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INTRODUCTION

In mathematics and in physics, a minimal surface is a surface minimizes its area while
achieving certain conditions on board.



In elemental differentiel geometry, a minimal surface is a closed and bounded surface
of a real Euclidean space of dimension 3 with regular board minimizing the total area with
fixed contour.

In 1744, Leonhard Euler posed and solved the first minimal surface problem : finding
between all surfaces passing through two parallel circles, the one with the smallest surface. In
particular, as the study of minimum surfaces, L.Euler found that the only minimum surfaces
of revolution are planes and catenoids.

In 1760, Lagrange generalised Euler’s results for calculating variations for integrals to
one variable in the case of two variables. He sought to solve the following problem : "given a
closed curve of E3, to determine a minimum area having this curve as a boundary " such a
surface is called a minimum area.

In 1776, Meusnier showed that the differential equation obtained by Lagrange being
equivalent to a condition on the mean curvature : "an area is minimal if and only if its mean
curvature at any point is zero".

We have eight homogeneous spaces of dimension 3 : 3, H3, 93 S?xR, H*xR, SL (2,R), Nil3
and Sols. In particular, our study will be space H? x R.

In this brief we have made it possible to obtain classification results concerning the
minimum translation areas of two properly prolonged types in the H? x R space. From D.
W. Yoon’s article , we will address the following information :

Let H? be represented by the upper half-plane model {(x,y) € R?|y > 0} equipped
with the metric gy = (dz* + dy?) /y?. The space H?, with the group structure derived by
the composition of proper affine maps, is a Lie group and the metric gy is left invariant.
Therefore the Riemannian product space H? x R is a Lie group with respect to the operetion

and the left invariant product metric

2 2
= m + dz*.
Yy
My work is divided into two chapters :
In the first chapter we recall a number of definitions of a differential manifolds, map, atlas,
ect. We also report the definition of a group and Lie algebra, tanget space and vector fields,
rct. In section 1.6 we introduce the notion of a Riemannian manifolds and the connection of
Levi-Civita. We also write the curvature of Gauss and that of the mean curvature, ect.
In the second chapter we present the result concerning the classification of minimum areas
of type I and II in the H? x R space, according to the article by D.W.Yoon. We begin with
the study of the metric g and we calculate the symbols of Chtistoffel Ffj and the connecting

forms V, the first and second fundamental form, ect.



Chapitre 1

Riemannian manifold

In this chapter we present the basic concepts of the theory of differential geometry. We first
define topological and abstract manifold, differential maps (section 1.1.3). Next, we define and
give example of submanifolds of R (section 1.1.4). Moreover, the notions of tangent space,
vector fields, brackets, Lie group and Lie algebra are definies.

In section 1.6 we present the definitions of Riemannian manifolds, Riemannian metric. In
section 1.6.1 we introduce the concept of isometry, the first and second fundamental form,
Christoffel symbols Ff] In addition, we need to define what the cannonical connection, and
in section 1.6.5 we define the curvature average.

1.1 The notion of manifolds

Differential manifolds constitute the basic framework of differential topology and diffe-
rential geometry. The notion of differentiable manifold generalizes the differential and integral
calculus that we know how to define on a Euclidean space of dimension n (R™).

1.1.1 Differentiable manifolds

Let M be a paracompact topological space i.e M is separated and such that any open
covering admits a finer and locally finite open covering .

Definition 1. [//We say that M is a topological manifold of dimension n € N if any point
xr € M has an open neighborhood U homemorphic to R i.e there exists a one-to-one map
¢: R™ — U such that ¢ and its inverse ' be continuous.

Example 1. [7/R™ is trivially a topological manifold of dimension n.

Definition 2. [j/We say that the topological manifold M is of dimension "n" if and only if
YU C Mopen set of M there exists an open set O C R"™ of R" such that : U and O are
homeomorphe (i.e : 3f: U C M — O C R™ homeomorphism ) .

And (xq,...,2,) = ¢! (x) will be the coordinates of z. If (U, ) and (V1) are two local
maps such that the intersection U NV is non-empty then a point x € U NV will be identified
by its coordinates (z1,...,x,) in U and its coordinates (x},...,z)) in V.



Can we have
(z),...,x) =0 op(x,...,1,). (1.1.1)
The application ¢)~! o ¢ is called changing the coordinates of the map (U, ) to the map
(Vi9).
Definition 3. A map in a topological manifold M is a pair (U,p) such that :

1) U C M is an open set of M .
2) p: U C M — ¢(U) CR"is a homeomorophism.

1.1.2 Abstract Manifolds

Definition 4. [7/LetA = {(U;, ¢i)},cq be a collection of R™-valued charts on a set M. We
call A an R"-valued atlas of class CP if the following conditions are satisfied :

i) U U =M.
icA
(ii) The sets of the form ¢, (U; N U;) for i,j € A are all open in R™.
(ili) Whenever U; N U; is not empty, the map

oMot ¢ (U;NU) — ¢ (U;NU)
is a C? diffeomorphism (p > 1).

Definition 5. [5/The pairs (U, ¢;) are called the charts of the atlas {(U;, ¢;)}. A chart at
or around x € X s one whose domain contains x, and a chart centered at x is one mapping

x to the origin in R The local coordinates associated with a chart (Uy, ¢;) are the functions
Gir: Ui = R(1 <k <d) such that ¢; (x) = (¢i1 (x) ..., dia(x)).

Definition 6. [5/Let {(U;, ¢;)},c; be an atlas on M, let U be a subset of M and ¢: U — R
a bijection onto an open subset of R%. The pair (U, ¢) is said to be a chart compatible with the
atlas {(Ui, ¢i)},c; if the union {(U, @)} U {(Ui, ¢i)},c; is still an atlas. Two atlases (of same

dimension and differentiability class) are compatible if their union is still an atlas.

In order for (U, ¢) to be compatible with an atlas {(U;, ¢;)},.; it is necessary that each
¢ (UNU;) and ¢; (UNU;) be an open subset of R? and that the maps ¢ o ¢; ' and ¢! o ¢
be of class C? on their domains of definition.

Definition 7. A differntiable manifold is a pair (M, A) where M is a topological manifold,
and A a differentiable atlas on M .

Example 2. The sphere S™ = {x € R""Y| |z| = 1} is an n-manifold.

We construct an atlas {(Uy, ¢1), (Us, ¢2)} with the aid of a standard well-known map
called stereographic projection. Let U; = S™\ {(0,...,0,1)} and Uy = S™\ {(0,...,0,—1)}.



Note that U.NU; = S™. Let ¢1 (%1,$2,...7$n+1) = < L1 .. Ln > and qbg ((I)l,ZL'Q,...?CITn_f_l) =

1_$n+17 ’ ’ l_xn+1

< 1 co, ) . Then map ¢;: U; — R" is called stereographic projection. The inverse

1+wn+l 7 ) 1+$n+1

map ¢; " : R"® — U is defined by

2y1 AT 2Yn 1_ 2

Sur 1 Yyr A4l Yoyl +1 Yyi+1
=1 =1 =1 =1

¢1_1 (yla"'vyn) =

Both ¢; and ¢; " are continuous and hence ¢; is a homeomorphism.

The second coordinate chart (Us, ¢), stereographic projection from the south pole, is
given by ¢o = —¢; o (—Ign) where (—Ign) is multiplication by —Ig» on the sphere. Since
multiplication by —1 is a homeomorphism of the sphere to itself (its inverse is itself), the
map ¢y: Uy — R"™ is a homeomorphism.

Checking the compatibility conditions, we have

G20 ¢ (Y1, yn) = 5 (W1, Yn)

and ¢y 0 ¢! = ¢1 0 ¢, '. Hence, S™ is shown to be an n-manifold.
Compatibility is an equivalence relation. Thus we arrive at the definition of a manifold :

Definition 8. [5/A C? differentiable structure (p > 1) on a set M is an equivalence class of
d-dimensional atlases of class CP on M. A d-dimensional manifold of class C? is a set M
endowed with a C? differentiable structure. A chart on M is any chart belonging to any atlas
in the differentiable structure of M.

1.1.3 Differentiable Maps

Definition 9. [5/Let X and Y be manifolds, of dimension d and e and class C? and C,
respectively. Let p < inf (q,r). We say that a continuous map f: X — Y is of class CP, or
C? differentiable, or a C? morphism, if for every chart (U, ¢) at x € X and every chart (V1)
at f(z) €Y, the map o fop™t:p(UN f1(V)) = R® is of class CP. We will denote be
CP (X,Y) the set of C? differentiable maps from X into Y.

This definition, involving as it does all possible charts at = and f (z), is not always conve-
nient to use. The next theorem helps :

Theorem 1. Let X and Y be manifolds of dimension d and e, respectively, and class > p.
Let f: X =Y be a continuous map. The following conditions are equivalent :
(i) fis CP differentiable;
(ii) for every x € X, every chart (U, ¢) at = and every chart (V%) at f (z) such that
f (U) C V, the composition o fo¢~t: ¢ (U) — R is of class CP;
(iii) for every x € X, there exists a chart (U, ¢) at x and a chart (V) at f (x) such that
fWU)cVand vofop~tcCCP(e(U),Re).
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Proof. (i) = (ii) is immediate from the definition, just notice that f(U) C V implies
unft(v)=U.

