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INTRODUCTION

In mathematics and in physics, a minimal surface is a surface minimizes its area while
achieving certain conditions on board.



In elemental di�erentiel geometry, a minimal surface is a closed and bounded surface
of a real Euclidean space of dimension 3 with regular board minimizing the total area with
�xed contour.

In 1744, Leonhard Euler posed and solved the �rst minimal surface problem : �nding
between all surfaces passing through two parallel circles, the one with the smallest surface. In
particular, as the study of minimum surfaces, L.Euler found that the only minimum surfaces
of revolution are planes and catenoids.

In 1760, Lagrange generalised Euler's results for calculating variations for integrals to
one variable in the case of two variables. He sought to solve the following problem : qgiven a
closed curve of E3, to determine a minimum area having this curve as a boundary q such a
surface is called a minimum area.

In 1776, Meusnier showed that the di�erential equation obtained by Lagrange being
equivalent to a condition on the mean curvature : qan area is minimal if and only if its mean
curvature at any point is zeroq.

We have eight homogeneous spaces of dimension 3 : E3, H3, S3, S2×R, H2×R, SL (2,R) , Nil3
and Sol3. In particular, our study will be space H2 × R.

In this brief we have made it possible to obtain classi�cation results concerning the
minimum translation areas of two properly prolonged types in the H2 × R space. From D.
W. Yoon's article , we will address the following information :

Let H2 be represented by the upper half-plane model {(x, y) ∈ R2|y > 0} equipped
with the metric gH = (dx2 + dy2)⧸y2. The space H2, with the group structure derived by
the composition of proper a�ne maps, is a Lie group and the metric gH is left invariant.
Therefore the Riemannian product space H2×R is a Lie group with respect to the operetion

(x, y, z) ∗ (x̄, ȳ, z̄) = (x̄y + x, yȳ, z + z̄)

and the left invariant product metric

g =
dx2 + dy2

y2
+ dz2.

My work is divided into two chapters :
In the �rst chapter we recall a number of de�nitions of a di�erential manifolds, map, atlas,

ect. We also report the de�nition of a group and Lie algebra, tanget space and vector �elds,
rct. In section 1.6 we introduce the notion of a Riemannian manifolds and the connection of
Levi-Civita. We also write the curvature of Gauss and that of the mean curvature, ect.

In the second chapter we present the result concerning the classi�cation of minimum areas
of type I and II in the H2 × R space, according to the article by D.W.Yoon. We begin with
the study of the metric g and we calculate the symbols of Chtisto�el Γk

ij and the connecting

forms ∇̃, the �rst and second fundamental form, ect.
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Chapitre 1

Riemannian manifold

In this chapter we present the basic concepts of the theory of di�erential geometry. We �rst
de�ne topological and abstract manifold, di�erential maps (section 1.1.3). Next, we de�ne and
give example of submanifolds of Rn (section 1.1.4). Moreover, the notions of tangent space,
vector �elds, brackets, Lie group and Lie algebra are de�nies.

In section 1.6 we present the de�nitions of Riemannian manifolds, Riemannian metric. In
section 1.6.1 we introduce the concept of isometry, the �rst and second fundamental form,
Christo�el symbols Γk

ij. In addition, we need to de�ne what the cannonical connection, and
in section 1.6.5 we de�ne the curvature average.

1.1 The notion of manifolds

Di�erential manifolds constitute the basic framework of di�erential topology and di�e-
rential geometry. The notion of di�erentiable manifold generalizes the di�erential and integral
calculus that we know how to de�ne on a Euclidean space of dimension n (Rn).

1.1.1 Di�erentiable manifolds

Let M be a paracompact topological space i.e M is separated and such that any open
covering admits a �ner and locally �nite open covering .

De�nition 1. [4]We say that M is a topological manifold of dimension n ∈ N if any point
x ∈ M has an open neighborhood U homemorphic to R i.e there exists a one-to-one map
ϕ : Rn → U such that ϕ and its inverse ϕ−1 be continuous.

Example 1. [7]Rn is trivially a topological manifold of dimension n.

De�nition 2. [4]We say that the topological manifold M is of dimension qnq if and only if
∀U ⊂ Mopen set of M there exists an open set O ⊂ Rn of Rn such that : U and O are
homeomorphe (i.e : ∃f : U ⊂ M → O ⊂ Rn homeomorphism ) .

And (x1, . . . , xn) = ϕ−1 (x) will be the coordinates of x. If (U,φ) and (V, ψ) are two local
maps such that the intersection U ∩V is non-empty then a point x ∈ U ∩V will be identi�ed
by its coordinates (x1, . . . , xn) in U and its coordinates (xp1, . . . , x

p
n) in V.
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Can we have
(xp1, . . . , x

p
n) = ψ−1 ◦ φ (x1, . . . , xn) . (1.1.1)

The application ψ−1 ◦ φ is called changing the coordinates of the map (U,φ) to the map
(V, ψ) .

De�nition 3. A map in a topological manifold M is a pair (U φ) such that :

1) U ⊂ M is an open set of M .

2) φ : U ⊂ M → φ (U) ⊂ Rn is a homeomorophism.

1.1.2 Abstract Manifolds

De�nition 4. [7]LetA = {(Ui, ϕi)}i∈A be a collection of Rn-valued charts on a set M. We
call A an Rn-valued atlas of class Cp if the following conditions are satis�ed :

(i)
⋃
i∈A

Ui = M.

(ii) The sets of the form ϕi (Ui ∩ Uj) for i, j ∈ A are all open in Rn.

(iii) Whenever Ui ∩ Uj is not empty, the map

ϕj ∩ ϕ−1
i : ϕi (Ui ∩ Uj) → ϕj (Ui ∩ Uj)

is a Cp di�eomorphism (p ≥ 1) .

De�nition 5. [5]The pairs (Ui, ϕi) are called the charts of the atlas {(Ui, ϕi)} . A chart at
or around x ∈ X is one whose domain contains x, and a chart centered at x is one mapping
x to the origin in Rd. The local coordinates associated with a chart (Ui, ϕi) are the functions
ϕi,k : Ui → R (1 ≤ k ≤ d) such that ϕi (x) = (ϕi,1 (x) , . . . , ϕi,d (x)) .

De�nition 6. [5]Let {(Ui, ϕi)}i∈I be an atlas on M, let U be a subset of M and ϕ : U → Rd

a bijection onto an open subset of Rd. The pair (U, ϕ) is said to be a chart compatible with the
atlas {(Ui, ϕi)}i∈I if the union {(U, ϕ)} ∪ {(Ui, ϕi)}i∈I is still an atlas. Two atlases (of same
dimension and di�erentiability class) are compatible if their union is still an atlas.

In order for (U, ϕ) to be compatible with an atlas {(Ui, ϕi)}i∈I it is necessary that each
ϕ (U ∩ Ui) and ϕi (U ∩ Ui) be an open subset of Rd and that the maps ϕ ◦ ϕ−1

i and ϕ−1 ◦ ϕi

be of class Cp on their domains of de�nition.

De�nition 7. A di�erntiable manifold is a pair (M,A) where M is a topological manifold,
and A a di�erentiable atlas on M .

Example 2. The sphere Sn = {x ∈ Rn+1| |x| = 1} is an n-manifold.

We construct an atlas {(U1, ϕ1) , (U2, ϕ2)} with the aid of a standard well-known map
called stereographic projection. Let U1 = Sn \ {(0, . . . , 0, 1)} and U2 = Sn \ {(0, . . . , 0,−1)} .
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Note that U1∩U2 = Sn. Let ϕ1 (x1, x2, . . . , xn+1) =
(

x1

1−xn+1
, . . . , xn

1−xn+1

)
and ϕ2 (x1, x2, . . . , xn+1) =(

x1

1+xn+1
, . . . , xn

1+xn+1

)
. Then map ϕ1 : U1 → Rn is called stereographic projection. The inverse

map ϕ−1
1 : Rn → U1 is de�ned by

ϕ−1
1 (y1, . . . , yn) =

 2y1
n∑

i=1

y2i + 1
,

2y2
n∑

i=1

y2i + 1
, . . . ,

2yn
n∑

i=1

y2i + 1
, 1− 2

n∑
i=1

y2i + 1

 .

Both ϕ1 and ϕ
−1
1 are continuous and hence ϕ1 is a homeomorphism.

The second coordinate chart (U2, ϕ2) , stereographic projection from the south pole, is
given by ϕ2 = −ϕ1 ◦ (−ISn) where (−ISn) is multiplication by −ISn on the sphere. Since
multiplication by −1 is a homeomorphism of the sphere to itself (its inverse is itself), the
map ϕ2 : U2 → Rn is a homeomorphism.

Checking the compatibility conditions, we have

ϕ2 ◦ ϕ−1
1 (y1, . . . , yn) =

1
n∑

i=1

y2i

(y1, . . . , yn)

and ϕ2 ◦ ϕ−1
1 = ϕ1 ◦ ϕ−1

2 . Hence, Sn is shown to be an n-manifold.
Compatibility is an equivalence relation. Thus we arrive at the de�nition of a manifold :

De�nition 8. [5]A Cp di�erentiable structure (p ≥ 1) on a set M is an equivalence class of
d-dimensional atlases of class Cp on M. A d-dimensional manifold of class Cp is a set M
endowed with a Cp di�erentiable structure. A chart on M is any chart belonging to any atlas
in the di�erentiable structure of M.

1.1.3 Di�erentiable Maps

De�nition 9. [5]Let X and Y be manifolds, of dimension d and e and class Cq and Cr,
respectively. Let p ≤ inf (q, r) . We say that a continuous map f : X → Y is of class Cp, or
Cp di�erentiable, or a Cp morphism, if for every chart (U, ϕ) at x ∈ X and every chart (V, ψ)
at f (x) ∈ Y, the map ψ ◦ f ◦ ϕ−1 : ϕ (U ∩ f−1 (V )) → Re is of class Cp. We will denote be
Cp (X, Y ) the set of Cp di�erentiable maps from X into Y.

This de�nition, involving as it does all possible charts at x and f (x), is not always conve-
nient to use. The next theorem helps :

Theorem 1. Let X and Y be manifolds of dimension d and e, respectively, and class ≥ p.
Let f : X → Y be a continuous map. The following conditions are equivalent :

(i) f is Cp di�erentiable ;

(ii) for every x ∈ X, every chart (U, ϕ) at x and every chart (V, ψ) at f (x) such that
f (U) ⊂ V, the composition ψ ◦ f ◦ ϕ−1 : ϕ (U) → Re is of class Cp;

(iii) for every x ∈ X, there exists a chart (U, ϕ) at x and a chart (V, ψ) at f (x) such that
f (U) ⊂ V and ψ ◦ f ◦ ϕ−1 ⊂ Cp (ϕ (U) ,Re).

7



Proof. (i) ⇒ (ii) is immediate from the de�nition, just notice that f (U) ⊂ V implies
U ∩ f−1 (V ) = U.

(ii) ⇒ (iii). Let (V, ψ) be chart at f (x) . Since f is continuous, f−1 (V ) is open in X and
contains x, by the de�nition of caninical topology there exists a chart (U, ϕ) at x such that
U ⊂ f−1 (V ) , whence f (U) ⊂ V. If (ii) is true it follows that ψ ◦ f ◦ ϕ−1 is of class Cp from
ϕ (U) into Re.

(iii) ⇒ (i). Let (S, α) be a chart at x ∈ X and (T, β) one at f (x) ∈ Y.We must show that
the map β ◦ f ◦ α−1, from the open subset α (S ∩ f−1 (T )) of Rd into Re, is of class Cp. It is
enough to show that it is Cp on a neighborhood of each point of its domain.

Take u ∈ α (S ∩ f−1 (T )) and xp = α−1 (u) ∈ S. Property (iii), applied to xp, gives a chart
(U, ϕ) at xp and a chart (V, ψ) at f (xp) such that f (U) ⊂ V and that ψ ◦ f ◦ ϕ−1 is of class
Cp on ϕ (U). Now we can write

β ◦ f ◦ α−1 =
(
β ◦ ψ−1

)
◦
(
ψ ◦ f ◦ ϕ−1

)
◦
(
ϕ ◦ α−1

)
,

with the underdtanding that this only makes sense if each step in the composition is de�ned.
If we can prove that each step is de�ned and Cp on a neighborhood of the image of u by the
previous steps, we will have shown that β ◦ f ◦ α−1 is Cp on a neighborhood of u, and we'll
be done.

