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Introduction

Nevanlinna theory was created to provide a quantitative measure of the value dis-

tribution of meromorphic functions. This theory originated over ninety years ago

and still plays a very important role in the study of solutions of linar/non-linear

di¤erential equations in the complex domain.

This thesis is divided into introduction and two chapters. In the �rst chapter, we

shall adopt the standard notations in Nevanlinna�s value distribution theory of mero-

morphic functions. For example, the characteristic function T (r; f), the counting

function of the poles N(r; f), and the proximity function m(r; f) (see, [4],[3]). We

use �(f) to denote the order of growth of f and �(f) to denote the exponent of

convergence of zeros of f . The �rst and the second fundamental theorems are main

parts of the theory. The �rst main theorem gives an upper bound for the counting

function N
�
r; 1
f�a

�
for any a 2 C and for large r, while the second main theorem

provides a lower bound on the sum of any �nite collection of counting functions

N
�
r; 1
f�aj

�
where aj 2 C and large r. In addition the identity

m

�
r;
f 0

f

�
= o (T (r; f)) ; r !1 (1)

is very important in Nevanlinna theory. Relation (1) is called the lemma on the

logarithmic derivative and it is an essential part of the proof of the second main

theorem. Finally, we recall an identity originally due to Valiron [8] and later gen-
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eralized by Mohon�ko [6], has proved to be an extremely useful tool in the study of

meromorphic solutions of di¤erential, di¤erence and functional equations.

In the second chapter, we study the the non-linear di¤erential equation

f (z)n0 (f 0 (z))
n1 (f 00 (z))

n2 :::
�
f (k) (z)

�nk
= H(z);

where H(z) is a non-vanishing entire function, n0; n1; :::; nk are non-negative integers

such that n0nk � 1: In fact, we prove that any non-constant entire solution of the

above equation has the same growth rare as H(z):

2



Chapter 1

Nevanlinna theory of meromorphic

functions

This chapter is devoted to reviewing the basic facts and notations in the Nevanlinna

theory needed for the material included in this thesis; for more details, we refer the

reader to ([4]; [3]) :

1.1 Poisson-Jensen and Jensen formulas

The starting point for Nevanlinna�s theory is the following Poisson-Jensen formula.

Theorem 1.1 (Poisson-Jensen formula) [4] Let f (z) be a meromorphic function

such that f(0) 6= 0;1 and let a1; a2; : : : (resp. b1; b2; : : :) denote its zeros (resp.

poles); each taken into account according to its multiplicity. If z = rei� and 0 � r <

R <1, then

log jf(z)j = 1

2�

Z 2�

0

log
��f(Rei')�� R2 � r2

R2 � 2rR cos(� � ') + r2d'

+
X
jaj j<R

log

����R(z � aj)R2 � ajz

����� X
jbkj<R

log

����R(z � bk)R2 � bkz

���� : (1.1)
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In partiluclar, by taking z = 0; we may derive the so-called Jensen formula.

Theorem 1.2 (Jensen formula) [4] Let f (z) be a meromorphic function such that

f(0) 6= 0;1 and let a1; a2; : : : (resp. b1; b2; : : :) denote its zeros (resp. poles); each

taken into account according to its multiplicity. Then, we have

log jf(0)j = 1

2�

Z 2�

0

log
��f(rei')�� d'+ X

jbkj<r

log

�
r

jbkj

�
�
X
jaij<r

log

�
r

jaij

�
: (1.2)

Proof. We give the proof for the case that f (z) has no zeros or poles on jzj = r:

Denote

g (z) := f (z)

Q
jaj j<r

r2��ajz
r(z�aj)Q

jbj j<r

r2��bjz
r(z�bj)

:

Then we have g (z) 6= 0;1 in jzj � r , hence log jg (z)j is a harmonic function. By

the mean value property of classical harmonic functions,

ln jg (0)j = 1

2�

2�Z
0

ln
��g �rei'��� d': (1.3)

But since

jg (0)j = jf (0)j

Q
jaj j<r

r
jaj jQ

jbj j<r

r
jbj j
;

we get

ln jg (0)j = ln jf(0)j+
X
jaj j<r

ln
r

jajj
�
X
jbj j<r

ln
r

jbjj
: (1.4)

Finally, for any z = rei'; we have

���� r2 � �ajzr (z � aj)

���� = ���� r2 � �bjzr (z � bj)

���� = ���� r2 � �ajrei'r (rei' � aj)

���� = ���� r2 � �bjrei'r (rei' � bj)

���� = 1;
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for all aj; bj; hence jg (rei')j = jf (rei')j :Combining this fact with (1:3) and (1:4),

we obtain the assertion.

1.2 Nevanlinna characteristic functions

Before we de�ne the so-called Nevanlinna characteristic function, we need �rst

to introduce the concept of the truncated logarithm denoted by log+ x. Indeed, for

a positive real number x; the truncated logarithm log+ x is de�ned by

log+ x := max flog x ; 0g =

8><>: log x if x > 1:

0 if 0 � x � 1:

Basic properties of this truncated logarithm are contained in the following lemmas.