(i) = (iii). Let (V1) be chart at f (z). Since f is continuous, f~! (V) is open in X and
contains z, by the definition of caninical topology there exists a chart (U, ¢) at = such that
UcC f~1(V), whence f(U) C V. If (ii) is true it follows that ¢ o f o ¢! is of class C? from
¢ (U) into Re.

(iii) = (i). Let (S, «) be a chart at z € X and (7, ) one at f (z) € Y. We must show that
the map 8o foa™!, from the open subset o (SN f~1 (T)) of R? into R®, is of class CP. It is
enough to show that it is C? on a neighborhood of each point of its domain.

Take u € o (SN f~1(T)) and z' = o~ (u) € S. Property (iii), applied to ', gives a chart
(U, ¢) at =" and a chart (V1) at f (z') such that f(U) C V and that ¢ o f o ¢~ is of class
C? on ¢ (U). Now we can write

Bofoa_lz(ﬁozﬁ_l)o(wofogb_l)o(¢ooz_1),

with the underdtanding that this only makes sense if each step in the composition is defined.
If we can prove that each step is defined and C? on a neighborhood of the image of u by the
previous steps, we will have shown that 3o foa~!is CP on a neighborhood of u, and we’ll
be done.

The coordinate change ¢ o a™': a(SNU) — ¢(SNU) is of class CP, and its domain
contains u = « (') . Next, 0o fo¢~!is of class C? on ¢ (U), and its domain contains ¢ (z'),
the image of u under ¢ o o', by the very choice of U, so ) o f o ¢! is of class C? on a
neighborhood of ¢ (x') .

Finally, 8o ¢! is a C? diffeomorphism between ¢ (T'NV) and S8(T' NV). Its domain
Y (T NV) contains the image ¢ (f (z')) of u under the composition so far, since f(z') € V
by our choice of V and z' € f~!(T) as the image of u € a (SN f~'(T)) under a~'. Thus
B o1~ is CP on a neighborhood of ¢ (f (2')), concluding the proof that So foa™!is C? on
a neighborhood of u.

Proposition 1. Let X and Y be C? manifolds of dimension d and e and having atlases
(Ui, @i)ier and (Vj,4;),c; , respectively. The atlas (U; x Vj, ¢; x Vi) where

i,j)EIET )
¢ X Uyt (2,y) — (¢4 (), 95 (y)) € RT x R® =R,

makes X x Y into a (d + e) dimensional C? manifolds.

Examples of differentiable maps

Proposition 2. [5/Let X and Y be manifolds. The canonical projections p: X XY — X and
q: X XY —=Y are differentiable.

Proof. We prove the result for p. By Theorem 1. (iii), it suffices to show that, for every
(z,y) € X xY, there exists a chart (U x V, ¢ x ¢) at (x,y) and a chart (W, ) at € X such
that p(U x V) C W and fopo (¢o W) (¢ x ) (U x V) — R? (where d is the dimension
of X) is of class C*°.



Let (U x V, ¢ x 1) be a product of charts, as in Proposition 1. , at the point (x,y). For
(W, ) we take the chart (U, ¢) at z. We have p(U x V) = U, and the map ¢opo (¢ x ¢)"
is defined on (¢ x ¥) (U x V') by

(s,8) = (671 (), 47 (1) s 07" () s,

~
eUxV

which is of class C°.

1.1.4 Submanifolds of R"

For d < n the canonical inclusion R? C R is defined as the map
ii (x1,...,mq) — (21,...,24,0,...,0).
Similarly, the canonical isomorphism is R” = R? x R*~<

Definition 10. [5/Let V be a subset of R™. We say that V is a d-dimensional C? submanifold
of R™ if, for every x € V, there exists an open neighborhood U C R™ of x and a map f: U — R”
such that f(U) C R™ is open, [ is a CPdiffeomorphism onto its image and f(UNV) =
f(U)NR" The codimension of V isn — d.

Example 3. [5/The sphere
The sphere S¢ = {x € R¥HL: ||z]| = 1} is a compact, d-dimensional, C* submanifold
of R (We call S* a circle; S° is equal to two points).
To see this, write

St={ae=(&4,....6mn) &+ +& 1 —1=0}.

Thus S* is the zero-set of the map f(&1,...,86ax1) = & + -+ + &3y — 1, which is
C*; furthermore, since

frm)=(26,...,28011),

f has non-zero derivative whenever x = (&1,...,&441) is on S2.

1.2 Tangent Spaces

Before introducing tangent spaces to abstract manifolds, we study the case of submanifolds
of R™.

Definition 11. [5/Let V' be a submanifold of R™. A vector z € R"™ is said to be tangent to V
at x if there exists a C* curve a: I — V (where I C R is an interval containing 0) such that
a(0) =z and o’ (0) = z.

Remark 1. Strictly speaking, o' (0) is a linear map from R into R™, but we have identified
it with the vector o' (0).1 € R™.

The condition 0 € I just lightens the notation somewhat, but we could allow the curve to
be defined on an interval I containing some ¢ such that « (ty) = = and o' (t5) = =.

9



Definition 12. Let X be a manifold and v € X a point. A tangent vector to X at x 1s a
~-equivalence class of triples (U, ¢, u). The set of tangent vectors to X at x will be denoted
by T,.X.

Remark 2. [5/A chart (U, ¢) at x determines an associated isomorphism
6,: T, X — RY,

which takes z € T, X to the unique vector u € R? such that (U, ¢,u) € 2. Bijectivity
follows because the vector u € R? in (U, ¢, u) is arbitrary.

1.3  Vector fields; brackets

Definition 13. [6/A vector field X on a differentiable manifold M is a correspondence that
associates to each point p € M a vector X (p) € T,M. In terms of mappings, X is a mapping
of M wnto the tangent bundle T M. The field is differentiable if the mapping X : M — T'M is
differentiable.

Considering a parametrization z: U C R" — M we can write

X(0)= Y p) o (131)

i=1

el
ox;

1,...,n. It is clear that X is differentiable if and only if the functions a; are differentiable for
some (and, therefore, for any) parametrization.

Occasionally, it is convenient to use the idea suggested by (1.3.1) and think of a vector
field as a mapping X: D — F from the set D of differentiable functions on M to the set F
of functions on M, defined in the follwing way

where each a;: U — R is a function on U and { } is the basis associated to x, 1 =

X (f)(p) = ai(p) gj{: (p), (1.3.2)

7

where f denotes, by abuse of notation, the expression of f in the parametrization x.
Indeed, this idea of a vector as a directional derivative was precisely what was used to define
the notion of tangent vector. It is easy to check that the function X f obtained in (1.3.2 )
does not depend on the choice of parametrization x. In this context, it is immediate that X
is differentiable if and only if X: D — D, that is, X f € D for all f € D.

Observe that if ¢: M — M is a diffeomorphism, v € T,M and f is a differentiable
function in a neighborhood of ¢ (p), we have

(de (v) f)e(p) =v(fop)(p).
Indeed, let a: (—e,e) — M be a differentiable curve with o' (0) = v, a (0) = p. Then

(e () ) () = 5 (0 900) o= v (f 0 0) (7).

10



The interpretation of X as an operator on D permits us to consider the iterates of X. For
example, if X and Y are differentiable fields on M and f: M — R is a differentiable function,
we can consider the functions X (Y f) and Y (X f). In general, such operations do not lead
to vector fields, because they involve derivatives of order higher than one. Nevertheless, we
can affirm the following.

Lemme 1. Let X and Y be differentiable vector fields on a differentiable manifold M. Then
there exists a unique vector field Z such that, for all f € D,

Zf=(XY -YX)f.
Proof. First, we prove that if Z exists, then it is unique. Assume, therefore, the existence
of such a Z. Let p € M and let x: U — M be a parametrization at p, and let

0 0
X:;aia—xi, Y:zj:bja—x]

be the expressions for X and Y in these parameterizations. Then for all f € D,

XYf = <§:b%%:>

\
S
V|l
53@‘
Q>Q>
ﬁ\
S
by
Q
S
QO
S]

<

YXf <§:%a@)

Therefore, Z is given, in the parametrization x, by
Zf = XYf-YXf
_ Z ai@bj _bia&j ﬁ

i?j

which proves the uniqueness of Z.

To show existence, define Z,, in each coordinate neighborhood z,, (U,) of a differentiable
structure {(Uy, z4)} on M by the previous expression. By uniqueness, Z, = Zz on z, (U,) N
zg (Ug) # 0, which allows us to define Z over the entire manifold M.

The vector field Z given by Lemma (1) is called the bracket [X,Y] = XY — Y X of X
and Y; Z is obviously differentiable.

The bracket operation has the following properties :

Proposition 3. [6]If X,Y and Z are differentiable vector fields on M, a,b are real numbers,
and f, g are differentiable functions, then :

11



(a) [X,Y] = —[Y, X] (anticommutativity),

(b) [aX +bY,Z] =a[X,Z]+b[Y, Z] (linearity),

(¢) [[X,Y],Z]+[[Y,Z],X]+[[Z, X],Y] =0 (Jacobi identity),

(d) [fX,9Y]=fo[X. Y]+ [X(9)Y —gY (f) X.
Proof. (a) and (b) are immediate. In order to prove (c), it suffices to observe that, on the
one hand,

= XYZ-YXZ-ZXY +Z7ZYX

while, on the other hand,
X [Y, Z]] + [V, [2, X]]

=XYZ-XZY - YIX+2ZYX+YZX -YXZ - ZXY +XZY.