The coordinate change ϕ ◦ α−1 : α (S ∩ U) → ϕ (S ∩ U) is of class Cp, and its domain
contains u = α (xp) . Next, ψ ◦ f ◦ ϕ−1 is of class Cp on ϕ (U) , and its domain contains ϕ (xp) ,
the image of u under ϕ ◦ α−1, by the very choice of U , so ψ ◦ f ◦ ϕ−1 is of class Cp on a
neighborhood of ϕ (xp) .

Finally, β ◦ ψ−1 is a Cp di�eomorphism between ψ (T ∩ V ) and β (T ∩ V ) . Its domain
ψ (T ∩ V ) contains the image ψ (f (xp)) of u under the composition so far, since f (xp) ∈ V
by our choice of V and xp ∈ f−1 (T ) as the image of u ∈ α (S ∩ f−1 (T )) under α−1. Thus
β ◦ ψ−1 is Cp on a neighborhood of ψ (f (xp)) , concluding the proof that β ◦ f ◦ α−1 is Cp on
a neighborhood of u.

Proposition 1. Let X and Y be Cp manifolds of dimension d and e and having atlases
(Ui, ϕi)i∈I and (Vj, ψj)j∈J , respectively. The atlas (Ui × Vj, ϕi × ψj)(i,j)∈I∈J , where

ϕi × ψj : (x, y) 7−→ (ϕi (x) , ψj (y)) ∈ Rd × Re = Rd+e,

makes X × Y into a (d+ e) dimensional Cp manifolds.

Examples of di�erentiable maps

Proposition 2. [5]Let X and Y be manifolds. The canonical projections p : X×Y → X and
q : X × Y → Y are di�erentiable.

Proof. We prove the result for p. By Theorem 1. (iii), it su�ces to show that, for every
(x, y) ∈ X ×Y, there exists a chart (U × V, ϕ× ψ) at (x, y) and a chart (W, θ) at x ∈ X such
that p (U × V ) ⊂ W and θ ◦ p ◦ (ϕ ◦ ψ)−1 : (ϕ× ψ) (U × V ) → Rd (where d is the dimension
of X) is of class C∞.
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Let (U × V, ϕ× ψ) be a product of charts, as in Proposition 1. , at the point (x, y). For
(W, θ) we take the chart (U, ϕ) at x. We have p (U × V ) = U, and the map ϕ ◦ p ◦ (ϕ× ψ)−1

is de�ned on (ϕ× ψ) (U × V ) by

(s, t) 7−→
(
ϕ−1 (s) , ψ−1 (t)

)︸ ︷︷ ︸
∈U×V

p7−→ ϕ−1 (s)
ϕ7−→ s,

which is of class C∞.

1.1.4 Submanifolds of Rn

For d ≤ n the canonical inclusion Rd ⊂ Rn is de�ned as the map

i : (x1, . . . , xd) 7→ (x1, . . . , xd, 0, . . . , 0) .

Similarly, the canonical isomorphism is Rn = Rd × Rn−d.

De�nition 10. [5]Let V be a subset of Rn. We say that V is a d-dimensional Cp submanifold
of Rn if, for every x ∈ V, there exists an open neighborhood U ⊂ Rn of x and a map f : U → Rn

such that f (U) ⊂ Rn is open, f is a Cpdi�eomorphism onto its image and f (U ∩ V ) =
f (U) ∩ Rn. The codimension of V is n− d.

Example 3. [5]The sphere
The sphere Sd =

{
x ∈ Rd+1 : ∥x∥ = 1

}
is a compact, d-dimensional, C∞ submanifold

of Rd+1. (We call S1 a circle ; S0 is equal to two points).
To see this, write

Sd =
{
x = (ξ1, . . . , ξd+1) : ξ

2
1 + · · ·+ ξ2d+1 − 1 = 0

}
.

Thus Sd is the zero-set of the map f (ξ1, . . . , ξd+1) = ξ21 + · · · + ξ2d+1 − 1, which is
C∞ ; furthermore, since

f p (x) = (2ξ1, . . . , 2ξd+1) ,

f has non-zero derivative whenever x = (ξ1, . . . , ξd+1) is on S
d.

1.2 Tangent Spaces

Before introducing tangent spaces to abstract manifolds, we study the case of submanifolds
of Rn.

De�nition 11. [5]Let V be a submanifold of Rn. A vector z ∈ Rn is said to be tangent to V
at x if there exists a C1 curve α : I → V (where I ⊂ R is an interval containing 0) such that
α (0) = x and αp (0) = z.

Remark 1. Strictly speaking, αp (0) is a linear map from R into Rn, but we have identi�ed
it with the vector αp (0) .1 ∈ Rn.

The condition 0 ∈ I just lightens the notation somewhat, but we could allow the curve to
be de�ned on an interval I containing some t0 such that α (t0) = x and αp (t0) = z.

9



De�nition 12. Let X be a manifold and x ∈ X a point. A tangent vector to X at x is a
∼-equivalence class of triples (U, ϕ, u) . The set of tangent vectors to X at x will be denoted
by TxX.

Remark 2. [5]A chart (U, ϕ) at x determines an associated isomorphism

θx : TxX → Rd,

which takes z ∈ TxX to the unique vector u ∈ Rd such that (U, ϕ, u) ∈ z. Bijectivity
follows because the vector u ∈ Rd in (U, ϕ, u) is arbitrary.

1.3 Vector �elds ; brackets

De�nition 13. [6]A vector �eld X on a di�erentiable manifold M is a correspondence that
associates to each point p ∈M a vector X (p) ∈ TpM. In terms of mappings, X is a mapping
of M into the tangent bundle TM . The �eld is di�erentiable if the mapping X : M → TM is
di�erentiable.

Considering a parametrization x : U ⊂ Rn →M we can write

X (p) =
n∑

i=1

ai (p)
∂

∂xi
(1.3.1)

where each ai : U → R is a function on U and
{

∂
∂xi

}
is the basis associated to x, i =

1, . . . , n. It is clear that X is di�erentiable if and only if the functions ai are di�erentiable for
some (and, therefore, for any) parametrization.

Occasionally, it is convenient to use the idea suggested by (1.3.1) and think of a vector
�eld as a mapping X : D → F from the set D of di�erentiable functions on M to the set F
of functions on M , de�ned in the follwing way

X (f) (p) =
∑
i

ai (p)
∂f

∂xi
(p) , (1.3.2)

where f denotes, by abuse of notation, the expression of f in the parametrization x.
Indeed, this idea of a vector as a directional derivative was precisely what was used to de�ne
the notion of tangent vector. It is easy to check that the function Xf obtained in (1.3.2 )
does not depend on the choice of parametrization x. In this context, it is immediate that X
is di�erentiable if and only if X : D → D, that is, Xf ∈ D for all f ∈ D.

Observe that if φ : M → M is a di�eomorphism, v ∈ TpM and f is a di�erentiable
function in a neighborhood of φ (p) , we have

(dφ (v) f)φ (p) = v (f ◦ φ) (p) .

Indeed, let α : (−ε, ε) →M be a di�erentiable curve with αp (0) = v, α (0) = p. Then

(dφ (v) f)φ (p) =
d

dt
(f ◦ φ ◦ α) |t=0= v (f ◦ φ) (p) .

10



The interpretation ofX as an operator on D permits us to consider the iterates ofX. For
example, if X and Y are di�erentiable �elds onM and f : M → R is a di�erentiable function,
we can consider the functions X (Y f) and Y (Xf) . In general, such operations do not lead
to vector �elds, because they involve derivatives of order higher than one. Nevertheless, we
can a�rm the following.

Lemme 1. Let X and Y be di�erentiable vector �elds on a di�erentiable manifold M. Then
there exists a unique vector �eld Z such that, for all f ∈ D,

Zf = (XY − Y X) f.
Proof. First, we prove that if Z exists, then it is unique. Assume, therefore, the existence
of such a Z. Let p ∈M and let x : U →M be a parametrization at p, and let

X =
∑
i

ai
∂

∂xi
, Y =

∑
j

bj
∂

∂xj

be the expressions for X and Y in these parameterizations. Then for all f ∈ D,

XY f = X

(∑
j

bj
∂f

∂xj

)

=
∑
i,j

ai
∂bj
∂xi

∂f

∂xj
+
∑
i.j

aibj
∂2f

∂xi∂xj
,

Y Xf = Y

(∑
i

ai
∂f

∂xi

)

=
∑
i,j

bj
∂ai
∂xj

∂f

∂xi
+
∑
i.j

aibj
∂2f

∂xi∂xj
.

Therefore, Z is given, in the parametrization x, by

Zf = XY f − Y Xf

=
∑
i,j

(
ai
∂bj
∂xi

− bi
∂aj
∂xi

)
∂f

∂xj

which proves the uniqueness of Z.
To show existence, de�ne Zα in each coordinate neighborhood xα (Uα) of a di�erentiable

structure {(Uα, xα)} on M by the previous expression. By uniqueness, Zα = Zβ on xα (Uα)∩
xβ (Uβ) ̸= ∅, which allows us to de�ne Z over the entire manifold M.

The vector �eld Z given by Lemma (1) is called the bracket [X, Y ] = XY − Y X of X
and Y ; Z is obviously di�erentiable.

The bracket operation has the following properties :

Proposition 3. [6]If X, Y and Z are di�erentiable vector �elds on M , a, b are real numbers,
and f, g are di�erentiable functions, then :

11



(a) [X, Y ] = − [Y,X] (anticommutativity),

(b) [aX + bY, Z] = a [X,Z] + b [Y, Z] (linearity),

(c) [[X, Y ] , Z] + [[Y, Z] , X] + [[Z,X] , Y ] = 0 (Jacobi identity),

(d) [fX, gY ] = fg [X, Y ] + fX (g)Y − gY (f)X.

Proof. (a) and (b) are immediate. In order to prove (c), it su�ces to observe that, on the
one hand,

[[X, Y ] , Z] = [XY − Y X,Z]

= XY Z − Y XZ − ZXY + ZY X

while, on the other hand,
[X, [Y, Z]] + [Y, [Z,X]]

= XY Z −XZY − Y ZX + ZY X + Y ZX − Y XZ − ZXY +XZY.

Because the second members of the expressions above are equal, (c) follows using (a).
Finall, to prove (d), calculate

[fX, gY ] = fX (gY )− gY (fX)

= fgXY + fX (g)Y − gfY X − gY (f)X

= fg [X, Y ] + fX (g)X − gY (f)X.

1.4 Lie groups

[8]The space Rn is a C∞ manifold and at the same time an Abelean group with group
operation given by componentwise addition. Moreover the algebraic and di�erentiable struc-
tures are related : (x, y) → x + y is a C∞ mapping of the product manifold Rn × Rn onto
Rn, that is, the group operation is di�erentiable. We also see that the mapping of Rn onto
Rn given by taking each element x to its inverse −x is di�erentiable.

Now let G be a group which is at the same time a di�erentiable manifold. For x, y ∈ G
let xy denote their product and x−1 the inverse of x.

De�nition 14. G is a Lie group provided that the mapping of G × G → G de�ned by
(x, y) → xy and the mapping of G→ G de�ned by x→ x−1 are both C∞ mappings.

Example 4. [7]R is a one-dimensional (Abelean) Lie group, where the group multiplication is
the usual addition +. Similarly, any real or complex vector space is a Lie group under vector
addition.

1.5 Lie algebra

De�nition 15. We denote by X(M) the set of all C∞−vector �elds de�ned on C∞−manifold
M . [[8] We shall say that a vector space X(M) over R is a (real) Lie algebra if in addition
to its vector space structure it possesses a product, that is, a map X(M) × X(M) → X(M),
taking the pair (X, Y ) to the element [X, Y ] of X(M) , which has the following properties :

12



(1) it is bilinear over R :

[α1X1 + α2X2, Y ] = α1 [X1, Y ] + α2 [X2, Y ] ,

[X,α1Y1 + α2Y2] = α1 [X, Y1] + α2 [X, Y2] ,

(2) it is skew commutative :
[X, Y ] = − [Y,X] ,

(3) it satis�es the Jacobi identity :

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Theorem 2. X (M) with the product [X, Y ] is a Lie algebra.

Proof. If α, β ∈ R and X1, X2, Y are C∞-vector �elds, then it is straightforward to verify
that

[αX1 + βX2, Y ] f = α [X1, Y ] f + β [X2, Y ] f.

