwj+ 2 log 2:
Proof. By applying Jensen formula for f (z) = z � w and r = 1, we obtain

1

2�

Z 2�

0
log
���w � ei���� d� = � log jwj if jwj > 1;

0 if jwj 6 1;

hence
1

2�

Z 2�

0
log
���w � ei���� d� = log+ jwj : (1.2.2)

By using the formulas (c) and (d) of Lemma 1.2.1, we have���log ���w � ei������� = 2 log+ ���w � ei����� log ���w � ei���� ;
hence from (1:2:2) ; we get

1

2�

Z 2�

0

���log ���w � ei������� d� =
2

2�

Z 2�

0
log+

���w � ei���� d� � 1

2�

Z 2�

0
log
���w � ei���� d�

6 1

�

Z 2�

0

�
log+ jwj+ log 2

�
d� � log+ jwj = log+ jwj+ 2 log 2:

�

Theorem 1.2.3 ([21]) (Cartan theorem) Let f be a meromorphic function such that f (0) =1,

then

T (r; f) =
1

2�

Z 2�

0
N
�
r; ei�; f

�
d� + log+ jf (0)j :

Proof. By applying the Jensen formula for f (z)� ei�, we get

log
���f (0)� ei���� = 1

2�

Z 2�

0
log
���f �rei'�� ei���� d'+N (r;1; f)�N �r; ei�; f� ;
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then
1

2�

Z 2�

0
log
���f (0)� ei���� d� = 1

2�

Z 2�

0

�
1

2�

Z 2�

0
log
���f �rei'�� ei���� d'� d�

+N (r;1; f)� 1

2�

Z 2�

0
N
�
r; ei�; f

�
d�: (1.2.3)

To be able to use the Fubini theorem and invert the order of integration, we must prove the

convergence of the integral

I =
1

2�

Z 2�

0

�
1

2�

Z 2�

0

���log ���f �rei'�� ei������� d�� d':
By Lemma 1.2.3, we obtain

I =
1

2�

Z 2�

0

�
1

2�

Z 2�

0

���log ���f �rei'�� ei������� d�� d'
6 1

2�

Z 2�

0

�
log+

��f �rei'���+ 2 log 2� d' = m (r; f) + 2 log 2 <1:
Therefore, by using (1:2:2) and from (1:3:1) ; we get

log+ jf (0)j =
1

2�

Z 2�

0

�
1

2�

Z 2�

0
log
���f �rei'�� ei���� d'� d�

+N (r;1; f)� 1

2�

Z 2�

0
N
�
r; ei�; f

�
d�

=
1

2�

Z 2�

0
log+

��f �rei'��� d'+N (r;1; f)� 1

2�

Z 2�

0
N
�
r; ei�; f

�
d�;

hence

T (r; f) =
1

2�

Z 2�

0
N
�
r; ei�; f

�
d� + log+ jf (0)j :

�

Corollary 1.2.1 ([21]) T (r; f) is an increasing function of r.

Proof. SinceN
�
r; ei�; f

�
is an increasing function for all � 2 [0; 2�] ; then T (r; f) is an increasing

function. �
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1.3 The [p; q]-order and the [p; q]-exponent of convergence of a
meromorphic function

First, we need to de�ne the following expressions :

� For r 2 R, we have : exp1 r = er and expp+1 r = exp
�
expp r

�
; p 2 N: We also de�ne

� For all r su¢ ciently large in (0;+1) ; log1 r = log r and logp+1 r = log
�
logp r

�
; p 2 N:

� Moreover, we denote exp0 r = r = log0 r; exp�1 r = log1 r and log�1 r = exp1 r:

Proposition 1.3.1 Let xi 2 R such that xi > 1 and i = 1; :::; n; then

(i) logp

�
nP
i=1
xi

�
6

nP
i=1
logp xi +O (1) ;

(ii) logp

�
nQ
i=1
xi

�
6

nP
i=1
logp xi +O (1) :

Proof. For the proof, we use the principle of mathematical induction.

(i) � For p = 1, we have log
�

nP
i=1
xi

�
6

nP
i=1
log xi +O (1) :

�We suppose that logp
�

nP
i=1
xi

�
6

nP
i=1
logp xi + O (1) ; holds and we prove that it holds at order

p+ 1: We have

logp+1

 
nX
i=1

xi

!
= log

 
logp

 
nX
i=1

xi

!!

6 log

 
nX
i=1

logp xi +O (1)

!

6
nX
i=1

logp+1 xi +O (1) :

Hence, logp

�
nP
i=1
xi

�
6

nP
i=1
logp xi +O (1) .

(ii) � For p = 1, we have log
�

nQ
i=1
xi

�
=

nP
i=1
log xi; then log

�
nQ
i=1
xi

�
6

nP
i=1
log xi +O (1) :

�We suppose that logp
�

nQ
i=1
xi

�
6

nP
i=1
logp xi + O (1) ; holds and we prove that it holds at order
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p+ 1: We have

logp+1

 
nY
i=1

xi

!
= log

 
logp

 
nY
i=1

xi

!!

6 log

 
nX
i=1

logp xi +O (1)

!

6
nX
i=1

logp+1 xi +O (1) :

Hence, logp

�
nQ
i=1
xi

�
6

nP
i=1
logp xi +O (1) .

�

Now, we introduce the concept of [p; q]-order of meromorphic and analytic functions in the

unit disc D = fz 2 C : jzj < 1g.

1.3.1 The [p; q]-order of a meromorphic function

De�nition 1.3.1 ([4] ; [5] ; [6]) Let p > q > 1 be integers. Let f be meromorphic function in D;

the [p; q]-order of f (z) is de�ned by

�[p;q] (f) = lim sup
r!1�

log+p T (r; f)

logq

�
1
1�r

� :
For p = q = 1, this notation is called order (�1 (f) = � (f)), for p = 2 and q = 1 hyper-order and

for q = 1 iterated p�order. For an analytic function f in D, we also de�ne

�M;[p;q] (f) = lim sup
r!1�

log+p+1M (r; f)

logq

�
1
1�r

� ;

where M (r; f) = max
jzj=r

jf (z)j :

Example 1.3.1 Let f (z) = exp3
�
cosh 1

(1�z)2
�
is an analytic function in D such that

M (r; f) = max
jzj=r

jf (z)j = exp3
�
cosh

�
1

(1� r)2

��
:
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Then

�M;[2;1] (f) = lim sup
r!1�

log+3 M (r; f)

log
�

1
1�r

�
= lim sup

r!1�

log3

�
exp3

n
cosh

�
1

(1�r)2
�o�

log
�

1
1�r

�
= lim sup

r!1�

cosh
�

1
(1�r)2

�
log
�

1
1�r

� = +1:

Remark 1.3.1 It is easy to see that 0 6 �[p;q] (f) 61.