Because the second members of the expressions above are equal, (c¢) follows using (a).
Finall, to prove (d), calculate

fX,gY] = fX(gY)—gY (fX)
faXY +fX(9)Y —gfYX —gY (f) X
fa X, YT+ fX (9) X —gY (f) X.

1.4 Lie groups

|8 The space R™ is a C*° manifold and at the same time an Abelean group with group
operation given by componentwise addition. Moreover the algebraic and differentiable struc-
tures are related : (z,y) — x + y is a C° mapping of the product manifold R” x R™ onto
R™, that is, the group operation is differentiable. We also see that the mapping of R™ onto
R"™ given by taking each element z to its inverse —z is differentiable.
Now let G be a group which is at the same time a differentiable manifold. For x,y € G
let 2y denote their product and x~! the inverse of .

Definition 14. G is a Lie group prouvided that the mapping of G x G — G defined by
(x,y) — 2y and the mapping of G — G defined by v — x~ are both C* mappings.

Example 4. [7]R is a one-dimensional (Abelean) Lie group, where the group multiplication is
the usual addition +. Similarly, any real or complex vector space is a Lie group under vector
addition.

1.5 Lie algebra

Definition 15. We denote by X(M) the set of all C>®°—vector fields defined on C*°—manifold
M. [[8] We shall say that a vector space X(M) over R is a (real) Lie algebra if in addition
to its vector space structure it possesses a product, that is, a map X(M) x X(M) — X(M),
taking the pair (X,Y) to the element [X,Y] of X(M) , which has the following properties :

12



(1) it is bilinear over R :

(1 X1+ X0, Y] = o [ X1, Y]+ g [Xo, Y],
(X, onY1 + oYy = a1 [X,) Y]+ [X, Y5,

(2) it is skew commutative :
(X, Y] = -]y, X],
(3) it satisfies the Jacobi identity :
XY 2N+ Y [Z, X] + 2, [X, Y]] = 0.
Theorem 2. X (M) with the product [X,Y] is a Lie algebra.

Proof. If o,8 € R and X, X5, Y are C*°-vector fields, then it is straightforward to verify
that
[aXl +6X27Y] f = [XlaY] f—i_ﬁ[X%Y] f

Thus [X,Y] is linear in the first variable. Since the skew commutativity [X,Y] = —[Y, X]
is immediate from the definition, we see that linearity in the first variable implies linearity
in the second. Therefore [X,Y] is bilinear and skew-commutative. There remains the Jacobi

identity which follows immediately if we evaluate
(X, [Y,Z]] + [Y,[Z, X]] + [Z,[X, Y]] applied to a C*-function f. Using the definition, we
obtain

X,V Zllf = X(([Y.2) f) -V, 2] (X [)
= XY (2))-X(Z{X[)-Y(Z(X])+ 2 (X])).

Permuting cyclically and adding establishes the identity.

1.6 Riemannian manifolds

The space
L*(T,,M,R) = {a: T,,M x T,,M — R/« is bilinear}

has a basis where the
{de; @dz; /1,5 =1,...,n}

where the dx; form the dual basis of the dual space

(ToM) = L(T,,M,R) = {w: T,,M — R linear form}

o\ [ 1ifi=j
dxi(ﬁ_xj)_éij_{Oifi#j

Bilinear forms dx; ® dx; are defined in terms of their action based on :

(dxz»@dxj)( 0 6>:5ik5ﬂ:{ 1ifi=Fkand j=1

Oxy Omy 0 otherwise

defined as follows :

13



By inserting the base, for the coefficients of the representation

o = Zaijda:i X d.Tj

i7j

N A
Gij =@ @xi’axj '

Definition 16. [[6] A Riemannian metric (or Riemannian structure) on a differentiable
manifold M 1is a correspondence which associates to each point p of M an inner product
(), (that is, a symmetric, bilinear, positive-definite form) on the tangent space T,M,
which varies differentiably wn the following sense : If x: U C R™ — M 1is a system of co-
ordinates around p, with x (x1,Ts,...,2,) = q € x(U) and a%i (q) = dz,(0,...,1,...,0),

then <8%¢ (q), % (q)>q = gij (x1,...xy) is a differentiable function on U.

we get the expression

Definition 17. A Riemannian metric g on M is a map m > g,, € L*(T,,M,R) such that
the following conditions hold :

1. g (X,)Y) = g, (Y, X) for everything X,Y.
2. gm (X,Y) > 0 for everything X # 0.

3. The coefficients g;; in each local representation (i.e , in any map )
G = Zgij (m)dz; @ dz;
i,
are differentiable functions .

(M, g) is then called Riemannian manifold.

Example 5. In R3, the Euclidian metric gy = dx* + dy? + dz* is a Riemannian metric .

1.6.1 Isometry

Definition 18. f: (M,g) — (N, h) an isometry ( (M, qg) and (N,h) are two Riemannian
manifolds ) if and only if f is a diffeomorphism such that

h(Tnf (X)), Tnf (X)) =g(X,Y) at any point m € M and for all vectors X and Y tangent
in m to M.

1.6.2 The first and second fundamental form

Definition 19. /[8/Given a surface X, for any point p = X (u,v) on X, and letting

E = <XuaXu>7 F = <XuaXv>7 G = <XvaXv> .

14



The positive definite quadratic form (z,y) — Ex? 4+ 2Fxy + Gy? is called the first funda-
mental form of X at p. It is often denoted as [, and in matrix form, we have

wen=wn(f ) (1)

Since the map (z,y) — Ex? + 2Fxy + Gy? is a positive definite quadratic form, we must
have F # 0 and G # 0.

Then, we can write

F 2+EG—F2 )
Ey

Ex2+2Fa:y+Gy2:E(x+— 7 Y-

Since this quantity must be positive, we must have £ > 0, G > 0, and also EG — F? > 0.

Definition 20. Given a surface X, for any point p = X (u,v) on X, and letting
l:<qu7N>7 m:<Xuv;N>7 n:<va7N>7

where N 1s the unit normal vector such that

X, X X,

N=_‘u=2v
1 X0 X X

The quadratic form (x,y) — 2 + 2may + ny? is called the second fundamental form of X at
p. It is often denoted as 11, and in matriz form, we have

e =, w) (0.

1.6.3 Christoffel symbols

Definition 21. [//Let g: U — R"™™ be a metric tensor of class C*. The Christoffel symbols
of the first kind of this metric tensor are the n® functions.

1
Lijr: = 3 (0igjk + Oigki + Okgij) : U — R
(1 <i,j,k <n) and the Christoffel symbols of the second kind of this metric tensor are the
n? functions.

FZ :Zgo‘kl}ja: U—R.

(1<i,j.k<n)
Where (g°%) is the inverse matriz of (gi;) .
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1.6.4 The canonical connection

Definition 22. [6/An affine connection V on a differentiable manifold M is a mapping
V:X(M)xX(M)— X(M)

which is denoted by (X,Y) AN VxY and which satisfies the following properties :

) VixiowrZ = fVxZ + gVyZ.
i) Vx (Y +2)=VxY +VxZ.
iii) Vx (fY) = fVxY + X (f)Y,
in which X,Y,Z € X (M) and f,g € D(M).

Corollary 1. [6/A connection V on a Riemannian manifold M is compatible with the metric
if and only if

X (Y, Z) = (VxY,Z)+ (Y,VxZ), XY, ZeX(M). (1.6.1)

Proof. Suppose that V is compatible with the metric. Let p € M and let ¢: I — M be a
differentiable curve with ¢ (to) = p, to € I, and with % |,_, = X (p). Then

d
X (p) <Yv Z> = E <Yv Z> |t:to
= (VxpY.2), + (Y. VxpZ),
Since p is arbitrary, (1.6.1 ) follows. The converse is obvious.

Definition 23. [6/An affine connection V on a smooth manifold M is said to be symmetric

when
VxY = VyX =[X)Y] foral XY €eX(M). (1.6.2)

Remark 3. [6/In a coordinate system (U,x), the fact that V is symmetric implies that for

ali,j=1,...,n,
0

N Qxi’

inXj - VX],XZ- = [X“XJ] == 0, Xz (163)

which justifies the terminology (observe that (1.12.3) is equivalent to the fact that Ffj =
).
7t

Theorem 3. (Levi-Civita). Given a Riemannian manifold M, there exists a unique affine
connection V on M satisfying the conditions :

a. V is symmetric.

b. V is compatible with the Riemannian metric.
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Proof. Suppose initially the existence of such a V. Then

XY.Z)=(VxY,Z)+ (Y,VxZ), (1.6.4)

Y(Z,X)=(VyZ,X)+(Z,VyX), (1.6.5)

Z(X,)Y)=(VzX)Y)+ (X, VzY). (1.6.6)

Adding (1.6.4 ) and (1.6.5 ) and subtracting (1.6.6 ), we have, using the symmetry of V,
that

XY, 2)+Y{Z,X) = Z(X,Y)
= (X, 2],Y)+ (Y, 2], X) + ([X,Y], Z) + 2(Z,Vy X).