Thus [X, Y ] is linear in the �rst variable. Since the skew commutativity [X, Y ] = − [Y,X]
is immediate from the de�nition, we see that linearity in the �rst variable implies linearity
in the second. Therefore [X, Y ] is bilinear and skew-commutative. There remains the Jacobi
identity which follows immediately if we evaluate

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] applied to a C∞-function f . Using the de�nition, we
obtain

[X, [Y, Z]] f = X (([Y, Z]) f)− [Y, Z] (Xf)

= X (Y (Zf))−X (Z (Y f))− Y (Z (Xf)) + Z (Y (Xf)) .

Permuting cyclically and adding establishes the identity.

1.6 Riemannian manifolds

The space
L2 (TmM,R) = {α : TmM × TmM → R⧸α is bilinear}

has a basis where the
{dxi ⊗ dxj⧸i, j = 1, . . . , n}

where the dxi form the dual basis of the dual space

(TmM)∗ = L (TmM,R) = {w : TmM → R⧸ linear form}

de�ned as follows :

dxi

(
∂

∂xj

)
= δij =

{
1 if i = j
0 if i ̸= j

Bilinear forms dxi ⊗ dxj are de�ned in terms of their action based on :

(dxi ⊗ dxj)

(
∂

∂xk
,
∂

∂xl

)
= δikδjl =

{
1 if i = k and j = l
0 otherwise

13



By inserting the base, for the coe�cients of the representation

α =
∑
i,j

αijdxi ⊗ dxj

we get the expression

αij = α

(
∂

∂xi
,
∂

∂xj

)
.

De�nition 16. [[6] A Riemannian metric (or Riemannian structure) on a di�erentiable
manifold M is a correspondence which associates to each point p of M an inner product
⟨ , ⟩p (that is, a symmetric, bilinear, positive-de�nite form) on the tangent space TpM ,
which varies di�erentiably in the following sense : If x : U ⊂ Rn → M is a system of co-
ordinates around p, with x (x1, x2, . . . , xn) = q ∈ x (U) and ∂

∂xi
(q) = dxq (0, . . . , 1, . . . , 0),

then
〈

∂
∂xi

(q) , ∂
∂xj

(q)
〉
q
= gij (x1, . . . xn) is a di�erentiable function on U .

De�nition 17. A Riemannian metric g on M is a map m 7→ gm ∈ L2 (TmM,R) such that
the following conditions hold :

1. gm (X, Y ) = gm (Y,X) for everything X, Y.

2. gm (X, Y ) > 0 for everything X ̸= 0.

3. The coe�cients gij in each local representation (i.e , in any map )

gm =
∑
i,j

gij (m) dxi ⊗ dxj

are di�erentiable functions .

(M, g) is then called Riemannian manifold.

Example 5. In R3, the Euclidian metric g0 = dx2 + dy2 + dz2 is a Riemannian metric .

1.6.1 Isometry

De�nition 18. f : (M, g) → (N, h) an isometry ( (M, g) and (N, h) are two Riemannian
manifolds ) if and only if f is a di�eomorphism such that

h (Tmf (X) , Tmf (X)) = g (X, Y ) at any pointm ∈M and for all vectorsX and Y tangent
in m to M.

1.6.2 The �rst and second fundamental form

De�nition 19. [3]Given a surface X, for any point p = X (u, v) on X, and letting

E = ⟨Xu, Xu⟩ , F = ⟨Xu, Xv⟩ , G = ⟨Xv, Xv⟩ .
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The positive de�nite quadratic form (x, y) → Ex2 + 2Fxy+Gy2 is called the �rst funda-
mental form of X at p. It is often denoted as Ip and in matrix form, we have

Ip (x, y) = (x, y)

(
E F
F G

)(
x
y

)
.

Since the map (x, y) → Ex2 + 2Fxy +Gy2 is a positive de�nite quadratic form, we must
have E ̸= 0 and G ̸= 0.

Then, we can write

Ex2 + 2Fxy +Gy2 = E

(
x+

F

E
y

)2

+
EG− F 2

E
y2.

Since this quantity must be positive, we must have E > 0, G > 0, and also EG−F 2 > 0.

De�nition 20. Given a surface X, for any point p = X (u, v) on X, and letting

l = ⟨Xuu, N⟩ , m = ⟨Xuv, N⟩ , n = ⟨Xvv, N⟩ ,

where N is the unit normal vector such that

N =
Xu ×Xv

∥Xu ×Xv∥
.

The quadratic form (x, y) → lx2 +2mxy+ny2 is called the second fundamental form of X at
p. It is often denoted as IIp and in matrix form, we have

Ip (x, y) = (x, y)

(
l m
m n

)(
x
y

)
.

1.6.3 Christo�el symbols

De�nition 21. [4]Let g : U → Rn×n be a metric tensor of class C2. The Christo�el symbols
of the �rst kind of this metric tensor are the n3 functions.

Γijk : =
1

2
(∂igjk + ∂jgki + ∂kgij) : U → R

(1 ≤ i, j, k ≤ n) and the Christo�el symbols of the second kind of this metric tensor are the
n3 functions.

Γk
ij : =

∑
α

gαkΓijα : U → R.

(1 ≤ i, j, k ≤ n)
Where

(
gαk
)
is the inverse matrix of (gij) .
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1.6.4 The canonical connection

De�nition 22. [6]An a�ne connection ∇ on a di�erentiable manifold M is a mapping

∇ : X (M)× X (M) → X (M)

which is denoted by (X, Y )
∇→ ∇XY and which satis�es the following properties :

i) ∇fX+gYZ = f∇XZ + g∇YZ.

ii) ∇X (Y + Z) = ∇XY +∇XZ.

iii) ∇X (fY ) = f∇XY +X (f)Y,

in which X, Y, Z ∈ X (M) and f, g ∈ D (M) .

Corollary 1. [6]A connection ∇ on a Riemannian manifold M is compatible with the metric
if and only if

X ⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ , X, Y, Z ∈ X (M) . (1.6.1)

Proof. Suppose that ∇ is compatible with the metric. Let p ∈ M and let c : I → M be a
di�erentiable curve with c (t0) = p, t0 ∈ I, and with dc

dt
|t=t0= X (p) . Then

X (p) ⟨Y, Z⟩ =
d

dt
⟨Y, Z⟩ |t=t0

=
〈
∇X(p)Y, Z

〉
p
+
〈
Y,∇X(p)Z

〉
p
.

Since p is arbitrary, (1.6.1 ) follows. The converse is obvious.

De�nition 23. [6]An a�ne connection ∇ on a smooth manifold M is said to be symmetric
when

∇XY −∇YX = [X, Y ] for all X, Y ∈ X (M) . (1.6.2)

Remark 3. [6]In a coordinate system (U, x) , the fact that ∇ is symmetric implies that for
all i, j = 1, . . . , n,

∇Xi
Xj −∇Xj

Xi = [Xi, Xj] = 0, Xi =
∂

∂xi
, (1.6.3)

which justi�es the terminology (observe that (1.12.3) is equivalent to the fact that Γk
ij =

Γk
ji).

Theorem 3. (Levi-Civita). Given a Riemannian manifold M , there exists a unique a�ne
connection ∇ on M satisfying the conditions :

a. ∇ is symmetric.

b. ∇ is compatible with the Riemannian metric.
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Proof. Suppose initially the existence of such a ∇. Then

X ⟨Y.Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ , (1.6.4)

Y ⟨Z,X⟩ = ⟨∇YZ,X⟩+ ⟨Z,∇YX⟩ , (1.6.5)

Z ⟨X, Y ⟩ = ⟨∇ZX, Y ⟩+ ⟨X,∇ZY ⟩ . (1.6.6)

Adding (1.6.4 ) and (1.6.5 ) and subtracting (1.6.6 ), we have, using the symmetry of ∇,
that

X ⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z ⟨X, Y ⟩
= ⟨[X,Z] , Y ⟩+ ⟨[Y, Z] , X⟩+ ⟨[X, Y ] , Z⟩+ 2 ⟨Z,∇YX⟩ .

Therefore

⟨Z,∇YX⟩ = 1

2

{
X ⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z ⟨X, Y ⟩ − ⟨[X,Z] , Y ⟩

− ⟨[Y, Z] , X⟩ − ⟨[X, Y ] , Z⟩

}
(1.6.7)

The expression (1.6.7 ) shows that ∇ is uniquely determined from the metric ⟨ , ⟩. Hence,
if it exists, it will be unique.

To prove existence, de�ne ∇ by (1.6.7 ). It is easy to verify that ∇ is well-de�ned and
that it satis�es the desired conditions.

De�nition 24. [6]The curvature R of a Riemannien manifold M is a correspondence that
associates to every pair X, Y ∈ X (M) a mapping

R (X, Y ) : X (M) → X (M) given by

R (X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, Z ∈ X (M) ,

where ∇ is the Riemannian connection of M.
Observe that if M = Rn, then R (X, Y )Z = 0 for all X, Y, Z ∈ X (Rn) . In fact, if

the vector �eld Z is given by Z = (z1, . . . , zn) , with the components of Z coming from the
natural coordinates of Rn, we obtain

∇XZ = (Xz1, . . . , Xzn) ,

hence
∇Y∇XZ = (Y Xz1, . . . , Y Xzn) ,

which implies that

R (X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z = 0,

as was stated. We are able, therefore, to think of R as a way of measuring how much M
deviates from being Euclidean.

Another way of viewing de�nition (24) is to consider a system of coordinates {xi}
around p ∈M. Since

[
∂
∂xi
, ∂
∂xj

]
= 0, we obtain

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=

(
∇ ∂

∂xi

∇ ∂
∂xj

−∇ ∂
∂xj

∇ ∂
∂xi

)
∂

∂xk
,

that is, the curvature measures the non-commutativity of the covariant derivative.
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Proposition 4. The curvature R of a Riemannian manifold has the following properties :

(i) R is bilinear in X (M)× X (M) , that is,

R (fX1 + gX2, Y1) = fR (X1, Y1) + gR (X2, Y1) ,

R (X1, fY1 + gY2) = fR (X1, Y1) + gR (X1, Y2) ,

f, g ∈ D (M) , X1, X2, Y1, Y2 ∈ X (M) .

(ii) For any X, Y ∈ X (M) , the curvature operator R (X, Y ) : X (M) → X (M) is linear,
that is,

R (X, Y ) (Z +W ) = R (X, Y )Z +R (X, Y )W,

R (X, Y ) fZ = fR (X, Y )Z,

f ∈ D (M) , Z,W ∈ X (M) .

Proof. Let us verify (ii) only. The �rst part of (ii) is obvious. As for the second, we have

∇Y∇X (fZ) = ∇Y (f∇XZ + (Xf)Z)

= f∇Y∇XZ + (Y f) (∇XZ) + (Xf) (∇YZ) + (Y (Xf))Z.

Therefore,

∇Y∇X (fZ)−∇X∇Y (fZ) = f (∇Y∇X −∇X∇Y )Z + ((Y X −XY ) f)Z,

hence

R (X, Y ) fZ = f∇Y∇XZ − f∇X∇YZ + ([Y,X] f)Z + f∇[X,Y ]Z + ([X, Y ] f)Z

= fR (X, Y )Z.

Proposition 5. (Bianchi Identity)

R (X, Y )Z +R (Y, Z)X +R (Z,X)Y = 0.

Proof. From the symmetry of the Riemannian connection, we have,

R (X, Y )Z +R (Y, Z)X +R (Z,X)Y = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z

+∇Z∇YX −∇Y∇ZX +∇[Y,Z]X

+∇X∇ZY −∇Z∇XY +∇[Z,X]Y

= ∇Y [X,Z] +∇Z [Y,X] +∇X [Z, Y ]

−∇[X,Z]Y −∇[Y,X]Z −∇[Z,Y ]X

= [Y, [X,Z]] + [Z, [Y,X]] + [X, [Z, Y ]]

= 0,

where the last equality follows from the Jacobi identity for vector �elds.
From now on, we shall write ⟨R (X, Y )Z, T ⟩ = (X, Y, Z, T ) .
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Proposition 6. (a) (X, Y, Z, T ) + (Y, Z,X, T ) + (Z,X, Y, T ) = 0,

(b) (X, Y, Z, T ) = − (Y,X,Z, T ) ,

(c) (X, Y, Z, T ) = − (X, Y, T, Z) ,

(d) (X, Y, Z, T ) = (Z, T,X, Y ) .

Proof. (a) is just the Bianchi identity again ;
(b) follows directly from De�nition (curvature) ;
(c) is equivalent to (X, Y, Z, Z) = 0, whose proof follows :

(X, Y, Z, Z) =
〈
∇Y∇XZ −∇X∇YZ +∇[X.Y ]Z,Z

〉
.