Lemma 1.1 [4] We have the following properties :

a) log x � log+ x (x � 0):

b) log+ x � log+ y (0 � x � y):

c) log x = log+ x� log+ 1
x
(x > 0):

d) jlog xj = log+ x+ log+ 1
x
(x > 0):

e) log+
 

nY
j=1

xj

!
�

nX
j=1

log+ xj (xj � 0; j = 1; : : : ; n):

f) log+
 

nX
j=1

xj

!
�

nX
j=1

log+ xj + log n (xj � 0; j = 1; : : : ; n):

Proof. (a) and (b) are immediate consequences of the de�nition of truncated log-

arithme.
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c) We have

log+ x� log+ 1
x
= max (log x; 0)�max

�
log

1

x
; 0

�
= max (log x; 0)�max(� log x; 0)

= max(log x; 0) + min(log x; 0)

= log x:

d) For any real number x � 0; we have

log +x+ log +
1

x
= max (log x; 0) + max

�
log

1

x
; 0

�
= max (log x; 0) + max(� log x; 0)

= max(log x; 0)�min(log x; 0)

= jlog xj :

e) Assume that
mY
j=1

xj > 1; since the case
mY
j=1

xj � 1 is trivial. Now, by making use

of (a) we have

log+

 
mY
j=1

xj

!
= log

 
mY
j=1

xj

!

=

mX
j=1

log xj

�
mX
j=1

log+ xj :

6



f) From (b) and (e) above, we obtain

log+

 
mX
j=1

xj

!
� log +

�
m max

1�j�m
xj

�
� logm+ log+

�
max
1�j�m

xj

�
� logm+

mX
j=1

log+ xj:

Lemma 1.2 [3] For all a 2 C, we have

log+ jaj = 1

2�

Z 2�

0

log
��a� ei��� d�: (1.5)

Proof. Denote f(z) = a � z; and suppose that jaj < 1: By using Jensen formula

(1:2) with r = 1; we obtain

log jaj = 1

2�

Z 2�

0

log
��f(ei�)�� d� � log 1jaj

=
1

2�

Z 2�

0

log
��a� ei��� d� + log jaj ;

hence,
1

2�

Z 2�

0

log
��a� ei��� d� = 0 = log+ jaj :

If jaj � 1; then f has no zeros in the disc jzj < 1: Therefore,

log+ jaj = log jaj = 1

2�

Z 2�

0

log
��a� ei��� d�:

In order to de�ne the characteristic function of Nevanlinna,we need to de�ne the

Nevanlinna counting functionN (r; f) and the Nevanlinna proximity functionm (r; f).
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De�nition 1.1 (Unintegrated counting function) [4] Let a 2 C and let f be a

meromorphic function such that f 6� a: Then,

� n(r; a; f) denotes the number of roots of the equation f(z) = a in the disc jzj � r;

each root is counted according to its multiplicity.

� In addition, n(r;1; f) denotes the number of poles of f in the disc jzj � r; each

pole is counted according to its multiplicity.

De�nition 1.2 (Counting function) [4] Let f (z) be a meromorphic function. For

a 2 C, We de�ne counting function by

N(r; a; f) = N

�
r;

1

f � a

�
:=

Z r

0

n(t; a; f)� n(0; a; f)
t

dt+ n(0; a; f) log r;

provided that f (z) 6� a; and

N(r;1; f) = N (r; f) :=
Z r

0

n(t;1; f)� n(0;1; f)
t

dt+ n(0;1; f) log r:

Lemma 1.3 [4] Let f (z) be a meromorphic function with a-points �1; �2; : : : ; �n in

jzj � r such that

0 < j�1j � j�2j � � � � � j�nj � r;

each counted according to its multiplicity. Then

Z r

0

n(t; a; f)

t
dt =

Z r

0

n(t; a; f)� n(0; a; f)
t

dt

=
X

0<j�ij�r

log
r

j�ij
: (1.6)
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Proof. Denoting ri = j�ij ; for i = 1; :::; n; we obtain

X
0<j�ij�r

log
r

j�ij
=

nX
i=1

log
r

ri
= log

rn

r1:::rn
= n log r �

nX
i=1

log ri

=

n�1X
i=1

i(log ri+1 � log ri) + n(log r � log rn)

=

n�1X
i=1

i

ri+1Z
ri

dt

t
+ n

rZ
rn

dt

t
=

rZ
0

n(t; a)

t
dt:

The following result plays a key role in the proof of the �rst main theorem of Nevan-

linna

Proposition 1.1 [4] Let f (z) be a meromorphic function with the Laurent expan-

sion

f(z) =
+1X
j=m

cjz
j, cm 6= 0, m 2 Z.