Therefore

1{ XY, Z)+Y (2. X)-Z(X,Y)—([X,Z],Y) } (1.6.7)

(2, VyX) =3 —([V,2],X) —([X,Y], Z)

The expression (1.6.7 ) shows that V is uniquely determined from the metric ( , ). Hence,
if it exists, it will be unique.

To prove existence, define V by (1.6.7 ). It is easy to verify that V is well-defined and
that it satisfies the desired conditions.

Definition 24. [6/The curvature R of a Riemannien manifold M is a correspondence that
associates to every pair X,Y € X (M) a mapping

R(X,)Y): X(M)— X (M) given by
R(X, Y)Z =VxVyvZ -VyvVxZ2 — V[X,y]Z, Z € %(M),

where V is the Riemannian connection of M.

Observe that if M = R”, then R(X,Y)Z = 0 for all X,Y,Z € X(R"). In fact, if
the vector field Z is given by Z = (z1,...,2,), with the components of Z coming from the
natural coordinates of R", we obtain

VxZ=(Xz,...,Xz,),

hence
VyVxZ =(YXz,...,.YXz,),

which implies that
R(X,)Y)Z =VxVyZ —VyVxZ —Vixy)Z =0,

as was stated. We are able, therefore, to think of R as a way of measuring how much M
deviates from being Euclidean.
Another way of viewing definition (24) is to consider a system of coordinates {x;}

around p € M. Since [ o 0

o 9\ o )

that is, the curvature measures the non-commutativity of the covariant derivative.

= 0, we obtain
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Proposition 4. The curvature R of a Riemannian manifold has the following properties :
(i) R is bilinear in X (M) x X (M), that is,
R(fX1+9Xe, Y1) = [R(X1,Y1)+gR(X2, Y1),
R(Xy, [Y1+gYs) = [fR(Xy,Y1)+gR(X1,Ya),

fngD(M>7 X17X27Y717Y72 E:{(M)

(ii) For any X,Y € X (M), the curvature operator R(X,Y): X (M) — X (M) is linear,
that is,

RX,)Y)(Z+W) = R(X,Y)Z+R(X,Y)W,
R(X.Y)fZ = fR(X,Y)Z,

fedDM), ZWeX(M).
Proof. Let us verify (ii) only. The first part of (ii) is obvious. As for the second, we have

VyVx (fZ) = Vy (fVxZ+(Xf)Z)
= fVyVxZ+ (Y ) (VxZ)+ (Xf)(VvZ) + (Y (Xf)) Z

Therefore,
VyVx (fZ)=VxVy (fZ)=f(VyVx —=VxVy)Z+(YX - XY) f)Z,

hence

R(X,Y)fZ = fVyVxZ— fVxVyZ+ (Y, X)) Z+ fVixyZ + (X, Y] f) Z
— fR(X,Y)Z

Proposition 5. (Bianchi Identity)
RX,)Y)Z+R(Y,2)X+R(Z,X)Y =0.
Proof. From the symmetry of the Riemannian connection, we have,

R(X,Y)Z+R(Y,Z)X+R(Z,X)Y = VyVxZ—VxVyZ+VixyZ
+V,Vy X = Vy VX 4 Vi 1 X
+VxVzY —V,VxY + V[Z,X}Y

= Yy [X,Z]+ V[V X] + Vx [Z,Y]
—Vixz)Y — Viyx1Z — Vizy X

= VX 2+ 12 [V, X[+ [X,[Z, Y]]

_—

where the last equality follows from the Jacobi identity for vector fields.
From now on, we shall write (R (X,Y) Z,T) = (X,Y,Z,T).
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Proposition 6. (a) (X,Y, 2, T)+ (Y, Z, X, T)+ (Z,X,Y,T) =0,
(b) (X7Y7 ZaT) = (Y7X7 Z,T),
(c) (X, Y, Z2,T)=—-(X,Y,T,7),
) (X.Y,Z.T) = (Z,T,X,Y).

Proof. (a) is just the Bianchi identity again ;

(b) follows directly from Definition (curvature);
(¢) is equivalent to (X,Y, Z, Z) = 0, whose proof follows :

(X,Y,Z2,2) = <VyVXZ - VxVyZ + Vixy1Z, Z>-

B
" (VyVxZ,2) =Y (VxZ,Z) - (NxZ,VyZ),
and
(Vixy)Z.Z) = % (X,Y](Z,Z).
Hence

(X,Y,Z2,2) = Y (VxZ Z)— X (VyZ,Z) +%[X, Y)(Z, Z)
= Y (X(Z.2)~ X (Y (Z,2)) + 5 [X,Y](2,2)
- 0,

which proves(c).
In order to prove (d),we use (a), and write :

(X,Y,Z,T)+ (Y, Z, X, T)+ (Z,X,Y,T) = 0
Y, 2, T, X)+ (Z,T,Y,X)+ (T.Y, Z,X) = 0
(Z, T, X,Y)+(T,X,2,Y) + (X, Z,T,Y) =0,
(T.X.Y,2)+ (X,Y,T,2) + (Y, T, X, Z) = 0.

Summing the equations above, we obtain
22, XY, T)+2(1,Y,Z,X)=0

and, therefore,
(Z,X,Y,T)=(Y,T,Z,X).

1.6.5 The curvature average

Definition 25.
IG+nE —2mF

2(EG— F?)
If H =0, we say that (S) is minimal. Where the coefficients E, F,G,l,n and m are here
the coefficients of the first and second fundamental forms.

H =
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Chapitre 2

Minimal translation surfaces in H? x R

The name minimal surfaces has been applied to surfaces of vanishing mean curvature,
because the condition H = 0 will necessarily be satisfied by surfaces which minimize area
within a given boundary configuration [1]. So, in the chapter we define the minimal surface
(section 2.1). Then, we define the Lie group H? xR (section 2.2), and in section 2.3 we classify
the minimal translation surface of type 1. At the end, in section 2.4 we classify the minimal
translation surface of type 2.

2.1 Minimal surface

Definition 26. A minimal surface is a closed and bounded surface of a real Euclidean affine
space of dimension 3 with reqular boundary minimizing the total area with fized contour. In
other words, a minimal surface in a given Riemannian manifold is the embedding of a compact
manifold with boundary minimizing the Riemannian volume with fized boundary .

Definition 27. In the space H?> x R , the surfaces which locally minimize the areas are called
minimal surfaces, they satisfy the condition H = 0, where H 1is the mean curvature given by

the formula:
_IG+nE—-2Fm

H= 2(EG — F?)

2.2 The Lie group H? x R

H? x R a Riemannian manifold endowed with a left invariant metric :
1
JH2%R — E (dl’Q + dyQ) —|— d22
The Riemannian product space H? x R is a Lie group with respect to the operation :

(2,9, 2) % (2,9,2) = (Ty + 2,99, 2 + 2)
An orthonormal basis of left invariant vector fields {E1, s, E3} on H? x R is given by

0 0 0

Ey =Yg Ezzya—y; Es = 5
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The Levi-Civita connection of the H? x R space with respect to this base is

@ElEl = EQ; @ElEQ = _E17 @ElE?) = Oa

ViEi = 0, Vi,Ey=0, VB =0,

Ve, Er = 0, Vg,Ey=0, Vg,FE;=0.
where (z,vy, z) are usual coordinates of R3.

On the only hand, for any vectors X = z1Fy +y1 o+ 21 E3 and Y = 29 By + yo By + 29 F3
in H% x R the cross product x is defined by :

E, Ey, Es
XxY = rT Y1 21
T2 Y2 22
T
N I B, — 1 B+ | M N o8
Yo 22 To 22 T2 Y2

(Y120 — yo21) By + (2221 — 2122) B + (T1y2 — 22y1) B
= (ylzz — Y221, X221 — T1R2, T1Y2 — $21Ul) .
Lie brackets are :
[EbEZ] = —L; [E27E3] = 0; [E3,E1] =0.
As well as
Q(El,El) = Q(EQaEZ) = 9(E3,E3) =1,
g(Ey, Ey) = g(Eq, E3) =g (E, E3) =0.

Thus we have directly the fundamental tensor of ¢ (i.e: the matrix g;;) associated with
the metric, and its inverse ¢g*/. The associated matrices are :

2

O o
o O
[N
_ o O

0
0 |, (gl])1gi,j§3 -
1

ST

1
y2
(gij>1§i,j§3 = 0
0

with det (g;;) = y%l
The Christoffel symbols as well as the Levi-Civita connecting forms in (x, y, z) coordinates
for the metric g are :

koo 1 k1 d9i1 3931_agzg 1 k2 0gi2 agﬂ_agij
By = 2 |7 Oz, * Ox; 2 |7 Oz, i Ox; oy

+
1 k3 09gi3 3933 _ agzg

1,7, k=1,2,3 with z; =2, x5 =y, v3 = 2.
So we get :
F%1:§7 F12—F21——§, F%3:F§2:0, F§2:OJ
ngz_j F%3:F§1:07 F:l{,):()’ F?lzov F%SIFgQZ(]v
F%l 0, FQ_F =0, F§3:0> F?2:F§1:O,
F%zzo I‘%S:Félzo, F§3:07 I‘51’>3:F§1:0, F%3:F§3:O~
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Definition 28. A translation surfaces Y (a, 3) in H? x R is a surface parameterized by :
:L’:Z—>H2><R, x(s,t) =a(s)*xG(t),

where a and B are any generating planar curves lying in orthogonal planes of R3.

o We emphasize that the group operation * on the space H?> x R is not commutative,
we have two translation surfaces, namely > (a, B) and > (B, ) which are different.
According to planar curves a and 3, we distinguish two

types as follows :
We assume that a (s) and 3 () lie in the yz-plane and xy-plane of R3, respectively. That
is
a(s) = (0,s,f(s)),
B) = (9(t),t,0),

where f (s) and g (t) are smooth functions and s,¢ > 0.
In this case, we have two translation surfaces ), (a, 5) and ), (3, @) parameterized by :

z(s,t) = a(s)*xB(t)
= (0,5, f(s)) x (g (t),1,0)
= (sg(t),st, f(s)),

and
z(s,t) = B(t)xa(s)

= (g(t),1,0) % (0,5, f(s))
= (g(t),St,f(S))7

which are called the translation surfaces of type 1 and 2, respectively.