But
⟨∇Y∇XZ,Z⟩ = Y ⟨∇XZ,Z⟩ − ⟨∇XZ,∇YZ⟩ ,

and 〈
∇[X,Y ]Z,Z

〉
=

1

2
[X, Y ] ⟨Z,Z⟩ .

Hence

(X, Y, Z, Z) = Y ⟨∇XZ,Z⟩ −X ⟨∇YZ,Z⟩+
1

2
[X, Y ] ⟨Z,Z⟩

=
1

2
Y (X ⟨Z,Z⟩)− 1

2
X (Y ⟨Z,Z⟩) + 1

2
[X, Y ] ⟨Z,Z⟩

= 0,

which proves(c).
In order to prove (d),we use (a), and write :

(X, Y, Z, T ) + (Y, Z,X, T ) + (Z,X, Y, T ) = 0,

(Y, Z, T,X) + (Z, T, Y,X) + (T, Y, Z,X) = 0,

(Z, T,X, Y ) + (T,X,Z, Y ) + (X,Z, T, Y ) = 0,

(T,X, Y, Z) + (X, Y, T, Z) + (Y, T,X, Z) = 0.

Summing the equations above, we obtain

2 (Z,X, Y, T ) + 2 (T, Y, Z,X) = 0

and, therefore,
(Z,X, Y, T ) = (Y, T, Z,X) .

1.6.5 The curvature average

De�nition 25.

H =
lG+ nE − 2mF

2 (EG− F 2)
.

If H = 0, we say that (S) is minimal. Where the coe�cients E,F,G, l, n and m are here
the coe�cients of the �rst and second fundamental forms.
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Chapitre 2

Minimal translation surfaces in H2 × R

The name minimal surfaces has been applied to surfaces of vanishing mean curvature,
because the condition H = 0 will necessarily be satis�ed by surfaces which minimize area
within a given boundary con�guration [1]. So, in the chapter we de�ne the minimal surface
(section 2.1). Then, we de�ne the Lie group H2×R (section 2.2), and in section 2.3 we classify
the minimal translation surface of type 1. At the end, in section 2.4 we classify the minimal
translation surface of type 2.

2.1 Minimal surface

De�nition 26. A minimal surface is a closed and bounded surface of a real Euclidean a�ne
space of dimension 3 with regular boundary minimizing the total area with �xed contour. In
other words, a minimal surface in a given Riemannian manifold is the embedding of a compact
manifold with boundary minimizing the Riemannian volume with �xed boundary .

De�nition 27. In the space H2×R , the surfaces which locally minimize the areas are called
minimal surfaces, they satisfy the condition H = 0, where H is the mean curvature given by
the formula :

H =
lG+ nE − 2Fm

2 (EG− F 2)
.

2.2 The Lie group H2 × R
H2 × R a Riemannian manifold endowed with a left invariant metric :

gH2×R =
1

y2
(
dx2 + dy2

)
+ dz2

The Riemannian product space H2 × R is a Lie group with respect to the operation :

(x, y, z) ∗ (x̄, ȳ, z̄) = (x̄y + x, yȳ, z + z̄)

An orthonormal basis of left invariant vector �elds {E1, E2, E3} on H2 × R is given by

E1 = y
∂

∂x
; E2 = y

∂

∂y
; E3 =

∂

∂z
.
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The Levi-Civita connection of the H2 × R space with respect to this base is

∇̃E1E1 = E2, ∇̃E1E2 = −E1, ∇̃E1E3 = 0,

∇̃E2E1 = 0, ∇̃E2E2 = 0, ∇̃E2E3 = 0,

∇̃E3E1 = 0, ∇̃E3E2 = 0, ∇̃E3E3 = 0.

where (x, y, z) are usual coordinates of R3.
On the only hand, for any vectors X = x1E1 + y1E2 + z1E3 and Y = x2E1 + y2E2 + z2E3

in H2 × R the cross product × is de�ned by :

X × Y =

∣∣∣∣∣∣
E1 E2 E3

x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣
=

∣∣∣∣ y1 z1
y2 z2

∣∣∣∣E1 −
∣∣∣∣ x1 z1
x2 z2

∣∣∣∣E2 +

∣∣∣∣ x1 y1
x2 y2

∣∣∣∣E3

= (y1z2 − y2z1)E1 + (x2z1 − x1z2)E2 + (x1y2 − x2y1)E3

= (y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1) .

Lie brackets are :

[E1, E2] = −E1; [E2, E3] = 0; [E3, E1] = 0.

As well as

g (E1, E1) = g (E2, E2) = g (E3, E3) = 1,

g (E1, E2) = g (E2, E3) = g (E1, E3) = 0.

Thus we have directly the fundamental tensor of g (i.e : the matrix gij) associated with
the metric, and its inverse gij. The associated matrices are :

(gij)1≤i,j≤3 =

 1
y2

0 0

0 1
y2

0

0 0 1

 ,
(
gij
)
1≤i,j≤3

=

 y2 0 0
0 y2 0
0 0 1


with det (gij) =

1
y4
.

The Christo�el symbols as well as the Levi-Civita connecting forms in (x, y, z) coordinates
for the metric g are :

Γk
ij =

1

2

[
gk1
(
∂gi1
∂xj

+
∂gj1
∂xi

− ∂gij
∂x

)]
+

1

2

[
gk2
(
∂gi2
∂xj

+
∂gj2
∂xi

− ∂gij
∂y

)]
+
1

2

[
gk3
(
∂gi3
∂xj

+
∂gj3
∂xi

− ∂gij
∂z

)]
i, j, k = 1, 2, 3 with x1 = x, x2 = y, x3 = z.

So we get :
Γ2
11 =

1
y
, Γ1

12 = Γ1
21 = − 1

y
, Γ1

23 = Γ1
32 = 0, Γ3

22 = 0,

Γ2
22 = − 1

y
, Γ2

13 = Γ2
31 = 0, Γ1

33 = 0, Γ3
11 = 0, Γ3

23 = Γ3
32 = 0,

Γ1
11 = 0, Γ2

12 = Γ2
21 = 0, Γ2

33 = 0, Γ3
12 = Γ3

21 = 0,
Γ1
22 = 0, Γ1

13 = Γ1
31 = 0, Γ3

33 = 0, Γ3
13 = Γ3

31 = 0, Γ2
23 = Γ2

23 = 0.

.
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De�nition 28. A translation surfaces
∑

(α, β) in H2 × R is a surface parameterized by :

x :
∑

→ H2 × R, x (s, t) = α (s) ∗ β (t) ,

where α and β are any generating planar curves lying in orthogonal planes of R3.

• We emphasize that the group operation ∗ on the space H2 × R is not commutative,
we have two translation surfaces, namely

∑
(α, β) and

∑
(β, α) which are di�erent.

According to planar curves α and β, we distinguish two

types as follows :
We assume that α (s) and β (t) lie in the yz-plane and xy-plane of R3, respectively. That

is

α (s) = (0, s, f (s)) ,

β (t) = (g (t) , t, 0) ,

where f (s) and g (t) are smooth functions and s, t > 0.
In this case, we have two translation surfaces

∑
1 (α, β) and

∑
2 (β, α) parameterized by :

x (s, t) = α (s) ∗ β (t)
= (0, s, f (s)) ∗ (g (t) , t, 0)
= (sg (t) , st, f (s)) ,

and

x (s, t) = β (t) ∗ α (s)

= (g (t) , t, 0) ∗ (0, s, f (s))
= (g (t) , st, f (s)) ,

which are called the translation surfaces of type 1 and 2, respectively.

Remark 4. 1) If one curve lies in the xz-plane,then the translation surface is a part of
xz-plane .

2) The translation surfaces generated by α (s) = (0, c1, s) and β (t) = (t, c2, 0) (c1, c2 ∈ R+)
are planes. So, translation surfaces except for Remarks 1) and 2) are meaningful for
our study, because planes are trivial minimal surfaces.

2.3 Classi�cation of type 1 minimal translation surface

Let
∑

1 be a translation surface of type 1 in Riemannian product space H2 × R. Then ,∑
1 is parameterized by :

x (s, t) = (sg (t) , st, f (s)) (2.3.1)

for all s > 0 and t > 0.
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We have

∂x

∂s
: = xs =

D

Ds
x (s, t)

= (g (t) , t, f p (s))

=
g (t)

y
· y ∂
∂x

+
t

y
· y ∂
∂y

+ f p (s) · ∂
∂z

with in this case y = st

=
g (t)

st
E1 +

1

s
E2 + f p (s)E3.

∂x

∂t
: = xt =

D

Dt
x (s, t)

= (sgp (t) , s, 0)

=
sgp (t)

y
· y ∂
∂x

+
s

y
· y ∂
∂y

with in this case y = st

=
gp (t)

t
E1 +

1

t
E2.

The coe�cients of the �rst fundamental form of
∑

1 are given by :

E = ⟨xs, xs⟩

=

(
g (t)

st
,
1

s
, f p (s)

) g(t)
st
1
s

f p (s)


=

(
g (t)

st

)2

+
1

s2
+ (f p (s))

2
,

F = ⟨xs, xt⟩

=

(
g (t)

st
,
1

s
, f p (s)

) gp(t)
t
1
t

0


=

g (t) gp (t)

st2
+

1

st
,

G = ⟨xt, xt⟩

=

(
gp (t)

t
,
1

t
, 0

) gp(t)
t
1
t

0


=

(
gp (t)

t

)2

+
1

t2
.

The unit normal vector �eld U of
∑

1 is given by :

U =
xs × xt

∥xs × xt∥
= −f

p (s)

wt
E1 +

f p (s) gp (t)

wt
E2 +

(
g (t)− tgp (t)

wst2

)
E3,
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where w = ∥xs × xt∥ and because

xs ∧ xt =

(
g (t)

st
,
1

s
, f p (s)

)
∧
(
gp (t)

t
,
1

t
, 0

)
=

(
−f

p (s)

t
,
f p (s) gp (t)

t
,
g (t)

st2
− gp (t)

st

)
.

To compute the second fundamental form of
∑

1 , we have to calculate the following :

D

Ds
E1 = ▽̃xs

E1

= ▽̃ g(t)
st

E1+
1
s
E2+f p(s)E3

E1

=
g (t)

st
▽̃E1

E1 +
1

s
▽̃E2

E1 + f p (s) ▽̃E3
E1

=
g (t)

st
E2,

D

Ds
E2 = ▽̃xs

E2

=
g (t)

st
▽̃E1

E2 +
1

s
▽̃E2

E2 + f p (s) ▽̃E3
E2

= −g (t)
st

E1,

D

Ds
E3 = ▽̃xs

E3

=
g (t)

st
▽̃E1

E3 +
1

s
▽̃E2

E3 + f p (s) ▽̃E3
E3

= 0.

D

Dt
E1 = ▽̃xt

E1

= ▽̃ gp(t)
t

E1+
1
t
E2
E1

=
gp (t)

t
▽̃E1

E1 +
1

t
▽̃E2

E1

=
gp (t)

t
E2,

D

Dt
E2 = ▽̃xt

E2

=
gp (t)

t
▽̃E1

E2 +
1

t
▽̃E2

E2

= −g
p (t)

t
E1,
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D

Dt
E3 = ▽̃xt

E3

=
gp (t)

t
▽̃E1

E3 +
1

t
▽̃E2

E3

= 0.

So, the covariant derivatives are :

∇̃xsxs =
D

Ds

(
g (t)

st
E1 +

1

s
E2 + f p (s)E3

)
=

g (t)

t

[
− 1

s2
E1 +

1

s

D

Ds
E1

]
+

(
− 1

s2
E2 +

1

s

D

Ds
E2

)
+ f pp (s)E3 + f p (s)

D

Ds
E3

= −g (t)
s2t

E1 +
g2 (t)

s2t2
E2 −

1

s2
E2 −

g (t)

s2t
E1 + f pp (s)E3

= −2g (t)

s2t
E1 +

(
g (t)2

s2t2
− 1

s2

)
E2 + f pp (s)E3,

∇̃xsxt =
D

Ds

(
gp (t)

t
E1 +

1

t
E2

)
=

gp (t)

t

D

Ds
E1 +

1

t

D

Ds
E2

= −g (t)
st2

E1 +

(
g (t) gp (t)

st2

)
E2,

∇̃xtxt =
D

Dt

(
gp (t)

t
E1 +

1

t
E2

)
=

tgpp (t)− gp (t)

t2
E1 +

gp (t)

t

D

Dt
E1 −

1

t2
E2 +

1

t

D

Dt
E2

=
tgpp (t)− gp (t)

t2
E1 +

gp (t)2

t2
E2 −

1

t2
E2 −

gp (t)

t
E1

=

(
tgpp (t)− 2gp (t)

t2

)
E1 +

(
gp (t)2 − 1

t2

)
E2.