Proposition 1.3.2 ([4] ; [5] ; [6]) Let p > q > 1 be integers, and let f be analytic function in D

of [p; q]-order. The following two statements hold:

(i) If p = q; then

�[p;q] (f) 6 �M;[p;q] (f) 6 �[p;q] (f) + 1:

(ii) If p > q; then

�[p;q] (f) = �M;[p;q] (f) :

Proof. By the standard inequalities (see [15]) ; we obtain

T (r; f) 6 log+M (r; f) 6 1 + 3r

1� r T
�
1 + r

2
; f

�
;

It follows that

logp T (r; f) 6 log+p+1M (r; f) 6 logp
�
1 + 3r

1� r T
�
1 + r

2
; f

��

6 logp (1 + 3r) + logp
�

1

1� r

�
+ logp T

�
1 + r

2
; f

�
+ C;

C > 0 is a constant.
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� If p = q, then

lim sup
r!1�

log+p T (r; f)

logp

�
1
1�r

� = �[p;p] (f) 6 lim sup
r!1�

log+p+1M (r; f)

logp

�
1
1�r

� = �M;[p;p] (f)

6 lim sup
r!1�

0@ logp (1 + 3r)
logp

�
1
1�r

� +
logp

�
1
1�r

�
logp

�
1
1�r

� + logp T �1+r2 ; f�
logp

�
1
1�r

� +
C

logp

�
1
1�r

�
1A

= lim sup
r!1�

0BB@ logp (1 + 3r)
logp

�
1
1�r

� +
logp

�
1
1�r

�
logp

�
1
1�r

� + logp T �1+r2 ; f�
logp

�
1

1� 1+r
2

� �
logp

�
2
1�r

�
logp

�
1
1�r

� + C

logp

�
1
1�r

�
1CCA

6 lim sup
r!1�

logp T
�
1+r
2 ; f

�
logp

�
1

1� 1+r
2

� + 1 = �[p;p] (f) + 1:

Hence

�[p;q] (f) 6 �M;[p;q] (f) 6 �[p;q] (f) + 1:

� If p > q, then

lim sup
r!1�

log+p T (r; f)

logq

�
1
1�r

� = �[p;q] (f) 6 lim sup
r!1�

log+p+1M (r; f)

logq

�
1
1�r

� = �M;[p;q] (f)

6 lim sup
r!1�

0@ logp (1 + 3r)
logq

�
1
1�r

� +
logp

�
1
1�r

�
logq

�
1
1�r

� + logp T �1+r2 ; f�
logq

�
1
1�r

� +
C

logq

�
1
1�r

�
1A

= lim sup
r!1�

0BB@ logp (1 + 3r)
logp

�
1
1�r

� +
logp

�
1
1�r

�
logq

�
1
1�r

� + logp T �1+r2 ; f�
logq

�
1

1� 1+r
2

� �
logq

�
2
1�r

�
logq

�
1
1�r

� + C

logq

�
1
1�r

�
1CCA

6 lim sup
r!1�

logp T
�
1+r
2 ; f

�
logq

�
1

1� 1+r
2

� = �[p;q] (f) :

So

�M;[p;q] (f) = �[p;q] (f) :

�
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1.3.2 The [p; q]-exponent of convergence of a meromorphic function

De�nition 1.3.2 ([5]) Let p > q > 1 be integers. Let f be a meromorphic function in D: Then,

the [p; q]-exponent of convergence of the sequence of zeros in D of f(z) is de�ned by

�[p;q] (f) = lim sup
r!1�

log+p N
�
r; 1f

�
logq

�
1
1�r

� :

Similarly, the [p; q]-exponent of convergence of the sequence of distinct zeros of f(z) is de�ned by

��[p;q] (f) = lim sup
r!1�

log+p �N
�
r; 1f

�
logq

�
1
1�r

� :

De�nition 1.3.3 ([5]) Let p > q > 1 be integers. Let f be a meromorphic function in D: Then,

the [p; q]-exponent of convergence of the sequence of �xed points in D of f(z) is de�ned by

�[p;q] (f � z) = lim sup
r!1�

log+p N
�
r; 1
f�z

�
logq

�
1
1�r

� :

Similarly, the [p; q]-exponent of convergence of the sequence of distinct �xed points of f(z) is

de�ned by

��[p;q] (f � z) = lim sup
r!1�

log+p �N
�
r; 1
f�z

�
logq

�
1
1�r

� :

1.4 The density of a set

De�nition 1.4.1 ([5] ; [6]) For a mesurable set E � [0; 1), the upper and lower densities of E are

de�ned by

densDE = lim sup
r!1�

m (E \ [0; r))
m ([0; r))

and densDE = lim inf
r!1�

m (E \ [0; r))
m ([0; r))

;

respectively, where m (F ) =
R
F

dt
1�t for F � [0; 1). It is clear that 0 6 densDE 6 densDE 6 1

for any measurable set E � [0; 1) :

Example 1.4.1 The upper and lower densities of the set F =
�
0; 12
�
� [0; 1) are

densDF = densDF = 0:
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Proposition 1.4.1 ([10]) If a set E satis�es densDE > 0; then m (E) =
R
E

dt
1�t = +1:

Proof. Suppose that m (E) =
R
E

dt
1�t = � <1: We have

m ([0; r)) =

Z r

0

dt

1� t = � log (1� t)jr0 = � log (1� r) :

Since m (E \ [0; r)) 6 m (E) ; then

densDE = lim sup
r!1�

m (E \ [0; r))
m ([0; r))

6 lim sup
r!1�

m (E)

m ([0; r))
= lim sup

r!1�

�

� log (1� r) = 0:

Hence

densDE > 0 =) m (E) =

Z
E

dt

1� t = +1:

�



Chapter 2

The [p,q]-Order of Growth of
Solutions of Linear Di¤erential
Equations in the Unit Disc

2.1 Introduction and Some Results

Consider for k � 2 the linear di¤erential equation

f (k) +Ak�1 (z) f
(k�1) + � � �+A1 (z) f 0 +A0 (z) f = F (z) ; (2.1.1)

where A0; :::; Ak�1; F are analytic functions in the unit disc D not being identically equal to 0:

In 2012, Belaïdi in [5] and [6] studied the [p; q]�order of the growth of solutions of linear dif-

ferential equations denoted by (0:0:1) and (2:1:1) in which the coe¢ cients are analytic functions

in D; and he obtained for equation (0:0:1) the following results.

Theorem A ([5]) Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0 (z) ; :::; Ak�1 (z) be analytic functions in the unit disc D

such that for real constants �; � where 0 6 � < �; we have

jA0 (z)j > expp+1
�
� logq

�
1

1� jzj

��
;

and

jAi (z)j 6 expp+1
�
� logq

�
1

1� jzj

��
; i = 1; :::; k � 1;
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as jzj ! 1� for z 2 H. Then every solution f 6� 0 of equation (0:0:1) satis�es �[p;q] (f) =

�M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �.

Theorem B ([6]) Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0 (z) ; :::; Ak�1 (z) be analytic functions in the unit disc D

such that for the real constants �; � where 0 6 � < �; we have

T (r;A0) > expp
�
� logq

�
1

1� jzj

��
;

and

T (r;Ai) 6 expp
�
� logq

�
1

1� jzj

��
; i = 1; :::; k � 1;

as jzj = r ! 1� for z 2 H. Then every solution f 6� 0 of equation (0:0:1) satis�es �[p;q] (f) =

�M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �.

After that in 2021; Chen et al. [10] have investigated the growth of solutions of equations

(0:0:1) and (0:0:2) in D by using the iterated order, and they got the following results

Theorem C (see [10]) Let H be a set of complex numbers satisfying densD fjzj : z 2 H � Dg >

0: Let A0; A1; :::; Ak�1 be analytic functions in the unit disc D such that

max f�M;n (Ai) : i = 1; 2; :::; k � 1g 6 �M;n (A0) = � (0 < � <1) ;

and for a constant � > 0, we have

lim inf
jzj!1�;z2H

((1� jzj)� logn jA0 (z)j) > �;

and

jAi (z)j 6 expn
�
�

�
1

1� jzj

���
, i = 1; 2; :::; k � 1;

as jzj ! 1� for z 2 H .Then every solution f 6� 0 of (0:0:1) satis�es �n (f) = 1 and

�n+1 (f) = �M;n (A0) = �.

Theorem D (see [10]) Let H be a set of complex numbers satisfying densD fjzj : z 2 H � Dg >

0: Let A0; A1; :::; Ak be analytic functions in the unit disc D; and for some constants � > 0 and
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� > 0; we have

lim inf
jzj!1�;z2H

�
(1� jzj)� logn�1 T (r;A0)

�
> �;

and

T (r;Ai) 6 expn�1
�
�

�
1

1� jzj

���
, i = 1; 2; :::; k;

as jzj ! 1� for z 2 H .Then every meromorphic (or analytic) solution f 6� 0 of (0:0:2) satis�es

�n (f) =1 and �n+1 (f) > �.

In this thesis, we improve and generalize the recent results of Chen et al.[10] by using

[p; q]�order instead iterated order with less control constant. At the same time, our work improve

some results of Belaïdi in [5] and [6].