Then

log jcmj =
1

2�

Z 2�

0

log
��f(rei')�� d'+N(r; f)�N �r; 1

f

�
:

Proof. De�ne the meromorphic function h (z) by setting

h(z) := f(z)z�m; z 2 C

Clearly, m = n(0; 0; f)� n(0;1; f) and h(0) 6= 0;1: The functions h (z) and f (z)

have the same poles and zeros in 0 < jzj � r: The Jensen formula, together with

9



Lemma 1:3, yields

log jcmj = log jh(0)j

=
1

2�

Z 2�

0

log
��h(rei')�� d'+ X

jbkj<r

log

�
r

jbkj

�
�
X
jaij<r

log

�
r

jaij

�

=
1

2�

Z 2�

0

log
��f(rei')r�m�� d'

+

rZ
0

n(t;1; f)� n(0;1; f)
t

dt�
rZ
0

n(t; 0; f)� n(0; 0; f)
t

dt

=
1

2�

Z 2�

0

log
��f(rei')�� d'�m log r

+

rZ
0

n(t;1; f)� n(0;1; f)
t

dt�
rZ
0

n(t; 0; f)� n(0; 0; f)
t

dt

=
1

2�

Z 2�

0

log
��f(rei')�� d'+� [n(0; 0; f)� n(0;1; f)] log r

+

rZ
0

n(t;1; f)� n(0;1; f)
t

dt�
rZ
0

n(t; 0; f)� n(0; 0; f)
t

dt

=
1

2�

Z 2�

0

log
��f(rei')�� d'+N(r; f)�N �r; 1

f

�
:

De�nition 1.3 (Proximity function) [4] Let f (z) be a meromorphic function.

For a 2 C, we de�ne the proximity function of f (z) by

m(r; a; f) = m

�
r;

1

f � a

�
:=

1

2�

Z 2�

0

log+
1

jf(rei')� ajd';

provided that f (z) 6� a; and

m(r;1; f) = m (r; f) := 1

2�

Z 2�

0

log+
��f(rei')�� d':

10



Now, we are ready to de�ne the characteristic function of Nevanlinna T (r; f) :

De�nition 1.4 (Characteristic function ) [4] For a meromorphic function f (z),

we de�ne its characteristic function as

T (r; f) := m(r; f) +N(r; f):

Remark 1.1 Observe that if f (z) is an entire function, which means that it has no

poles within the disc jzj � r; and so N (r; f) = 0: Therefore,

T (r; f) = m (r; f) :

Example 1.1 For the function f(z) = ez; we have N(r; f) = 0: On the other hand,

m(r; f) =
1

2�

Z 2�

0

log+
��f(rei')�� d'

=
1

2�

Z 2�

0

log+
���erei'��� d'

=
1

2�

Z �
2

��
2

r cos'd'

=
r

�
:

Hence,

T (r; ez) = m(r; ez) +N(r; ez) =
r

�
+ 0 =

r

�
:

Next, we present some elementary properties of the characteristic functions.

Proposition 1.2 [4] Let f (z) ; f1 (z) ; : : : ; fn (z) (n � 1) be meromorphic functions

and a; b; c and d be complex constants such that ad� bc 6= 0: Then

1.

T

 
r;

nY
i=1

fi

!
�

nX
i=1

T (r; fi) :

11



2.

T

 
r;

nX
i=1

fi

!
�

nX
i=1

T (r; fi) + log n:

3.

T (r; fm) = mT (r; f) ; 8m 2 N:

4.

T

�
r;
af + b

cf + d

�
= T (r; f) +O (1) as r ! +1 , f 6� �d

c
:

Example 1.2 Let f(z) = tan z; we obtain

f(z) = tan z =
sin z

cos z
=
eiz � e�iz

2i

2

eiz + e�iz
= �ie

2iz � 1
e2iz + 1

:

Hence, by making use of (4) ; we have

T (r; f) = T (r;�ie
2iz � 1
e2iz + 1

) = T (r; e2iz) +O(1) =
2r

�
+O(1):

Proposition 1.3 If f (z) is a transcendental meromorphic function, then

lim inf
r!1

T (r; f)

log r
=1:

In other words, log r = o (T (r; f)) ; as r !1:

The following result due to Cartan tells us that on average the integrated counting

function is larger than the proximity function, when we allow the target values vary

over the boundary of a disc.

Theorem 1.3 (Cartan) ([3]) Suppose that f is meromorphic in jzj < R. Then

T (r; f) =
1

2�

Z 2�

0

N
�
r; ei�; f

�
d� + log+ jf(0)j , (0 < r < R): (1.7)

12



Proof. By applying the Jensen formula (1:2) for the function f(z)� ei�; we obtain

log
��f(0)� ei��� = 1

2�

Z 2�

0

log
��f(rei')� ei��� d'+N (r; f)�N �r; ei�; f� : (1.8)

Intergarting both sides of (1:8) with respect to �; yields

1

2�

Z 2�

0

log
��f(0)� ei��� d� = 1

2�

Z 2�

0

�
1

2�

Z 2�

0

log
��f(rei')� ei��� d'� d�

+N (r; f)� 1

2�

Z 2�

0

N
�
r; ei�; f

�
d�

=
1

2�

Z 2�

0

�
1

2�

Z 2�

0

log
��f(rei')� ei��� d�� d'

+N (r; f)� 1

2�

Z 2�

0

N
�
r; ei�; f

�
d�:

By using (1:5) ; we deduce

log+ jf(0)j = 1

2�

Z 2�

0

log+
��f(rei')�� d'+N (r; f)� 1

2�

Z 2�

0

N
�
r; ei�; f

�
d�

= m(r; f) +N (r; f)� 1

2�

Z 2�

0

N
�
r; ei�; f

�
d�

= T (r; f)� 1

2�

Z 2�

0

N
�
r; ei�; f

�
d�:

Hence, the formula (1:7) follows:

13



1.3 The �rst main theorem

We now move on to some essential theorems of Nevanlinna theory on which many of

our subsequent results are based. We start with the so-called �rst main theorem of

Nevanlinna.