We have

U =
1

w

(
−f

p (s)

t
,
f p (s) gp (t)

t
,
g (t)− tgp (t)

st2

)
and

∇̃xsxs =

(
−2g (t)

s2t
,
g (t)2

s2t2
− 1

s2
, f pp (s)

)
,

∇̃xsxt =

(
−g (t)
st2

,
g (t) gp (t)

st2
, 0

)
,

∇̃xtxt =

(
tgpp (t)− 2gp (t)

t2
,
gp (t)2 − 1

t2
, 0

)
.
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which imply the coe�cients of the second fundamental form of
∑

1 are given by :

l =
〈
∇̃xsxs, U

〉
=

(
−2g (t)

s2t
,
g (t)2

s2t2
− 1

s2
, f pp (s)

) −f p(s)
wt

f p(s)gp(t)
wt

g(t)−tgp(t)
wst2


=

1

w

[
2f p (s) g (t)

s2t2
+
f p (s) gp (t) g (t)2

s2t3
− f p (s) gp (t)

s2t
+
g (t) f pp (s)

st2
− tgp (t) f pp (s)

st2

]

=
1

ws2t3

(
2tf p (s) g (t) + f p (s) g (t)2 gp (t)− t2f p (s) gp (t) + stf pp (s) g (t)

−st2f pp (s) gp (t)

)
,

m =
〈
∇̃xsxt, U

〉
=

(
−g (t)
st2

,
g (t) gp (t)

st2
, 0

) −f p(s)
wt

f p(s)gp(t)
wt

g(t)−tgp(t)
wst2


=

1

w

[
−f

p (s) (−g (t))
st3

+
f p (s) g (t) gp (t)2

st3

]
=

1

wst3
(
f p (s) g (t) + f p (s) g (t) gp (t)2

)
,

n =
〈
∇̃xtxt, U

〉
=

(
tgpp (t)− 2gp (t)

t2
,
gp (t)2 − 1

t2
, 0

) −f p(s)
wt

f p(s)gp(t)
wt

g(t)−tgp(t)
wst2


=

1

w

[
−tf p (s) gpp (t)

t3
+

2f p (s) gp (t)

t3
+
f p (s) gp (t)3

t3
− f p (s) gp (t)

t3

]
=

1

wt3
(
−tf p (s) gpp (t) + f p (s) gp (t) + f p (s) gp (t)3

)
.

The translation surface
∑

1 of type 1 is minimal if and only if :

H =
lG− 2mF + nE

2 (EG− F 2)
= 0 ⇔ lG− 2mF + nE = 0
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First let′s calculate lG,mF and nE :

lG =
1

ws2t3
[2tf p (s) g (t) + f p (s) g (t)2 gp (t)− t2f p (s) gp (t) + stf pp (s) g (t)

− st2f pp (s) gp (t)]

[
gp (t)2

t2
+

1

t2
]

=
1

ws2t3
[
2f p (s) g (t) gp (t)2

t
+
f p (s) g (t)2 gp (t)3

t2
− f p (s) gp (t)3 +

sf pp (s) g (t) gp (t)2

t

− sf pp (s) gp (t)3 +
2f p (s) g (t)

t
+
f p (s) g (t)2 gp (t)

t2
− f p (s) gp (t)

+
sf pp (s) g (t)

t
− sf pp (s) gp (t)],

mF =
1

wst3
[f p (s) g (t) + f p (s) g (t) gp (t)2][

g (t) gp (t)

st2
+

1

st
]

=
1

wst3
[
f p (s) g (t)2 gp (t)

st2
+
f p (s) g (t)2 gp (t)3

st2
+
f p (s) g (t)

st

+
f p (s) g (t) gp (t)2

st
]

nE =
1

wt3
[−tf p (s) gpp (t) + f p (s) gp (t) + f p (s) gp (t)3][

g (t)2

s2t2
+

1

s2
+ f p (s)2]

=
1

wt3
[
−f p (s) gpp (t) g (t)2

s2t
+
f p (s) gp (t) g (t)2

s2t2
+
f p (s) gp (t)3 g (t)2

s2t2
− tf p (s) gpp (t)

s2
+
f p (s) gp (t)

s2

+
f p (s) gp (t)3

s2
+−tf p (s)3 gpp (t) + f p (s)3 gp (t) + f p (s)3 gp (t)3]

Then we obtain :
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H = 0 ⇔ 1

w
[
2f p (s) g (t) gp (t)2

s2t4
+
f p (s) g (t)2 gp (t)3

s2t5
− f p (s) gp (t)3

s2t3
+
f pp (s) g (t) gp (t)2

st4

− f pp (s) gp (t)3

st3
+

2f p (s) g (t)

s2t4
+
f p (s) g (t)2 gp (t)

s2t5
− f p (s) gp (t)

s2t3

− f pp (s) gp (t)

st3
− 2f p (s) g (t)2 gp (t)

s2t5
− 2f p (s) g (t)2 gp (t)3

s2t5
− 2f p (s) g (t)

s2t4
+
f ′′(s)g(t)

st4

− 2f p (s) g (t) gp (t)2

s2t4
− f p (s) gpp (t) g (t)2

s2t4
+
f p (s) g (t)2 gp (t)

s2t5

+
f p (s) g (t)2 gp (t)3

s2t5
− f p (s) gpp (t)

s2t2
+
f p (s) gp (t)

s2t3
+
f p (s) gp (t)3

s2t3

− f p (s)3 gpp (t)

t2
+
f p (s)3 gp (t)

t3
+
f p (s)3 gp (t)3

t3
] = 0

⇔[
f pp (s) g (t) gp (t)2

st4
− f pp (s) gp (t)3

st3
+
f pp (s) g (t)

st4
− f pp (s) gp (t)

st3

− f p (s) gpp (t) g (t)2

s2t4
− f p (s) gpp (t)

s2t2
− f p (s)3 gpp (t)

t2
+
f p (s)3 gp (t)

t3

+
f p (s)3 gp (t)3

t3
] = 0

⇔ 1

s2t4
[sf pp (s) g (t) gp (t)2 − stf pp (s) gp (t)3 + sf pp (s) g (t)

− stf pp (s) gp (t)− f p (s) gpp (t) g (t)2 − t2f p (s) gpp (t)

− s2t2f p (s)3 gpp (t) + s2tf p (s)3 gp (t) + s2tf p (s)3 gp (t)3] = 0

⇔[sf pp (s) [g (t) gp (t)2 − tgp (t)3 + g (t)− tgp (t)]

+ f p (s) [−gpp (t) g (t)2 − t2gpp (t)] + s2f p (s)3 [tgp (t)− t2gpp (t) + tgp (t)3]] = 0 (1)

We multiply (1) by (−1) , we �nd : s2f p (s)3
[
t2gpp (t)− tgp (t)− tgp (t)3

]
+sf pp (s)

[
tgp (t)3 + tgp (t)− g (t) gp (t)2 − g (t)

]
+f p (s)

[
gpp (t) g (t)2 + t2gpp (t)

]
 = 0 (2.3.2)

We start to study equation (2.3.2) in following cases :
If f p (s) = 0, that is, f (s) = k (k ∈ R) , the surface

∑
1 is parameterized by :

x (s, t) = (sg (t) , st, k) ,

where g (t) is an arbitrary function.
Now, we assume that f p (s) ̸= 0 on an open interval. Since s > 0 , divide (2.3.2) by s2f p (s)3

we obtain :[ [
t2gpp (t)− tgp (t)− tgp (t)3

]
+ f pp(s)

sf p(s)3

[
tgp (t)3 + tgp (t)− g (t) gp (t)2 − g (t)

]
+ 1

s2f p(s)2

[
gpp (t) g (t)2 + t2gpp (t)

] ]
= 0
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and take derivative with respect to s :

d

ds

(
f pp (s)

sf p (s)3

)[
tgp (t)3 + tpg (t)− gp (t)2 g (t)− g (t)

]
+
d

ds

(
1

s2f p (s)2

)[
g (t)2 gpp (t) + t2gpp (t)

]
= 0.

Hence, we deduce the existence of a real number a ∈ R such that

d

ds

(
f pp (s)

sf p (s)3

)
= −a d

ds

(
1

s2f p (s)2

)
, (2.3.3)

g (t)2 gpp (t) + t2gpp (t) = a
[
tgp (t)3 + tgp (t)− gp (t)2 g (t)− g (t)

]
.

Let us distinguish the following cases :

1 If a = 0 i.e d
ds

(
f pp(s)

sf p(s)3

)
= 0, then f pp(s)

sf p(s)3
= b and

g (t)2 gpp (t) + t2gpp (t) = 0 ⇔gpp (t)
[
g (t)2 + t2

]
= 0

⇒gpp (t) = 0,

that is g (t) = c1t+ c2 (b, c1, c2 ∈ R) .

(i) Let b = 0 i.e f pp(s)

sf p(s)3
= 0 ⇔ f pp (s) = 0. Then f (s) = d1s+ d2 (d1 ∈ R∗, d2 ∈ R) . In this

case, equation (2.3.2) becomes

s2f p (s)3
[
t2gpp (t)− tgp (t)− tgp (t)3

]
= 0 ⇒s2d31

[
−tc1 − tc31

]
= 0

⇒− s2d31tc1
(
1 + c21

)
= 0

⇒c1
(
1 + c21

)
s2d31t = 0

⇒c1 = 0 (s > 0, t > 0, d1 ̸= 0) .

Thus, the surface can be parameterize as

x (s, t) = (c2s, st, d1s+ d2) .

(ii) If b = −k2 ̸= 0, then f pp (s) = −k2sf p (s)3 and the general solution of the ODE is given
by :

f (s) =
1

k
ln

(
s+

√
s2 +

2d1
k2

)
+ d2, (2.3.4)

Substituting (2.3.4) into (2.3.2), we easily obtain c1 = c2 = 0. Thus, g (t) = 0.
Where d1 and d2 are constants of integration.
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(iii) If b = k2 ̸= 0 ⇒ f pp (s) = k2sf p (s)3, then the general solution of the ODE f pp (s) =
k2sf p (s)3 is given by :

f (s) =
1

k
sin−1 ks√

2d1
+ d2 ̸= 0,

because we have

f pp (s)

f p (s)3
= k2s⇐⇒− 1

2
· 1

f p2 =
k2

2
s2 + k1

⇐⇒ 1

f p2 = −k2s2 − 2k1

⇐⇒f p2 =
1

−k2s2 − 2k1
=

1

k2
(
−s2 − 2k1

k2

)
⇐⇒f p =

1

k
√
d1 − s2

with d1 =
−2k1
k2

, k1 ∈ R− so, d1 > 0

⇐⇒f =

∫
ds

k

√
1−

(
s√
d1

)2
which implies from (2.3.2) we can also obtain c1 = c2 = 0, that is g (t) = 0.

2 Suppose now a ̸= 0. From the �rst equation in (2.3.3), we obtain

f pp (s)

sf p (s)3
= −a 1

s2f p (s)2
+ c1 ⇔f pp (s) +

a

s
f p (s) = c1sf

p (s)3

⇔f pp (s) = −a
s
f p (s) + c1sf

p (s)3

⇔f pp (s) +
a

s
f p (s) = c1sf

p (s)3 (c1 ∈ R) , (2.3.5)

where c1 is a constant of integration . We put f p (s) = p (s). Then we �nd the Bernoulli's
equation as follows :

dp

ds
+
a

s
p = c1sp

3.