—~

Remark 4. 1) If one curve lies in the xz-plane,then the translation surface is a part of
rz-plane .

2) The translation surfaces generated by « (s) = (0,¢1, ) and S (t) = (t,¢2,0) (¢1, c2 € RT)
are planes. So, translation surfaces except for Remarks 1) and 2) are meaningful for
our study, because planes are trivial minimal surfaces.

2.3 Classification of type 1 minimal translation surface

Let >, be a translation surface of type 1 in Riemannian product space H? x R. Then ,
>, is parameterized by :

z(s,t) = (sg(t),st, f(s)) (2.3.1)

for all s >0 and ¢t > 0.
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We have
ox '
0s Ds

t 9]
= cYy=— 4+ —-y=— + f'(s) - = with in this case y = st
r Yy

0z
t 1
_ 90 ey p e B
st S
ox
E: = Xy = EI’ (S,t)
= (sg‘ (t) Sy 0)
V(¢ 0 0
sg ( ) y_+fy— with in this Casey:St
Y ox Yy ay
g9 (@) 1
7 1+t 2

The coefficients of the first fundamental form of ), are given by :
E = (x5 )

- (55 o) (f 5 )

- (10 Lo

<

—~
~

N>

vl
—~® =4

st
F = <.T5,.Tt>
0 1 T
_ (9 1, i
- ( St ,S’f (S>) 6
_gWg® 1
st2 st’
G = <xt7$t

The unit normal vector field U of >, is given by :

T X Ty __f|<8) M M
v= ”xs X xtH N wt El + wt E2+ ( )E37
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where w = ||zs X z4|| and because

oy ATy = (&?1 '<s>)A<gT<t>,%,o)
) (_f () F(5)g ) () g <t>).

t t " st? st
To compute the second fundamental form of ), , we have to calculate the following :

D ~
—F = FE
Ds ! ?xs !

V%Eﬁ;Eﬁf‘(s)EgEl

t) ~ 1~ -
= %V&El + EVEgEl + f'(8) Vi, 1
g(t)

- 2,

st

— B = v, B

g(t) ~ 1~ | ~
= §VE1E2+EVE2E2+JC (s) \VaoN
= _MED
st



—B; = v, Fs

g (t) ~ 1 -
= 5 Va E3 + ;VEQES
= 0.

So, the covariant derivatives are :

— . D g (t) 1 I
Vi@ = Ds <?E1 + EEQ + f'(s) E3)

g [ 1 1 D 1 1D D
AU ey A Ry Bt -2 E (s Es+ ' (s) = E
t [ s? 1—i_st T 52 2+SDS 2) + () 3+f(S>Ds ’

90, PO, 1 9O,
= T DT e gl T e B 5

= _29_@)E1+<M_ 1

52t 522 52

) By + f"(s) Es,

~ D (¢ 1
G = 5 (B )

g, (1050

D '(t 1
w2t = E(gg)El‘i‘;Ez)

<

We have

and

Ga <tg“ (1) =29 (1) g~ 1’0> |

12 12
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which imply the coefficients of the second fundamental form of ), are given by :

| = <?xsxs,U>

_f'(s)
_ _29 (t) g (t)2 . i fn (S) f'(s)l;'t(t)
S S o)ty 1)

wst?

_ 1 [2f(8)9(1?)+f'(8)g'(t)g(t)2_f(8)9 (), g@®) [ (s) _tg' @) (8)]

w

522 523 52t st2 st2

_ ( 21 (s) g (t) + f' () g (1) g (1) = 2f (s) g () + stf" (s) g (t) >
wsZt3 —st*f" (s) g (t) 7

£
_ (_g (t) ()9 () 0) JABYI0
st2 st? g(t)lufgw(t)

wst?

_ 1 [_f (5) (=g (1) , f(s)a(t)g <t>2]
w st3 st3
= (PO + (99 (1),
n = <~zt:pt,U>
) _f'(s)
_ (tg' () —29(t) g1 —170> o
£ * g(t)iuég‘(t)
[P0 2 ) g F9g 0
- E[ 3 T T e T ]

- e nrmen e ).

The translation surface ), of type 1 is minimal if and only if:

G —2mF +nE
H= — 041G —2mF +nE =0
2(BG—Fr) Tl memen
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First let’s calculate (G, mF and nE :

G =

82t3[2tf ()g )+ f () g (t) g (t) =2 (s) g (t) + stf' (s) g (2)
— st ' (s)g' ()]
g 1

__ 1 2l (t)°

Pl 0g U TGO ) g gy 4 2L L)
s s)g e (St)g(t) f (S)gt(;f)Qg' ® sy 0
M — sl (99 ),
S @0+ (g ALY 1
_w;g[ CTI0 ZIORACTIO JICOPIG
/' (s) gg) g (t)2]

nE =—s[=tf'(s)g" (0) + [ (s)g (t) + ['(s) g <t>3u‘2§2 + i + ' (s)°]

L —f(s)g"()g(t)° L)y (t)g(t)” L)y 0’9 tf(s)g"(t)

[ 52t 522 522 52 52

wt3
+—tf ()P g () + f (g () + f(s)° g ()]

WAOYICs

Then we obtain :
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He0olZ D00 [6)e0g®) [(99@)°, /()9 (1)

w s2t4 $2tP 523 st4
@@’ 2 (0)et) |, [()g® g ()  f(s)g(®)
st3 s2t4 52t° 52¢3
S99 20 (s)g®)g () 2f (g 1) (t)  2f(s)g(t) N f"(s)g(t)
st3 s2t5 s2t5 s2t4 st4
C2f'(9)gW g ) f(s)g" (t)g(t)’ L (s)g ()9 (1)
s2t4 s2t4 52t5
L ()@’ g @)  f(s)g"(t) L (s)g'(t) L (s)g (1)’
525 52t2 s2t3 523
ICHICINIC ZIONEIC ZILVRY
[f"( s)g(t)g (1) f'(s)g (t)° A (s)g)  f'(s)g' (@)
st st3 stt st3
et f ()t [ e ®) ()9 @)
382254 , 52t2 12 t3
NCICA

S lsf (5) g (09 (17 — st ()9 (1 + " (5) 9 (1)
st (s)g ()~ £ ()" (09 (1~ £7 (5) g (1)
PR g (1) + S (5 (1) + 51 ()9 (1] = 0
Sl () o (09 (1 — 19 (1) + (1) — 19 (1)
FIO) [0 (g (0 = g (0] + 2 (519 (1)~ 9" (1) + 9 (1] =0 ()
We multiply (1) by (—1) , we find :
21 (5" (29" (1) ~tg' () — tg ()]

g
+sf [t‘t +tg(t)—gt) g () — g@®)] | =0 (2.3.2)
+f(s) [9" (1) g (1) +t2 9" (t)]

We start to study equation ( .3.2) in following cases :
If f'(s) =0, that is, f (s) =k (k € R), the surface ), is parameterized by :

Z (37t) = (39 (t) , 8t k) )

where ¢ (t) is an arbitrary function.
Now, we assume that f' (s) # 0 on an open interval. Since s > 0, divide (2.3.2) by s*f' (s)°
we obtain:

(29" (1) — tg' (1) — tg' (1] + 55 [tg (1) +19 (1) — g (1) g ()% — 9 ()]

i [0 (09 (0 + 29" (1) -
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and take derivative with respect to s :

i (o

) 19/ (1) + 1 (1) — g/ (19 (1) — 9 (1]

d 1 ) . - )
s (82f. (8)2> [g ()" g" (t) + 29" (t)] = 0.

Hence, we deduce the existence of a real number a € R such that

L) - ()

g9 () +tg" () = altg () +tg () —g ()’ g(t)—g(t)].

Let us distinguish the following cases :

—0ie 4 (LG ) = fris)
Il Ifa=0ie 4 (Sf‘(s)g,) 0, then AL b and

g()’g" (t) +1°g" (1) =0 =" (1) [¢ ()" + 7] =0
=g' (t) =0,

that is g (t) = cit + c2 (b, ¢1, 2 € R) .