Theorem 1.4 (First main theorem of Nevanlinna) [4] Let f (z) be a meromorphic

function with the Laurent expansion

f(z)� a =
+1X
j=m

cjz
j, cm 6= 0, m 2 Z, a 2 C:

Then, we have

T

�
r;

1

f � a

�
= T (r; f)� log jcmj+ '(r; a) (1.9)

where j'(r; a)j � log+ jaj+ log 2:

Proof. Assume �rst a = 0. By Lemma 1:1 and Proposition 1:1; we obtain

log jcmj =
1

2�

2�Z
0

log
��f(rei�)�� d� +N(r; f)�N �r; 1

f

�

=
1

2�

2�Z
0

log+
��f(rei�)�� d� � 1

2�

2�Z
0

log+
1

jf(rei�)jd� +N(r; f)�N
�
r;
1

f

�

= m(r; f)�m
�
r;
1

f

�
+N(r; f)�N

�
r;
1

f

�
:

= T (r; f)� T
�
r;
1

f

�

Hence

T (r;
1

f
) = T (r; f)� log jcmj; (1.10)

14



which is the assertion with '(r; 0) = 0. Let�s deal now with the case a 6= 0: To satrt

with, we de�ne h (z) := f (z)� a. Clearly

N

�
r;
1

h

�
= N

�
r;

1

f � a

�
; N (r; h) = N(r; f)andm

�
r;
1

h

�
= m

�
r;

1

f � a

�
:

Recall that

log+ jh (z)j = log+ jf (z)� aj � log+ jf (z)j+ log+ jaj+ log 2:

log+ jf (z)j = log+ jh+ aj � log+ jhj+ log+ jaj+ log 2:

Integrating the above two inequalities; we see that

m(r; h) � m(r; f) + log+ jaj+ log 2

and

m(r; f) � m(r; h) + log + jaj+ log 2:

Hence '(r; a) := m(r; h)�m(r; f) satis�es

�(log + jaj+ log 2) � '(r; a) � log + jaj+ log 2, j'(r; a)j � log + jaj+ log 2:

15



Applying (1:10) for h (z) we obtain

T (r;
1

f � a) = T (r;
1

h
) = m(r;

1

h
) +N(r;

1

h
)

= m(r; h) +N(r; h)� log jcmj

= m(r; f) + '(r; a) +N(r; f)� log jcmj

= T (r; f) + '(r; a)� log jcmj :

Remark 1.2 The �rst maun theorem may be expressed as

T (r;
1

f � a) = T (r; f) +O(1); r !1 (1.11)

for all a 2 C:

When f (z) is an entire function, the maximum modulus M(r; f) := max
jzj=r

jf(z)j and

T (r; f) may be related by the following proposition:

Proposition 1.4 [4] Let g (z) be an entire function and assume that 0 < r < R <1

and that the maximum modulusM(r; g) = maxjzj=r jg(z)j; satis�esM(r; g) � 1: Then

T (r; g) � logM(r; g) � R + r

R� rT (R; g):

Proof. The �rst inequality is trivial:

T (r; g) = m(r; g) =
1

2�

2�Z
0

log +
��g �rei'��� d' � log+M(r; g) = logM(r; g):

To prove the second inequality, take z0 such that z0 = rei� and that jg(z0)j =M(r; g):
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Recall that ����R(z � g)R2 � �aiz

���� < 1
whenever jzj < R: Therefore, the Poisson-Jensen formula results in

logM(r; g) = log jg(z0)j �
1

2�

2�Z
0

R2 � r2
R2 � 2Rr cos(� � ') + r2 log jg(Re

i')jd'

� 1

2�

2�Z
0

(R� r)(R + r)
(R� r)2 + 2Rr(1� cos(� � ')) log

+ jg(Rei')jd'

� R + r

R� rm(R; g) =
R + r

R� rT (R; g):

1.4 Growth order and maximummodulus of mero-

morphic functions

The aim of this section is to establish a link between the maximum modulus function

M(r; f) and the Nevanlinna characteristic T (r; f) in the case when f is an entire

functions. In fact, we show that for entire functions in the complex plane both

functions give a similar measure of growth.

De�nition 1.5 (Order of growth) ([4]; [3]) Let f be a meromorphic function. The

order of growth of f is de�ned by

�(f) := lim
r!+1

log T (r; f)

log r
:
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Example 1.3 Let function f (z) =
ez + 1

ez � 1 . We have,

�(f (z)) = lim
r!+1

log
�
r
�
+O (1)

�
log r

= 1:

The following properties can be proved easily by using the limit de�nition.

Theorem 1.5 Let f; g be nonconstant meromorphic functions. Then

1. � (f + g) � max f�(f);�(g)g :

2. � (fg) � max f�(f);�(g)g :

3. If �(g) < �(f) then � (f + g) = �(fg) = �(f):

By using Proposition 1.4, we can show that T (r; f) and logM(r; f) have the same

gowth rate.