We divide by p3, we obtain :

dp

ds
p−3 +

a

s
p−2 = c1s (2)

To solve (2) we go through 2 stapes :
Step 1 : homogenous �rst-order ODE

ppp−3 +
a

s
p−2 = 0 ⇐⇒ppp−1 = −a

s

⇐⇒
∫
pp

p
ds = −a

∫
1

s
ds

⇐⇒ ln |p (s)| = −a ln s+ h

⇐⇒p (s) = exp (−a ln s+ h) .
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So,
p = s−a exph (s) =⇒ pp = −as−a−1 exph (s) + hp (s) s−a exph (s) .
Step 2 : ODE of order 1 with second member

(2) ⇐⇒
[
−as−a−1 exph (s) + hp (s) s−a exph (s)

]
s3a exp (−3h (s)) +

a

s
s2a exp (−2h (s)) = c1s

⇐⇒− as2a−1 exp (−2h (s)) + hp (s) s2a exp (−2h (s)) + as2a−1 exp (−2h (s)) = c1s

⇐⇒hp (s) s2a exp (−2h (s)) = c1s

⇐⇒− 1

2

∫
−2hp (s) exp (−2h (s)) ds =

∫
c1s

1−2ads

⇐⇒ exp (−2h (s)) =

∫
−2c1s

−2a+1ds+ c2

⇐⇒h = −1

2
ln

(∫
−2c1s

−2a+1ds+ c2

)
= −1

2
ln

(
−2c1
2− 2a

s2−2a + c2

)
So,

p = s−a

(∫
−2c1s

−2a+1ds+ c2

)− 1
2

Then

p−2 = s2a
(∫

−2c1s
−2a+1ds+ c2

)
, (2.3.6)

where c2 is a constant of integration.

(i) Let a = 1. Then from (2.3.6) we have

p−2 = s2a (−2c1 ln s+ c2)

So

p =
1

s
√
c2 − 2c1 ln s

We put f p (s) = p (s), then

f (s) =

∫
p (s) ds =

∫
1

s
√
c2 − 2c1 ln s

ds = − 1

c1

∫ −2c1 · 1
s

2
√
c2 − 2c1 ln s

ds. (2.3.7)

(2.3.7) =⇒f (s) = − 1

c1

√
c2 − 2c1 ln s+ c3, where c3 ∈ R and c1 = 0.

=⇒f p (s) =
1

s
√
c2 − 2c1 ln s

=⇒f q (s) =
−
√
c2 − 2c1 ln s− s · −2c1

1
s

2
√
c2−2c1 ln s

s2 (c2 − 2c1 ln s)
=

−c2 + c1 (2 ln s+ 1)

s2 (c2 − 2c1 ln s)
3
2

.

Then
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(2.3.2) ⇐⇒ s2

s3 (c2 − 2c1 ln s)
3
2

[
t2gq (t)− tgp (t)− tgp (t)3

]︸ ︷︷ ︸
G1(t)

+
s (−c2 + c1 (2 ln s+ 1))

s2 (c2 − 2c1 ln s)
3
2

[
tgp (t)3 + tgp (t)− g (t) gp (t)2 − g (t)

]︸ ︷︷ ︸
G2(t)

+
1

s
√
c2 − 2c1 ln s

[
g (t)2 gq (t) + t2gq (t)

]︸ ︷︷ ︸
G3(t)

= 0

⇐⇒ 1

s (c2 − 2c1 ln s)
3
2

[G1 (t) + (c1 (2 ln s+ 1)− c2)G2 (t) + (c2 − 2c1 ln s)G3 (t)] = 0.

(I)

We have
G2 (t) = G3 (t) according to (2.3.3)

So

(I) ⇐⇒G1 (t) + 2c1 ln sG2 (t) + c1G2 (t)− c2G2 (t) + c2G3 (t)− 2c1 ln sG3 (t) = 0

⇐⇒G1 (t) + 2c1 ln sG3 (t) + c1G3 (t)− c2G3 (t) + c2G3 (t)− 2c1 ln sG3 (t) = 0

⇐⇒G1 (t) + c1G3 (t) = 0

⇐⇒t2gq (t)− tgp (t)− tgp (t)3 + c1
(
g (t)2 gq (t) + t2gq (t)

)
= 0

⇐⇒ (1 + c1) t
2gq (t) + c1g (t)

2 gq (t) = tgp (t)
[
1 + gp (t)2

]
.

Then [
(1 + c1) t

2 + c1g (t)
2] gpp (t) = tgp (t)

[
1 + gp (t)2

]
. (2.3.8)

1. If c1 = 0, then equation (2.3.8) becomes

at2gpp (t) = tgp (t) + tgp (t)3 ⇐⇒ gpp (t)− 1
t
gp (t)− 1

t
gp (t)3 = 0,

We put gp (t) = w (t) . Then we can obtain the Bernoulli's equation as follows :

dw

dt
− 1

t
w =

1

t
w3

We divide by w3, we obtain :

dw

dt
w−3 − 1

t
w−2 =

1

t
(3)

To solve (3) we go through 2 stapes :
Step 1 : homogenous �rst-order ODE
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wpw−3 − 1

t
w−2 = 0 ⇐⇒wpw−1 =

1

t

⇐⇒
∫
wp

w
dt =

∫
1

t
dt

⇐⇒ ln |w (t)| = ln t+ v

⇐⇒w (t) = t exp v (t)

So
w = t exp v (t) =⇒ wp = exp v (t) + tvp (t) exp v (t) .

Step 2 : ODE of order 1 with second member

(3) ⇐⇒ [exp v (t) + tvp (t) exp v (t)] t−3 exp (−3v (t))− t−2

t
exp (−2v (t)) =

1

t

⇐⇒t−2vp (t) exp (−2v (t)) + t−3 exp (−2v (t))− t−3 exp (−2v (t)) =
1

t

⇐⇒vp (t) exp (−2v (t)) =
1

t−1

⇐⇒− 1

2

∫
−2vp (t) exp (−2v (t)) dt =

∫
tdt

⇐⇒ exp (−2v (t)) = −2

[
t2

2

]
+ d1

⇐⇒v = −1

2
ln
(
d1 − t2

)
So

w = t exp

(
−1

2
ln
(
d1 − t2

))
= t
(
d1 − t2

)− 1
2 = gp (t) .

Then
g (t) = −

√
d1 − t2 (d1 ∈ R) .

And from (3) give

f q (s) +
1

s
f p (s) = 0 ⇐⇒f q (s)

f p (s)
= −1

s

⇐⇒ ln |f p (s)| = − ln s+ c2

⇐⇒f p (s) = d2s
−1

⇐⇒f (s) = d2 ln s+ d3 (d2, d3 ∈ R) .

(ii) Let a ̸= 1. In this case, the function f (s) satisfying equation (2.3.5) appears in the
from

f (s) =
1√
|c2|

∫
1

s
√
s2(a−1) + c1

c2(a−1)

ds (2.3.9)

because we have
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p−2 = s2a
(

c1
a− 1

s2(a−1) + c2

)
=

[
c1

a− 1
s2 + c2s

2a

]
⇐⇒ p =

1√
c1
a−1

s2 + c2s2a

and we put f p (s) = p (s), then

f p (s) =
1√

c1
a−1

s2 + c2s2a
=

1

s
√

c1
a−1

+ c2s2(a−1)

So

f (s)
1√
|c2|

∫
1

s
√
s2(a−1) + c1

c2(a−1)

ds =⇒f p (s) =
1√
|c2|

· 1

s
√
s2(a−1) + c1

c2(a−1)

=⇒f pp (s) =
1√
|c2|

·
−as2(a−1) − c1

c2(a−1)

s2
(
s2(a−1) + c1

c2(a−1)

) 3
2

So,

(2.3.2) ⇐⇒ 1

s
√

|c2|
3
√
s2(a−1) + c1

c2(a−1)

3

[
t2gq (t)− tgp (t)− tgp (t)3

]︸ ︷︷ ︸
G1(t)

+
−as2(a−1) − c1

c2(a−1)

s2
√

|c2|
(
s2(a−1) + c1

c2(a−1)

) 3
2

[
tgp (t)3 + tgp (t)− g (t) gp (t)2 − g (t)

]︸ ︷︷ ︸
G2(t)

+
1

s
√

|c2|
√
s2(a−1) + c1

c2(a−1)

[
g (t)2 gq (t) + t2gq (t)

]︸ ︷︷ ︸
G3(t)

= 0

⇐⇒ 1√
|c2|

3 · 1

s
√
s2(a−1) + c1

c2(a−1)

3 [G1 (t)] +
1√
|c2|

·
−as2(a−1) − c1

c2(a−1)

s
(
s2(a−1) + c1

c2(a−1)

) 3
2

[G2 (t)]

+
1√
|c2|

· 1

s
√
s2(a−1) + c1

c2(a−1)

[G3 (t)] = 0

⇐⇒ 1√
|c2|

· 1

s
√
s2(a−1) + c1

c2(a−1)

3

1

c2
G1 (t) +

(
−as2(a−1) − c1

c2 (a− 1)

)
G2 (t)

+

(
s2(a−1) +

c1
c2 (a− 1)

)
G3 (t) = 0

⇐⇒ 1

c2
G1 (t) +

(
−as2(a−1) − c1

c2 (a− 1)

)
G2 (t) +

(
s2(a−1) +

c1
c2 (a− 1)

)
G3 (t) = 0.

(II)

34



In addition, we have
g (t)2 gq (t) + t2gq (t) = a

[
tgp (t)3 + tgp (t)− g (t) gp (t)2 − g (t)

]
⇐⇒ G3 (t) = aG2 (t)

So

(II) ⇐⇒ 1

c2
G1 (t) + s2(a−1) [−aG2 (t) +G3 (t)] +

c1
c2 (a− 1)

[−G2 (t) +G3 (t)] = 0

⇐⇒ 1

c2
G1 (t) + s2(a−1) [−G3 (t) +G3 (t)] +

c1
c2 (a− 1)

[
−1

a
G3 (t) +G3 (t)

]
= 0

⇐⇒ 1

c2
G1 (t) + c1G3 (t)

[
−1

ac2 (a− 1)
+

1

c2 (a− 1)

]
= 0

⇐⇒ a

c2
G1 (t) + c1G3 (t)

[
−1

c2 (a− 1)
+

a

c2 (a− 1)

]
= 0

⇐⇒ a

c2
G1 (t) + c1G3 (t)

[
a− 1

c2 (a− 1)

]
= 0

⇐⇒aG1 (t) + c1G3 (t) = 0

⇐⇒a
[
t2gq (t)− tgp (t)− tgp (t)3

]
+ c1

[
g (t)2 gq (t) + t2gq (t)

]
= 0

which implies [
at2gpp (t) + c1g (t)

2 gpp (t) + c1t
2gpp (t)

]
= atgp (t) + atgp (t)3 , (4)

(4) ⇐⇒
[
(a+ c1) t

2 + c1g (t)
2] gpp (t) = atgp (t)

[
1 + gp (t)2

]
. (2.3.10)

1. If c1 = 0, then the general solution of (2.3.10) is given by g (t) = −
√
d1 − t2. As the

solution of equation ()and equation (2.3.5) gives :

f q (s) +
a

s
f p (s) = 0 ⇐⇒f q (s)

f p (s)
= −a

s

⇐⇒ ln |f p (s)| = −a ln s+ c2

⇐⇒f p (s) = exp c2︸ ︷︷ ︸
=d2

s−a

⇐⇒f (s) = d2 ·
1

−a+ 1
s−a+1 + d3

So

f (s) =
d2

1− a
s1−a + d3 (d1,d2, d3 ∈ R) .

We conclude with the following :

Theorem 4. Let
∑

1 be a translation surface of type 1 in H2 ×R. If
∑

1 is minimal surface,
then

∑
1 is a plane parameterized as

x (s, t) = (sg (t) , st, f (s)) ,

where
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Figure 2.1 � Minimal translation surface in H2 × R of type 1 .

(1) either f (s) = c1s+ c2 and g (t) = c3 or

(2) f (s) = c1 ln s+ c2 and g (t) = −
√
c3 − t2 or

(3) f (s) = c1
1−a

s1−a + c2 and g (t) = −
√
c3 − t2 or

(4) f (s) = −1
c1

√
c2 − 2c1 ln s+ c3 and g (t) is the function satisfying equation (2.3.8) or

(5) f (s) = 1√
|c2|

∫
1

s
√

s2(a−1)+
c1

c2(a−1)

ds and g (t) is the function satisfying equation (2.3.10).