(i) Let b=01ie J}T(; =0« f'(s)=0. Then f (s) = dis+dy (d; € R*, dy € R). In this
case, equation (2.3.2) becomes

s2f (s)° [t2g” (t) —tg'(t) — tg' (t)?’] =0 =s°d’ [—tcl — tc‘ﬂ =0
= — s°dite, (14¢}) =0
=0 (1 + C%) s*dit =0
=c=0(s>0,t>0, d #0).

Thus, the surface can be parameterize as
x(s,t) = (c28,st,d1s + dg) .

(i) If b = —k% # 0, then f"(s) = —k2sf' (s)° and the general solution of the ODE is given

by
1 / 2d
f (S) = E In (5 + 52 —+ ]{3_21> + dg, (234)

Substituting (2.3.4) into (2.3.2), we easily obtain ¢; = ¢o = 0. Thus, g (t) = 0.
Where d; and d, are constants of integration.
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(iii) If b = k* # 0 = f'(s) = k%sf'(s)°, then the general solution of the ODE f'(s) =

k2sf' (s)” is given by :
1 . ks

§) = —sin" " —— +dy # 0,
f( ) k \/§d1 2 ?A
because we have
I (5) 2 11 k? 2
=k's<———-.— =—5"+k
f‘ (8)3 2 f|2 2 1
1
= = —k?s* -2k
f\
<:>f‘2 B 1 B 1
k252 — 2k k2 (—s2 - 24)
1 —2
—f'= with d; —kl ki€ R~ so,dy >0

which implies from (2.3.2) we can also obtain ¢; = ¢; = 0, that is g (¢) = 0.
2 Suppose now a # 0. From the first equation in (2.3.3), we obtain

J'(s) = —a ! 1 "(s g'52015'53
=it el @+ () =asl ()
Sf'(s) = =2f () + easf ()

&f (&) +2f (5) = asf () (a € R), (23.5)

where ¢; is a constant of integration . We put f'(s) = p(s). Then we find the Bernoulli’s

equation as follows :
dp a

- — — 3‘
s + Jp=asp
We divide by p?, we obtain :
dp 5 a
—— B 2
757 + P c1s (2)

To solve (2) we go through 2 stapes :
Step 1 : homogenous first-order ODE

I— a _ - a
P+ p =0=pp = —

<:>/2ds:—a/1ds
P s

<~ Inlp(s)|=—alns+nh
<=p(s) =exp(—alns+h).
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So,
p=s‘exph(s) = p =—as " texph(s)+h'(s)s “exph(s).
Step 2 : ODE of order 1 with second member

(2) <= [—as " "exph(s) + N (s) s “exph(s)] s> exp (—3h (s)) + 332“ exp (—2h (s)) = 18
= —as™ texp (—2h(s)) + A (s) s* exp (—2h (s)) + as** Texp (—2h (s)) = ¢;5
<=h'(s)s*exp (—2h (s)) = c1s

1
< — = | =21/ (s)exp (—2h(s))ds = /clsl_mds

2
<= exp(—2h(s)) = / —2c15" 2 ds + ¢,
1 1 —2
—h = —3 In (/ —2c;57 2 ds + @) =3 In <ﬁs2_2“ + cz>
So,

D=

p=s¢ (/ —2¢187 20 g + 02)

p 2 =g (/ —2¢187 2 ds + cz) , (2.3.6)

where ¢ is a constant of integration.

(i) Let a = 1. Then from (2.3.6) we have

Then

p 2 =5"(—2cIns+ c)

So
1

sv/ecy —2c1Ins

We put f'(s) = p(s), then

1
201 3

1 1
= ds = ds = —— ds. 2.3.7
/) /p(s) ’ /S\/Cz—chlns ° 61/2 ey —2c1lns ° ( )

1
(2.3.7) = f(s) = ——+/c2 —2¢1Ins + ¢3, where ¢5 € R and ¢; = 0.
C1
| 1
—f'(s) =
sv/co —2¢;In s
—92¢, L
—Ve —QCllns—S'Q\/@_—;ﬁ _ —ct+ca(2lns+1)

— f! — .
f'(s) s2(cog — 2c¢11n ) 52 (ca — 2¢1 In 3)%

Then
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82

(23.2) = —— — [P0 () —tg (1) — g (1)°]
s3(ca — 2¢1In s) o

n s(—ca+c1(2Ins ‘21)) [tg' (t)3 +tg'(t)—g(t)g (t)z -9 (t)]
s (ca =21 lns) S Ga() i

+

I () P ()] =

Gs(t)

— L G B+ (@ (2 +1) = ) G (£) + (e — 261 Ins) Gy (£)] = 0.

s(cag —2cyIns)
(D)

NI

We have
Go (t) = G5 (t)  according to (2.3.3)

So

(I) <:>G1 (t) -+ 201 In SGQ (t) + 01G2 (t) — 02G2 (t) + CQGg (t) - 261 In SGg (t) =0
<Gy (t) + 2¢1 InsG5 (t) + 1G3 (t) — oG5 (t) + 2G5 (t) — 2¢1 InsG5 (1) =0
<:>G1 (t) + Cng (t) =0
=" () —tg (t) —tg (1)’ + 1 (g () g" (1) + 29" (1)) =0
= (1+a) g () +ag ) g () =tg () [1+4 ()] .

Then

[(L+c)t?+egt)?] g (t) =tg (1) [1+4 ()] (2.3.8)
L. If ¢4 =0, then equation (2.3.8) becomes

at’y' (t) =tg (t) +tg' (1)" <= g'(t) = 19 (t) = 19 (&)’ =0,
We put ¢' (t) = w (t). Then we can obtain the Bernoulli’s equation as follows :

dw 1 1 4
—_— - —w = —w
dt t t

We divide by w?, we obtain :
dw _5 1 _,
Ew
To solve (3) we go through 2 stapes :
Step 1 : homogenous first-order ODE
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3 2 1

=0 <=w'w  =-

t
! 1
@/Edt:/—dt
w t
< Injw(t)|=Int+v
< w(t) =texpuv(t)

ww ? — —w"~
t

So
w=texpv(t) = w' =expv (t) +tv' (t)expov ().
Step 2 : ODE of order 1 with second member

(3) <= [expv (t) +tv' (t)expv ()]t 2 exp (—3v (t)) — ; exp (—2v (1)) = %

=t"2' (t)exp (—2v (t)) +t P exp (—2v (1)) —t P exp (—2v (1)) = %
= (t)exp (<20 (1) =

— —% o0 (1) exp (—20 (1)) dt — /tdt

< exp(—2v(t)) = -2 {g} +d;

1
= = —§ln (di —t7)

So

=

=g ().

w = texp (—%ln (dl — t2)) =t (dl — t2)_

Then
g(t)=—dy—t*> (d €R).

And from (3) give

I l‘S: f‘l—(S):_l
P8+ (5) = 0l =
< n|f'(s)]=—Ins+cy

“=f'(s) = dys*
<= f(s)=dylns+ds (dy,d3s €R).

(ii) Let a # 1. In this case, the function f (s) satisfying equation (2.3.5) appears in the
from

f(s ds (2.3.9)

1 1
) N \/|02| 5. /g2(a—1) 4+ —a
ca(a—1)

because we have
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£ - -
5% 4 520 s\/a‘fl + cops2(a—1)

So
__/ ds —=>f'(s) = Tl 1
S
‘02 52a 1)+c(a 1) |CQ \/82a 1)+c (a—1)
—as2le—1) _ _a
1 as ca(a—1)
— ' (s) = —— T
So,
1 |
(2.3.2) <= 3[t°9' (t) —tg (t) —tg (¢)°]

Sy |02 \/82a 1)—i_c (a—1) G1(t)

1

_qs2e1) _
ca(a—1) [tg O’ +tg () —g()g ()" —g ()]

+ 3
2 ~~
82 /’02| (82(0‘71) —'— 02(21—1)> Gg(t)
1 2 2
+ lg(t) 9" (t) +t2¢" (1)] =0
Sleol [2a1) 1 e < g -
S |02|\/8 a + ca(a—1) G3(t)
_ 4e2(a—-1) c1
1 as a
(”A%@ﬂ

1
(G5 ()] =0
|C2 \/32(“ 1) = (a )
1 l(;l (t) + <—a52(a 1) a )G2 (1)
|02 \/sz(a 1) ( 1)3 Co ca(a—1)

2(a—1) 2! _
+<S +62(a_1))G3(t) ’
1 2(a—1) ‘1 2(a—1) a

=560+ )Gt (R ) G =0
(IT)
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In addition, we have

Sg (6) 9" (1) +1°g" (t) = a[tg ()" +tg (t) =g () g (1) =g ()] <= Gs(t) = aGs (1)

UD¢$éGMﬂ+§wﬂPﬂGﬂﬂ+Gﬁm+27§jﬁkGﬂO+Gﬁm:O
G0+ 0 G () + G (0] + — s |26 () + Ga )] =0
<:>éG1 (t) + Cng (t) o~ (:Ll_ 1) + o (al_ 1):| =0

@%Gl (t) + Cng (t) o (;1_ 1) + 5 (aa_ 1):| =0

@#%Gdﬂ+qGﬂﬂzi%§B}:0

<:>CLG1 (t) + 01G3 (t) =0
=alt’y' () —tg' (t) —tg ()°] + e [g () 9" (8) + £°¢" (£)] = O

which implies
at?g" () + c1g (t)* 9" (t) + ert’g" (1)] = atg (1) + atg (t)°, (4)

() = [[ate)+ag®)?] g () =atg (1) [1+g (1] (2:3.10)

1. If ¢4 = 0, then the general solution of (2.3.10) is given by g (t) = —v/d; — t?. As the
solution of equation ()and equation (2.3.5) gives :

f'(s) _ a

f'|(8)+gf‘(8):0<:>f‘(s) S

< In|f (s)] = —alns+cy
< f'(s) = expcys™®
~——r

So

We conclude with the following :

Theorem 4. Let Y, be a translation surface of type 1 in H* x R. If >, is minimal surface,
then >, is a plane parameterized as

Z (87t> = (59 (t) , sty f (5)) )

where
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0.7
0.57
0.3 .
0.1 51 S3E00S
.y r*#ﬁt 16"
6 o QAL < 518
N g1
14,0 46
18 )

FIGURE 2.1 — Minimal translation surface in H? x R of type 1 .