Corollary 1.1 Let f be an entire function. Then

�(f) = lim
r!+1

log T (r; f)

log r
= lim

r!+1

log logM (r; f)

log r
:

In order to measure the growth density of the zeros of f , we introduce the concept

of exponent of convergence.

De�nition 1.6 (The exponent of convergence) [3] Let f be a meromorphic func-

tion. Then the exponent of convergence of the sequence of zeros of f(z) is de�ned

by

� (f) := lim sup
r!+1

log+N
�
r; 1
f

�
log r

;

Where N(r; 1
f
) is the counting function of zeros of f(z) in fz : jzj < rg :
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1.5 Second main theorem

One of the most important technical results of Nevanlinna theory is the lemma of

the logarithmic derivative. This result asserts that the proximity function of the

logarithmic derivative of a meromorphic function f should be small compared to

the characteristic function of f . This result is essential in the classical proof of the

second main theorem of Nevanlinna theory.

Theorem 1.6 (Lemma on logarithmic derivative) [3] Let f be a transcendental

meromorphic function. Then

m

�
r;
f 0

f

�
= S (r; f) ;

where S (r; f) := O (log T (r; f) + log r) outside of a possible exceptional set E �

[0;+1) with �nite linear measure, i.e.,
R
E
dt < 1. In addition, if f is of �nite

order of growth, then

m

�
r;
f 0

f

�
= O(log r):

The following is an immediate consequence of the lemma on the logarithmic deriv-

ative.

Corollary 1.2 [3] Let f be a transcendental meromorphic function and k � 1 be an

integer. Then

m

�
r;
f (k)

f

�
= S (r; f) ;

and

T
�
r; f (k)

�
� (k + 1)T (r; f) + S (r; f) :
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Proof. We prove this Corollary by induction. When k = 1; the �rst statement is

just the lemma on the logarithmic derivative. Assume now that we have proved

m

�
r;
f (l)

f

�
= S(r; f);

for some l � 1: Then

m
�
r; f (l)

�
� m (r; f) +m

�
r;
f (l)

f

�
= m (r; f) + S (r; f) :

On the other hand, if f has a pole of order p at some point z0, then f (l) has a pole

of order l + p � l + 1 at z0: It follows that

N
�
r; f (l)

�
� (l + 1)N(r; f):

So

T
�
r; f (l)

�
� (l + 1)T (r; f) + S(r; f):

This is the second claim in the statement of the lemma in the case k = l: Hence

m

�
r;
f (l+1)

f (l)

�
= S(r; f (l)) = S(r; f):

Finally

m

�
r;
f (l+1)

f

�
� m

�
r;
f (l+1)

f (l)

�
+m

�
r;
f (l)

f

�
= S(r; f) + S(r; f) = S(r; f):

From now on, the notation S(r; f) will stands for any quantity that satis�es

S(r; f) = o(T (r; f);
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as r !1; outiside a possible exceptional set of �nite linear measure. Observe, that

O (log T (r; f) + log r) = o(T (r; f); r !1:

We are ready now to state the second main theorem of Nevanlinna.

Theorem 1.7 (Second main theorem) [4] Let f (z) be a non-constant meromorphic

function, let q � 2 and let a1; :::; aq 2 C be distinct points. then

m (r; f) +

qX
n=1

m

�
r;

1

f � an

�
� 2T (r; f) + S(r; f):

Corollary 1.3 [3] Let f (z) be meromorphic and non-constant, and let a1; a2; :::; aq 2

C be q � 2 distinct points.Then

(q � 1)T (r; f) � N (r; f) +
qX
i=1

N

�
r;

1

f � ai

�
+ S (r; f) :

Proof. Suppose �rst that ai 2 C for all i 2 f1; :::; qg : We add
Pq

i=1N
�
r; 1
f�ai

�
to

the left and right hand side of the inequality in Theorem 1.7. We have

T (r; f) +

qX
i=1

T

�
r;

1

f � ai

�
� 2T (r; f) +N (r; f) +

qX
i=1

N

�
r;

1

f � ai

�
+ S (r; f) ;

by the theorem 1.4, we obtain

(q � 1)T (r; f) � N (r; f) +
qX
i=1

N

�
r;

1

f � ai

�
+ S (r; f) :
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1.6 Some applications in di¤erential equations

We have already developed enough tools to be able to conclude some remarkable

global results about solutions of di¤erential equations.

Theorem 1.8 [2]Every transcendental meromorphic solution of the �rst Painlevé

equation,

y00 � 6y2 + z = 0 (1.12)

has in�nitely many poles.

Proof. Write equation (1:12) as

y2 = 6�1
�
y
y00

y
+ z

�
;

and recall that m (r; y2) = 2m (r; y) : Hence

2m (r; y) = m
�
r; y2

�
= m

�
r; 6�1

�
y
y00

y
+ z

��
� m

�
r; 6�1

�
+m

�
r; y
y00

y
+ z

�
� m

�
r; y
y00

y

�
+m (r; z) + log 2

� m (r; y) +m
�
r;
y00

y

�
+O (log r)

= m (r; y) + S (r; y) +O (log r) :

So m (r; y) = S (r; y) +O (log r) : if y has only �nitely many poles, that is N(r; y) =

O (log r) ;then

T (r; y) = m(r; y) +N(r; y) = S (r; y) +O(log r):
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From Proposition 1:3 that if y is transcendental then log r = o (T (r; y)) : Therefore

our solution y satis�es T (r; y) = S(r; y); which means that

T (r; y) = o (T (r; y))

which is clearly a contradiction.