To be speci�c, we will decrease the control constants of the coe¢ cients�modulus or charac-

teristic functions and obtain results which extend those of Chen et al. Here, we study the problem

and get the following results.

Theorem 2.1.1 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0; :::; Ak be analytic functions in the unit disc D such

that for a constant � > 0 and for all " (0 < 2" < �) su¢ ciently small, we have

jA0 (z)j > expp+1
�
(�� ") logq

�
1

1� jzj

��
; (2.1.2)

and

jAi (z)j 6 expp+1
�
(�� 2") logq

�
1

1� jzj

��
; i = 1; :::; k; (2.1.3)

as jzj ! 1� for z 2 H .Then every meromorphic (or analytic) solution f 6� 0 of equation

(0:0:2) satis�es �[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �.

Theorem 2.1.2 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0; :::; Ak be analytic functions in the unit disc D such

that for a constant � > 0 and for all " (0 < 2" < �) su¢ ciently small, we have

T (jzj ; A0) > expp
�
(�� ") logq

�
1

1� jzj

��
; (2.1.4)
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and

T (jzj ; Ai) 6 expp
�
(�� 2") logq

�
1

1� jzj

��
; i = 1; :::; k; (2.1.5)

as jzj ! 1� for z 2 H. Then every meromorphic (or analytic) solution f 6� 0 of equation

(0:0:2) satis�es �[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �.

Theorem 2.1.3 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0; :::; Ak�1 be analytic functions in the unit disc D such

that

max
�
�M;[p;q] (Ai) : i = 1; 2; :::; k � 1

	
6 �M;[p;q] (A0) = � (0 < � < +1)

and for all " (0 < 2" < �) su¢ ciently small, we have

lim inf
jzj!1�;z2H

logp+1 jA0 (z)j

logq

�
1

1�jzj

� > �� "; (2.1.6)

and

jAi (z)j 6 expp+1
�
(�� 2") logq

�
1

1� jzj

��
; i = 1; :::; k � 1; (2.1.7)

as jzj ! 1� for z 2 H .Then every solution f 6� 0 of equation (0:0:1) satis�es �[p;q] (f) =

�M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) = �.

Example 2.1.1 Consider the following equation

f 00 +K1 (z) exp4

�
(2� 2") log2

�
1

1� z

��
f 0 +K0 (z) exp4

��
2� "

2

�
log2

�
1

1� z

��
f = 0;

(2.1.8)

where K0 and K1 are analytic functions in the unit disc D such that8<:
�M;[3;2] (K0) > 2 and jK0j > 1:

�M;[3;2] (K1) < 1 and jK1j < 1:

Let H = fz 2 C : jzj = r < 1 and arg z = 0g � D a set of complex numbers satisfying

densD fjzj : z 2 Hg = 1 > 0:

In the equation (2:1:8) we have for all " (0 < " < 1) su¢ ciently small :

A0 (z) = K0 (z) exp4

��
2� "

2

�
log2

�
1

1� z

��
; A1 (z) = K1 (z) exp4

�
(2� 2") log2

�
1

1� z

��
,
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then we get

1/

�M;[3;2]

�
exp4

��
2� "

2

�
log2

�
1

1� z

���

= lim sup
r!1�

log+4

�
exp4

n�
2� "

2

�
log2

�
1
1�r

�o�
log2

�
1
1�r

�

= lim sup
r!1�

�
2� "

2

�
log2

�
1
1�r

�
log2

�
1
1�r

�
= 2� "

2
:

� If �M;[3;2]
�
exp4

n�
2� "

2

�
log2

�
1
1�z

�o�
> �M;[3;2] (K0) ; then

�M;[3;2] (A0) = �M;[3;2]

�
exp4

��
2� "

2

�
log2

�
1

1� z

���
= 2� "

2
:

� If �M;[3;2] (K0) > �M;[3;2]
�
exp4

n�
2� "

2

�
log2

�
1
1�z

�o�
; then

�M;[3;2] (A0) = �M;[3;2] (K0) > 2:

2/

�M;[3;2]

�
exp4

�
(2� 2") log2

�
1

1� z

���
= lim sup

r!1�;z2H

log+4

�
exp4

n
(2� 2") log2

�
1
1�r

�o�
log2

�
1
1�r

�

= lim sup
r!1�

(2� 2") log2
�

1
1�r

�
log2

�
1
1�r

�
= 2� 2":

� If �M;[3;2]
�
exp4

n
(2� 2") log2

�
1
1�z

�o�
> �M;[3;2] (K1) ; then

�M;[3;2] (A1) = �M;[3;2]

�
exp4

�
(2� 2") log2

�
1

1� z

���
= 2� 2":
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� If �M;[3;2] (K1) > �M;[3;2]
�
exp4

n
(2� 2") log2

�
1
1�z

�o�
; then

�M;[3;2] (A1) = �M;[3;2] (K1) < 1:

Hence, by 1/ and 2/ we deduce that �M;[3;2] (A1) < �M;[3;2] (A0) :

In the other hand

jA0 (z)j = jK0 (z)j
����exp4��2� "

2

�
log2

�
1

1� z

������
> exp4

��
2� "

2

�
log2

�
1

1� r

��
;

then
log4 jA0 (z)j
log2

�
1
1�r

� > 2� "

2
=) lim inf

r!1�;z2H

log4 jA0 (z)j
log2

�
1
1�r

� > 2� "

2
> 2� ";

and

jA1 (z)j = jK1 (z)j
����exp4�(2� 2") log2� 1

1� z

������
< exp4

�
(2� 2") log2

�
1

1� r

��
;

az r ! 1� for z 2 H:

It is clear that the conditions of Theorem 2.1.3 hold with � = 2; p = 3 and q = 2 on the set H

such that densD fjzj : z 2 Hg > 0:

By Theorem 2.1.3, every solution f 6� 0 of equation (2:1:8) satis�es

�[3;2] (f) =1 and �[4;2] (f) = 2:

Theorem 2.1.4 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0; :::; Ak�1 be analytic functions in the unit disc D such

that

max
�
�M;[p;q] (Ai) : i = 1; 2; :::; k � 1

	
6 �M;[p;q] (A0) = � (0 < � < +1)

and for all " (0 < 2" < �) su¢ ciently small, we have

lim sup
jzj!1�;z2H

logp+1 jAi (z)j

logq

�
1

1�jzj

� < lim inf
jzj!1�;z2H

logp+1 jA0 (z)j

logq

�
1

1�jzj

� ; i = 1; :::; k � 1; (2.1.9)

as jzj ! 1� for z 2 H .Then every solution f 6� 0 of equation (0:0:1) satis�es �[p;q] (f) =

�M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) = �.
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Theorem 2.1.5 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0; :::; Ak�1 be analytic functions in the unit disc D such

that

max
�
�M;[p;q] (Ai) : i = 1; 2; :::; k � 1

	
6 �M;[p;q] (A0) = � (0 < � < +1)

and for all " (0 < 2" < �) su¢ ciently small, we have

lim inf
jzj!1�;z2H

logp T (jzj ; A0)

logq

�
1

1�jzj

� > �� "; (2.1.10)

and

T (jzj ; Ai) � expp
�
(�� 2") logq

�
1

1� jzj

��
; i = 1; :::; k � 1; (2.1.11)

as jzj ! 1� for z 2 H.Then every solution f 6� 0 of equation (0:0:1) satis�es �[p;q] (f) =

�M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) = �.

Theorem 2.1.6 Let p > q > 1 be integers. Let H be a set of complexe numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0; :::; Ak�1 be analytic functions in the unit disc D such

that

max
�
�M;[p;q] (Ai) : i = 1; 2; :::; k � 1

	
6 �M;[p;q] (A0) = � (0 < � < +1)

and for all " (0 < 2" < �) su¢ ciently small, we have

lim sup
jzj!1�;z2H

logp T (jzj ; Ai)

logq

�
1

1�jzj

� < lim inf
jzj!1�;z2H

logp T (jzj ; A0)

logq

�
1

1�jzj

� ; i = 1; :::; k � 1; (2.1.12)

as jzj ! 1� for z 2 H .Then every solution f 6� 0 of equation (0:0:1) satis�es �[p;q] (f) =

�M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) = �.