(1) either f(s) =15+ ¢ and g (t) = c3 or

(2) f(s)=cilns+cyand g(t) = —\/c3 — 2 or

(3) f(s) =128 " +crand g(t) = —vey — 2 or

(4) f(s)= \/m + c3 and g (¢) is the function satisfying equation (2.3.8) or
(5) f(s)= ds and g (t) is the function satisfying equation (2.3.10).

\/‘0_2 f \/82(0. 1)+ 2(21 5

2.4 Classification of type 2 minimal translation surface

Let >, be a translation surface of type 2 in Riemannian product space H? x R. Then ,

>, is parameterized by :
x(s,t) = (g(t),st, f(s)). (2.4.1)

for all s >0 and t > 0.
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We have

g = E (
(0,t, f' (s
t 0
y Yoy
= 1E2+f()E3,

t)
)
_l’_

f(s) 2W1th in this case y = st

T = Em(s t)

= (g'(t), 80)
g o9 s 0
Y y3y+ yﬁy
g (t)

- El + - E27
st

with in this case y = st

The coefficients of the first fundamental form of ), are given by :

1 0
E = (Oagaf(s)> %
f(s)
1 L2
= E—i_f (S) )
g'(®)
1, st
F = Oaguf (S) t
0
_ 1
=
N1 g'@®)
! st
st 't 6
g (1)
T T2 +t_2

The unit normal vector field U of ), is given by

g J6p 40, _g'(t)ES’

wt wst > ws?t
where w = ||zs X z;|| and because
_ 1, g'(t) 1
ZES/\It = (O,g,f (S)) A ( St ,g,O)
_ (_ f'(s) f(s)g'(t) ¢ (t)>



To compute the second fundamental form of ), , we have to calculate the following :

D -
EEI = V, I
= Vippeeb
1~ -
- EVEQEl + fl (S) vEsEjl
= 0,
D -
D_ 2 = VxSEQ
1~ -
== g EQE'2—i_fI (S> VEB,EZ
= 0,
D -
Dsl = V. Ej3
1~ -
- g E2E|3+fI (S) vE3E|3
= 0.
D .
EEl == thEl
"(t) ~ 1~
_ 90 g 1v,E
st t
_ 9By
st
D -
EEQ = V., Fs
"(t) ~ 1~
- gs(t )vElE2 + Vi, By
_ 9WBg
st
D .
EE;J, — VztEg
"(t) ~ 1~
= gs(t)VElE3 + ZVEQEE}
= 0.
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So, the covariant derivatives are :

~ D /1
Ve Ts ~Ds (—E2 + f'(s) E3)

1 1D ) D
:__2E2+—D—E +f ( )E3‘|‘f(3)D_SE3
1
:__2 2+fu()E37
( Bt E)
g ( g (t) D 1D
= E ISl Nl
( T Ds T D™
_g‘(t)
82t 1)
- D (q(t) 1
Vats =— ( =2 E) + - E
o Dt< st 't 2>
tg' (t) 29‘ (t) g'(t) D 1 1D
E = Bt B
( ! t Dt ! >yt
1 g (1)
:( El“‘ 2t2 t2 ; E1

which imply the coefficients of the second fundamental form of ), are given by :

| = <®rsxs, U>
1)

1
_ = f(S) (t)
- (0’ 82’ <S)) wst

_9@®
ws2t

_ % [—f' (;)tg' ) (2)25 (t)}

_ _M(f' (s)+ sf'(s)),

ws3t

_f'(s)
= (_g (t) 0 ()) 7(s)g ()
% gs‘ft)
ws?t
1



= —= (89 () (g (1) —5") = s°f (s) (tg" (t) — 29' (1)) -

ws3t3

We suppose that the translation surface ), of type 2 is minimal if and only if

H=0<=IG-2mF +nE =0

First let's calculate [G,mF and nE:

G = g () ()~ (1) (5] [%%
1 [—g @’ f(s) sg°F'(s) g (B)f(s) sg (t)f"(8>]
ws3t 522 522 12 t2 ’
1L, 1
mE = @[f (s)g (1)] {g}
1 [
B w32t2{ st 1
nE = o [F(9)9 (0 (0 (0~ 57) — 7' (5) (19" (1) — 29’ (1) [8%+f<s>2

Then we obtain:

g _ [
ws*t? { ()79 (8) (9 (8)" = 5%) = s () (tg" (1) — 29’ (1)) } '
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553 s°1 533
AONIONE (S)g

—g() f(S) _d@Ws) g () ()f (s) _ () '(®)
443 §3¢3 3
=0
()_|_2f() g'(t)

st t
H=0 @é { +f(8)g 0 _ fClgw _ (s)g 0 4 2f (s)g (0 4 fis ) g(t)

st3 st3

B0 2600 dOF ) F6e 0 f 6
s4t3 s3t3 52¢3 53¢2 s3t3
AR ACT IO
st? st3
1 —f" () g (t)* — 25f (s) g' (t) — s°g' (t) "()
g | st () g () +sf (s g () — 3tf( Y g'(t) | =0
+53f'(s)° g' (1)

=g () [=f' () +5f ()] + g (8) [-25 (5) = 8°f" (5) + 5° ' (5]
+tg" (t) [=sf' (s) — s*f' (s)*] =0
We multiply this by (—1), we find :
tg" (t) [sf‘ (s) + s*f' (5)3} +4' (1) [23]“ (5) + s2f" (s) — s f (3)3} (2.4.2)
+g (6)° [f' (s) = sf' (5)*] =
If g'(t) = 0, that is g (£) = ¢ (c € R), the surface ), is parameterized by :
x (s,t) = (¢, st, f(s)),

where f (s) is an arbitrary function.
If ¢' (t) # 0, then we can divide (2.4.2) by ¢'(t)

tiw%‘) [s1' () + S ()] + [2F () +8°F" (5) = 8 F ()] + 9/ ()" [f" (5) = S ()] = 0

then, we derive that with respect to ¢

d ( 0 [sf () + 7 ()] + 25 () + 20 (5) = 1 ()] > =0
dt +9' (0 [/ (s) = 5] ()]

(4> Cclit (%) \(Sfl <S) —trsgfl( ) )"‘%( ()2) (f" (S) :rsfl (8)3)/:()

Fl(s) Fg(s)

=re g (L) R4 607 -0

So, There is a real number a € R such that

d (tg' (1) d o2
7 () e 0 o),
P (s) = 5 ()" =a (s () + S (5)).

Let us distinguish the following cases:
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(1) Suppose that a = 0. Then the first equation of (2.4.3) leads to

I I L(t) — 1
tg' (t) = bg (t)(beR)@/gl(wdt_b/tdt
< Inlg' (1) =bln|t| + k(k € R)
<=exp(lnlg' (t)]) =exp (bln|t| + k) =exp (k) - t
=g (t)=c -t

b

where ¢, is a constant of integration .

Ifb+# —1, then

/g (t)dt:cl/tdt =g(t) = Tt e (e, a ER)

and if b = —1, then
g (t dt—clf dt <= g(t)=clnt+c (t>0).
From the second equation of (2.4.3), we have the ordinary differential equation

['(s)=sf'(s)° =0 <= ['(s) = s (s)°

So
£1(s) / 18
~ds= [ sds<— — - —=—+k
/sf (s)° 2 2 2
1
<:>F = —82 — 2]{31
2 1 1 . _
<:>f = —52—2k1 = ]{}2—32 with ky = —2k; (/ﬁER )
1 1
<:>f‘ = = , C3 =/ kg.

T ()

Then the general solution is given by f (s) = constant or f (s) = sin™* Z4ci(c3 #0, ca €R).
(2) If a # 0, then the first equation of (2.4.3) writes as

g'(t)— =g (t)=——g (t)°, (2.4.3)

where b is a constant of integration. We put ¢'(¢) = ¢(¢). Then we can obtain the
Bernoulli’s equation as follows :



For his resolution, we put

Thus
dg b a dg 5 b _, a
. g = —— — — —
ar 14T e al T :
1
<:>——h‘—[—)h:—g
2 t t

We obtain a linear ODE of order 1 with second member.
To solve we go through 2 stapes :
Step 1 : homogenous first-order ODE

1

b 1, b

h\
— / —dt = —2b at
h t
< In|h(t)] = —-2blnt + k
—h(t)=t"Pexpk
Hence, the general solution of the ODE without second member is :

h(t) =t expk;.