The Valiron-Mohon�ko theorem has been proven to be an extremely useful tool in

the study of meromorphic solutions of di¤erential. It is stated as follows.

Theorem 1.9 (Valiron-Mohon�ko ) ([3]; [8]) Let

R (z; f(z)) :=
a0(z) + a1(z)f(z) + :::+ ap(z)f

p(z)

b0(z) + b1(z)f(z) + :::+ bq(z)f q(z)
;

be a rational function of f (z) of degree d = max (p; q) with coe¢ cients ai (z) and

bj (z) satisfying

T (r; ai) = S(r; f) and T (r; bj) = S(r; f):

Then

T (r; R (z; f(z))) = dT (r; f) + S(r; f):

The next application is originally due to Malmquist from 1913. An alternate proof

and a generalization was given by Yosida using Nevanlinna theory in 1930�s.

Theorem 1.10 (Malmquist�s theorem ) ([5]; [3]) Let f (z) be a meromorphic

solution of the equation

f 0 (z) = R (z; f) :=
a0(z) + a1(z)f(z) + :::+ ap(z)f

p(z)

b0(z) + b1(z)f(z) + :::+ bq(z)f q(z)
; (1.13)

where the coe¢ cients ai (z) and bj (z) satisfy

T (r; ai) = S(r; f) and T (r; bj) = S(r; f);
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Then equation (1:13) reduces to the Riccati equation

f 0(z) = a0(z) + a1(z)f(z) + a2(z)f
2(z): (1.14)

Proof. Using the Valiron-Mohon�ko theorem and second part of Corollary 1:2 with

k = 1; we have

dT (r; f) + S(r; f) = T (r; R (z; f(z))) = T (r; f 0) � 2T (r; f) + S(r; f):

and so d � 2: Hence (1:13) takes the form

f 0 (z) =
a0(z) + a1(z)f(z) + a2(z)f

2(z)

b0(z) + b1(z)f(z) + b2(z)f 2(z)
; (1.15)

where the coe¢ cients are rational. Choose � 2 C such that

a0(z) + a1(z)�+ a2(z)�
2 6� 0;

and

b0(z) + b1(z)�+ b2(z)�
2 6� 0:

Then, by substituting

! (z) =
1

f (z)� �

into (1:15), it follows that

�
1

!
+ �

�0
= �!

0

!2
=
a0(z) + a1(z) (1=! + �) + a2(z) (1=! + �)

2

b0(z) + b1(z) (1=! + �) + b2(z) (1=! + �)
2

=
a0(z)!

2 + a1(z) (1 + �!) + a2(z) (1 + �!)
2

b0(z)!2 + b1(z) (1 + �!) + b2(z) (1 + �!)
2

=
(a0(z) + a1(z)�+ a2(z)�

2)!2 + (a1(z) + 2a2(z)�)! + a2(z)

(b0(z) + b1(z)�+ b2(z)�2)!2 + (b1(z) + 2b2(z)�)! + b2(z)
;
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where the right hand side is irreducible, since R (z; f) is irreducible.

Therefore,

!0 = Q (z; !) ; (1.16)

where

Q (z; !) = �!
2 [(a0(z) + a1(z)�+ a2(z)�

2)!2 + (a1(z) + 2a2(z)�)! + a2(z)]

(b0(z) + b1(z)�+ b2(z)�2)!2 + (b1(z) + 2b2(z)�)! + b2(z)
:

Now, by (1:16), it follows that

2T (r; !) + S (r; !) � T (r; !0) = T (r;Q (z; !))

= deg! (Q (z; !))T (r; !) +O (log r) ;

and so deg! (Q (z; !)) � 2: But this is possible only if (b1(z) + 2b2(z)�) � 0 � b2 (z) ;

and so b1(z) � b2(z) � 0 yielding the assertion.
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Chapter 2

Entire solutions of certain classes

of non-linear di¤erential equations

2.1 Introduction

Nevanlinna�s value distribution theory has found many applications in the study

of entire and meromorphic solutions of non-linear di¤erential equations. In this

chapter we take a look at a few examples of such applications, and introduce some

rather general tools for studying the value distribution of meromorphic solutions of

di¤erential equations. In fact, we study the the non-linear di¤erential equation

f (z)n0 (f 0 (z))
n1 (f 00 (z))

n2 :::
�
f (k) (z)

�nk
= H(z); (2.1)

where H(z) is a non-vanishing entire function, n0; n1; :::; nk are non-negative integers

such that n0nk � 1:

26



2.2 Growth of entire solutions

It is natural to ask if there exists a relation betweenn the growth of solutions of (2:1)

and that of H (z) : Our next result shows that they have the same growth rate.