The following corollaries can be easily obtained from Theorem 2.1.3 to Theorem 2.1.6.

Corollary 2.1.1 Let H be a set of complexe numbers satisfying densD fjzj : z 2 H � Dg > 0;

and let A0; :::; Ak�1 be analytic functions in the unit disc D such that

max
�
�M;[p;q] (Ai) : i = 1; 2; :::; k � 1

	
6 �M;[p;q] (A0) = � (0 < � < +1)
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and for all " (0 < 2" < �) su¢ ciently small, we have

jA0 (z)j > expp+1
�
(�� ") logq

�
1

1� jzj

��
;

and

jAi (z)j 6 expp+1
�
(�� 2") logq

�
1

1� jzj

��
; i = 1; :::; k � 1;

as jzj ! 1� for z 2 H .Then every solution f 6� 0 of equation (0:0:1) satis�es �[p;q] (f) =

�M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) = �.

Proof:We can get the conclusion of Corollary 2.1.1, by using a similar proof as in Theorem 2.1.3

or Theorem 2.1.4.

Corollary 2.1.2 Let H be a set of complexe numbers satisfying densD fjzj : z 2 H � Dg > 0;

and let A0; :::; Ak�1 be analytic functions in the unit disc D such that

max
�
�M;[p;q] (Ai) : i = 1; 2; :::; k � 1

	
6 �M;[p;q] (A0) = � (0 < � < +1)

and for all " (0 < 2" < �) su¢ ciently small, we have

T (jzj ; A0) > expp
�
(�� ") logq

�
1

1� jzj

��
;

and

T (jzj ; Ai) 6 expp
�
(�� 2") logq

�
1

1� jzj

��
; i = 1; :::; k � 1;

as jzj ! 1� for z 2 H. Then every solution f 6� 0 of equation (0:0:1) satis�es �[p;q] (f) =

�M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) = �.

Proof:We can get the conclusion of Corollary 2.1.2, by using a similar proof as in Theorem 2.1.5

or Theorem 2.1.6.

For equation (0:0:2) ; we generalize Theorem A and Theorem C to Theorem 2.1.7 and Theorem

2.1.8, also Theorem B and Theorem D to Theorem 2.1.9 and Theorem 2.1.10 as follows.
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Theorem 2.1.7 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0 (z) ; :::; Ak (z) be analytic functions in the unit disc D

such that for a constant � > 0; we have for all " (0 < 2" < �) su¢ ciently small (2.1.5) and

jAi (z)j 6 expp+1
�
(�� 2") logq

�
1

1� jzj

��
; i = 1; :::; k;

as jzj ! 1� for z 2 H. Then every meromorphic (or analytic) solution f 6� 0 of equation

(0:0:2) satis�es �[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �.

Theorem 2.1.8 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0 (z) ; :::; Ak (z) be analytic functions in the unit disc D

such that for a constant � > 0 we have, for all " (0 < 2" < �) su¢ ciently small

lim sup
jzj!1�;z2H

logp+1 jAi (z)j

logq

�
1

1�jzj

� < lim inf
jzj!1�;z2H

logp+1 jA0 (z)j

logq

�
1

1�jzj

� ; i = 1; :::; k;

as jzj ! 1� for z 2 H. Then every meromorphic (or analytic) solution f 6� 0 of equation

(0:0:2) satis�es �[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �.

Theorem 2.1.9 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0 (z) ; :::; Ak (z) be analytic functions in the unit disc D

such that for a constant � > 0 we have for all " (0 < 2" < �) su¢ ciently small (2.1.10) and

T (jzj ; Ai) 6 expp
�
(�� 2") logq

�
1

1� jzj

��
; i = 1; :::; k;

as jzj ! 1� for z 2 H. Then every meromorphic (or analytic) solution f 6� 0 of equation

(0:0:2) satis�es �[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �.

Theorem 2.1.10 Let p > q > 1 be integers. Let H be a set of complex numbers satisfying

densD fjzj : z 2 H � Dg > 0; and let A0 (z) ; :::; Ak (z) be analytic functions in the unit disc D

such that for a constant � > 0 we have, for all " (0 < 2" < �) su¢ ciently small

lim sup
jzj!1�;z2H

logp T (jzj ; Ai)

logq

�
1

1�jzj

� < lim inf
jzj!1�;z2H

logp T (jzj ; A0)

logq

�
1

1�jzj

� ; i = 1; :::; k;

as jzj ! 1� for z 2 H. Then every meromorphic (or analytic) solution f 6� 0 of equation

(0:0:2) satis�es �[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �.
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2.2 Preliminary lemmas

In this section of chapter 2, we present some necessary lemmas which are used in the proofs

of the theorems of this chapter and chapter 3.

Lemma 2.2.1 ([14]; Theorem 3:1) Let k and j be integers satisfying k > j > 0, and let " > 0

and d 2 (0; 1). If f is a meromorphic function in D such that f (j) does not vanish identically,

then �����f (k) (z)f (j) (z)

����� 6
"�

1

1� jzj

�2+"
max

�
log

�
1

1� jzj

�
;T (s (jzj) ; f)

�#k�j
; jzj =2 E;

where E � [0; 1) is a set with
R
E

dr
1�r <1 and s (jzj) = 1� d (1� jzj) :

Lemma 2.2.2 ([16]) Let f be a meromorphic function in the unit disc D, and let k > 1 be an

integer. Then

m

 
r;
f (k)

f

!
= S (r; f) ;

where S(r; f) = O
�
log+ T (r; f) + log

�
1
1�r

��
, possibly outside a set E � [0; 1) with

R
E

dr
1�r <1.

Lemma 2.2.3 ([1]) Let g : (0; 1)! R and h : (0; 1)! R be monotone increasing functions such

that g (r) 6 h (r) holds outside of an exceptional set E � [0; 1) for which
R
E

dr
1�r <1. Then there

exists a constant d 2 (0; 1) such that if s (r) = 1�d (1� r) ; then g (r) 6 h (s (r)) for all r 2 [0; 1):

Lemma 2.2.4 ([4]) Let p > q > 1 be integers. If A0 (z) ; :::; Ak�1 (z) are analytic functions of

[p; q]�order in the unit disc D; then every solution f 6� 0 of (0:0:1) satis�es

�[p+1;q] (f) = �M;[p+1;q] (f) 6 max
�
�M;[p;q] (Aj) : j = 0; 1; :::; k � 1

	
:

Lemma 2.2.5 ([5]) Let p > q > 1 be integers. If f and g are meromorphic functions of

[p; q]�order in D, then we have

(i) �[p;q] (f) = �[p;q]

�
1
f

�
; �[p;q] (af) = �[p;q] (f) and �[p;q] (f + a) = �[p;q] (f) ; (a 2 C�) :

(ii) �[p;q] (f
0) = �[p;q] (f) :
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(iii) �[p;q] (f + g) 6 max
�
�[p;q] (f) ; �[p;q] (g)

	
:

(iv) �[p;q] (fg) 6 max
�
�[p;q] (f) ; �[p;q] (g)

	
,

(v) if �[p;q] (f) > �[p;q] (g) ; then we obtain �[p;q] (f + g) = �[p;q] (fg) = �[p;q] (f) :

Lemma 2.2.6 ([5]) Let p > q > 1 be integers. Let A0; :::; Ak�1 and F 6� 0 be �nite [p; q]�order

analytic functions in the unit disc D. If f is a solution with �[p;q] (f) =1 and �[p+1;q] (f) = � <1

of (2:1:1), then
��[p;q] (f) = �[p;q] (f) = �[p;q] (f) = +1;