Step 2 : ODE of order 1 with second member
We have

h(t) =t expk; =>h (t) = (k} (1)t ™ expky) + (—2bt > Lexp k)

By replacing h and h'in the ODE, we have

1 b a
IR —Zh=—2
2 t t
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(5) <= — % ((ky ()t expky) + (=26t Lexpky)) —

S

(t_% exp k:l) = —%

1
= -5kt = exp ky () + ?t_% exp ky () — %t‘% expky (t) = —%

1
2

k) (t) exp ks (1) =

= = Sk (Ot Pexph (t) = —%

20
t

— / k) (t) exp ky (t) dt = 2a / 21t
< expk; (t) = /2at2b_1dt

2
< expk; (t) = 2—Zt2b +c¢ (ceR)

=k () =In <%t2b + c)

So, the general solution in the ODE is :

hy (t) =exp <ln (%t% + c>> 2
1
:th (%t%) 2 expc
or

1
hy (1) = o / 2at* 1 dt.
dg b
t

We have h (t) = ¢ 2 (t). Then la solution general in the equation & —

dt
t) = —1 2at®1dt :
QQ ( ) tgb a

= (% + t_2b01>7 (c1 = expc)

q:—%q3 is :

S

NI

:; (Cl - R)

% + t_%Cl

_ 1 _
T o 2at* 1 dt. (2.4.4)

(i) If b =0, then the general solution of (2.4.4) appears in the form

1
g (t) = / it (2.4.5)
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(24.6) =g (1) = ——

V2alnt — dy
—2a-1 i
V() - Aamid_ —@ 1 i
=g" (t) (2alnt — dy) t (2alnt — d;)2
So
(24.2) <~  alnt — ) %\[Sf‘ + 53 (s) } \/ﬁ\[lsf' (s) — s> f' (5)3 + 2 f" (S)]
—dy) -~ -~
Fi(s) Fy(s)
1 3
—3 I _ | — O
" Gt — )} /) Fv(s)f ()]
e 4R (s)+ (2alnt— dy) Py (s) + Fy ()] = 0 (*)
(2alnt —dy)?

In addition, we have

Sf" (s) = sf ()" =a(sf (s) +s°[ (s)°) <= Fy(s)=aFi(s)

(%) <= —aFi(s) +aF;(s)+ (2alnt —dy) F5(s) =0
<= (2alnt —dy) F5(s) =0

< (2alnt —dy) [2sf'(s) = s°f' (s)” + s f" (s)] =0

(2alnt — 2dy) [2sf' (s) — s° f' (s)% + s2f" (s)] =o0. (2.4.6)
From this, we obtain 2sf' (s) — s*f' (s)* + s2f" (s) = 0, and it’s solution is

(1 ++1 +d232)
S

f(S)::i:hl +d3(d2, d3€R)

(ii) If b =1, then from (2.4.5) the function g (¢) is given by

1
= E\/Cl+at2+02(62 GR)

because equation (2.4.5) became

1 1
1 1 T2 2 T2 _1
q_2 = t—2/2atdt <~ q= tTl </ Qatdt) =t (?at2 + Cl> =1 (at2 + Cl) 2 )

we have
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t 1 2at
(t)=q(t) =g (t) = Hdt = | ———=dt = — | ——=dt
00 =) =90 = [a@a- [ a1 [ 2
1
= a\/61+at2+02 (co ER).
In this case , the left hand side of equation (2.4.2) is polynomial in ¢ with functions of s

as the coefficients. Therefore, the leading coefficient must vanish.
In addition, we have

2at
Vo talt — . — 2t
! 24/ c1+at? C1

g'0) = (c1 + at?) N (1 + mf?)g
S50
(242) e ) — () — By(s) =0
(c1 + at?)? (c1 + at?)? (1 + at?)?
= s [e1Fy () + (e1 + at®) Fy (s) + t°F5(s)] =0
(Cl + CLt2) 2
= F () + (a1 +at?) Fo(s) + £ F5(s) = 0 (**)

(%) <=1 Fy (s) + at’Fy (s) + (e1 + at®) Fa (s) = 0
> (c1 +at®) [Fi(s) + Fa(s)] =0
<=F (s)+ Fy(s) =0
=5l (5)+5° ()" + 25 () = 8°F ()" + 5°[" (5) = 0
52" (s) +3sf (s) =0

We solve this equation

$F(5) 4 35F (5) = 0 = (5) + 21 (5) = 0
)3

fris) s
), [ds
< In|f'(s)] = —-3Ins+ k
= f'(s) =dys7?

e f(s) = d1/3_3ds

d
—f(s) = —515*2 + dy
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So, f(s) = =4 +dy (di, dy €R).
(iii) If b ¢ R —{0,1}, then (2.4.4) becomes :

1 1 [a a -3
-2 _ 2b—1 _ 2b __4b 2b
q = _t2b 2at dt = _t2b [gt + Cl] = q=1t <Et + Cl> ,

then the general solution of (2.4.4) is :

(t)—/ (t)dt—/ A V“”/ v dt—\/|b|/Ldt
So, we have :

tb

tb
90 = VI [ St =9 () = VI

bt 1\/at® + be, — b - —2ab
/at2b
=" (1) = V/Io e
at?t + bey
[7,40—1 20 _ abt3b—1
_ B bt*= v/ at?® + bey —\/m
at?t + bey
7 btt—1 (at% + bcl) - abt3b1>

3
2

(at?® + bey)

=/ Vet
(at2b+bcl)%

Then
b| (b, t? bltb bl)3 43b
(2.4.2) @M Fi(s)] + % [Fy (s)] + Lé [F3(s)] =0
(at?® 4 bey)2 (at? + bey )2 (at? + bey )2
blt’

m [bQClFl (8) + (CLth + bCl) FQ (8) + bt%Fg (S)} =0
at*® + 0cq )2

=b%ci Fy (s) + (at® + bey) Fa (s) + bt Fy (s) = 0
=b%ci Fy (s) + abt™ Fy (s) + (at™ + bey) Fy (s) =0

= (at® + bey) [y (s) + bFy (s)] =0

Iy (s)+bFi(s)=0

=251 (5) = 5°f () + 5" (s) + bs ' () + b5’ f (5)° = 0
= (b+2)sf (s)+(b-1)f ()" + 5[ (s) =0

S B4 () 45— 1) f () =0

S+ B+ (5) =5 (1) f ()
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We pose f'(s) = p(s) and we find a Bernoulli equation :

dp 1
— 4+ (b+2)-p=s(1-0)p
T T2 p=s(l-0)p
We divide by p3, we obtain :
dp _4 1 .,
— b+2)-p“=s(1-0
Dyt b2) =5 (1 -1)
To solve (7) we go through 2 staps :
Step 1 : homogenous first-order ODE

1 1
pp*+mh+mgpﬂ:0¢:ﬁpﬂz—g@+w)

! d
@/gds:—(b+2) il

p s
< Inlp(s)|=—(b+2)Ins+ ks

—=p(s) = s "D expksy (s)
Then
P (s)=—=0+2) s Dexpky(s) + 5 Ok, (s) exp ks (s).
Step 2 : ODE of order 1 with second member

(7) <= [ (0+2) s P expky (s) + s T2k, (s) exp ks ()] s* O exp (—3ks (s))

[_
+(b+2) és2b+3 exp (—2ka (s)) = s(1 —b)

= — (b+2) ™ B exp (—2ky (5)) + sk (s) exp (—2kz ()
+ (b +2) s® P exp (—2ky (5)) = s (1 — b)

=T} (5) exp (—2ks (5)) = s (1 — b)

=k, (s)exp (—2ky (s)) = (1 — b) s 273
= — %/—21{:'2 (s)exp (—2ky (s))ds = (1 — b)/82b3ds

1
52b2) —+ d1

< exp(—2k2(s)) =-2(1-0) (m

1 1-b
—_9(1—=0b a2+ diy = —— —2(b+1) d
( )<—2w+1f T T

1 1-05
:>k2 = —5 ln (b_i_—]-82(b+1) -+ dl) (dl c R) .

So

1—b 1—b
—2 _ 2(b+2) —2(b+1) | g ) — 2 g,520+2)
b 5 (b+18 * 0 b1 T
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Then

ds,

1 1
s)ds :/ ds :/
\/;T_i)” + dy52(6+2) S\/zT—i» + dy s2(+1)

where d; € R.
Thus, we have the following :

Theorem 5. Let Y, be a translation surface of type 2 in H*> x R. If 3, is minimal surface,
then >, is a plane or parameterized as

z(s,t) = (g(t),st, f(s)),
where

(1) either f(s) =sin™* S4caandg(t)=clnt+cor

(2) f(s) =sin* Z+ciand g(1) = it 4 e or

(3) f(s)==%=In (%M)eri’»andg = | oo

(4) f(s)=—-2 +dyand g(t) = LV/ey +at® + 5 or
(5)

dt or

S—desandg \/_fm
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FIGURE 2.2 — Minimal translation surface in H? x R of type 2 .
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CONCLUSION

In this master thesis we gives a classification of minimal translation surfaces in product
Riemannian space H? x R.
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