2.4 Classi�cation of type 2 minimal translation surface

Let
∑

2 be a translation surface of type 2 in Riemannian product space H2 ×R. Then ,∑
2 is parameterized by :

x (s, t) = (g (t) , st, f (s)) . (2.4.1)

for all s > 0 and t > 0.
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We have

xs =
D

Ds
x (s, t)

= (0, t, f p (s))

=
t

y
· y ∂
∂y

+ f p (s)
∂

∂z
with in this case y = st

=
1

s
E2 + f p (s)E3,

xt =
D

Dt
x (s, t)

= (gp (t) , s, 0)

=
gp (t)

y
· y ∂
∂y

+
s

y
· y ∂
∂y

with in this case y = st

=
gp (t)

st
E1 +

1

t
E2,

The coe�cients of the �rst fundamental form of
∑

2 are given by :

E =

(
0,

1

s
, f p (s)

) 0
1
s

f p (s)


=

1

s2
+ f p (s)2 ,

F =

(
0,

1

s
, f p (s)

) gp(t)
st
1
t

0


=

1

st
,

G =

(
gp (t)

st
,
1

t
, 0

) gp(t)
st
1
t

0


=

gp (t)2

s2t2
+

1

t2
.

The unit normal vector �eld U of
∑

2 is given by

U = −f
p (s)

wt
E1 +

f p (s) gp (t)

wst
E2 −

gp (t)

ws2t
E3,

where w = ∥xs × xt∥ and because

xs ∧ xt =

(
0,

1

s
, f p (s)

)
∧
(
gp (t)

st
,
1

t
, 0

)
=

(
−f

p (s)

t
,
f p (s) gp (t)

st
,−g

p (t)

s2t

)
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To compute the second fundamental form of
∑

2 , we have to calculate the following :

D

Ds
E1 = ∇̃xsE1

= ∇̃ 1
s
E2+f p(s)E3

E1

=
1

s
∇̃E2E1 + f p (s) ∇̃E3E1

= 0,
D

Ds
E2 = ∇̃xsE2

=
1

s
∇̃E2E2 + f p (s) ∇̃E3E2

= 0,
D

Ds
E3 = ∇̃xsE3

=
1

s
∇̃E2E3 + f p (s) ∇̃E3E3

= 0.

D

Dt
E1 = ∇̃xtE1

=
gp (t)

st
∇̃E1E1 +

1

t
∇̃E2E1

=
gp (t)

st
E2,

D

Dt
E2 = ∇̃xtE2

=
gp (t)

st
∇̃E1E2 +

1

t
∇̃E2E2

= −g
p (t)

st
E1,

D

Dt
E3 = ∇̃xtE3

=
gp (t)

st
∇̃E1E3 +

1

t
∇̃E2E3

= 0.
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So, the covariant derivatives are :

∇̃xsxs =
D

Ds

(
1

s
E2 + f p (s)E3

)
=− 1

s2
E2 +

1

s

D

Ds
E2 + f q (s)E3 + f p (s)

D

Ds
E3

=− 1

s2
E2 + f pp (s)E3,

∇̃xsxt =
D

Ds

(
gp (t)

st
E1 +

1

t
E2

)
=

(
−g

p (t)

s2t
E1 +

gp (t)

st

D

Ds
E1 +

1

t

D

Ds
E2

)
=− gp (t)

s2t
E1,

∇̃xtxt =
D

Dt

(
gp (t)

st
E1 +

1

t
E2

)
=

(
tgpp (t)− 2gp (t)

st2

)
E1 +

gp (t)

st

D

Dt
E1 −

1

t2
E2 +

1

t

D

Dt
E2

=

(
tgpp (t)− gp (t)

st2

)
E1 +

gp (t)2

s2t2
E2 −

1

t2
E2 −

gp (t)

st2
E1

=

(
tgpp (t)− 2gp (t)

st2

)
E1 +

(
gp (t)2 − s2

s2t2

)
E2,

which imply the coe�cients of the second fundamental form of
∑

2 are given by :

l =
〈
∇̃xsxs, U

〉
=

(
0,− 1

s2
, f q (s)

) −f p(s)
wt

f p(s)gp(t)
wst

− gp(t)
ws2t


=

1

w

[
−f p (s) gp (t)

s3t
− f pp (s) gp (t)

s2t

]
= −g

p (t)

ws3t
(f p (s) + sf pp (s)) ,

m =
〈
∇̃xsxt, U

〉
=

(
−g

p (t)

s2t
, 0, 0

) −f p(s)
wt

f p(s)gp(t)
wst

− gp(t)
ws2t


=

1

ws2t2
(f p (s) gp (t)) ,
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n =
〈
∇̃xtxt, U

〉
=

((
tgpp (t)− 2gp (t)

st2

)
,

(
gp (t)2 − s2

s2t2

)
, 0

) −f p(s)
wt

f p(s)gp(t)
wst

− gp(t)
ws2t


=

1

w

[
−f p (s) gpp (t)

st3
+

2f p (s) gp (t)

st3
+
f p (s) gp (t)3

s3t3
− s2f p (s) gp (t)

s3t3

]
=

1

ws3t3
(
f p (s) gp (t)

(
gp (t)− s2

)
− s2f p (s) (tgpp (t)− 2gp (t))

)
.

We suppose that the translation surface
∑

2 of type 2 is minimal if and only if

H = 0 ⇐⇒ lG− 2mF + nE = 0

First letps calculate lG,mF and nE :

lG =
1

ws3t
[−gp (t) f p (s)− gp (t) sf q (s)]

[
gp (t)2

s2t2
+

1

t2

]

=
1

ws3t

[
−gp (t)3 f p (s)

s2t2
− sgp (t)3 f pp (s)

s2t2
− gp (t) f p (s)

t2
− sgp (t) f q (s)

t2

]
,

mF =
1

ws2t2
[f p (s) gp (t)]

[
1

st

]
=

1

ws2t2

[
f p (s) gp (t)

st

]
,

nE =
1

ws3t3
[
f p (s) gp (t)

(
gp (t)2 − s2

)
− s2f p (s) (tgq (t)− 2gp (t))

] [ 1
s2

+ f p (s)2
]

=
1

ws3t3

[
f p(s)gp(t)

s2

(
gp (t)2 − s2

)
− f p (s) (tgq (t)− 2gp (t))

+f p (s)3 gp (t)
(
gp (t)2 − s2

)
− s2f p (s)3 (tgq (t)− 2gp (t))

]
.

Then we obtain :
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H = 0 ⇐⇒ 1

w


−gp(t)3f p(s)

s5t3
− gp(t)3f pp(s)

s4t3
− gp(t)f p(s)

s3t3
− gp(t)f pp(s)

s2t3
− 2f p(s)gp(t)

s3t3

+f p(s)gp(t)3

s5t3
− f p(s)gp(t)

s3t3
− f p(s)gpp(t)

s3t2
+ 2f p(s)gp(t)

s3t3
+ f p(s)3gp(t)3

s3t3

−f p(s)3gp(t)
st3

− f p(s)3gpp(t)
st2

+ 2f p(s)3gp(t)
st3

 = 0

⇐⇒− f pp (s) gp (t)3

s4t3
− 2f p (s) gp (t)

s3t3
− gp (t) f pp (s)

s2t3
− f p (s) gpp (t)

s3t2
+
f p (s)3 gp (t)3

s3t3

− f p (s)3 gpp (t)

st2
+
f p (s)3 gp (t)

st3
= 0

⇐⇒ 1

s4t3

 −f pp (s) gp (t)3 − 2sf p (s) gp (t)− s2gp (t) f pp (s)

−stf p (s) gpp (t) + sf p (s)3 gp (t)3 − s3tf p (s)3 gpp (t)

+s3f p (s)3 gp (t)

 = 0

⇐⇒gp (t)3
[
−f pp (s) + sf p (s)3

]
+ gp (t)

[
−2sf p (s)− s2f pp (s) + s3f p (s)3

]
+ tgpp (t)

[
−sf p (s)− s3f p (s)3

]
= 0

We multiply this by (−1), we �nd :

tgpp (t)
[
sf p (s) + s3f p (s)3

]
+ gp (t)

[
2sf p (s) + s2f pp (s)− s3f p (s)3

]
(2.4.2)

+gp (t)3
[
f pp (s)− sf p (s)3

]
= 0

If gp (t) = 0, that is g (t) = c (c ∈ R), the surface
∑

2 is parameterized by :

x (s, t) = (c, st, f (s)) ,

where f (s) is an arbitrary function.
If gp (t) ̸= 0, then we can divide (2.4.2) by gp (t)

tgpp (t)

gp (t)

[
sf p (s) + s3f p (s)3

]
+
[
2sf p (s) + s2f pp (s)− s3f p (s)3

]
+ gp (t)2

[
f pp (s)− sf p (s)3

]
= 0

then, we derive that with respect to t

d

dt

(
tgpp(t)
gp(t)

[
sf p (s) + s3f p (s)3

]
+
[
2sf p (s) + s2f pp (s)− s3f p (s)3

]
+gp (t)2

[
f pp (s)− sf p (s)3

] )
= 0 (4)

(4) ⇐⇒ d

dt

(
tgpp (t)

gp (t)

)(
sf p (s) + s3f p (s)3

)︸ ︷︷ ︸
F1(s)

+
d

dt

(
gp (t)2

) (
f pp (s)− sf p (s)3

)︸ ︷︷ ︸
F3(s)

= 0

⇐⇒F1 (s)
d

dt

(
tgpp (t)

gp (t)

)
+ F3 (s)

d

dt

(
gp (t)2

)
= 0

So, There is a real number a ∈ R such that

d

dt

(
tgpp (t)

gp (t)

)
=− a

d

dt

(
gp (t)2

)
,

f pp (s)− sf p (s)3 =a
(
sf p (s) + s3f p (s)3

)
.

Let us distinguish the following cases :
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(1) Suppose that a = 0. Then the �rst equation of (2.4.3) leads to

tgpp (t) = bgp (t) (b ∈ R) ⇐⇒
∫
gpp (t)

gp (t)
dt = b

∫
1

t
dt

⇐⇒ ln |gp (t)| = b ln |t|+ k (k ∈ R)
⇐⇒ exp (ln |gp (t)|) = exp (b ln |t|+ k) = exp (k) · tb

⇐⇒gp (t) = c1 · tb,

where c1 is a constant of integration .
If b ̸= −1, then

∫
gp (t) dt = c1

∫
tbdt⇐⇒g (t) =

c1
b+ 1

tb+1 + c2 (c1, c2 ∈ R)

and if b = −1, then∫
gp (t) dt = c1

∫
1
t
dt ⇐⇒ g (t) = c1 ln t+ c2 (t > 0) .

From the second equation of (2.4.3), we have the ordinary di�erential equation

f pp (s)− sf p (s)3 = 0 ⇐⇒ f pp (s) = sf p (s)3

So

∫
f pp (s)

sf p (s)3
ds =

∫
sds⇐⇒− 1

2
· 1

f p2 =
s2

2
+ k1

⇐⇒ 1

f p2 = −s2 − 2k1

⇐⇒f p2 =
1

−s2 − 2k1
=

1

k2 − s2
with k2 = −2k1

(
k1 ∈ R−)

⇐⇒f p =
1√

k2 − s2
=

1√
1−

(
s√
k2

)2 , c3 =√k2.

Then the general solution is given by f (s) = constant or f (s) = sin−1 s
c3
+c4 (c3 ̸= 0, c4 ∈ R) .

(2) If a ̸= 0, then the �rst equation of (2.4.3) writes as

gpp (t)− b

t
gp (t) = −a

t
gp (t)3 , (2.4.3)

where b is a constant of integration. We put gp (t) = q (t) . Then we can obtain the
Bernoulli's equation as follows :

dq

dt
− b

t
q = −a

t
q3
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For his resolution, we put

h (t) = q−2 (t) =⇒ hp (t) = −2qp (t) q−3 (t)

Thus

dq

dt
− b

t
q = −a

t
q3 ⇐⇒dq

dt
q−3 − b

t
q−2 = −a

t

⇐⇒− 1

2
hp − b

t
h = −a

t

We obtain a linear ODE of order 1 with second member.
To solve we go through 2 stapes :
Step 1 : homogenous �rst-order ODE

−1

2
hp − b

t
h = 0 ⇐⇒− 1

2
hp =

b

t
h

⇐⇒
∫
hp

h
dt = −2b

∫
dt

t

⇐⇒ ln |h (t)| = −2b ln t+ k1

⇐⇒h (t) = t−2b exp k1

Hence, the general solution of the ODE without second member is :

h (t) = t−2b exp k1.