��[p+1;q] (f) = �[p+1;q] (f) = �[p+1;q] (f) = �:

2.3 Proofs of Theorem 2.1.1 and 2.1.2

Proof of Theorem 2.1.1. Suppose that every solution f of equation (0:0:2) not being identi-

cally equal to 0:

From the conditions of Theorem 2.1.1, there exist a set H of complex numbers satisfying densDH1 >

0; where H1 = fr = jzj : z 2 H � Dg : Then H1 is a set with
R
H1

dr
1�r = +1; such that for z 2 H

we have (2:1:2) and (2:1:3) az jzj ! 1�:

By Lemma 2.2.1, there exist s (jzj) = 1 � d (1� jzj) ; d 2 (0; 1) and a set E1 � [0; 1) withR
E1

dr
1�r <1 such that for jzj =2 E1; we have�����f (j) (z)f (z)

����� 6
"�

1

1� jzj

�2+"
max

�
log

�
1

1� jzj

�
; T (s (jzj) ; f)

�#j
; (j = 1; :::; k) : (2.3.1)

From (0:0:2) ; we get

jA0 (z)j 6 jAk (z)j
�����f (k)f

�����+ jAk�1 (z)j
�����f (k�1)f

�����+ � � �+ jA1 (z)j
����f 0f
���� : (2.3.2)

Applying (2:1:2) ; (2:1:3) and (2:3:1) into (2:3:2) ; we obtain

expp+1

�
(�� ") logq

�
1

1� jzj

��
6 jA0 (z)j 6

k

"�
1

1� jzj

�2+"
max

�
log

�
1

1� jzj

�
; T (s (jzj) ; f)

�#k
� expp+1

�
(�� 2") logq

�
1

1� jzj

��
;
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for all z satisfying jzj 2 H1nE1 as jzj ! 1�; where E1 � [0; 1) is a set with
R
E1

dr
1�r <1: Noting

that (�� ") > (�� 2") ; by the last inequality, we have

exp

�
(1� o(1)) expp

�
(�� ") logq

�
1

1� jzj

���
6

k

�
1

1� jzj

�k(2+")
T k (s (jzj) ; f) ; (2.3.3)

for all z satisfying jzj 2 H1nE1 as jzj ! 1�: Then, by (2:3:3) and combining with Lemma 2.2.3,

we get for all r = jzj 2 H1

exp

�
(1� o(1)) expp

�
(�� ") logq

�
1

1� jzj

���
6 k

�
1

1� s (jzj)

�k(2+")
T k (s1 (jzj) ; f) ;

where s1 (jzj) = s (s (r)) = 1� d2 (1� jzj) with d 2 (0; 1). Then, we get for jzj 2 H1

expp

�
(�� ") logq

�
1

1� jzj

��
6

log k

1� o(1) +
k (2 + ")

1� o(1) log
�

1

1� s (jzj)

�
+

k

1� o(1) log
+ T (s1 (jzj) ; f) ;

=)
exp

n
(�� ") logq

�
1

1�jzj

�o
logq

�
1

1�s1(jzj)

� 6 O (1)

logq

�
1

1�s1(jzj)

� + logp

�
1

1�s(jzj)

�
logq

�
1

1�s1(jzj)

� + log+p T (s1 (jzj) ; f)
logq

�
1

1�s1(jzj)

� ;

=) lim sup
s1(r)!1�

exp
n
(�� ") logq

�
1

1�jzj

�o
logq

�
1

1�s1(jzj)

� 6

lim sup
s1(r)!1�

0@ O (1)

logq

�
1

1�s1(jzj)

� + logp

�
1

1�s(jzj)

�
logq

�
1

1�s1(jzj)

� + log+p T (s1 (jzj) ; f)
logq

�
1

1�s1(jzj)

�
1A ;

=) +1 6 0 + 0 + lim sup
s1(r)!1�

log+p+1 T (s1 (jzj) ; f)

logq

�
1

1�s1(jzj)

� = �[p;q] (f) :

Therefore, we obtain �[p;q] (f) = �M;[p;q] (f) =1; and we have

expp

�
(�� ") logq

�
1

1� jzj

��
�

log k

1� o(1) +
k (2 + ")

1� o(1) log
�

1

1� s (jzj)

�
+

k

1� o(1) log
+ T (s1 (jzj) ; f) ;
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=) (�� ")
logq

�
1

1�jzj

�
logq

�
1

1�s1(jzj)

� 6 O (1)

logq

�
1

1�s1(jzj)

� + logp+1
�

1
1�s(jzj)

�
logq

�
1

1�s1(jzj)

� +
log+p+1 T (s1 (jzj) ; f)

logq

�
1

1�s1(jzj)

� ;

=) lim sup
s1(r)!1�

0@(�� ") logq

�
1

1�jzj

�
logq

�
1

1�s1(jzj)

�
1A = �� " 6

lim sup
s1(r)!1�

0@ O (1)

logq

�
1

1�s1(jzj)

� + logp+1
�

1
1�s(jzj)

�
logq

�
1

1�s1(jzj)

� +
log+p+1 T (s1 (jzj) ; f)

logq

�
1

1�s1(jzj)

�
1A ;

6 0 + 0 + lim sup
s1(r)!1�

log+p+1 T (s1 (jzj) ; f)

logq

�
1

1�s1(jzj)

� = �[p+1;q] (f) :

Since " > 0 is arbitrary we deduce that

�[p+1;q] (f) = �M;[p+1;q] (f) = lim sup
s1(r)!1�

log+p+1 T (s1 (jzj) ; f)

logq

�
1

1�s1(jzj)

� > �:

Proof of Theorem 2.1.2. Suppose that every solution f of equation (0:0:2) not being identically

equal to 0: It follows from (0:0:2) that

�A0 (z) = Ak (z)
f (k)

f
+Ak�1 (z)

f (k�1)

f
+ � � �+A1 (z)

f 0

f
: (2.3.4)

From the assumptions of Theorem 2.1.2, there exist a set H of complex numbers satisfying

densDH1 > 0; where H1 = fr = jzj : z 2 H � Dg : Then H1 is a set with
R
H1

dr
1�r = +1; such

that for z 2 H we have (2:1:4) and (2:1:5) az r ! 1�: From the assumption (2:1:5), we get by

using (2:3:4) and Lemma 2.2.2 that

m (r;A0) 6
kX
i=1

m (r;Ai) +

kX
i=1

m

 
r;
f (i)

f

!
+O (1)

6 k expp
�
(�� 2") logq

�
1

1� r

��
+ S (r; f) ; (2.3.5)

holds for all z satisfying r 2 H1 as r ! 1� outside a set E1 � [0; 1) with
R
E1

dr
1�r < 1; where

S(r; f) = O
�
log+ T (r; f) + log

�
1
1�r

��
: By Lemma 2.2.3 and (2:3:5), we have for all r 2 H1

m (r;A0) 6 k expp
�
(�� 2") logq

�
1

1� s (r)

��

+O

�
log+ T (s (r) ; f) + log

�
1

1� s (r)

��
; (2.3.6)
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as r ! 1�: The assumption (2:1:4) gives us

m (r;A0) = T (r;A0) > expp
�
(�� ") logq

�
1

1� r

��
: (2.3.7)

By (2:3:6) and (2:3:7) ; we obtain

(1� o (1)) expp
�
(�� ") logq

�
1

1� r

��

6 O
�
log+ T (s (r) ; f) + log

�
1

1� s (r)

��
; (2.3.8)

as r ! 1�: Hence, by (2:3:8) ; we obtain �[p;q] (f) = �M;[p;q] (f) =1 and

�[p+1;q] (f) = �M;[p+1;q] (f) = lim sup
s(r)!1�

log+p+1 T (s (r) ; f)

logq

�
1

1�s(r)

� > �;

because " > 0 is arbitrary.