Theorem 2.1 [1] If f is an entire solution of a monomial di¤erential equation (2:1),

then we have

1

q
T (r;H) + S(r; f) � T (r; f) � 1

n0
T (r;H) + S(r; f); (2.2)

where q = n0 + n1 + :::+ nk:

Proof. Let f be an entire solution of (2:1). It follows from the �rst statement of

Corollary 1.2, that for any entire function g; we have

T (r; g0) � T (r; g) + S(r; g)

From this and (2:1), we have

T (r;H) = T
�
r; fn0 (f 0)

n1 (f 00)
n2 :::

�
f (k)
�nk�

� T (r; fn0) + T
�
r; (f 0)

n1
�
+ :::+ T

�
r;
�
f (k)
�nk�

= n0T (r; f) + n1T (r; f
0) + :::+ nkT

�
r; f (k)

�
� (n0 + n1 + :::+ nk)T (r; f) + S(r; f)

= qT (r; f) + S(r; f);

where q := n0 + n1 + :::+ nk: This proves the left hand side of (2:2)

1

q
T (r;H) + S(r; f) � T (r; f): (2.3)
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It remains now to prove the second estimate. First, we may write equation (2:1) as

follows

f (z)q =
(f (z))q�n0

(f 0 (z))n1 (f 00 (z))n2 ::: (f (k) (z))
nkH(z);

wich implies that

qT (r; f) = T (r; f q) = T

�
r;

f q�n0

(f 0)n1 (f 00)n2 ::: (f (k))
nkH

�
� T (r;H) + T

�
r;

f q�n0

(f 0)n1 (f 00)n2 ::: (f (k))
nk

�
+O(1):

Then form Theorem 1.4

qT (r; f) � T (r;H) + T (r; !) +O(1); (2.4)

where

! :=
(f 0 (z))n1 (f 00 (z))n2 :::

�
f (k) (z)

�nk
(f (z))q�n0

:

Since q � n0 = n1 + :::+ nk; we may rewrite ! as

! =

�
f 0 (z)

f (z)

�n1 �f 00 (z)
f (z)

�n2
:::

�
f (k) (z)

f (z)

�nk
: (2.5)

Therefore, by using the lemma on the logarithmic derivatives, we obtain

m(r; !) = m

�
r;

�
f 0

f

�n1 �f 00
f

�n2
:::

�
f (k)

f

�nk�
�

kX
i=1

nim

�
r;
f (i)

f

�
= S(r; f):

(2.6)

Hence, By (2:4) and (2:6) ; we conclude

qT (r; f) � T (r;H) +N(r; !) + S(r; f): (2.7)
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We now estimate N(r; !) by means of N(r; 1
H
). Let z0 be a pole of !. Then form

(2:5), z0 must be a zero of f , and form (2:1), z0 must be a zero of H (z) : Let �

denote the multiplicity of the pole z0 of !, let s denote the multiplicity of the zero

z0 of f , and let � denote the multiplicity of the zero z0 of H (z) :We distibguish two

cases:

� If s > k; then by (2:5), we obtain

� =
kX
j=1

jnj =

kX
j=1

(j + k � k)nj =
kX
j=1

(j � k)nj +
kX
j=1

knj

=

kX
j=1

(j � k)nj + k (q � n0) :

Hence,

� = kq �
kX
j=0

(k � j)nj;

and using (2:1), we have

� =
kX
j=0

(s� j)nj �
k�1X
j=0

(s� j)nj �
k�1X
j=0

(k � j)nj;

as s > k: Therefore,
1

�
� 1

k�1X
j=0

(k � j)nj

;

as k > 0: Multiplying the above inequality by �, yields that

�

�
� kq

k�1X
j=0

(k � j)nj

� 1:

29



Since
k�1X
j=0

(k � j)nj � kn0; we rewrite

�

�
� q

n0
� 1: (2.8)

� If 1 � s � k; Then by (2:5) ; we have

� �
s�1X
j=1

jnj + s

kX
j=s

nj

=

s�1X
j=1

jnj + s

 
q �

s�1X
j=0

nj

!

=
s�1X
j=0

jnj + sq �
s�1X
j=0

snj:

Hence,

� � sq �
s�1X
j=0

(s� j)nj;

and by (2:1), we get

� �
s�1X
j=0

(s� j)nj:

Therefore,
�

�
� sq

s�1X
j=0

(s� j)nj

� 1:

Since
s�1X
j=0

(s� j)nj � sn0; we rewrite

�

�
� q

n0
� 1: (2.9)

30



Since (2:8) and (2:9) cover all the possible values of s, we obtain that at every pole

z0 of !;
�

�
� q

n0
� 1:

Then, it follows that

N(r; !) �
�
q

n0
� 1
�
+N

�
r;
1

H

�
: (2.10)

Now let us rewrite the following using (2:10) into (2:7), we get

qT (r; f) �
�
q

n0
� 1
�
+N

�
r;
1

H

�
+ T (r;H) + S(r; f):

By Theorem 1.4,we obtain

N

�
r;
1

H

�
� T (r; 1

H
) = T (r;H) +O (1) ;

and

T (r; f) � 1

n0
T (r;H) + S(r; f): (2.11)

Using (2:3)and (2:11) we get the proof of the theorem.