Step 2 : ODE of order 1 with second member
We have

h (t) = t−2b exp k1 =⇒hp (t) =
(
kp1 (t) t

−2b exp k1
)
+
(
−2bt−2b−1 exp k1

)
By replacing h and hpin the ODE, we have

−1

2
hp − b

t
h = −a

t
(5)
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(5) ⇐⇒− 1

2

((
kp1 (t) t

−2b exp k1
)
+
(
−2bt−2b−1 exp k1

))
− b

t

(
t−2b exp k1

)
= −a

t

⇐⇒− 1

2
kp1 (t) t

−2b exp k1 (t) +
b

t
t−2b exp k1 (t)−

b

t
t−2b exp k1 (t) = −a

t

⇐⇒− 1

2
kp1 (t) t

−2b exp k1 (t) = −a
t

⇐⇒kp1 (t) exp k1 (t) =
2a

t
t2b

⇐⇒
∫
kp1 (t) exp k1 (t) dt = 2a

∫
t2b−1dt

⇐⇒ exp k1 (t) =

∫
2at2b−1dt

⇐⇒ exp k1 (t) =
2a

2b
t2b + c (c ∈ R)

⇐⇒k1 (t) = ln
(a
b
t2b + c

)

So, the general solution in the ODE is :

hg (t) = exp
(
ln
(a
b
t2b + c

))
t−2b

=
1

t2b

(a
b
t2b
)
t−2b exp c

or

hg (t) =
1

t2b

∫
2at2b−1dt.

We have h (t) = q−2 (t) . Then la solution general in the equation dq
dt
− b

t
q = −a

t
q3 is :

qg (t) =

(
1

t2b

∫
2at2b−1dt

)− 1
2

=
(a
b
+ t−2bc1

)− 1
2

(c1 = exp c)

=
1√

a
b
+ t−2bc1

(c1 ∈ R)

So

q−2 =
1

t2b

∫
2at2b−1dt. (2.4.4)

(i) If b = 0, then the general solution of (2.4.4) appears in the form

g (t) =

∫
1√

2a ln t− d1
dt. (2.4.5)
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(2.4.6) =⇒gp (t) =
1√

2a ln t− d1

=⇒gpp (t) =

−2a· 1
t

2
√
2a ln t−d1

(2a ln t− d1)
=

−a
t

· 1

(2a ln t− d1)
3
2

So

(2.4.2) ⇐⇒ −at
t (2a ln t− d1)

3
2

[
sf p (s) + s3f p (s)3

]︸ ︷︷ ︸
F1(s)

+
1√

2a ln t− d1

[
2sf p (s)− s3f p (s)3 + s2f q (s)

]︸ ︷︷ ︸
F2(s)

+
1

(2a ln t− d1)
3
2

[
f q (s)− sf p (s)3

]︸ ︷︷ ︸
F3(s)

= 0

⇐⇒ 1

(2a ln t− d1)
3
2

[−aF1 (s) + (2a ln t− d1)F2 (s) + F3 (s)] = 0 (*)

In addition, we have
f q (s)− sf p (s)3 = a

(
sf p (s) + s3f p (s)3

)
⇐⇒ F3 (s) = aF1 (s)

So

(∗) ⇐⇒− aF1 (s) + aF1 (s) + (2a ln t− d1)F2 (s) = 0

⇐⇒ (2a ln t− d1)F2 (s) = 0

⇐⇒ (2a ln t− d1)
[
2sf p (s)− s3f p (s)3 + s2f q (s)

]
= 0

(2a ln t− 2d1)
[
2sf p (s)− s3f p (s)3 + s2f pp (s)

]
= 0. (2.4.6)

From this, we obtain 2sf p (s)− s3f p (s)3 + s2f pp (s) = 0, and it's solution is

f (s) = ± ln

(
1 +

√
1 + d2s2

s

)
+ d3 (d2, d3 ∈ R) .

(ii) If b = 1, then from (2.4.5) the function g (t) is given by

g (t) =
1

a

√
c1 + at2 + c2 (c2 ∈ R)

because equation (2.4.5) became

q−2 =
1

t2

∫
2atdt⇐⇒ q =

1

t−1

(∫
2atdt

)− 1
2

= t

(
2a

2
t2 + c1

)− 1
2

= t
(
at2 + c1

)− 1
2 ,

we have
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gp (t) = q (t) =⇒g (t) =

∫
q (t) dt =

∫
t√

at2 + c1
dt =

1

a

∫
2at

2
√
at2 + c1

dt

=
1

a

√
c1 + at2 + c2 (c2 ∈ R) .

In this case , the left hand side of equation (2.4.2) is polynomial in t with functions of s
as the coe�cients. Therefore, the leading coe�cient must vanish.

In addition, we have

gpp (t) =

√
c1 + at2 − t · 2at

2
√

c1+at2

(c1 + at2)
=

c1

(c1 + at2)
3
2

.

So

(2.4.2) ⇐⇒ c1

(c1 + at2)
3
2

F1 (s) +
t

(c1 + at2)
1
2

F2 (s) +
t3

(c1 + at2)
3
2

F3 (s) = 0

⇐⇒ t

(c1 + at2)
3
2

[
c1F1 (s) +

(
c1 + at2

)
F2 (s) + t2F3 (s)

]
= 0

⇐⇒c1F1 (s) +
(
c1 + at2

)
F2 (s) + t2F3 (s) = 0 (**)

(∗∗) ⇐⇒c1F1 (s) + at2F1 (s) +
(
c1 + at2

)
F2 (s) = 0

⇐⇒
(
c1 + at2

)
[F1 (s) + F2 (s)] = 0

⇐⇒F1 (s) + F2 (s) = 0

⇐⇒sf p (s) + s3f p (s)3 + 2sf p (s)− s3f p (s)3 + s2f q (s) = 0

⇐⇒s2f q (s) + 3sf p (s) = 0

We solve this equation

s2f q (s) + 3sf p (s) = 0 ⇐⇒f q (s) +
3

s
f p (s) = 0

⇐⇒f q (s)

f p (s)
= −3

s

⇐⇒
∫
f q (s)

f p (s)
ds = −3

∫
ds

s

⇐⇒ ln |f p (s)| = −3 ln s+ k1

⇐⇒f p (s) = d1s
−3

⇐⇒f (s) = d1

∫
s−3ds

⇐⇒f (s) = −d1
2
s−2 + d2
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So, f (s) = − d1
2s2

+ d2 (d1, d2 ∈ R) .
(iii) If b /∈ R− {0, 1} , then (2.4.4) becomes :

q−2 =
1

t2b

∫
2at2b−1dt =

1

t2b

[a
b
t2b + c1

]
=⇒ q = tb

(a
b
t2b + c1

)− 1
2
,

then the general solution of (2.4.4) is :

g (t) =

∫
q (t) dt =

∫
tb√

a
b
t2b + c1

dt =

√
|b|√
|b|

∫
tb√

a
b
t2b + c1

dt =
√

|b|
∫

tb√
at2b + bc1

dt.

So, we have :

g (t) =
√
|b|
∫

tb√
at2b + bc1

dt =⇒gp (t) =
√
|b| · tb√

at2b + bc1

=⇒gpp (t) =
√

|b|

btb−1
√
at2b + bc1 − tb · 2abt2b−1

2
√

at2b+bc1

at2b + bc1


=
√
|b|

btb−1
√
at2b + bc1 − abt3b−1√

at2b+bc1

at2b + bc1


=
√

|b|

(
btb−1

(
at2b + bc1

)
− abt3b−1

(at2b + bc1)
3
2

)

=
√

|b|

(
b2c1t

b−1

(at2b + bc1)
3
2

)
.

Then

(2.4.2) ⇐⇒
√

|b|
(
b2c1t

b
)

(at2b + bc1)
3
2

[F1 (s)] +

√
|b|tb

(at2b + bc1)
1
2

[F2 (s)] +
(|b|)

3
2 t3b

(at2b + bc1)
3
2

[F3 (s)] = 0

⇐⇒
√
|b|tb

(at2b + bc1)
3
2

[
b2c1F1 (s) +

(
at2b + bc1

)
F2 (s) + bt2bF3 (s)

]
= 0

⇐⇒b2c1F1 (s) +
(
at2b + bc1

)
F2 (s) + bt2bF3 (s) = 0

⇐⇒b2c1F1 (s) + abt2bF1 (s) +
(
at2b + bc1

)
F2 (s) = 0

⇐⇒
(
at2b + bc1

)
[F2 (s) + bF1 (s)] = 0

⇐⇒F2 (s) + bF1 (s) = 0

⇐⇒2sf p (s)− s3f p (s)3 + s2f pp (s) + bsf p (s) + bs3f p (s)3 = 0

⇐⇒ (b+ 2) sf p (s) + (b− 1) s3f p (s)3 + s2f pp (s) = 0

⇐⇒f pp (s) + (b+ 2)
1

s
f p (s) + s (b− 1) f p (s)3 = 0

⇐⇒f pp (s) + (b+ 2)
1

s
f p (s) = s (1− b) f p (s)3
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We pose f p (s) = p (s) and we �nd a Bernoulli equation :

dp

ds
+ (b+ 2)

1

s
p = s (1− b) p3

We divide by p3, we obtain :

dp

ds
p−3 + (b+ 2)

1

s
p−2 = s (1− b) (7)

To solve (7) we go through 2 staps :
Step 1 : homogenous �rst-order ODE

ppp−3 + (b+ 2)
1

s
p−2 = 0 ⇐⇒ppp−1 = −1

s
(2 + b)

⇐⇒
∫
pp

p
ds = − (b+ 2)

∫
ds

s

⇐⇒ ln |p (s)| = − (b+ 2) ln s+ k2

⇐⇒p (s) = s−(b+2) exp k2 (s)

Then
pp (s) = − (b+ 2) s−(b+3) exp k2 (s) + s−(b+2)kp2 (s) exp k2 (s) .

Step 2 : ODE of order 1 with second member

(7) ⇐⇒
[
− (b+ 2) s−(b+3) exp k2 (s) + s−(b+2)kp2 (s) exp k2 (s)

]
s3(b+2) exp (−3k2 (s))

+ (b+ 2)
1

s
s2b+3 exp (−2k2 (s)) = s (1− b)

⇐⇒− (b+ 2) s2b+3 exp (−2k2 (s)) + s2b+4kp2 (s) exp (−2k2 (s))

+ (b+ 2) s2b+3 exp (−2k2 (s)) = s (1− b)

⇐⇒s2b+4kp2 (s) exp (−2k2 (s)) = s (1− b)

⇐⇒kp2 (s) exp (−2k2 (s)) = (1− b) s−2b−3

⇐⇒− 1

2

∫
−2kp2 (s) exp (−2k2 (s)) ds = (1− b)

∫
s−2b−3ds

⇐⇒ exp (−2k2 (s)) = −2 (1− b)

(
1

−2b− 2
s−2b−2

)
+ d1

= −2 (1− b)

(
1

−2 (b+ 1)
s−2(b+1)

)
+ d1 =

1− b

b+ 1
s−2(b+1) + d1

=⇒k2 = −1

2
ln

(
1− b

b+ 1
s−2(b+1) + d1

)
(d1 ∈ R) .

So

p−2 = s2(b+2)

(
1− b

b+ 1
s−2(b+1) + d1

)
=

1− b

b+ 1
s2 + d1s

2(b+2).
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Then

p =

(
1− b

b+ 1
s2 + d1s

2(b+2)

)− 1
2

We have

f p (s) = p (s) =⇒ f (s) =

∫
p (s) ds =

∫
1√

1−b
b+1

s2 + d1s2(b+2)
ds =

∫
1

s
√

1−b
b+1

+ d1s2(b+1)
ds,

where d1 ∈ R.
Thus, we have the following :

Theorem 5. Let
∑

2 be a translation surface of type 2 in H2 ×R. If
∑

2 is minimal surface,
then

∑
2 is a plane or parameterized as

x (s, t) = (g (t) , st, f (s)) ,

where

(1) either f (s) = sin−1 s
c3
+ c4 and g (t) = c1 ln t+ c2 or

(2) f (s) = sin−1 s
c3
+ c4 and g (t) =

c1
b+1

tb+1 + c2 or

(3) f (s) = ± ln

(
1+
√

1+d2s2

s

)
+ d3 and g (t) =

∫
1√

2a ln t−d1
dt or

(4) f (s) = − d1
2s2

+ d2 and g (t) =
1
a

√
c1 + at2 + c2 or

(5) f (s) =
∫

1
s
√

d1s2(b+1)− b−1
b+1

ds and g (t) =
√
|b|
∫

tb√
at2b+bc1

dt.
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Figure 2.2 � Minimal translation surface in H2 × R of type 2 .
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CONCLUSION

In this master thesis we gives a classi�cation of minimal translation surfaces in product
Riemannian space H2 × R.
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