2.4 Proofs of Theorems 2.1.3 to 2.1.10

Proof of Theorem 2.1.3 Suppose that every solution f of equation (0:0:1) not being identically

equal to 0: By (2:1:6), we know that

9 (�� ") 2 R : lim inf
jzj!1�;z2H

logp+1 jA0 (z)j

logq

�
1

1�jzj

� > �� " > �� ";

Obviously
logp+1 jA0 (z)j

logq

�
1

1�jzj

� > �� "; (2.4.1)

az jzj ! 1� for z 2 H: By (2:1:7) and (2:4:1) ; we obtain

jA0 (z)j > expp+1
�
(�� ") logq

�
1

1� jzj

��

> expp+1

�
(�� 2") logq

�
1

1� jzj

��
> jAi (z)j ; (2.4.2)

az jzj ! 1� for z 2 H (i = 1; 2; :::; k � 1) : By (2:4:2) and applying Theorem 2.1.1 (Ak (z) � 1) ;

we obtain

�[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �: (2.4.3)
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By Lemma 2.2.4, we get

�[p+1;q] (f) = �M;[p+1;q] (f) 6 max
�
�M;[p;q] (Ai) : i = 0; 1; :::; k � 1

	
= �M;[p;q] (A0) = �:

(2.4.4)

Therefore, by (2:4:3) and (2:4:4) ; we obtain �[p;q] (f) = �M;[p;q] (f) = 1 and �[p+1;q] (f) =

�M;[p+1;q] (f) = �M;[p;q] (A0) = �:

Proof of Theorem 2.1.4 Set

�0 = lim inf
jzj!1�;z2H

logp+1 jA0 (z)j

logq

�
1

1�jzj

� ;

�i = lim sup
jzj!1�;z2H

logp+1 jAi (z)j

logq

�
1

1�jzj

� ; (i = 1; 2; :::; k � 1) :

By (2:1:9), there exist real numbers �; � such that �i < � < � < �0; i = 1; 2; :::; k � 1: It yields
logp+1 jAi (z)j

logq

�
1

1�jzj

� < � < � <
logp+1 jA0 (z)j

logq

�
1

1�jzj

� ;

as jzj ! 1� for z 2 H: Hence, we have

jA0 (z)j > expp+1
�
� logq

�
1

1� jzj

��
> expp+1

�
� logq

�
1

1� jzj

��
> jAi (z)j ; (i = 1; 2; :::; k � 1) ;

as jzj ! 1� for z 2 H: Then, by applying Theorem A, we obtain

�[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �;

for 0 6 � < �. By taking � = �� 2" and � = �� " for any given " (0 < 2" < �) ; we get

�[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �;

and by Lemma 2.2.4 we get (2:4:4) : Hence, we can easily obtain the conclusion of Theorem 2.1.4.

Proof of Theorem 2.1.5 Suppose that every solution f of equation (0:0:1) not being identically

equal to 0. By (2:1:10), we know that

9 (�� ") 2 R : lim inf
jzj!1�;z2H

logp T (jzj ; A0)

logq

�
1

1�jzj

� > �� " > �� ";
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Obviously
logp T (jzj ; A0)

logq

�
1

1�jzj

� > �� "; (2.4.5)

az jzj ! 1� for z 2 H: By (2:1:11) and (2:4:5) ; we obtain

T (jzj ; A0) > expp
�
(�� ") logq

�
1

1� jzj

��

> expp

�
(�� 2") logq

�
1

1� jzj

��
> T (jzj ; Ai) ; (i = 1; 2; :::; k � 1) ; (2.4.6)

az jzj ! 1� for z 2 H: By applying Theorem 2.1.2 (Ak (z) � 1) ; we obtain

�[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �: (2.4.7)

By Lemma 2.2.4, we get

�[p+1;q] (f) = �M;[p+1;q] (f) 6 max
�
�M;[p;q] (Ai) : i = 0; 1; :::; k � 1

	
= �M;[p;q] (A0) = �:

(2.4.8)

Therefore, by (2:4:7) and (2:4:8) ; we obtain �[p;q] (f) = �M;[p;q] (f) = 1 and �[p+1;q] (f) =

�M;[p+1;q] (f) = �:

Proof of Theorem 2.1.6 Set

�0 = lim inf
jzj!1�;z2H

logp T (jzj ; A0)

logq

�
1

1�jzj

� ;

�i = lim sup
jzj!1�;z2H

logp T (jzj ; Ai)

logq

�
1

1�jzj

� ; (i = 1; 2; :::; k � 1) :

By (1:12), there exist real numbers �; � such that �i < � < � < �0; i = 1; 2; :::; k � 1: It yields

logp T (jzj ; Ai)

logq

�
1

1�jzj

� < � < � <
logp T (jzj ; A0)

logq

�
1

1�jzj

� ;

as jzj ! 1� for z 2 H: Hence, we have

T (jzj ; A0) > expp+1
�
� logq

�
1

1� jzj

��

> expp+1

�
� logq

�
1

1� jzj

��
> T (jzj ; Ai) ; (i = 1; 2; :::; k � 1) ;
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as jzj ! 1� for z 2 H: Then, by applying Theorem B, we obtain

�[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �;

for 0 6 � < �. By taking � = �� 2" and � = �� " for any given " (0 < 2" < �) ; we get

�[p;q] (f) = �M;[p;q] (f) =1 and �[p+1;q] (f) = �M;[p+1;q] (f) > �;

and by Lemma 2.2.4 we get (2:4:4) : Hence, we can easily obtain the conclusion of Theorem 2.1.6.

Proof of Theorems 2.1.7 and 2.1.8 By using a similar proof as in Theorem 2.1.3 or Theorem

2.1.4, then for � > 0 and for all " (0 < 2" < �) su¢ ciently small, we have

jA0 (z)j > expp+1
�
(�� ") logq

�
1

1� jzj

��

> expp+1

�
(�� 2") logq

�
1

1� jzj

��
> jAi (z)j ; (i = 1; 2; :::; k) ;

as jzj ! 1� for z 2 H: Hence, by applying Theorem 2.1.1, we get the result.

Proof of Theorems 2.1.9 and 2.1.10 By using a similar proof as in Theorem 2.1.5 or

Theorem 2.1.6, then for � > 0 and for all " (0 < 2" < �) su¢ ciently small, we have

T (jzj ; A0) > expp
�
(�� ") logq

�
1

1� jzj

��

> expp

�
(�� 2") logq

�
1

1� jzj

��
> T (jzj ; Ai) ; (i = 1; 2; :::; k) ;

as jzj ! 1� for z 2 H: Hence, by applying Theorem 2.1.2, we get the result.



Chapter 3

The Fixed Points of Solutions and
Their Arbitrary-order Derivatives of
Linear Di¤erential Equations in The
Unit Disc

Many important results have been obtained on the �xed points of general transcendental

meromorphic functions for almost four decades, see [13]. However, there are few studies on the

�xed points of solutions of di¤erential equations, specially in the unit disc.

In 2000, Chen[12] studied �rstly the problem on the �xed points and hyper-order of solutions

of second order linear di¤erential equations with entire coe¢ cients. Later, Zhang and Chen [22]

consider the question of the existence of �xed points of the derivatives of solutions of complex

linear di¤erential equations in D. Since a few months, Chen et al. [10] investigated the �xed

points of solutions and their arbitrary order derivatives of equations (0:0:1) and (0:0:2), and they

obtained the following results.

Theorem E (see [10]) Assume that the assumptions of Theorem C hold. Then every solution

f 6� 0 of (0:0:1) satis�es

��n
�
f (j) � z

�
= ��n (f � z) = �n (f) =1;

��n+1
�
f (j) � z

�
= ��n+1 (f � z) = �n+1 (f) = �: (j = 1; 2; :::).
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In this chapter, we will represent the results of Chen et al. [10] concerning the �xed points of

solutions and thier arbitrary-order of equations (0:0:1) and (0:0:2) by replacing the iterated order

by [p; q]�order, and we get our theorems as follows.