The following results are immediate consequences of Theorem 2.1

Corollary 2.1 Let f be an entire function, and let

M [z; f ] := f (z)n0
�
f
0
(z)
�n1 �

f
00
(z)
�n2

:::
�
f (k) (z)

�nk
:

Then,

T (r;M) � qT (r; f) + S(r; f);
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where q = n0 + n1 + :::+ nk is the degree of M [z; f ]: In addition, if n0 � 1; we have

T (r; f) � 1

n0
T (r;M) + S(r; f):

Corollary 2.2 If f is an entire solution of a monomial di¤erential equation (2:1),

then

� (H) = � (f) :

We close this section by the following example which illustrates Theorem 2.1.

Example 2.1 Consider the di¤erential equation

H (z) =
nY
k=1

�
ez + (�1)k e�z

�
:

We see that this equation satis�es all hypotheses of Theorem 2.1. By calculation we

show that f(z) = ez + e�z is a solution of this equation and � (f) = 1: Then by

Corollary 2.2, we have

� (H) = � (f) = 1:

There are examples of (2:1) that possess entire solutions which satisfy the equality

T (r;H) � qT (r; f) + S(r; f): (2.12)

However, the next example shows that

2.3 Some remarks

Now, we give some examples to show that (2:12) does not always hold for equations

of the form (2:1). To sart with, we recall that Toppila [7] created a transcendental

entire function g that satis�es the following property:
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Proposition 2.1 For an absolute constant c satisfying 0 < c < 1; we have

T (r; g
0
) � cT (r; g) ; (2.13)

Theorem 2.2 for all r:

Consider the di¤erential equation (2:1) with H(z) = gg(k). Obviously, f = g is an

entire solution of this equation. Since g is entire, we have

T (r; g
(k)

) � T
�
r; g

0
�
+ S

�
r; g

0
�

Then from (2:13), we obtain

T (r;H) � T (r; g) + T
�
r; g

0
�
+ S

�
r; g

0
�
� (1 + c)T (r; g) + S (r; g) ;

which shows that (2:12)does not hold for this example.

We next use Toppila�s example to show that the factor 1
n0
in the right inequality in

(2:2) can not be replaced by 1
nj
for any j satisfying 1 � j � k: Consider the equation

fn0 (f 0)
n1 (f 00)

n2 :::
�
f (k)
�nk

= gn0 (g0)
n1 (g00)

n2 :::
�
g(k)
�nk
; (2.14)

where g is Toppila�s transcendental entire function which satis�es (2:13), k � 1;

n0 � 1 and nk � 1: Obviously, f = g is a solution of (2:14). Let j 2 f1; 2; :::; kg

where nj > 0: Set

H = gn0 (g0)
n1 (g0)

n2 :::
�
g(k)
�nk
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and q = n0 + n1 + :::+ nk: From elementary Nevanlinna estimations, we obtain

T (r;H) = T
�
r; gn0 (g0)

n1 (g00)
n2 :::

�
g(k)
�nk �

= T

 
r; gn0 (g0)

n1 (g00)
n2 :::

�
g(k)
�nk �g(j)�nj

(g(j))
nj

!

� (q � nj)T (r; g) + njT
�
r; g(j)

�
+ S(r; g)

� (q � nj)T (r; g) + njT (r; g0) + S(r; g0) + S(r; g) for j 2 f1; 2; :::; kg :

Then by (2:13), it follows that

T (r;H) � (q � nj)T (r; g) + cnjT (r; g) + S(r; g) (2.15)

� (q � nj + cnj)T (r; g) + S(r; g); (2.16)

where c is an constant that satis�es 0 < c < 1. We now choose the integers

n0; n1; :::; nk so that
q

nj
< 2� c: (2.17)

It is easy to see that integers n0; n1; :::; nk can be chosen so that (2:17) holds, because

2 � c is an absolute constant larger than 1 and q
nj
can be made as close to 1 as

desired by letting nj be arbitrarily large and keeping the other integers �xed. If we

now assume that

T (r; g) � 1

nj
T (r;H) + S(r; g); (2.18)

then by substituting (2:16) into (2:18), we obtain

T (r; g) �
�
q

nj
� 1 + c

�
T (r; g) + S(r; g);
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or �
2� c� q

nj

�
T (r; g) � S(r; g);

which is a contradiction, since

2� c� q

nj
> 0

from (2:17). This contradiction shows that (2:18) does not hold, which means that

we cannot replace 1
n0
with 1

nj
for any j satisfying 1 � j � k in the right inequality

in (2:2) :
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Conclusion

In this thesis we considered the di¤erential monomial

Hi(z) := f (z)
n0i (f 0 (z))

n1i (f 00 (z))
n2i :::

�
f (k) (z)

�nki
;

where f is an entire function, and showed that f and H have the same growth rate.

Indeed, we proved that

1

q
T (r;Hi) + S(r; f) � T (r; f) �

1

n0
T (r;Hi) + S(r; f);

where q = n0i + n1i + ::: + nki: This result could be of great use in the study of

non-linear di¤erential equations, in particular, the growth of solutions.

It is natural now to consider the growth problem of a general di¤erential polynomials,

i.e., a combination of di¤erential monomials. In other words, let

P (z; f) =

nX
i=1

�iHi(z);

where �i are some constants. The question is: under whet conditions f and P (z; f)

have the same growth rate? We hope to �nd an answer to this question in our future

work.
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