Theorem 3.0.1 Assume that the assumptions of Theorem 2.1.3 or Theorem 2.1.4 hold. Then

every solution f 6� 0 of equation (0:0:1) satis�es
��[p;q]

�
f (j) � z

�
= ��[p;q] (f � z) = �[p;q] (f) =1;

��[p+1;q]
�
f (j) � z

�
= ��[p+1;q] (f � z) = �[p+1;q] (f) = �: (j = 1; 2; :::).

Proof. Suppose that every solution f of equation (0:0:1) not being identically equal to 0:

First step. We consider the �xed points of f (z). De�ne the function g by setting

g (z) := f (z)� z; z 2 D:

Then, It follows from (0:0:1) that

g(k) +Ak�1g
(k�1) + � � �+A1g0 +A0g = �A1 � zA0; (3.0.1)

and by Theorem 2.1.3 or Theorem 2.1.4, we have

�[p;q] (g) = �[p;q] (f) =1; �[p+1;q] (g) = �[p+1;q] (f) = �;

��[p+1;q] (g) = ��[p+1;q] (f � z) :
(3.0.2)

Now, we prove that �A1 � zA0 6� 0: Assume that �A1 � zA0 � 0. Clearly A0 6� 0: Then

lim
jzj!1�;z2H

���A1A0 ��� = 1 and by (2:4:2), we have
����A1A0

���� < expp+1

n
(�� 2") logq

�
1

1�jzj

�o
expp+1

n
(�� ") logq

�
1

1�jzj

�o ! 0;

az jzj ! 1� for z 2 H: Then lim
jzj!1�;z2H

���A1A0 ��� = 0: It is easy to see the contradiction. Hence,

�A1 � zA0 6� 0: Next by Lemma 2.2.5, we get

max
�
�[p;q] (Ai) (i = 0; 1; :::; k � 1) ; �[p;q] (�A1 � zA0)

	
<1:

We deduce by using (3:0:1) ; (3:0:2) and Lemma 2.2.6 that

��[p;q] (g) = �[p;q] (g) =1; ��[p+1;q] (g) = �[p+1;q] (g) = �:
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Therefore, we obtain

��[p;q] (f � z) = ��[p;q] (g) = �[p;q] (g) = �[p;q] (f) =1;

��[p+1;q] (f � z) = ��[p+1;q] (g) = �[p+1;q] (g) = �[p+1;q] (f) = �:

Second step. For the following proof, we use the principle of mathematical induction. Set

Ak (z) � 1; then jAk (z)j 6 expp+1

n
(�� 2") logq

�
1

1�jzj

�o
: We consider the �xed points of

f (j) (z) (j = 1; 2; :::).

� De�ne the function g1 by setting

g1 (z) := f
0 (z)� z; z 2 D:

Then, by (3:0:2) ; we obtain

�[p;q] (g1) = �[p;q] (f
0) =1; �[p+1;q] (g1) = �[p+1;q] (f

0) = �;

��[p+1;q] (g1) = ��[p+1;q] (f
0 � z) :

(3.0.3)

It follows by (0:0:2) ; that

Ak
A0
f (k+1) +

��
Ak
A0

�0
+
Ak�1
A0

�
f (k) + � � �+

��
A2
A0

�0
+
A1
A0

�
f 00 +

��
A1
A0

�0
+ 1

�
f 0 = 0: (3.0.4)

Multiplying (3:0:4) by A0; we obtain

Ak;1f
(k+1) +Ak�1;1f

(k) + � � �+A1;1f 00 +A0;1f 0 = 0: (3.0.5)

Substituing f 0 = g1 + z into (3:0:5) ; we obtain

Ak;1g
(k)
1 +Ak�1;1g

(k�1)
1 + � � �+A1;1g01 +A0;1g1 = F1; (3.0.6)

where

Ak;1 = 1; Ai;1 = A0

��
Ai+1
A0

�0
+
Ai
A0

�
(i = 1; 2; :::; k � 1) ; (3.0.7)

A0;1 = A0

��
A1
A0

�0
+ 1

�
; (3.0.8)

F1 = � (A1;1 + zA0;1) : (3.0.9)

Next we prove that A0;1 6� 0 and F1 6� 0: Assume that A0;1 � 0; then A1
A0
= �z+C0 where C0 is an

arbitrary constant. Hence, we have A1+(z � C0)A0 = 0: Then, f0 = z�C0 is a solution of (0:0:1)
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and �[p;q] (f0) <1: This contradicts (3:0:2) : Now, assume that F1 � 0: By (3:0:5) and (3:0:9) ; we

know that the function f1 such that f 01 = z is a solution of equation (0:0:1) and �[p;q] (f1) < 1:

This contradicts (3:0:2) : Therefore, A0;1 6� 0 and F1 6� 0: It follows by (3:0:7)�(3:0:9) and Lemma

2.2.5 that

max
�
�[p;q] (Ai;1) (i = 0; 1; :::; k � 1) ; �[p;q] (F1)

	
<1:

We deduce by using (3:0:3) ; (3:0:6) and Lemma 2.2.6 that

��[p;q] (g1) = �[p;q] (g1) =1; ��[p+1;q] (g1) = �[p+1;q] (g1) = �:

Therefore, we obtain

��[p;q] (f
0 � z) = ��[p;q] (g1) = �[p;q] (g1) = �[p;q] (f) =1;

��[p+1;q] (f
0 � z) = ��[p+1;q] (g1) = �[p+1;q] (g1) = �[p+1;q] (f) = �:

� Set g2 (z) = f 00 (z)� z; z 2 D: Then, by using a similar discussion as in the case of the function

g1; we can get

Ak;2f
(k+2) +Ak�1;2f

(k+1) + � � �+A1;2f (3) +A0;2f 00 = 0

and

Ak;2g
(k)
2 +Ak�1;2g

(k�1)
2 + � � �+A1;2g02 +A0;2g2 = F2;

where

Ak;2 = 1; Ai;2 = A0;1

��
Ai+1;1
A0;1

�0
+
Ai;1
A0;1

�
(i = 1; 2; :::; k � 1) ;

A0;2 = A0;1

��
A1;1
A0;1

�0
+ 1

�
;

F2 = � (A1;2 + zA0;2) :

Therefore, by the same procedure as for g1; we obtain

��[p;q] (f
00 � z) = ��[p;q] (g2) = �[p;q] (g2) = �[p;q] (f) =1;

��[p+1;q] (f
00 � z) = ��[p+1;q] (g2) = �[p+1;q] (g2) = �[p+1;q] (f) = �:

� Now, assume that
A0;s 6� 0;

��[p;q]
�
f (s) � z

�
= �[p;q] (f) =1;

��[p+1;q]
�
f (s) � z

�
= �[p+1;q] (f) = �

(3.0.10)
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for all s = 0; 1; :::; j�1; and we prove that for s = j we have (3:0:10) hold. Set gj (z) = f (j) (z)�z;

z 2 D: Then, by using (3:0:2) ; we obtain

�[p;q] (gj) = �[p;q]
�
f (j)

�
=1; �[p+1;q] (gj) = �[p+1;q]

�
f (j)

�
= �;

��[p+1;q] (gj) = ��[p+1;q]
�
f (j) � z

�
;

(3.0.11)

by following the same procedure as before, we have

Ak;jf
(k+j) +Ak�1;jf

(k+j�1) + � � �+A1;jf (j+1) +A0;jf (j) = 0;

then, we get

Ak;jg
(k)
j +Ak�1;jg

(k�1)
j + � � �+A1;jg0j +A0;jgj = Fj ; (3.0.12)

where

Ak;j = 1; Ai;j = A0;j�1

��
Ai+1;j�1
A0;j�1

�0
+
Ai;j�1
A0;j�1

�
(i = 1; 2; :::; k � 1) ;

A0;j = A0;j�1

��
A1;j�1
A0;j�1

�0
+ 1

�
6� 0 (A0;0 = A0; A1;0 = A1) ;

Fj = � (A1;j + zA0;j) 6� 0:

We deduce by using (3:0:11) ; (3:0:12) and Lemma 2.2.6 that

��[p;q]
�
f (j) � z

�
= ��[p;q] (gj) = �[p;q] (gj) = �[p;q]

�
f (j)

�
=1;

��[p+1;q]
�
f (j) � z

�
= ��[p+1;q] (gj) = �[p+1;q] (gj) = �[p+1;q]

�
f (j)

�
= �; j = 1; 2; ::::

Therefore, we obtain

��[p;q]
�
f (j) � z

�
= ��[p;q] (f � z) = �[p;q] (f) =1;

��[p+1;q]
�
f (j) � z

�
= ��[p+1;q] (f � z) = �[p+1;q] (f) = �; (j = 1; 2; :::) :

�

Theorem 3.0.2 Assume that the assumptions of Theorem 2.1.5 or Theorem 2.1.6 hold. Then

every solution f 6� 0 of equation (0:0:1) satis�es

��[p;q]
�
f (j) � z

�
= ��[p;q] (f � z) = �[p;q] (f) =1;

��[p+1;q]
�
f (j) � z

�
= ��[p+1;q] (f � z) = �[p+1;q] (f) = �; (j = 1; 2; :::) :
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Proof. Suppose that every solution f of equation (0:0:1) not being identically equal to 0: By

applying Theorem 2.1.5 or Theorem 2.1.6, we get

�[p;q] (f) =1; �[p+1;q] (f) = �:

Now, we prove that �A1 � zA0 6� 0: Assume that �A1 � zA0 � 0, then we can easily obtain

T (r;A1) = T (r;�zA0) 6 T (r;A0) + T (r; z) ;

T (r;A0) = T
�
r; A1�z

�
6 T (r;A1) + T (r; z) +O (1) :

(3.0.13)

It follows from (3:0:13) that

1� T (r; z) +O (1)
T (r;A0)

6 T (r;A1)

T (r;A0)
6 1 + T (r; z)

T (r;A0)
: (3.0.14)

By following the same reasoning as in the proof of Theorem 2.1.5, we get

T (r;A1) � expp
�
(�� 2") logq

�
1

1� jzj

��
< expp

�
(�� ") logq

�
1

1� jzj

��
< T (r;A0) ; (3.0.15)

as r = jzj ! 1� for z 2 H: By using (3:0:15) ; we have

T (r; z)

T (r;A0)
6 T (r; z)

expp

n
(�� ") logq

�
1
1�r

�o ! 0; (3.0.16)

as jzj ! 1� for z 2 H: Then, by (3:0:14) and (3:0:16) ; we get

lim
jzj!1�;z2H

T (r;A1)

T (r;A0)
= 1: (3.0.17)

On the other hand, we have

for p = 1,
T (r;A1)

T (r;A0)
<

1

exp
n
" logq

�
1

1�jzj

�o < 1;

for p > 2, T (r;A1)

T (r;A0)
<
expp

n
(�� 2") logq

�
1

1�jzj

�o
expp

n
(�� ") logq

�
1

1�jzj

�o ! 0:

(3.0.18)

It follows by (3:0:18) that

lim
jzj!1�;z2H

T (r;A1)

T (r;A0)
6= 1: (3.0.19)
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Obviously, (3:0:17) contradicts with (3:0:19). Hence, �A1 � zA0 6� 0: Set Ak (z) � 1; then

T (r;Ak) 6 expp
n
(�� 2") logq

�
1

1�jzj

�o
: Clearly, A0 6� 0: We can get the conclusion of Theorem

3.0.2, by reasoning in the same way as we did in the proof of Theorem 3.0.1.

�

Theorem 3.0.3 Assume that the assumptions of one of Theorem 2.1.7 to Theorem 2.1.10 hold.

Then every meromorphic (or analytic) solution f 6� 0 of equation (0:0:2) satis�es

��[p;q]
�
f (j) � z

�
= ��[p;q] (f � z) = �[p;q] (f) =1;

��[p;q]
�
f (j) � z

�
= ��[p;q] (f � z) = �[p;q] (f) > � (j = 1; 2; :::) :

Proof. Suppose that every solution f of equation (0:0:2) not being identically equal to 0: By

applying one of Theorem 2.1.7 to Theorem 2.1.10, we get

�[p;q] (f) =1; �[p+1;q] (f) > �:

Then, we can get the conclusion of Theorem 3.0.3, by reasoning in the same way as we did in the

proof of theorem 3.0.1 and Theorem 3.0.2 by using �[p+1;q] (f) > � instead of �[p+1;q] (f) = �; and

�[p+1;q]
�
f (j)

�
> � instead of �[p+1;q]

�
f (j)

�
= � (j = 1; 2; :::) : �

Example 3.0.1 Consider the following equation

K2 (z) exp4

�
(2� 2") log2

�
1

1�z

��
f 00+K1 (z) exp4

�
(2� 2") log2

�
1

1� z

��
f 0

+K0 (z) exp4

��
2�"
2

�
log2

�
1

1� z

��
f = 0; (3.0.20)

where K0;K1 and K2 are analytic functions in the unit disc D such that8>>>><>>>>:
�M;[3;2] (K0) > 2 and jK0j > 1:

�M;[3;2] (K1) < 1 and jK1j < 1:

�M;[3;2] (K2) < 1 and jK2j < 1:

Let H = fz 2 C : jzj = r < 1 and arg z = 0g � D a set of complex numbers satisfying

densD fjzj : z 2 Hg = 1 > 0:

In the equation (3:0:20) we have for all " (0 < " < 1) su¢ ciently small :
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A0 (z) = K0 (z) exp4

��
2� "

2

�
log2

�
1

1� z

��
, Ai (z) = Ki (z) exp4

�
(2� 2") log2

�
1

1� z

��
;

i = 1; 2; then we get

max
�
�M;[3;2] (A1) ; �M;[3;2] (A2)

	
< �M;[3;2] (A0) :

In the other hand

jA0 (z)j = jK0 (z)j
����exp4��2� "

2

�
log2

�
1

1� z

������
> exp4

��
2� "

2

�
log2

�
1

1� r

��
;

=) log4 jA0 (z)j
log2

�
1
1�r

� > 2� "

2
=) lim inf

r!1�;z2H

log4 jA0 (z)j
log2

�
1
1�r

� > 2� "

2
> 2� ";

and

jAi (z)j = jKi (z)j
����exp4�(2� 2") log2� 1

1� z

������
< exp4

�
(2� 2") log2

�
1

1� r

��
; i = 1; 2;

az r ! 1� for z 2 H:

It is clear that the conditions of Theorem 2.1.7 hold with � = 2; p = 3 and q = 2 on the set

H such that densD fjzj : z 2 Hg > 0:

By Theorem 3.0.3, every meromorphic (or analytic) solution f 6� 0 of equation (3:0:20) satis-

�es

��[3;2]

�
f (j) � z

�
= ��[3;2] (f � z) = �[3;2] (f) =1;

and

��[4;2]

�
f (j) � z

�
= ��[4;2] (f � z) = �[4;2] (f) > 2; (j = 1; 2; :::) :



CONCLUSION

Overall, the subject of this thesis was devoted to the growth and �xed points of solutions of

linear di¤erential equations of the form

Ak (z) f
(k) +Ak�1 (z) f

(k�1) + � � �+A1 (z) f 0 +A0 (z) f = 0;

in the case where Ai (z) 6� 0 (i = 0; 1; :::; k and k > 2) are analytic functions in the unit disc by

using the concept of [p; q]-order.

During this work, we mentioned some results, in which we studied the [p; q]-order and the

[p; q]-exponent of convergence of the sequence of distinct �xed points of solutions and their ar-

bitrary order derivatives of general high-order linear di¤erential equations cited above, and this

leads us to ask the following questions:

Is it possible to obtain similar results for a sector of the unit disc?

And can we generalize the results when the coe¢ cients are meromorphic functions and for

non-homogeneous linear di¤erential equations? And under what conditions would this

generalization be possible?
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